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EXPECTATIONS, FORECASTING,
AND PERFECT FORESIGHT

A Dynamical Systems Approach

VoLKER BOHM AND JAN WENZELBURGER
Universitét Bielefeld

The paper studies the nature of expectations formation rules for deterministic economic
laws with an expectations feedback within the framework of dynamical systems theory.

In such systems, the expectations formation rules, called predictors, have a dominant
influence. The concept of a perfect predictor, which generates perfect-foresight orbits, is
proposed and analyzed. Necessary and sufficient conditions are given for which local as
well as global perfect foresight is possible. The concept is illustrated for the general linear
model as well as for models of the cobweb type. For the standard overlapping generations
model of economic growth, the existence of perfect predictions depends strongly on the
savings behavior of the agents and on the technology.

Keywords: Dynamics, Perfect Foresight, Rational Expectations

1. INTRODUCTION

The interplay between realizations of economic variables and expectations con-

cerning the development of these variables constitutes one of the central features
of economic systems. On the one hand, actual realizations of a market process
depend on agents’ expectations about the future prior to the realizations of these
variables. On the other hand, these expectations typically are formed on the basis of
observed past realizations of the economic variables. Thus, realizations of the past
influence the new realizations through the way in which economic agents perceive

this interdependence. The interaction of the market process with an expectation
formation then determines the actual evolution of the system.

The existing literature usually treats dynamic problems in economic systems
by analyzing solutions of a system of implicit difference equations; see, e.g.,
Grandmont (1985), Grandmont and Laroque (1986), or Chiappori and Guesnerie
(1991). Unfortunately, the mathematical techniques available to treat these implicit
equations allow, at most, a local analysis in a neighborhood of a stationary solution,
i.e., a steady state or a cycle. In this case the implicit function theorem yields an
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implicitly defined function that describes the dynamics of the system in a local
neighborhood of this stationary solution. All dynamic properties such as stability
or bifurcations are linked to this map. Except for special situations, an explicit
solution in the sense of a (local) flow of mappings cannot be computed analytically.
In fact, only a linearization of the local dynamics can be computed explicitly. In
the case of an unstable steady state this implies that nothing can be said about a
solution that eventually leaves the neighborhood of the stationary solution. Also,
in cases in which the fixed point is nonhyperbolic, the Hartman-Grobman theorem
fails and the linearized dynamics have, in general, nothing to do with the original
nonlinear dynamics.

This critique applies in particular for models with rational expectations or per-
fect foresight. An examination of the existing literature reveals that the research
on rational expectations concentrates more or less on the description and charac-
terization ofequilibria with perfect foresight, or rational expectations; see, e.g.,
Grandmont (1985), Grandmont and Laroque (1986), or Chiappori and Guesnerie
(1991). These equilibria again are defined as implicit solutions of a system of
equations near steady states. For the same reasons as above, the resulting perfect-
foresight dynamics are therefore of a strictly local nature. Moreover, in nonlinear
models it is left unclear which forecasting rules could generate rational expec-
tations equilibria. Taken on its own grounds, in this approach the property of
rational expectations is a definitional element of an equilibrium concept and not a
description of a particular class of forecasting rules that are perfect or rational in
a well-specified sense.

These two drawbacks can be overcome by modeling the recursive structure
of economic systems explicitly. The approach taken in this paper is that such
modeling is done on the basis of economic reasoning and not by simply applying
the implicit function theorem. On the one hand, this means that the basic economic
mechanisms have to be described by an explicit map called@momic lanand
not by an implicit equation. On the other hand, for models with an expectations
feedback, one has to model how agents form expectations for future realizations
of the economy. This can be done by means débracasting ruleas has been
done for a purely implicit setup; see, e.g., Grandmont (1988). However, contrary
to the earlier work, the combination of @sonomic lawn the above sense and a
forecasting rulehen yields amconomic dynamical systdhat is defined explicitly
and globally on the whole state space. Thus, for arbitrary initial values, the orbits
of the system can be generated by simply iterating a well-specified map. The
important advantage of such an approach is that the mathematical techniques for
analyzing the global dynamics of such a system, i.e., attractors, basins of attraction,
bifurcations, stability analysis, etc., can be applied in a straightforward manner.

In this paper, the setup of these explicitly defined economic dynamical systems
is the starting point for addressing the question which forecasting rules could gen-
erate perfect foresight in the classical sense. This means pointwise coincidence of
realizations and forecasts along paths (or orbits) of the system. A structural an-
swer in a general nonlinear setting is provided by developing the formal framework
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under which perfect forecasting rules (those generating perfect-foresight orbits)
can be analyzed. Necessary and sufficient conditions are given for which local as
well as global perfect foresight is possible, indicating that for many systems these
are quite strong. The concept is illustrated for the multivariate linear model as well
as for models of the cobweb type, confirming results known from the literature.
It is shown that the standard overlapping generations (OLG) model of economic
growth fits into the proposed framework. The analysis reveals that the existence
of perfect predictors depends strongly on the structural economic features, i.e., on
the savings behavior, the form of the technology, and the size of the depreciation.
The question of learning, i.e., of finding supkrfectforecasting rules while
the dynamical system is evolving, is left to future research. For linear stochastic
models, this problem is solved to a large extent; see, e.g., Zenner (1996), Evans
and Honkapohja (1997).

