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Chapter2
Probability

Introduction

The development of the theory of probability was financed by seventeenth-century gam-
blers, who hired some of the leading mathematicians of the day to calculate the correct
odds for certain games of chance. Later, people realized that scientific processes involve
chance as well, and since then the methods of probability have been used to study the
physical world.

Probability is now an extensive branch of mathematics. Many books are devoted to
the subject, and many researchers have dedicated their professional careers to its further
development. In this chapter we present an introduction to the ideas of probability that
are most important to the study of statistics.

2.1 Basic Ideas

To make a systematic study of probability, we need some terminology. An experiment
is a process that results in an outcome that cannot be predicted in advance with certainty.
Tossing a coin, rolling a die, measuring the diameter of a bolt, weighing the contents
of a box of cereal, and measuring the breaking strength of a length of fishing line are
all examples of experiments. To discuss an experiment in probabilistic terms, we must
specify its possible outcomes:

Definition
The set of all possible outcomes of an experiment is called the sample space for
the experiment.

For tossing a coin, we can use the set {Heads, Tails} as the sample space. For rolling
a six-sided die, we can use the set {1, 2, 3, 4, 5, 6}. These sample spaces are finite. Some
experiments have sample spaces with an infinite number of outcomes. For example,
imagine that a punch with diameter 10 mm punches holes in sheet metal. Because
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of variations in the angle of the punch and slight movements in the sheet metal, the
diameters of the holes vary between 10.0 and 10.2 mm. For the experiment of punching
a hole, then, a reasonable sample space is the interval (10.0, 10.2), or in set notation,
{x | 10.0 < x < 10.2}. This set obviously contains an infinite number of outcomes.

For many experiments, there are several sample spaces to choose from. For example,
assume that a process manufactures steel pins whose lengths vary between 5.20 and
5.25 cm. An obvious choice for the sample space for the length of a pin is the set
{x | 5.20 < x < 5.25}. However, if the object were simply to determine whether the pin
was too short, too long, or within specification limits, a good choice for the sample space
might be {too short, too long, within specifications}.

When discussing experiments, we are often interested in a particular subset of out-
comes. For example, we might be interested in the probability that a die comes up an
even number. The sample space for the experiment is {1, 2, 3, 4, 5, 6}, and coming
up even corresponds to the subset {2, 4, 6}. In the hole punch example, we might be in-
terested in the probability that a hole has a diameter less than 10.1 mm. This corresponds
to the subset {x | 10.0 < x < 10.1}. There is a special name for a subset of a sample
space:

Definition

A subset of a sample space is called an event.

Note that for any sample space, the empty set ∅ is an event, as is the entire sample
space. A given event is said to have occurred if the outcome of the experiment is one
of the outcomes in the event. For example, if a die comes up 2, the events {2, 4, 6}
and {1, 2, 3} have both occurred, along with every other event that contains the
outcome “2.”

Example
2.1 An electrical engineer has on hand two boxes of resistors, with four resistors in each

box. The resistors in the first box are labeled 10 � (ohms), but in fact their resistances
are 9, 10, 11, and 12 �. The resistors in the second box are labeled 20 �, but in fact
their resistances are 18, 19, 20, and 21 �. The engineer chooses one resistor from
each box and determines the resistance of each.

Let A be the event that the first resistor has a resistance greater than 10, let B be
the event that the second resistor has a resistance less than 19, and let C be the event
that the sum of the resistances is equal to 28. Find a sample space for this experiment,
and specify the subsets corresponding to the events A, B, and C .

Solution
A good sample space for this experiment is the set of ordered pairs in which the
first component is the resistance of the first resistor and the second component is the
resistance of the second resistor. We will denote this sample space by S.
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S = {(9, 18), (9, 19), (9, 20), (9, 21), (10, 18), (10, 19), (10, 20), (10, 21),

(11, 18), (11, 19), (11, 20), (11, 21), (12, 18), (12, 19), (12, 20), (12, 21)}

The events A, B, and C are given by
A = {(11, 18), (11, 19), (11, 20), (11, 21), (12, 18), (12, 19), (12, 20), (12, 21)}
B = {(9, 18), (10, 18), (11, 18), (12, 18)}
C = {(9, 19), (10, 18)}

Combining Events
We often construct events by combining simpler events. Because events are subsets of
sample spaces, it is traditional to use the notation of sets to describe events constructed
in this way. We review the necessary notation here.

■ The union of two events A and B, denoted A ∪ B, is the set of outcomes that
belong either to A, to B, or to both. In words, A ∪ B means “A or B.” Thus the
event A ∪ B occurs whenever either A or B (or both) occurs.

■ The intersection of two events A and B, denoted A ∩ B, is the set of outcomes
that belong both to A and to B. In words, A ∩ B means “A and B.” Thus the event
A ∩ B occurs whenever both A and B occur.

■ The complement of an event A, denoted Ac, is the set of outcomes that do not
belong to A. In words, Ac means “not A.” Thus the event Ac occurs whenever A
does not occur.

Events can be graphically illustrated with Venn diagrams. Figure 2.1 illustrates the
events A ∪ B, A ∩ B, and B ∩ Ac.

(a) (b) (c)

A B A B A B 

FIGURE 2.1 Venn diagrams illustrating various events: (a) A ∪ B, (b) A ∩ B, (c) B ∩ Ac.

Example
2.2 Refer to Example 2.1. Find B ∪ C and A ∩ Bc.

Solution
The event B ∪ C contains all the outcomes that belong either to B or to C , or to both.
Therefore

B ∪ C = {(9, 18), (10, 18), (11, 18), (12, 18), (9, 19)}
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The event Bc contains those outcomes in the sample space that do not belong to B.
It follows that the event A ∩ Bc contains the outcomes that belong to A and do not
belong to B. Therefore

A ∩ Bc = {(11, 19), (11, 20), (11, 21), (12, 19), (12, 20), (12, 21)}

Mutually Exclusive Events
There are some events that can never occur together. For example, it is impossible that
a coin can come up both heads and tails, and it is impossible that a steel pin can be both
too long and too short. Events like this are said to be mutually exclusive.

Definition

■ The events A and B are said to be mutually exclusive if they have no
outcomes in common.

■ More generally, a collection of events A1, A2, . . . , An is said to be
mutually exclusive if no two of them have any outcomes in common.

The Venn diagram in Figure 2.2 illustrates mutually exclusive events.

A B

FIGURE 2.2 The events A and B are mutually exclusive.

Example
2.3 Refer to Example 2.1. If the experiment is performed, is it possible for events A and

B both to occur? How about B and C? A and C? Which pair of events is mutually
exclusive?

