Multiple Regression
Analysis

7.1 THE THREE-VARIABLE LINEAR MODEL

Multiple regression analysis is used for testing hypotheses about the relationship between a depen-
dent variable Y and two or more independent variables X and for prediction. The three-variable linear
regression model can be written as

Yi:b0+b1X1i+b2X2i+M,' (71)

The additional assumption (to those of the simple regression model) is that there is no exact linear
relationship between the X values.

Ordinary least-squares (OLS) parameter estimates for Eq. (7.1) can be obtained by minimizing the
sum of the squared residuals:

Y=Y ¥y =Y (V= by — b Xy, — by X))’

This gives the following three normal equations (see Prob. 7.2):

ZK'=”1;0+512X1[+1;22X21 (7.2)
ZXliYi:l;OZXli+l;lZXlzi+52ZX1iX2i (7.3)
ZX2iYi = Z;OZXZi +by ZXliX2i +by ZX221‘ (7.4)

which (when expressed in deviation form) can be solved simultaneously for 151 and 152, giving (see Prob.
7.3)

by = () (X 3) = () (2 ?261?»'2) 7.5)
()X %) - (X xix)

p (Z xzy) (Z xf) - (Z Xl)”) (Z xlx2)

by = = : (7.6)
() (X x3) — (X xix)
Then Z;O = Y - 1;1/\_/1 - 1;2/{/2 (77)
154
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Estimator 51 measures the change in Y for a unit change in X; while holding X, constant. Ab} is
analogously defined. Estimators b, and b, are called partial regression coefficients. by, b;, and b, are
BLUE (see Sec. 6.5).

EXAMPLE 1. Table 7.1 extends Table 6.1 and gives the bushels of corn per acre, Y, resulting from the use of
various amounts of fertilizer X; and insecticides X5, both in pounds per acre, from 1971 to 1980. Using Egs. (7.5),
(7.6), and (7.7), we get

(1) (E3) = (X ) (C o) _ (956)(504) — (900)(524) _ o o
(X2 (X 2) - (X xx)° (576)(504) — (524>

- (X x00) (X x) — (X x) (X xix) ~ (900)(576) — (956)(524) ~ 111
’ () () - (Zxix) (576)(504) — (524)*
by=Y — b X, — byX =2 57 — (0.65)(18) — (1.11)(12) = 31.98

S

1

so that };i =31.98 4+ 0.65X7; + 1.11X5;. To estimate the regression parameters with three or more independent or
explanatory variables, see Section 7.6.

7.2 TESTS OF SIGNIFICANCE OF PARAMETER ESTIMATES

In order to test for the statistical significance of the parameter estimates of the multiple regression,
the variance of the estimates is required:

2
Var by = o, — ZZXZ . (7.8)
2oXT X5 — (ZXIXZ)
2
Var by = o? 2% (7.9)

Yy 3 (X xx)’

[bg 1s usually not of primary concern; see Prob. 7.7(e)]. Since 012, is unknown, the residual variance 5 is
. . 2
used as an unbiased estimate of o;:

2
2 D€
u n— k ( )
where k = number of parameter estimates. .
Unbiased estimates of the variance of by and b, are then given by

2 _ Ze? ng 710

O S ISk 71
2 2

2 Zei le (7.11)

55, = n—k 2 2 2
YAy = (X xix)
so that S, and s; are the standard errors of the estimates. Tests of hypotheses about b, and b, are
conducted as in Sec. 6.3.

EXAMPLE 2. Table 7.2 (an extension of Table 7.1) shows the additional calculations required to test the statistical
significance of »; and b,. The values for IA’,- in Table 7.2 are obtained by substituting the values for X;; and X5; into
the estimated OLS regression equation found in Example 1. (The values for y7 are obtained by squaring y; from
Table 7.1 and are to be used in Sec.7.3.) Using the values from Table 7.2 and 7.1, we get

2 2
. x 13.6704 4
@ =2 L5 =3 %0 2006 and  s5; 0.4
kY 2y 3 (Nax)’ 10-3 (576)(504) — (524) !
,  Ye 3 xd 13,6704 576

572 o= = =0.07 and s; =20.27
kY 2y 3 - (X ax) 10-3 (576)(504) — (524)° :
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Table 7.2. Corn-Fertilizer-Insecticide Calculations to Test Significance of Parameters

Year Y X, X5 g e & y2

1971 40 6 4 40.32 —0.32 0.1024 289
1972 44 10 4 42.92 1.08 1.1664 169
1973 46 12 5 45.33 0.67 0.4489 121
1974 48 14 7 48.85 —0.85 0.7225 81
1975 52 16 9 52.37 —0.37 0.1369 25
1976 58 18 12 57.00 1.00 1.0000 1
1977 60 22 14 61.82 —1.82 3.3124 9
1978 68 24 20 69.78 —1.78 3.1684 121
1979 74 26 21 72.19 1.81 3.2761 289
1980 80 32 24 79.42 0.58 0.3364 529

n=10 Ye=0 P =13.6704 | Yy =1634

Therefore, ¢, = bl/s ~(0.65/0.24 =2 2.70, and ¢, = b’)/Sb =1.11/0.27 =2 4.11. Since both #; and ¢, exceed
t = 2.365 with 7 df at the 5% level of significance (from App 5), both b; and b, are statistically significant at the
5% level.