2. GENERAL SETTING

Let X ¢ R" denote the space of endogenous variables of an economic system
under investigation. Assume that for each tirrthe vector of endogenous variables

X; € X can be subdivided int& = (X;,y;) € XxY = X wherey;eY c RA

is the vector of variables for which expectations are fornxed, X C RP is the
vector of the remaining variables, and= p -+ g. A function,

F:XxY— X, (1)

is called a (discrete tim&conomic lavwvith the interpretation that all states of the
economy in time are given by

Xt4+1 = F(Xt’yte,t+l)’ tGN,

wherex; is the current state of the economy ayfd, ; € Y is the predicted value
for y;,1 formed at time; x; may well be a vector of lagged endogenous variables
as well as of past forecasts. Thus the arguments afe all observable variables
up to timet. With this interpretationfF generates the (true) realizations of an
economy in one step and not further ahead. The case in which the economic law (1)
takesexpectational leadas arguments, i.e., predictions for values of endogenous
variables beyond the step-one realizatiorofs not treated here; seeBih and
Wenzelburger (1997a) for this generalization. _

The economic law (1) can be split into a pair of mdps= (F, f) yielding a
system of equations

{)Tﬂ-l = F (Xt’ yﬁwl)
Vi1 = f (x’[s yﬁt+1) ,
with functionsF : X x Y > X and f : X x Y = Y. In many applications it is as-

sumed that agents form expectations for all relevant variables of the economic
process under consideration. Thea=Y andF : X x X — X.

2
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The lawF is only part of the description of what is sometimes called an economic
law of motion.F does not describe a dynamical system because, formally, it is not
a map fromX x Y into itself as required by dynamical systems theory. However,
on intuitive groundsk describes the evolution of an economic system but not how
predictions are formed over time. The structure of (1) covers alarge comprehensive
class of dynamic economic models in which predictions of agents play a role.
These include many macroeconomic disequilibrium models [see, elgn Bt al.
(1994)], models of financial markets, many partial equilibrium models, in particular
all models of the cobweb type, and all standard models of economic growth. The
latter is treated extensively below.

For a complete description of an economic dynamical system, i.e., a dynamical
system associated with the economic law (1), it is necessary to specify the way in
which the predicted valug,, , made fory;,1 € Y is determined. By this is meant
a function that generates predictions using the information provided in getiod
this setting, it is assumed that all of the information about the economy available
at timet is contained in the vectox;.. Therefore, the predicted valyg, ,, is
determined according tofarecasting ruley,, which is assumed to be a continuous
function depending solely on the stateof the economy at timg that is,

YyiX >, Yerpr = ¥ (%), teN. 3

The functionyr also is referred to aspredictor. A predictor may or may not be
thought of as being derived fromperceived law of motiom the sense of Evans
and Honkapohja (1986).

Inserting (3) into the economic law (1) yields a discrete-time dynamical system
in the sense of Hasselblatt and Katok (1995), defined by

Xe+1 = Fy(Xt) == F (X, ¥ (X)), x€X, teN. 4

Thus, X becomes thstate spacef an economy whose evolution is governed by
the time-one map (4). Observe that becabsand s are definedexplicitly and
globallyon all of X, the evolution of the economy is defined explicitly for arbitrary
statesx € X. The fact that the predictaf does not depend on the tinhémplies
that the system (4) is autonomous.

3. PERFECT FORESIGHT IN ECONOMIC DYNAMICAL SYSTEMS

The notion of perfect foresight is a common assumption in many macroeco-
nomic models in which the processes of allocations and of prices are conceived
of as equilibrium sequences. It is well known for many economies that the two
requirements—namely, a dynamic process for an economy that is constantly in
equilibriumandagents having perfect foresight at all times—may well be incon-
sistent with each other; see, e.g., Grandmont (1988). Moreover, in this literature
the notion of perfect foresight usually is defined in terms of sequences in which
the forecasts coincide pointwise with the actual realizations of the economy; see,
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e.g., Grandmont (1985) or Grandmont and Laroque (1986). Although this concept
has been accepted widely to describe economic equilibrium situations over time,
it is left unclear what forecasting rules could generate forecasts with the desired
property of perfection. This section provides a precise operational definition of a
predictor that has these desired properties.