Solution
If the outcome is (11, 18) or (12, 18), then events A and B both occur. If the outcome
is (10, 18), then both B and C occur. It is impossible for A and C both to occur,
because these events are mutually exclusive, having no outcomes in common.
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Probabilities
Each event in a sample space has a probability of occurring. Intuitively, the probability
is a quantitative measure of how likely the event is to occur. Formally speaking, there are
several interpretations of probability; the one we shall adopt is that the probability of an
event is the proportion of times the event would occur in the long run, if the experiment
were to be repeated over and over again.

We often use the letter P to stand for probability. Thus when tossing a coin, the
notation “P(heads) = 1/2” means that the probability that the coin lands heads is equal
to 1/2.

Summary
Given any experiment and any event A:

■ The expression P(A) denotes the probability that the event A occurs.

■ P(A) is the proportion of times that event A would occur in the long run,
if the experiment were to be repeated over and over again.

In many situations, the only way to estimate the probability of an event is to repeat
the experiment many times and determine the proportion of times that the event occurs.
For example, if it is desired to estimate the probability that a printed circuit board
manufactured by a certain process is defective, it is usually necessary to produce a
number of boards and test them to determine the proportion that are defective. In some
cases, probabilities can be determined through knowledge of the physical nature of an
experiment. For example, if it is known that the shape of a die is nearly a perfect cube
and that its mass is distributed nearly uniformly, it may be assumed that each of the six
faces is equally likely to land upward when the die is rolled.

Once the probabilities of some events have been found through scientific knowledge
or experience, the probabilities of other events can be computed mathematically. For
example, if it has been estimated through experimentation that the probability that a
printed circuit board is defective is 0.10, an estimate of the probability that a board is not
defective can be calculated to be 0.90. As another example, assume that steel pins
manufactured by a certain process can fail to meet a length specification either by being
too short or too long. By measuring a large number of pins, it is estimated that the
probability that a pin is too short is 0.02, and the probability that a pin is too long is 0.03. It
can then be estimated that the probability that a pin fails to meet the specification is 0.05.

In practice, scientists and engineers estimate the probabilities of some events on
the basis of scientific understanding and experience and then use mathematical rules to
compute estimates of the probabilities of other events. In the rest of this section and in
Section 2.2, we will explain some of these rules and show how to use them.

Axioms of Probability
The subject of probability is based on three commonsense rules, known as axioms.
They are:
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The Axioms of Probability
1. Let S be a sample space. Then P(S) = 1.

2. For any event A, 0 ≤ P(A) ≤ 1.

3. If A and B are mutually exclusive events, then P(A ∪ B) = P(A) + P(B).
More generally, if A1, A2, . . . are mutually exclusive events, then
P(A1 ∪ A2 ∪ · · ·) = P(A1) + P(A2) + · · · .

With a little thought, it is easy to see that the three axioms do indeed agree with common
sense. The first axiom says that the outcome of an experiment is always in the sample
space. This is obvious, because by definition the sample space contains all the possi-
ble outcomes of the experiment. The second axiom says that the long-run frequency of
any event is always between 0 and 100%. For an example illustrating the third axiom,
we previously discussed a process that manufactures steel pins, in which the proba-
bility that a pin is too short is 0.02 and the probability that a pin is too long is 0.03.
The third axiom says that the probability that the pin is either too short or too long
is 0.02 + 0.03 = 0.05.

We now present two simple rules that are helpful in computing probabilities. These
rules are intuitively obvious, and they can also be proved from the axioms. Proofs are
provided at the end of the section.

For any event A,

P(Ac) = 1 − P(A) (2.1)

Let ∅ denote the empty set. Then

P(∅) = 0 (2.2)

Equation (2.1) says that the probability that an event does not occur is equal to 1 minus
the probability that it does occur. For example, if there is a 40% chance of rain, there
is a 60% chance that it does not rain. Equation (2.2) says that it is impossible for an
experiment to have no outcome.

Example
2.4 A target on a test firing range consists of a bull’s-eye with two concentric rings around

it. A projectile is fired at the target. The probability that it hits the bull’s-eye is 0.10,
the probability that it hits the inner ring is 0.25, and the probability that it hits the
outer ring is 0.45. What is the probability that the projectile hits the target? What is
the probability that it misses the target?

Solution
Hitting the bull’s-eye, hitting the inner ring, and hitting the outer ring are mutually
exclusive events, since it is impossible for more than one of these events to occur.
Therefore, using Axiom 3,
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P(hits target) = P(bull’s-eye) + P(inner ring) + P(outer ring)

= 0.10 + 0.25 + 0.45

= 0.80

We can now compute the probability that the projectile misses the target by using
Equation (2.1):

P(misses target) = 1 − P(hits target)

= 1 − 0.80

= 0.20

Example
2.5 The following table presents probabilities for the number of times that a certain

computer system will crash in the course of a week. Let A be the event that there
are more than two crashes during the week, and let B be the event that the system
crashes at least once. Find a sample space. Then find the subsets of the sample space
that correspond to the events A and B. Then find P(A) and P(B).

Number of Crashes Probability

0 0.60
1 0.30
2 0.05
3 0.04
4 0.01

Solution
A sample space for the experiment is the set {0, 1, 2, 3, 4}. The events are A = {3, 4}
and B = {1, 2, 3, 4}. To find P(A), notice that A is the event that either 3 crashes
happen or 4 crashes happen. The events “3 crashes happen” and “4 crashes happen”
are mutually exclusive. Therefore, using Axiom 3, we conclude that

P(A) = P(3 crashes happen or 4 crashes happen)

= P(3 crashes happen) + P(4 crashes happen)

= 0.04 + 0.01

= 0.05

We will compute P(B) in two ways. First, note that Bc is the event that no crashes
happen. Therefore, using Equation (2.1),

P(B) = 1 − P(Bc)

= 1 − P(0 crashes happen)

= 1 − 0.60

= 0.40
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For a second way to compute P(B), note that B is the event that 1 crash happens or 2
crashes happen or 3 crashes happen or 4 crashes happen. These events are mutually
exclusive. Therefore, using Axiom 3, we conclude that

P(B) = P(1 crash) + P(2 crashes) + P(3 crashes) + P(4 crashes)

= 0.30 + 0.05 + 0.04 + 0.01

= 0.40

In Example 2.5, we computed the probabilities of the events A = {3, 4} and B =
{1, 2, 3, 4} by summing the probabilities of the outcomes in each of the events: P(A) =
P(3) + P(4) and P(B) = P(1) + P(2) + P(3) + P(4). This method works in general.
Since any two outcomes in a sample space are mutually exclusive, the probability of
any event that contains a finite number of outcomes can be found by summing the
probabilities of the outcomes that comprise the event.