Given the economic law (1) and any predictor (3), the performance of predictors
in relation to the dynamical system (4) will be analyzed in the following manner.
Define theerror functionassociated with the economic law (1) by

er : XxY—RY X, V&) = f(x, y°) — V& (5)

For arbitrary statex € X of an economy described by (1) and arbitrary forecasts
yeeY, the error function (5) yields the (forecast) ermyr(x, y¢) between the
forecasty® and the occurring staté (x, y¢). Notice that the error function is a
pointwise measure for arbitrary paips y®) in theextended state spacexXY ofan
economic lawF. It therefore supplies structural information on which predictions
are better than others. This information is embodied in the economi€ |land,

in fact, is independent of any predictgr The idea is to measure the deviation of
a prediction from the corresponding realization by means of a metin Y. So,
given a state € X and some positive number> 0, a prediction/® is ane-perfect
prediction for f (x, y®) (with respect tqo), if p(f(x, y¢),¥®) < €. The set of all
pairsx € X andy® € Y that satisfies this criterion is given by

Fo={0GY) e X XY [ p(f(X ¥, ¥ < el
The desired criterion for a predictor now is defined as follows.

DEFINITION 1. Given a law F= (F_, f), a forecasting ruley is called a
locally e-perfect predictor for F with respect to a given metgicon Y if there
exists an open subsetd X such that

{X, y(X) | xeU} C WEg. (6)

For € =0, locally e-perfect predictors are calletbcally perfect If U = X, then
Y is called a(globally) e-perfect predictor.

Definition 1 is illustrated in Figure 1. Note that the points)of are deter-
mined primarily by thef -part of the economic law = (F, f). Fore =0, the
setWQ =Wk is called theconstraint variety of F = (F, f). Becausep is a
translation-invariant metric, one has

We ={(xy) e XxY | f(x,y9) -y =0} )

Thus, Wk is precisely the zero-level set of the error functin whereasg/Vg,

€ > 0 defines a (closed)neighborhood o#Ve. The geometric intuition behind
Definition 1 then says that the graph of a (globallyperfect predictor lies right
in between the ™ -level and the:~-level sets of the error functiogx.
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Ficure 1. A locally e-perfect predictor.

The possibility of finding perfect predictors in the sense of Definition 1 depends
strongly on the map-. Using (7), a geometric condition for a predictorto be
perfect is provided next.

LEMMA 1. The predictory is a perfect predictor for an economic law £
(F, f)ifand only if

graphyr := {(X, ¥ (X)) | x€ X} C We.

The predictory is uniquely determined if and only if graph = We.

The proof of Lemma 1 is immediate. Given an economic BywLemma 1
transforms the question whether perfect forecasting in the sense of Definition 1 is
possible to the problem whether the constraint variéty admits a predictot)
whose graph is contained iWg. From the point of view of differential geometry,
this condition is quite restrictive. It amounts to the fact W4t admits a coordinate
system defined on all of. For many economic laws, perfect predictions, therefore,
may be impossible. Observe that by Definition 1, a perfect predijctoust satisfy
f (X, ¥ (X)) = ¢ (x) forallx € X, which may be interpreted as a fixed-point property
on the space of all functiorfgs | v : X — Y}. This fact was noticed earlier; see,
e.g., Sargent (1993) or Evans and Honkapohja (1997). Recall that ary oxbit
of the dynamical systerf, is defined byy (Xo) : = {Xt}ten, Wherex; = Ffb (Xo)
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and F,}, denotes theth iterate of the mag-,. The notion ofe-perfect foresight
defined in terms of orbits of the dynamical system (4) is straightforward.

DEFINITION 2. Anorbity (xo) = {X;} < Of the dynamical system, ks called
an e-perfect-foresight orbit ifx;, ¥ (x;)) € Wt forall t e N.

Fore = 0, ane-perfect-foresight orbitis called a perfect-foresight orbit for short.
Observe that as-perfect predictor generates a sequence of poiRtsys, 1) }ten
in the (closed§-neighborhoodVg of We, wherex; = FI}, (Xo) andyy 1 = ¥ (Xt)
for eacht € N. Fore =0, this sequence lies on the constraint varléty. It follows
from (2) and (3) that a perfect predictprgenerates perfect foresightin the classical
sense, i.ey 1 = Y41 forall timest and for all initial data € X. In other words,
Y is a perfect predictor if and only if all orbits ¢, have identically vanishing
forecast errors. This fact is stated in the following slightly more general lemma.

LEMMA 2. The predictory is ane-perfect predictor for F if and only if all
orbits of F, are e-perfect-foresight orbits.

A main problem with locally perfect foresight in nonlinear dynamical systems
is that an orbit of,, with e-perfect foresight in a suitable neighborhood of some
initial pointxo € X may loose this property over time. Thusyifis a predictor that
is locallye-perfect on an open subsétc X of Xp, then the additional requirement
thatU is invariant undeir,, i.e.,

Fy(U)=FU,yU) CU,

is needed to obtaina-perfect-foresight orbits. In this case, any orpitx), x e U

will be an e-perfect-foresight orbit. It turns out (Theorem 1) that, éox 0, the
existence of a sét thatis invariant undef,, depends solely on the economic |&w
because then the restrictigtly is uniquely determined bWr. Hence, the system

F, when restricted to the invariant 9dtis already determined by the economic
fundamentals and, in principle, may exhibit any type of dynamic beha\or.