If A is an event containing outcomes O1, . . . , On , that is, if A = {O1, . . . , On},
then

P(A) = P(O1) + P(O2) + · · · + P(On) (2.3)

Sample Spaces with Equally Likely Outcomes
For some experiments, a sample space can be constructed in which all the outcomes
are equally likely. A simple example is the roll of a fair die, in which the sample space
is {1, 2, 3, 4, 5, 6} and each of these outcomes has probability 1/6. Another type of
experiment that results in equally likely outcomes is the random selection of an item
from a population of items. The items in the population can be thought of as the outcomes
in a sample space, and each item is equally likely to be selected.

A population from which an item is sampled at random can be thought of as a
sample space with equally likely outcomes.

If a sample space contains N equally likely outcomes, the probability of each out-
come is 1/N . This is so, because the probability of the whole sample space must be
1, and this probability is equally divided among the N outcomes. If A is an event that
contains k outcomes, then P(A) can be found by summing the probabilities of the k
outcomes, so P(A) = k/N .

If S is a sample space containing N equally likely outcomes, and if A is an
event containing k outcomes, then

P(A) = k

N
(2.4)
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Example
2.6 An extrusion die is used to produce aluminum rods. Specifications are given for the

length and the diameter of the rods. For each rod, the length is classified as too short,
too long, or OK, and the diameter is classified as too thin, too thick, or OK. In a
population of 1000 rods, the number of rods in each class is as follows:

Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5
OK 38 900 4
Too Long 2 25 13

A rod is sampled at random from this population. What is the probability that it is too
short?

Solution
We can think of each of the 1000 rods as an outcome in a sample space. Each of the
1000 outcomes is equally likely. We’ll solve the problem by counting the number
of outcomes that correspond to the event. The number of rods that are too short is
10 + 3 + 5 = 18. Since the total number of rods is 1000,

P(too short) = 18

1000

The Addition Rule
If A and B are mutually exclusive events, then P(A ∪ B) = P(A)+ P(B). This rule can
be generalized to cover the case where A and B are not mutually exclusive. Example 2.7
illustrates the reasoning.

Example
2.7 Refer to Example 2.6. If a rod is sampled at random, what is the probability that it is

either too short or too thick?

Solution
First we’ll solve this problem by counting the number of outcomes that correspond
to the event. In the following table the numbers of rods that are too thick are circled,
and the numbers of rods that are too short have rectangles around them. Note that
there are 5 rods that are both too short and too thick.
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Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5�

OK 38 900 4�

Too Long 2 25 13�

Of the 1000 outcomes, the number that are either too short or too thick is 10 + 3 +
5 + 4 + 13 = 35. Therefore

P(too short or too thick) = 35

1000
Now we will solve the problem in a way that leads to a more general method. In the
sample space, there are 10 + 3 + 5 = 18 rods that are too short and 5 + 4 + 13 = 22
rods that are too thick. But if we try to find the number of rods that are either too
short or too thick by adding 18 + 22, we get too large a number (40 instead of 35).
The reason is that there are five rods that are both too short and too thick, and these
are counted twice. We can still solve the problem by adding 18 and 22, but we must
then subtract 5 to correct for the double counting.

We restate this reasoning, using probabilities:

P(too short) = 18

1000
, P(too thick) = 22

1000
, P(too short and too thick) = 5

1000

P(too short or too thick) = P(too short) + P(too thick) − P(too short and too thick)

= 18

1000
+ 22

1000
− 5

1000

= 35

1000

The method of Example 2.7 holds for any two events in any sample space. In general,
to find the probability that either of two events occurs, add the probabilities of the events
and then subtract the probability that they both occur.

Summary
Let A and B be any events. Then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (2.5)

A proof of this result, based on the axioms, is provided at the end of this section. Note
that if A and B are mutually exclusive, then P(A ∩ B) = 0, so Equation (2.5) reduces
to Axiom 3 in this case.
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Example
2.8 In a process that manufactures aluminum cans, the probability that a can has a flaw on

its side is 0.02, the probability that a can has a flaw on the top is 0.03, and the probability
that a can has a flaw on both the side and the top is 0.01. What is the probability that
a randomly chosen can has a flaw? What is the probability that it has no flaw?

Solution
We are given that P(flaw on side) = 0.02, P(flaw on top) = 0.03, and P(flaw on
side and flaw on top) = 0.01. Now P(flaw) = P(flaw on side or flaw on top). Using
Equation (2.5),

P(flaw on side or flaw on top) = P(flaw on side) + P(flaw on top)

−P(flaw on side and flaw on top)

= 0.02 + 0.03 − 0.01

= 0.04

To find the probability that a can has no flaw, we compute

P(no flaw) = 1 − P(flaw) = 1 − 0.04 = 0.96

Venn diagrams can sometimes be useful in computing probabilities by showing how
to express an event as the union of disjoint events. Example 2.9 illustrates the method.

Example
2.9 Refer to Example 2.8. What is the probability that a can has a flaw on the top but not

on the side?

Solution
Let A be the event that a can has a flaw on the top and let B be the event that a can
has a flaw on the side. We need to find P(A ∩ Bc). The following Venn diagram
(Figure 2.3) shows that A ∩ B and A ∩ Bc are mutually exclusive, so that

P(A) = P(A ∩ B) + P(A ∩ Bc)

We know that P(A) = 0.03 and P(A ∩ B) = 0.01. Therefore 0.03 = 0.01 +
P(A ∩ Bc), so P(A ∩ Bc) = 0.02.

A � Bc

A B

A � B

FIGURE 2.3 The events A ∩ B and A ∩ Bc are mutually exclusive, and their union is
the event A.



Navidi-1820036 book November 16, 2009 7:55

2.1 Basic Ideas 59

Proof that P (Ac) = 1 − P (A)
Let S be a sample space and let A be an event. Then A and Ac are mutually exclusive,
so by Axiom 3,

P(A ∪ Ac) = P(A) + P(Ac)

But A ∪ Ac = S, and by Axiom 1, P(S) = 1. Therefore

P(A ∪ Ac) = P(S) = 1

It follows that P(A) + P(Ac) = 1, so P(Ac) = 1 − P(A).

Proof that P (∅) = 0
Let S be a sample space. Then ∅ = Sc. Therefore P(∅) = 1 − P(S) = 1 − 1 = 0.

Proof that P (A∪ B) = P (A) + P (B) − P (A∩ B)
Let A and B be any two events. The key to the proof is to write A ∪ B as the union of
three mutually exclusive events: A ∩ Bc, A ∩ B, and Ac ∩ B.

A ∪ B = (A ∩ Bc) ∪ (A ∩ B) ∪ (Ac ∩ B) (2.6)

The following figure illustrates Equation (2.6).