€ > 0, there is considerable freedom in choosingegperfect predictor. Foe
sufficiently large, this freedom, in principle, could be used to construct a predictor
that is locallye-perfect onU such that) is invariant undefF,. This observation
and the fact that in many economic applications it might be sufficient to have good
predictions in the long run lead to the following definition.

DEFINITION 3. Given a law F= (F, f), a predictory is called asymptoti-
cally e-perfect if the following conditions haold

(i) There exists an attractor & X of F.
(ii) The predictory is locally e-perfect on Athatis p(f (X, ¥ (X)), ¥ (X)) <e for all
xeA.

For ¢ = 0, an asymptotically-perfect predictor is called asymptotically perfect.
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4. ON THE EXISTENCE OF PERFECT PREDICTORS

As was seen in Section 3, the constraint varidty, i.e., the zero-level set of the
error functioner of a given lawF, completely characterizes perfect predictors.
This means that the predictor must satisfy the conditions embodied in the constraint
variety. It is important to realize that for each fixed stateX and each prediction

ye €Y, the error functiorer of an economic lawF gives the deviation from next
period’s realization. Consider the functiép induced byer, defined by

Er X xY = XxRY, X, ¥°) = (X, e (X, ¥©)). (8)

The next theorem shows that the problem of existence of locally as well as globally
perfect predictors may be characterized by an invertibility property dhitheced
error function(8).

THEOREM 1. Let F = (F, f) be an economic law. If the induced error func-
tion &k is locally invertible at(xg, Yo) € X x Y with & (X, Yo) =0, then the law
F admits a locally perfect predictag . If ¢ is globally invertible then the law F
admits a unique perfect predictar,. Moreover &g is globally invertible if the
following conditions hold

(i) feCYXxY,Y)and D,f(x,y) — Id is invertible for all(x,y) € X x Y;
(i) X andY are contractible spaces
(iii) there exist positive constantsand g such that| DER (X, y) || < a||(x, )| + B on
XxY.

Proof. Consider the global case first& is globally invertible, ther€r has
an inversgy which is of the form

G: XxRY - XxY, X,2) — (X, G(X, 2)). 9

In particular,er (X, G(x, 0)) =0 for all x e X. Settingy, (X) := G(X, 0), xe€ X,
this implies

(X, ¥ (X)) = ¥ (X), xe X.

Thusy, is a perfect predictor in the sense of Definition 1. Supp@dge notunique.
Then there exist pointg € X andyy # y; € Y such thater (Xo, Yo) = €F (Xo, Y1)
=0. This implies tha€g is not invertible in(Xo, o) which is a contradiction to
the initial assumption.

If &k is only locally invertible aroundxo, o), then the inversg is defined
only locally around(xp, 0) € X x RY. Hence, the functiols appearing in (9) is
defined only locally on some open neighborhabd: X of xo. Consequently, any
predictory satisfyingy (x) = G(x, 0) onU is locally perfect.

For the last statement of the theorem, observelt&t(x, y) is invertible, if and
only if D, f (X, y) —id is invertible; cf. Lang (1968). The rest of the statement then
follows from a slight variant of a global inverse function theorem; see Deimling
(1980, Theorem 15.4). [ ]
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Theorem 1 reduces the problem of existence and uniqueness of a perfect pre-
dictor to the problem of global invertibility of the error function. ConditiGnin
Theorem 1 provides a local invertibility criterion for the induced error function
(8), whereasii) is a topological criterion andii ) is an estimate sufficient for the
existence of a unique global inverse. By the well-known theorem on Neumann se-
ries, a sufficient condition fob, f (x, y) — Id to be invertible ig| D, f (X, y)|| < 1,
where||-|| denotes a matrix norm; cf. Lang (1968). Notice that, for the existence of
a perfect predictor, it suffices to have invertibility of (8) on an open neighborhood
of X x {0} inthe image set ofr. By virtue of the inverse function theorem, locally
as well as globally perfect predictors are uniquely determined’pyand hence by
the fundamentals of the economy. This observation implies in particular that per-
fect predictors depend exclusively on the current staliethe local case, a locally
perfect predictor may be changed arbitrarily outside the regiasf perfection.
However, even if all conditions of Theorem 1 hold, for economic l&ws (F, f)
with nonlinearf -parts, it generally will be impossible to construct a perfect pre-
dictor v, explicitly. The same argument applies for locally perfect predictors.

If the induced error function (8) is not globally invertible, it may happen that
the constraint varietyVr will not coincide with the graph of some predictgr.