A B

= � �

A B A B A B

By Axiom 3,

P(A ∪ B) = P(A ∩ Bc) + P(A ∩ B) + P(Ac ∩ B) (2.7)

Now A = (A ∩ Bc) ∪ (A ∩ B), and B = (Ac ∩ B) ∪ (A ∩ B). Therefore

P(A) = P(A ∩ Bc) + P(A ∩ B) (2.8)

and

P(B) = P(Ac ∩ B) + P(A ∩ B) (2.9)

Summing Equations (2.8) and (2.9) yields

P(A) + P(B) = P(A ∩ Bc) + P(Ac ∩ B) + 2P(A ∩ B) (2.10)

Comparing Equations (2.10) and (2.7) shows that

P(A) + P(B) = P(A ∪ B) + P(A ∩ B) (2.11)

It follows that P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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Exercises for Section 2.1

1. The probability that a bearing fails during the first
month of use is 0.12. What is the probability that it
does not fail during the first month?

2. A die (six faces) has the number 1 painted on three of
its faces, the number 2 painted on two of its faces, and
the number 3 painted on one face. Assume that each
face is equally likely to come up.

a. Find a sample space for this experiment.

b. Find P(odd number).

c. If the die were loaded so that the face with the 3
on it were twice as likely to come up as each of
the other five faces, would this change the sample
space? Explain.

d. If the die were loaded so that the face with the 3
on it were twice as likely to come up as each of
the other five faces, would this change the value of
P(odd number)? Explain.

3. A section of an exam contains four True-False ques-
tions. A completed exam paper is selected at random,
and the four answers are recorded.

a. List all 16 outcomes in the sample space.

b. Assuming the outcomes to be equally likely, find
the probability that all the answers are the same.

c. Assuming the outcomes to be equally likely, find
the probability that exactly one of the four answers
is “True.”

d. Assuming the outcomes to be equally likely, find
the probability that at most one of the four answers
is “True.”

4. A commuter passes through three traffic lights on the
way to work. Each light is either red, yellow, or green.
An experiment consists of observing the colors of the
three lights.

a. List the 27 outcomes in the sample space.

b. Let A be the event that all the colors are the same.
List the outcomes in A.

c. Let B be the event that all the colors are different.
List the outcomes in B.

d. Let C be the event that at least two lights are green.
List the outcomes in C .

e. List the outcomes in A ∩ C .

f. List the outcomes in A ∪ B.

g. List the outcomes in A ∩ Cc.

h. List the outcomes in Ac ∩ C .

i. Are events A and C mutually exclusive? Explain.

j. Are events B and C mutually exclusive? Explain.

5. A box contains four bolts. Two of them, labeled #1 and
#2, are 5 mm in diameter, and two of them, labeled
#3 and #4, are 7 mm in diameter. Bolts are randomly
selected until a 5 mm bolt is obtained. The outcomes
are the sequences of bolts that can be selected. So one
outcome is 1, and another is 342.

a. List all the possible outcomes.

b. Let A be the event that only one bolt is selected.
List the outcomes in A.

c. Let B be the event that three bolts are selected. List
the outcomes in B.

d. Let C be the event that bolt #2 is selected. List the
outcomes in C .

e. Let D be the event that bolt #4 is not selected. List
the outcomes in D.

f. Let E be the event that bolt #1 is selected. Are A
and E mutually exclusive? How about B and E , C
and E , D and E?

6. Two bolts are randomly selected from the box de-
scribed in Exercise 5.

a. List the equally likely outcomes.

b. What is the probability that both bolts are 7 mm?

c. What is the probability that one bolt is 5 mm and
the other is 7 mm?

7. In a survey of households with television sets, the
proportion of television sets in various types of rooms
was

Proportion
Room of TV Sets

Bedroom 0.37
Living Room 0.26
Den 0.22
Basement 0.12
Kitchen 0.02
Bathroom 0.01

a. What is the probability that a TV set is located in
a living room or den?
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b. What is the probability that a TV set is not located
in a bedroom?

8. An automobile insurance company divides customers
into three categories, good risks, medium risks, and
poor risks. Assume that 70% of the customers are
good risks, 20% are medium risks, and 10% are poor
risks. As part of an audit, one customer is chosen
at random.

a. What is the probability that the customer is a good
risk?

b. What is the probability that the customer is not a
poor risk?

9. Among the cast aluminum parts manufactured on a
certain day, 80% were flawless, 15% had only minor
flaws, and 5% had major flaws. Find the probability
that a randomly chosen part

a. has a flaw (major or minor).

b. has no major flaw.

10. An item manufactured by a certain process has prob-
ability 0.10 of being defective. True or false:

a. If a sample of 100 items is drawn, exactly 10 of
them will be defective.

b. If a sample of 100 items is drawn, the number of
defectives is likely to be close to 10, but not exactly
equal to 10.

c. As more and more items are sampled, the propor-
tion of defective items will approach 10%.

11. A quality-control engineer samples 100 items manu-
factured by a certain process, and finds that 15 of them
are defective. True or false:

a. The probability that an item produced by this pro-
cess is defective is 0.15.

b. The probability that an item produced by this pro-
cess is defective is likely to be close to 0.15, but
not exactly equal to 0.15.

12. Let V be the event that a computer contains a virus,
and let W be the event that a computer contains a
worm. Suppose P(V ) = 0.15, P(W ) = 0.05, and
P(V ∪ W ) = 0.17.

a. Find the probability that the computer contains
both a virus and a worm.

b. Find the probability that the computer contains nei-
ther a virus nor a worm.

c. Find the probability that the computer contains a
virus but not a worm.

13. Let S be the event that a randomly selected college
student has taken a statistics course, and let C be
the event that the same student has taken a chem-
istry course. Suppose P(S) = 0.4, P(C) = 0.3, and
P(S ∩ C) = 0.2.

a. Find the probability that a student has taken statis-
tics, chemistry, or both.

b. Find the probability that a student has taken neither
statistics nor chemistry.

c. Find the probability that a student has taken statis-
tics but not chemistry.

14. Inspector A visually inspected 1000 ceramic bowls for
surface flaws and found flaws in 37 of them. Inspector
B inspected the same bowls and found flaws in 43 of
them. A total of 948 bowls were found to be flawless
by both inspectors. One of the 1000 bowls is selected
at random.

a. Find the probability that a flaw was found in this
bowl by at least one of the two inspectors.

b. Find the probability that flaws were found in this
bowl by both inspectors.

c. Find the probability that a flaw was found by in-
spector A but not by inspector B.

15. All the fourth-graders in a certain elementary school
took a standardized test. A total of 85% of the students
were found to be proficient in reading, 78% were found
to be proficient in mathematics, and 65% were found
to be proficient in both reading and mathematics. A
student is chosen at random.

a. What is the probability that the student is proficient
in mathematics but not in reading?

b. What is the probability that the student is proficient
in reading but not in mathematics?

c. What is the probability that the student is proficient
in neither reading nor mathematics?

16. A system contains two components, A and B. The sys-
tem will function so long as either A or B functions.
The probability that A functions is 0.95, the probabil-
ity that B functions is 0.90, and the probability that
both function is 0.88. What is the probability that the
system functions?
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17. A system contains two components, A and B. The
system will function only if both components func-
tion. The probability that A functions is 0.98, the
probability that B functions is 0.95, and the proba-
bility that either A or B functions is 0.99. What is the
probability that the system functions?