In particular, perfect predictors need not be unique. For models of the cobweb
type (see below), the corresponding constraint variety may consist of different
hyperplanes reflecting the nonuniqueness of different perfect predictors. Observe
that Theorem 1 can be generalized easily to the cagepeffect predictors. A
necessary geometric condition for esperfect predictor to exist is that the natural
projection ofWE on X,

pr:Wg — X, X, ¥y) = X,

is a surjective mapping. lbr is not surjective, then the state spacmay be written
as the disjoint union of two set$ = rangepr U A'¢, where rangepr denotes the
range ofpr; see Figure 1. In this caseperfect foresight is impossible if the state
of the economy is contained in the $€t. This may happen for noninvertible error
functions; see Section 5.4 for an example.

5. APPLICATIONS

This section is to relate the concepts introduced in the preceding sections to more
established results from the literature. First, the relation to the temporary equilib-
rium theory is discussed. Then, two simple standard setups are treated: the linear
(affine) case and models of the cobweb type. Finally, the general nonlinear OLG
model of economic growth is analyzed.

5.1. EQUILIBRIUM DYNAMICS AND PERFECT FORESIGHT

Most models in temporary equilibrium theory do not describe orbits in the explicit
sense of dynamical systems theory. They are defined as sequences of solutions of an
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implicit equation defined by the so-callEmporary equilibrium mafGrandmont,
1988). In a general nonlinear setup, such implicit equilibrium dynamics can be
written as an explicit dynamical system at best locally around some known solution,
where the equation is locally invertible. This known solution may be, for instance,
a steady state or a cycle. Moreover, the existence and uniqueness of these solutions
well may be at question, unless the system is globally invertible.

To be more precise, let =Y C R", the state space of an economy, and consider
the implicit difference equation defined by a temporary equilibrium mayh the
form

T:XxXxX—> R", T (Xt Xe+1. Xg p41) = 0. (10)

Assume that there exists a steady stateX such thatT (X, X, X) =0 and that
the partial derivativeD,T (X, X, X) is invertible. Then, by the implicit function
theorem, there exist an open neighborhabd V of (x, X) € X x X and a map
Fioc : U x V — X such thatF . (X, X) =X and

T (X, Foc(X, X8),x5) =0 forall (x,x®)eU x V.

The mapFo. may be interpreted to define a local economic law in the sense
of Section 2. Given a predictaf : U — V, the local dynamics of the implicit
difference equation (10) is generated by

Xt4+1 = Fioc(Xt, ¥ (Xt)) (11)

for all t € N such that; € U. By Theorem 1, a locally perfect predictgt, in the
sense of Definition 1 exists, id — DaFige (X, X) = 1d + DoT (X, X, X) 1D3T (X,

X, X) is invertible. The orbits of the local perfect-foresight dynamics generated by
Fioc andyr, do coincide, as long as they exist with the solutions of the local implicit
perfect-foresight dynamics defined by

T(Xt5 Xt+l7 Xt+1) = 07 (12)

which is obtained by setting .1 = xf,_; for t € N. This shows that, for economic
laws in the sense of (1), the local dynamics of locally perfect predictors coincide
with the local implicit perfect-foresight equilibrium dynamit@bserve, however,
thatin most casds, will notbe computable in an explicit sense. From adynamical
systems point of view, all one gets is linearized dynamics araunduced by the
Jacobian matrix oF,, if X is a hyperbolic fixed point. Kis unstable, nothing can

be said about a solution that eventually leaves the neighborhood of the stationary
solution. In cases in whick is nonhyperbolic, the Hartman-Grobman theorem
fails and the linearized dynamics generally have nothing to do with the original
nonlinear dynamics. In summary, this implies that, contrary to the global setup
presented in Section 2, the analysis outlined in this paragraph is of a strictly local
nature.
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5.2. LINEAR CASE

Let X=Y =R"or X=Y =R and consider an economic law (1),
F:XxX—= X, (X, X%) > AX+ Bx®+b, (13

whereA andB both aren x n matrices anth € R" is a fixed vector. Clearly itself

thenis an affine map. Many linear economic models with rational expectations [see,
e.g., Evans and Honkapohja (1986), Marcet and Sargent (1989), or Zenner (1996)]
are of the form (13). Lemma 3 shows that, under mild technical assumptions, a
unique perfect predictor for the law (13) can be constructed explicitly.

LEMMA 3. Let F be an affine economic lag3). Then the induced error
function&k is globally invertible iff Id— B is invertible. In this caseF admits a
unique perfect predictorgiven by

Y. (¥) = (Id — B) " "[Ax +h]. (14
Proof. For giverx, x€ € X, the error functiorer associated withr reads
er (X, x%) = Ax+[B — Id]x® +b. (15

It follows from (8) that&r (x, x®) = (X, ek (X, X®)) is globally invertible iffld — B
is invertible. Uniqueness and existence then follow from Theorem 1. Formula (14)
is easily derived from the inverse 8¢, which can be computed explicitly. m

It follows from Lemma 3 that predictors for a linear economic law (13) should
be affine functions of the form