18. Human blood may contain either or both of two anti-
gens, A and B. Blood that contains only the A antigen
is called type A, blood that contains only the B antigen
is called type B, blood that contains both antigens is
called type AB, and blood that contains neither anti-
gen is called type O. At a certain blood bank, 35% of
the blood donors have type A blood, 10% have type
B, and 5% have type AB.

a. What is the probability that a randomly chosen
blood donor is type O?

b. A recipient with type A blood may safely receive
blood from a donor whose blood does not con-
tain the B antigen. What is the probability that a
randomly chosen blood donor may donate to a re-
cipient with type A blood?

19. True or false: If A and B are mutually exclusive,

a. P(A ∪ B) = 0

b. P(A ∩ B) = 0

c. P(A ∪ B) = P(A ∩ B)

d. P(A ∪ B) = P(A) + P(B)

20. A flywheel is attached to a crankshaft by 12 bolts,
numbered 1 through 12. Each bolt is checked to de-
termine whether it is torqued correctly. Let A be the
event that all the bolts are torqued correctly, let B be
the event that the #3 bolt is not torqued correctly, let
C be the event that exactly one bolt is not torqued cor-
rectly, and let D be the event that bolts #5 and #8 are
torqued correctly. State whether each of the following
pairs of events is mutually exclusive.

a. A and B

b. B and D

c. C and D

d. B and C

2.2 Counting Methods

When computing probabilities, it is sometimes necessary to determine the number of
outcomes in a sample space. In this section we will describe several methods for doing
this. The basic rule, which we will call the fundamental principle of counting, is
presented by means of Example 2.10.

Example
2.10 A certain make of automobile is available in any of three colors: red, blue, or green,

and comes with either a large or small engine. In how many ways can a buyer choose
a car?

Solution
There are three choices of color and two choices of engine. A complete list of choices
is written in the following 3 × 2 table. The total number of choices is (3)(2) = 6.

Red Blue Green

Large Red, Large Blue, Large Green, Large

Small Red, Small Blue, Small Green, Small
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To generalize Example 2.10, if there are n1 choices of color and n2 choices of engine,
a complete list of choices can be written in an n1×n2 table, so the total number of choices
is n1n2.

If an operation can be performed in n1 ways, and if for each of these ways a
second operation can be performed in n2 ways, then the total number of ways
to perform the two operations is n1n2.

The fundamental principle of counting states that this reasoning can be extended to
any number of operations.

The Fundamental Principle of Counting
Assume that k operations are to be performed. If there are n1 ways to perform
the first operation, and if for each of these ways there are n2 ways to perform
the second operation, and if for each choice of ways to perform the first two
operations there are n3 ways to perform the third operation, and so on, then the
total number of ways to perform the sequence of k operations is n1n2 · · · nk .

Example
2.11 When ordering a certain type of computer, there are 3 choices of hard drive, 4 choices

for the amount of memory, 2 choices of video card, and 3 choices of monitor. In how
many ways can a computer be ordered?

Solution
The total number of ways to order a computer is (3)(4)(2)(3) = 72.

Permutations
A permutation is an ordering of a collection of objects. For example, there are six
permutations of the letters A, B, C: ABC, ACB, BAC, BCA, CAB, and CBA. With only
three objects, it is easy to determine the number of permutations just by listing them all.
But with a large number of objects this would not be feasible. The fundamental principle
of counting can be used to determine the number of permutations of any set of objects.
For example, we can determine the number of permutations of a set of three objects
as follows. There are 3 choices for the object to place first. After that choice is made,
there are 2 choices remaining for the object to place second. Then there is 1 choice left
for the object to place last. Therefore, the total number of ways to order three objects
is (3)(2)(1) = 6. This reasoning can be generalized. The number of permutations of a
collection of n objects is

n(n − 1)(n − 2) · · · (3)(2)(1)

This is the product of the integers from 1 to n. This product can be written with the
symbol n!, read “n factorial.”
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Definition
For any positive integer n, n! = n(n − 1)(n − 2) · · · (3)(2)(1).

Also, we define 0! = 1.

The number of permutations of n objects is n!.

Example
2.12 Five people stand in line at a movie theater. Into how many different orders can they

be arranged?

Solution
The number of permutations of a collection of five people is 5! = (5)(4)(3)(2)(1) =
120.

Sometimes we are interested in counting the number of permutations of subsets of
a certain size chosen from a larger set. This is illustrated in Example 2.13.

Example
2.13 Five lifeguards are available for duty one Saturday afternoon. There are three lifeguard

stations. In how many ways can three lifeguards be chosen and ordered among the
stations?

Solution
We use the fundamental principle of counting. There are 5 ways to choose a lifeguard
to occupy the first station, then 4 ways to choose a lifeguard to occupy the second
station, and finally 3 ways to choose a lifeguard to occupy the third station. The total
number of permutations of three lifeguards chosen from 5 is therefore (5)(4)(3) = 60.

The reasoning used to solve Example 2.13 can be generalized. The number of
permutations of k objects chosen from a group of n objects is

(n)(n − 1) · · · (n − k + 1)

This expression can be simplified by using factorial notation:

(n)(n − 1) · · · (n − k + 1) = n(n − 1) · · · (n − k + 1)(n − k)(n − k − 1) · · · (3)(2)(1)

(n − k)(n − k − 1) · · · (3)(2)(1)

= n!

(n − k)!
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Summary
The number of permutations of k objects chosen from a group of n objects is

n!

(n − k)!

Combinations
In some cases, when choosing a set of objects from a larger set, we don’t care about
the ordering of the chosen objects; we care only which objects are chosen. For example,
we may not care which lifeguard occupies which station; we might care only which
three lifeguards are chosen. Each distinct group of objects that can be selected, without
regard to order, is called a combination. We will now show how to determine the
number of combinations of k objects chosen from a set of n objects. We will illustrate
the reasoning with the result of Example 2.13. In that example, we showed that there are
60 permutations of three objects chosen from five. Denoting the objects A, B, C, D, E,
Figure 2.4 presents a list of all 60 permutations.

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE
ACB ADB AEB ADC AEC AED BDC BEC BED CED
BAC BAD BAE CAD CAE DAE CBD CBE DBE DCE
BCA BDA BEA CDA CEA DEA CDB CEB DEB DEC
CAB DAB EAB DAC EAC EAD DBC EBC EBD ECD
CBA DBA EBA DCA ECA EDA DCB ECB EDB EDC

FIGURE 2.4 The 60 permutations of three objects chosen from five.