¥(X) :=Cx+c, X e X, (16)

whereC is ann x n matrix andc € R". With the help of the error function, agents
believing in a linear world with a linear forecast feedback are, in principle, able
to find out the correct specification of (13). To see this, observe that an agent at
time T has observed the time serigg}{_, and knows all prediction§¢, , ; }{_.
Moreover, he knows all past forecast errgfs= x¢ — x¢_;,, t =0,...,T. A
possible candidate of an error function of type (15), &g.therefore has to satisfy

Ax+[B—1d]x¢  +b=¢41, t=0...,T-1 (17)

This is a system ofl vectorial equations for the two unknownx n matrices

A, B and the unknown vectds e R". More precisely, (17) is a system @f- n
scalar equations for# +n unknown coefficients o . Thus, attimel =2n+1,

an agent is able to compute the unique solutién B, b) of (17), provided all

2n? + n equations are linearly independent. Because this solution is unique, it
must coincide with the true specificatigéd, B, b) of (13). Hence, the problem

of learning the linear feedback is transformed to the task of generating enough
linearly independent equations.
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If ¥, is the perfect predictor (14), the perfect-foresight dynamics generated
by F,, may exhibit any type of dynamic behavior known from the theory of
linear (affine) dynamical systemidt can be a sink, a source, or a saddle point.
In particular, the linear perfect-foresight dynamics may be unstable. In the latter
case, asymptotically-perfect predictors may be used to stabilize a fixed point or
a cycle, where-perfect foresight is possible. For an affine predictor of the form
(16) and a linear economic lak, the resulting dynamical system is driven by the
affine map

Fy(X) = (A4 Bo C)x+ (Bc+by). (18)

Choose the standard metrion X, given byp (X, y) := ||x — y|| with the Euclidean
norm| - || on X. If C andc can be chosen such thatis a (globally) asymptotically
stable fixed point of;, which, in addition, satisfies(x,. ¥ (X.)) <€, theny is an
asymptoticallye-perfect predictor in the sense of Definition 3. For stabperfect
cycles, similar arguments apply. It seems to be evident that, for a given linear law
F, there will be a trade-off between the stability of a fixed point or a cycle and the
size ofe.

5.3. MODELS OF THE COBWEB TYPE

The so-called cobweb model is one of the most widely used dynamical economic
systems to demonstrate the role of expectations in determining the dynamic be-
havior of a market economy. Several authors have shown that such systems may
demonstrate almost any degree of dynamic complexity, depending on expectations
formation procedures [see, e.g., Chiarella (1992) or Brock and Hommes (1997)
and references therein]. For this setup, the essential featuneals of the cob-
web typeis the fact that thef -part of the economic lawr = (F, f) depends
exclusively on the current prediction and of no other state variables. Hence, the
resulting dynamics fox andy are coupled only via predictors.

If f(x,¥%) = f(y®) for all (x,y*) e X xY, then the constraint varietyVr
corresponds to the set of all fixed points of the migpi.e., it has the simple
product structure

We =Xx{yeY|y= f(y}. (19

WE may be visualized as an assembly of hyperplanes parallel to the state space
X. With this observation, the following Lemma becomes obvious:

LEMMA 4. Under the assumptions made abgpthe only(continuou$ perfect
predictors of F= (F, f) are the constant predictong, defined by

v.X)=y, V xeX, i=1...,k (20)

where they, denotes a fixed point of f. The law F has a unique perfect predictor
iff the fixed point of f is unique.
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5.4. EQUILIBRIUM GROWTH WITH PERFECT FORESIGHT

Consider the standard version of the OLG model of economic growth, as, for
example, of Blanchard and Fischer (1989) or Azariadis (1995). Consumers consist
of two-period-lived OLGs with preferences over consumptionin both periods. Each
member of a generation supplies one unit of labor to the market inelastically in the
first period of his life, receives wage income only in the first, and saves to consume
in the second period of his life. His intertemporal consumption/savings decision
is made given an expected real rate of retRfn= 1 + r € on savings, where® is
the expected interest rate. The real wage is determined by the marginal product of
labor at full employment in each period. Old consumers receive all profit income
from production, which determines the actual rate of return on their savings. For
each period, denote byl the number of young consumers, by the real wage
of ayoung consumer, and 8f,  ;, = 14-r,, ; the expected rate of return for his
savings held at date

Aggregate outpuY; in each period is produced from the total amount of labor
L: (humber of young consumers) and capkalby use of a standard atemporal
neoclassical production function which is assumed to be homogeneous of degree 1
in both inputs. Capital depreciates at a ratec0d < 1 and the generations of
workers grow at a constant rate> 0. Definek; := K;/L; and letg: Ry — R4
be a strictly concave, strictly monotonically increasing function wij¢tB) > O.
Suppose that outpiYt in each period is given by the production function

Yy = Lig(ky).

Then, the economic process is defined by the following set of equations:

ke = 17 S0 R
Rug = Yir1 — Wepilbepn + (1= d)Keyg
S(we, Rea) Lt
we = g(k) — keg'(ko),

whereS denotes the savings function of a young consumenraritie wage rate.
Setting

: (21

s(ke, RE41) = S(gk) — kg’ (k). RE¢1)

and inserting the first and the third equations in (21) into the second equation, one
obtains an economic law in the sense of Section 2, namely

— 1
kir1 = F (k. Reyq) = ms(kt’ Reti1)

Ro1= f (ke Req) =0 (F(ke Re1q)) + (1 —d).

Two features are worth noting. First, expectations matter only if the savings be-
havior depends on the expected rate of return. Second, both functions in (22) are

(229
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independent of the actual rate of retlRn implying that the two equations in (22)
are only coupled via a forecasting rule. Thus, if the predig¢tds independent of
the actual rate of return, then the dynamics of the system are one-dimensional.

Because the law given in (22) is independent @, the error functioreg has
the form

er(k, R®) = g’< s(k, Re)) +1-d) - R (23

1+n
The corresponding constraint variety is a cylindric Bgt =)7\7F x R4 in Ri,
whereRe R, and(k, R®) e VV\F if and only if er (k, R®) = 0. It therefore suffices

to look atVA\/p instead ofWg. The major implication of this observation is that
globally or locally perfect predictors, if they exist, depend exclusivelioAlso,
predictors that depend dR in a nontrivial manner cannot be perfect. It follows
from the discussion above that perfect-foresight dynamics of the system, if it exists,
will be one-dimensional.

The form of the error function (23) shows that the interaction between the
marginal product functiog’ and the expectations effect of savings will determine
whether perfect prediction is possible and unique for every value of the capital
intensity k. It is a remarkable fact that for each of the two functions involved,
the production function and the savings function, there exists a large class for
which unique perfect predictors exist under mild assumptions on the respective
other function. However, if they are violated, at least uniqgueness need not hold.
Propositions 1 and 2 provide the two positive results of existence and uniqueness.
A succeeding example shows how perfect prediction fails in general. For saving
functions that are nondecreasing RY, unique perfect predictors exist for all
technologies satisfying the Inada conditions. This rather strong result is stated in
the following proposition.

PROPOSITION 1.Consider the standard growth model as introduced above.
Let the production function g satisfy the Inada conditions and assume the savings
function s to be nondecreasing irf;R.e., 3,s(k, R®) > 0 for all (k, R®). Then
there exists a unique perfect predictgy. If both goods are normathenv, is a
strictly decreasing function of the capital intensity.

__All proofs are given in the Appendix. As a consequence of Proposition 1,
F(k, ¥.(k)) is strictly monotonically increasing ik. Therefore, all orbits with
perfect foresight are monotonic with a possibility of multiple steady states. Propo-
sition 1 covers all preferences that generate nonincreasing offer curves. Assume,
for example, that consumers have homothetic preferences. The savings function
is then of the form

sk, R% = [g(k) — kg (K]3(R®),
where 0< 5(R®) < 1 for all R®. In particular, consider savings propensities

1

3Ry = ——F—, 0<6, p<1 (29
1+ (BRe)»1



EXPECTATIONS, A DYNAMICAL SYSTEMS APPROACH 181

derived from CES utility functions. Equation (24) is nondecreasing fer® < 1
and strictly monotonically decreasing for< O.

COROLLARY 1. Let the production function g satisfy the Inada conditions
and assume the savings functi@¥) to be derived from CES utility functions. If
0 < p <1, then there exists a unique perfect predictor.

For nonmonotonic or monotonically decreasing savings functions, the existence
of perfect predictors depends in various ways on the preferences and on the chosen
technology. Let

1
a(k) = —k“, O<a<l, (25)
o
be the class of isoelastic production functions.

PROPOSITION 2.Consider the standard growth model as introduced above
withisoelastic production functions of the fo(@b). If consumption in both periods
is a normal good then there exists a unique perfect predictor that is a strictly
decreasing function of the capital intensity.

Proposition 2 implies in particular that perfect predictors exist for all isoelastic
production functions and all CES savings functions. The situation of Proposition 2
is illustrated in Figure 2, which shows the contour lines of the error function for a
particular parameter set (Case 1).

The intuition behind the two preceding propositions is as follows. The definition
of the error function (23) implies that (k, R®) = 0 if and only if

gl R —(1-d) = sk, R®,  k R°eR;. (26)

1+4+n
For an arbitrary but fixed capital intensiky (26) is illustrated qualitatively in
Figure 3.

On the one hand, a positive expectations effect of the savings function always
works in the right direction no matter what the curvature of the production function
is. On the other hand, the strong uniform curvature of isoelastic production func-
tions seems to level off almost any negative or nonmonotonic expectations effect,
as long as no inferiority in consumption is present. The following example indi-
cates that, with weaker assumptions on either side, the existence of unique perfect
predictors can no longer be expected. Consider exponential production functions
of the form

0l = f[+c—e™,  abc>0 @7

and CES savings functions (24). In this case the contour lines of the error function
in Figure 4 show that the constraint variety may fold back (Case 2). This is a clear
indication that, in this case, there exists no unique perfect predictor.