The 60 permutations in Figure 2.4 are arranged in 10 columns of 6 permutations
each. Within each column, the three objects are the same, and the column contains the
six different permutations of those three objects. Therefore, each column represents a
distinct combination of three objects chosen from five, and there are 10 such combina-
tions. Figure 2.4 thus shows that the number of combinations of three objects chosen
from five can be found by dividing the number of permutations of three objects cho-
sen from five, which is 5!/(5 − 3)!, by the number of permutations of three objects,
which is 3! In summary, the number of combinations of three objects chosen from five is

5!

3!(5 − 3)!
.

The number of combinations of k objects chosen from n is often denoted by the

symbol

(
n

k

)
. The reasoning used to derive the number of combinations of three objects

chosen from five can be generalized to derive an expression for

(
n

k

)
.
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Summary
The number of combinations of k objects chosen from a group of n objects is(

n

k

)
= n!

k!(n − k)!
(2.12)

Example
2.14 At a certain event, 30 people attend, and 5 will be chosen at random to receive door

prizes. The prizes are all the same, so the order in which the people are chosen does
not matter. How many different groups of five people can be chosen?

Solution
Since the order of the five chosen people does not matter, we need to compute the
number of combinations of 5 chosen from 30. This is(

30
5

)
= 30!

5!25!

= (30)(29)(28)(27)(26)

(5)(4)(3)(2)(1)

= 142,506

Choosing a combination of k objects from a set of n divides the n objects into two
subsets: the k that were chosen and the n − k that were not chosen. Sometimes a set
is to be divided up into more than two subsets. For example, assume that in a class
of 12 students, a project is assigned in which the students will work in groups. Three
groups are to be formed, consisting of five, four, and three students. We can calculate
the number of ways in which the groups can be formed as follows. We consider the
process of dividing the class into three groups as a sequence of two operations. The first
operation is to select a combination of 5 students to comprise the group of 5. The second
operation is to select a combination of 4 students from the remaining 7, to comprise the
group of 4. The group of 3 will then automatically consist of the 3 students who are left.

The number of ways to perform the first operation is(
12

5

)
= 12!

5!7!

After the first operation has been performed, the number of ways to perform the second
operation is (

7

4

)
= 7!

4!3!

The total number of ways to perform the sequence of two operations is therefore

12!

5!7!

7!

4!3!
= 12!

5!4!3!
= 27,720
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Notice that the numerator in the final answer is the factorial of the total group size, while
the denominator is the product of the factorials of the sizes of the groups chosen from
it. This holds in general.

Summary
The number of ways of dividing a group of n objects into groups of k1, . . . , kr

objects, where k1 + · · · + kr = n, is
n!

k1! · · · kr !
(2.13)

Example
2.15 A die is rolled 20 times. Given that three of the rolls came up 1, five came up 2, four

came up 3, two came up 4, three came up 5, and three came up 6, how many different
arrangements of the outcomes are there?

Solution
There are 20 outcomes. They are divided into six groups, namely, the group of three
outcomes that came up 1, the group of five outcomes that came up 2, and so on. The
number of ways to divide the 20 outcomes into six groups of the specified sizes is

20!

3!5!4!2!3!3!
= 1.955 × 1012

When a sample space consists of equally likely outcomes, the probability of an event
can be found by dividing the number of outcomes in the event by the total number of
outcomes in the sample space. Counting rules can sometimes be used to compute these
numbers, as the following example illustrates:

Example
2.16 A box of bolts contains 8 thick bolts, 5 medium bolts, and 3 thin bolts. A box of nuts

contains 6 that fit the thick bolts, 4 that fit the medium bolts, and 2 that fit the thin
bolts. One bolt and one nut are chosen at random. What is the probability that the nut
fits the bolt?

Solution
The sample space consists of all pairs of nuts and bolts, and each pair is equally likely
to be chosen. The event that the nut fits the bolt corresponds to the set of all matching
pairs of nuts and bolts. Therefore

P(nut fits bolt) = number of matching pairs of nuts and bolts

number of pairs of nuts and bolts

There are 6 + 4 + 2 = 12 nuts, and 8 + 5 + 3 = 16 bolts. Therefore

Number of pairs of nuts and bolts = (12)(16) = 192
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The number of matching pairs is found by summing the number of pairs of thick nuts
and bolts, the number of pairs of medium nuts and bolts, and the number of pairs of
thin nuts and bolts. These numbers are

Number of pairs of thick nuts and bolts = (6)(8) = 48

Number of pairs of medium nuts and bolts = (4)(5) = 20

Number of pairs of thin nuts and bolts = (2)(3) = 6

Therefore

P(nut fits bolt) = 48 + 20 + 6

192
= 0.3854

Exercises for Section 2.2

1. DNA molecules consist of chemically linked se-
quences of the bases adenine, guanine, cytosine, and
thymine, denoted A, G, C, and T. A sequence of three
bases is called a codon. A base may appear more than
once in a codon.

a. How many different codons are there?

b. The bases A and G are purines, while C and T are
pyrimidines. How many codons are there whose
first and third bases are purines and whose second
base is a pyrimidine?

c. How many codons consist of three different
bases?

2. A chemical engineer is designing an experiment to
determine the effect of temperature, stirring rate, and
type of catalyst on the yield of a certain reaction. She
wants to study five different reaction temperatures,
two different stirring rates, and four different cata-
lysts. If each run of the experiment involves a choice
of one temperature, one stirring rate, and one catalyst,
how many different runs are possible?

3. The article “Improved Bioequivalence Assessment of
Topical Dermatological Drug Products Using Der-
matopharmacokinetics” (B. N’Dri-Stempfer, W. Na-
vidi, et al., Pharmaceutical Research, 2009:316–328)
describes a study in which a new type of ointment
was applied to forearms of volunteers to study the
rates of absorption into the skin. Eight locations on
the forearm were designated for ointment application.
The new ointment was applied to four locations, and
a control was applied to the other four. How many
different choices were there for the four locations to
apply the new ointment?

4. A group of 10 people have gotten together to play bas-
ketball. They will begin by dividing themselves into
two teams of 5 players each. One team will wear red
uniforms and the other will wear blue uniforms. In
how many ways can this be done?

5. In horse racing, one can make a trifecta bet by speci-
fying which horse will come in first, which will come
in second, and which will come in third, in the correct
order. One can make a box trifecta bet by specify-
ing which three horses will come in first, second, and
third, without specifying the order.

a. In an eight-horse field, how many different ways
can one make a trifecta bet?

b. In an eight-horse field, how many different ways
can one make a box trifecta bet?

6. A committee of eight people must choose a president,
a vice-president, and a secretary. In how many ways
can this be done?

7. A test consists of 15 questions. Ten are true-false
questions, and five are multiple-choice questions that
have four choices each. A student must select an an-
swer for each question. In how many ways can this
be done?