More generally, it is evident that there are many economic situations in which
the interplay of the savings behavior and of the income-generating features of
competitive-factor rewards may prevent the existence of perfect predictors. Thus,
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Ficure 2. Percentage prediction-error contours for isoelastic production function and CES
savings function.

the standard growth model, as one of the basic models in dynamic macroeconomics,
does not seem to guarantee a priori the possibility for perfect predictions.

6. FINAL REMARKS AND CONCLUSIONS

The careful distinction between an economic law and a forecasting rule seems
to be the necessary step to obtain an economic dynamical system that is de-
fined explicitly and globally on the whole state space. This distinction allows
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w(k)

1+n

Ficure 3. Expectations effects and production.

for a systematic analysis of perfect foresight as a property of forecasting rules.
The results of this paper show in a striking fashion that the property of perfect
foresight along orbits in dynamical economic systems imposes strong structural
requirements on the economic fundamentals encoded in the economic law. The
discussion of the examples indicates that these requirements are not a univer-
sal feature of economic systems, so that the perfect-foresight property of orbits
in dynamical economic systems may well be the exception rather than the rule.
The analysis also indicates that the amount of information necessary to construct
a perfect predictor requires detailed knowledge of the whole economic system,
which in turn is tantamount to the ability to compute the global inverse of the
error function associated with the system. As a first step for an operational ap-
proach to learning in economic dynamical systems, it therefore seems to be rea-
sonable to try to find predictors that, relative to a given class of predictors, are
best approximations of a (locally) perfect predictor. For a dynamic economic
analysis, this may be a successful line of research to understand the role of
expectations.

NOTES

1. Here, by a metric orY is meant a real-valued functiop defined onY x Y that satisfies
(i) p(y1,¥2) = 0 andp(y1,y2) = 0iff y1 = o, (ii)p(y1,¥2) = p(Y2,¥1), and(iii)p(y1,y3) <
p(y1,¥2) + p(y2,y3) for all y1,y», y3 €Y. Throughout this papep is assumed to be translation-
invariant, thatisp(y1 + Y3, Y2 + Y3) = p(y1, ¥2) forallyi, y2, ys €Y.
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Ficure 4. Percentage prediction-error contours for exponential production function and
CES savings function.

2. In general, such a variety may well have singularities.

3. In particular, if [ DF(X,, Y,)|| <1 for a steady state, = (X, Y.) with the perfect-foresight
property, then there exists a locally perfect predictor on an open neighbdthobx, that is invariant
underF, . In this casex, is an asymptotically stable fixed point such that orbits startirlg imill be
perfect-foresight orbits converging xq.

4. The condition for existence of local solutions of (12) near the steady’statthat D, T (X, X,

X) + D3T (X, X, X) is invertible. This condition is weaker than the condition for the existendg.ef
and the locally perfect predictar,.

5. Inthe case in whichd — B is not invertible, there may exist a continuum of perfect predictors;
cf. Bohm and Wenzelburger (1997a).
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APPENDIX: PROOFS OF RESULTS

Proof of Proposition 1. The case thatis constant inR® is trivial because then there is
no expectations feedback, implying that perfect foresight exists fér @lonsider now the
nonconstant case. The partial derivativeepfwith respect toR® reads

d:s(k, R®) — 1.

e i 1 e

Becausay” < 0 anda,s(k, R®) > 0, this implies that

der(k, R < -1<0 forall k,R® (A1)
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Letk e R, be arbitrary but fixed. Becausék, -) is bounded from above,
IQleim er(k, R® = —o0.

On the other hand, for eadt)
RIiem0 e:(k, R® > 0.

Using (A.1), the latter two equations imply that, for edch R, there exists a uniquBg
such thakee (k, RY) = 0. Then, the functiony, : Ry — R, defined byy, (k) := R{ is
the desired unique perfect predictor.

Now, implicit differentiation ofy,, gives

7 1
g (H—ns(ka 1//,('())) als(k» 1//,('())

vi(k) =

1 . keR,. (A.2)
1+n-g (ms(k, W*(k))) 925(K, Y. (K))

Observe thag is concave and is nondecreasing iR® and increasing itk because both
goods are normal. Therefor¢, must be decreasing. |

Proof of Proposition 2. The normality of both consumption goodsimplies that the prod-
uct R°s(k, R®) is increasing irR® for anyk > 0. Then, the error functioa: has the form

1-a
ol 1#n 1 [ 1-d
ek RO=R l(Res(k, Re>> (Re)" <1 = )1

For arbitrary but fixeck € R, one has

RIeim ek, R =—-1 and R!imoep(k, R >1-d>0.

Because the term in brackets is strictly decreasing, for &a&R . there exists a unique
RE = v¥.,(Kk) such thaer (k, ¥, (k)) = 0. By an argument analogous to that of the proof of
Proposition 1, the normality of the consumption goods impliesihé strictly decreasing.

|
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