8. In a certain state, license plates consist of three letters
followed by three numbers.

a. How many different license plates can be made?

b. How many different license plates can be made in
which no letter or number appears more than once?

c. A license plate is chosen at random. What is the
probability that no letter or number appears more
than once?
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9. A computer password consists of eight characters.

a. How many different passwords are possible if
each character may be any lowercase letter or
digit?

b. How many different passwords are possible if each
character may be any lowercase letter or digit, and
at least one character must be a digit?

c. A computer system requires that passwords con-
tain at least one digit. If eight characters are gener-
ated at random, and each is equally likely to be any
of the 26 letters or 10 digits, what is the probability
that a valid password will be generated?

10. A company has hired 15 new employees, and must as-
sign 6 to the day shift, 5 to the graveyard shift, and 4 to
the night shift. In how many ways can the assignment
be made?

11. One drawer in a dresser contains 8 blue socks and 6
white socks. A second drawer contains 4 blue socks
and 2 white socks. One sock is chosen from each
drawer. What is the probability that they match?

12. A drawer contains 6 red socks, 4 green socks, and
2 black socks. Two socks are chosen at random. What
is the probability that they match?

2.3 Conditional Probability and Independence

A sample space contains all the possible outcomes of an experiment. Sometimes we
obtain some additional information about an experiment that tells us that the outcome
comes from a certain part of the sample space. In this case, the probability of an event is
based on the outcomes in that part of the sample space. A probability that is based on a
part of a sample space is called a conditional probability. We explore this idea through
some examples.

In Example 2.6 (in Section 2.1) we discussed a population of 1000 aluminum rods.
For each rod, the length is classified as too short, too long, or OK, and the diameter
is classified as too thin, too thick, or OK. These 1000 rods form a sample space in
which each rod is equally likely to be sampled. The number of rods in each category is
presented in Table 2.1. Of the 1000 rods, 928 meet the diameter specification. Therefore,
if a rod is sampled, P(diameter OK) = 928/1000 = 0.928. This probability is called
the unconditional probability, since it is based on the entire sample space. Now assume
that a rod is sampled, and its length is measured and found to meet the specification. What
is the probability that the diameter also meets the specification? The key to computing
this probability is to realize that knowledge that the length meets the specification reduces
the sample space from which the rod is drawn. Table 2.2 (page 70) presents this idea.
Once we know that the length specification is met, we know that the rod will be one of
the 942 rods in the sample space presented in Table 2.2.

TABLE 2.1 Sample space containing 1000 aluminum rods

Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5
OK 38 900 4
Too Long 2 25 13
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TABLE 2.2 Reduced sample space containing 942
aluminum rods that meet the length specification

Diameter

Length Too Thin OK Too Thick

Too Short — — —
OK 38 900 4
Too Long — — —

Of the 942 rods in this sample space, 900 of them meet the diameter specification.
Therefore, if we know that the rod meets the length specification, the probability that the
rod meets the diameter specification is 900/942. We say that the conditional probability
that the rod meets the diameter specification given that it meets the length specification
is equal to 900/942, and we write P(diameter OK | length OK) = 900/942 = 0.955.
Note that the conditional probability P(diameter OK | length OK) differs from the
unconditional probability P(diameter OK), which was computed from the full sample
space (Table 2.1) to be 0.928.

Example
2.17 Compute the conditional probability P(diameter OK | length too long). Is this the

same as the unconditional probability P(diameter OK)?

Solution
The conditional probability P(diameter OK | length too long) is computed under the
assumption that the rod is too long. This reduces the sample space to the 40 items
indicated in boldface in the following table.

Diameter

Length Too Thin OK Too Thick

Too Short 10 3 5
OK 38 900 4
Too Long 2 25 13

Of the 40 outcomes, 25 meet the diameter specification. Therefore

P(diameter OK | length too long) = 25

40
= 0.625

The unconditional probability P(diameter OK) is computed on the basis of all 1000
outcomes in the sample space and is equal to 928/1000 = 0.928. In this case, the
conditional probability differs from the unconditional probability.

Let’s look at the solution to Example 2.17 more closely. We found that

P(diameter OK | length too long) = 25

40
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In the answer 25/40, the denominator, 40, represents the number of outcomes that satisfy
the condition that the rod is too long, while the numerator, 25, represents the number of
outcomes that satisfy both the condition that the rod is too long and that its diameter is
OK. If we divide both the numerator and denominator of this answer by the number of
outcomes in the full sample space, which is 1000, we obtain

P(diameter OK | length too long) = 25/1000

40/1000

Now 40/1000 represents the probability of satisfying the condition that the rod is too
long. That is,

P(length too long) = 40

1000

The quantity 25/1000 represents the probability of satisfying both the condition that the
rod is too long and that the diameter is OK. That is,

P(diameter OK and length too long) = 25

1000

We can now express the conditional probability as

P(diameter OK | length too long) = P(diameter OK and length too long)

P(length too long)

This reasoning can be extended to construct a definition of conditional probability
that holds for any sample space:

Definition
Let A and B be events with P(B) �= 0. The conditional probability of A given B is

P(A|B) = P(A ∩ B)

P(B)
(2.14)

Figure 2.5 presents Venn diagrams to illustrate the idea of conditional probability.

A B A B

(b)(a)

FIGURE 2.5 (a) The diagram represents the unconditional probability P(A). P(A) is
illustrated by considering the event A in proportion to the entire sample space, which
is represented by the rectangle. (b) The diagram represents the conditional probability
P(A|B). Since the event B is known to occur, the event B now becomes the sample
space. For the event A to occur, the outcome must be in the intersection A ∩ B. The
conditional probability P(A|B) is therefore illustrated by considering the intersection
A ∩ B in proportion to the entire event B.
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Example
2.18 Refer to Example 2.8 (in Section 2.1). What is the probability that a can will have a

flaw on the side, given that it has a flaw on top?

Solution
We are given that P(flaw on top) = 0.03, and P(flaw on side and flaw on top) = 0.01.
Using Equation (2.14),

P(flaw on side | flaw on top) = P(flaw on side and flaw on top)

P(flaw on top)

= 0.01

0.03

= 0.33

Example
2.19 Refer to Example 2.8 (in Section 2.1). What is the probability that a can will have a

flaw on the top, given that it has a flaw on the side?

Solution
We are given that P(flaw on side) = 0.02, and P(flaw on side and flaw on top) =
0.01. Using Equation (2.14),

P(flaw on top | flaw on side) = P(flaw on top and flaw on side)

P(flaw on side)

= 0.01

0.02

= 0.5

The results of Examples 2.18 and 2.19 show that in most cases, P(A|B) �= P(B|A).

Independent Events
Sometimes the knowledge that one event has occurred does not change the probability
that another event occurs. In this case the conditional and unconditional probabilities are
the same, and the events are said to be independent. We present an example.

Example
2.20 If an aluminum rod is sampled from the sample space presented in Table 2.1, find

P(too long) and P(too long | too thin). Are these probabilities different?
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Solution

P(too long) = 40

1000
= 0.040

P(too long | too thin) = P(too long and too thin)

P(too thin)

= 2/1000

50/1000

= 0.040

The conditional probability and the unconditional probability are the same. The
information that the rod is too thin does not change the probability that the rod is
too long.

Example 2.20 shows that knowledge that an event occurs sometimes does not
change the probability that another event occurs. In these cases, the two events are
said to be independent. The event that a rod is too long and the event that a rod is too
thin are independent. We now give a more precise definition of the term, both in words
and in symbols.

Definition
Two events A and B are independent if the probability of each event remains
the same whether or not the other occurs.

In symbols: If P(A) �= 0 and P(B) �= 0, then A and B are independent if

P(B|A) = P(B) or, equivalently, P(A|B) = P(A) (2.15)

If either P(A) = 0 or P(B) = 0, then A and B are independent.

If A and B are independent, then the following pairs of events are also independent:
A and Bc, Ac and B, and Ac and Bc. The proof of this fact is left as an exercise.

The concept of independence can be extended to more than two events:

Definition
Events A1, A2, . . . , An are independent if the probability of each remains the
same no matter which of the others occur.

In symbols: Events A1, A2, . . . , An are independent if for each Ai , and each
collection A j1, . . . , A jm of events with P(A j1 ∩ · · · ∩ A jm) �= 0,

P(Ai |A j1 ∩ · · · ∩ A jm) = P(Ai ) (2.16)
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The Multiplication Rule
Sometimes we know P(A|B) and we wish to find P(A ∩ B). We can obtain a result that
is useful for this purpose by multiplying both sides of Equation (2.14) by P(B). This
leads to the multiplication rule.

If A and B are two events with P(B) �= 0, then

P(A ∩ B) = P(B)P(A|B) (2.17)

If A and B are two events with P(A) �= 0, then

P(A ∩ B) = P(A)P(B|A) (2.18)

If P(A) �= 0 and P(B) �= 0, then Equations (2.17) and (2.18) both hold.

When two events are independent, then P(A|B) = P(A) and P(B|A) = P(B), so
the multiplication rule simplifies:

If A and B are independent events, then

P(A ∩ B) = P(A)P(B) (2.19)

This result can be extended to any number of events. If A1, A2, . . . , An are
independent events, then for each collection A j1, . . . , A jm of events

P(A j1 ∩ A j2 ∩ · · · ∩ A jm) = P(A j1)P(A j2) · · · P(A jm) (2.20)

In particular,

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · · P(An) (2.21)

Example
2.21 A vehicle contains two engines, a main engine and a backup. The engine component

fails only if both engines fail. The probability that the main engine fails is 0.05, and
the probability that the backup engine fails is 0.10. Assume that the main and backup
engines function independently. What is the probability that the engine component
fails?

Solution
The probability that the engine component fails is the probability that both engines
fail. Therefore

P(engine component fails) = P(main engine fails and backup engine fails)

Since the engines function independently, we may use Equation (2.19):
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P(main engine fails and backup engine fails) = P(main fails)P(backup fails)

= (0.10)(0.05)

= 0.005

Example
2.22 A system contains two components, A and B. Both components must function for the

system to work. The probability that component A fails is 0.08, and the probability
that component B fails is 0.05. Assume the two components function independently.
What is the probability that the system functions?

Solution
The probability that the system functions is the probability that both components
function. Therefore

P(system functions) = P(A functions and B functions)

Since the components function independently,

P(A functions and B functions) = P(A functions)P(B functions)

= [1 − P(A fails)][1 − P(B fails)]

= (1 − 0.08)(1 − 0.05)

= 0.874

Example
2.23 Of the microprocessors manufactured by a certain process, 20% are defective. Five

microprocessors are chosen at random. Assume they function independently. What
is the probability that they all work?

Solution
For i = 1, . . . , 5, let Ai denote the event that the i th microprocessor works. Then

P(all 5 work) = P(A1 ∩ A2 ∩ A3 ∩ A4 ∩ A5)

= P(A1)P(A2)P(A3)P(A4)P(A5)

= (1 − 0.20)5

= 0.328

Example
2.24 In Example 2.23, what is the probability that at least one of the microprocessors

works?

Solution
The easiest way to solve this problem is to notice that

P(at least one works) = 1 − P(all are defective)

Now, letting Di denote the event that the i th microprocessor is defective,
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P(all are defective) = P(D1 ∩ D2 ∩ D3 ∩ D4 ∩ D5)

= P(D1)P(D2)P(D3)P(D4)P(D5)

= (0.20)5

= 0.0003

Therefore P(at least one works) = 1 − 0.0003 = 0.9997.

Equations (2.19) and (2.20) tell us how to compute probabilities when we know that
events are independent, but they are usually not much help when it comes to deciding
whether two events really are independent. In most cases, the best way to determine
whether events are independent is through an understanding of the process that produces
the events. Here are a few illustrations:

■ A die is rolled twice. It is reasonable to believe that the outcome of the second roll
is not affected by the outcome of the first roll. Therefore, knowing the outcome of
the first roll does not help to predict the outcome of the second roll. The two rolls
are independent.

■ A certain chemical reaction is run twice, using different equipment each time. It is
reasonable to believe that the yield of one reaction will not affect the yield of the
other. In this case the yields are independent.

■ A chemical reaction is run twice in succession, using the same equipment. In this
case, it might not be wise to assume that the yields are independent. For example,
a low yield on the first run might indicate that there is more residue than usual left
behind. This might tend to make the yield on the next run higher. Thus knowing
the yield on the first run could help to predict the yield on the second run.

■ The items in a simple random sample may be treated as independent, unless the
population is finite and the sample comprises more than about 5% of the
population (see the discussion of independence in Section 1.1).

The Law of Total Probability
The law of total probability is illustrated in Figure 2.6. A sample space contains the
events A1, A2, A3, and A4. These events are mutually exclusive, since no two over-
lap. They are also exhaustive, which means that their union covers the whole sample
space. Each outcome in the sample space belongs to one and only one of the events
A1, A2, A3, A4.

The event B can be any event. In Figure 2.6, each of the events Ai intersects B,
forming the events A1 ∩ B, A2 ∩ B, A3 ∩ B, and A4 ∩ B. It is clear from Figure 2.6 that
the events A1 ∩ B, A2 ∩ B, A3 ∩ B, and A4 ∩ B are mutually exclusive and that they
cover B. Every outcome in B belongs to one and only one of the events A1 ∩ B, A2 ∩ B,
A3 ∩ B, A4 ∩ B. It follows that

B = (A1 ∩ B) ∪ (A2 ∩ B) ∪ (A3 ∩ B) ∪ (A4 ∩ B)
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