7.3 THE COEFFICIENT OF MULTIPLE DETERMINATION

The coefficient of multiple determination R* is defined as the proportion of the total variation in Y
“explained” by the multiple regression of ¥ on X; and X5, and (as shown in Sec. 6.4) it can be calculated
by (see Prob. 7.14)

R — S5 i >e b yxi by Y vx
D DY )2

Since the inclusion of additional independent or explanatory variables is likely to increase the
RSS = Y j7 for the same TSS = Y y7 (see Sec. 6.4), R increases. To factor in the reduction in the
degrees of freedom as additional independent or explanatory variables are added, the adjusted R* or R*,
is computed (see Prob. 7.16):

—1
—k

R=1-(1-FR Z (7.12)

where 7 is the number of observations, and & the number of parameters estimated.

EXAMPLE 3. R’ for the corn-fertilizer-insecticide example can be found from Table 7.2:

e 13.6704

e ST T T

>~ ] —0.0084 = 0.9916, or 99.16%

This compares with an R* of 97.10% in the simple regression, with fertilizer as the only independent or explanatory
variable.

R=1-(1- Rz)% =1-(- 0.9916)18—_; =1—0.0084(1.2857) = 0.9892, or 98.92%
n— —
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7.4 TEST OF THE OVERALL SIGNIFICANCE OF THE REGRESSION

The overall significance of the regression can be tested with the ratio of the explained to the
unexplained variance. This follows an F distribution (see Sec. 5.5) with k — 1 and n — k degrees of
freedom, where n is number of observations and & is number of parameters estimated:

s _XiMk=D__ RJk-1)
LR TN 2 i i—k) (1= R)/(n— k)

(7.13)

If the calculated F ratio exceeds the tabular value of F' at the specified level of significance and degrees of
freedom (from App. 7), the hypothesis is accepted that the regression parameters are not all equal to zero
and that R? is significantly different from zero.

In addition, the F ratio can be used to test any linear restriction of regression parameters by using

the form
(Z 6’%{;‘ - 6’%)
p
F,

e ye
n—k

where p is the number of restriction being tested, Zeii indicates the sum of squared residuals for the
restricted regression where the restrictions are assumed to be true, and ) ¢? indicates the sum of squared
residuals for the unrestricted regression (i.e., the usual residuals). The null hypothesis is that the p
restrictions are true, in which case the residuals from the restricted and unrestricted models should be
identical, and F would take the value of zero. If the restrictions are not true, the unrestricted model will
have lower errors, increasing the value of F. If F exceeds the tabular value, the null hypothesis is
rejected. This test will be used extensively in Sec. 11.6.

EXAMPLE 4. To test the overall significance of the regression estimated in Example 1 at the 5% level, we can use
R> =0.9916 (from Example 3), so that

0.9916/2
F=————=>~413.17
217 (1-0.9916)/7
Since the calculated value of F exceeds the tabular value of F = 4.74 at the 5% level of significance and with df =2
and 7 (from App. 7), the hypothesis is accepted that 5, and b, are not both zero and that R? is significantly different
from zero.

7.5 PARTIAL-CORRELATION COEFFICIENTS

The partial-correlation coefficient measures the net correlation between the dependent variable and
one independent variable after excluding the common influence of (i.e., holding constant) the other
independent variables in the model.  For example, ryy,.y, is the partial correlation between Y and
X, after removing the influence of X, from both Y and X; [see Prob. 7.23(a)]:

_T'vyxy = T'vx,Tx x,
ryx,.x, = > B
\/1 — VXle\/l —I'yx,

_ I'vx, = Tyxi"xix,
'yx, x, =
\/1 - ’”%(IXZ\/l — ¥y,

where ryy, = simple-correlation coefficient between Y and X;, and ryy, and ry,y, are analogously
defined. Partial-correlation coefficients range in value from —1 to +1 (as do simple-correlation coeffi-
cients), have the sign of the corresponding estimated parameter, and are used to determine the relative
importance of the different explanatory variables in a multiple regression.

(7.19)

(7.15)
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EXAMPLE 5. Substituting the values from Tables 7.1 and 7.2 into Eq. (6.18) for the simple-correlation coefficient,
we get

r 2% 936~ (9854
YY, = = =~ ().
/Z X% /Zyz V57641634
r 2 %) 00~ 09917
YX, = = - Y.
/57 V3041634
Z xle 524

rXIXZ = = = 09725
/ZX% 3 +/504+/576

rYXl — rYXg "XIXZ B 0.9854 — (09917)(09725)
- 2 2
\/1_@(]%\/1_@% V1 -0.97252V/1 - 0.9917

Thus 'vx,.x, =

= (.7023, or 70.23%
ryx, = Fyxfxx,  0.9917 — (0.9854)(0.9725)
\/1 — 2. \/1 —ry,  V1-09725V1—0.98547
142 1

and ryy,x, = =~ 0.8434, or 84.34%

Therefore, X, is more important than X in explaining the variation Y.

EXAMPLE 6. The overall results of the corn-fertilizer-insecticide example can be summarized as

Y =31.98 + 0.65X; + 1.11X,
t values (2.70) (4.11)
R*=0992 R*=0989 F,;=413.17
Fyxox, =070 ryy.x, =0.84

Even though results are usually obtained from the computer (see Chap. 12), it is crucial to work through a problem
“by hand,” as we have done, in order to clearly understand the procedure.

7.6 MATRIX NOTATION

Calculations increase substantially as the number of independent variables increase. Matrix nota-
tion can aid in solving larger regressions algebraically. The following solution works with any number
of independent variables, and is therefore extremely flexible. Students not familiar with linear algebra
may skip this section with no loss of continuity.

The regression from Sec. 1 can be written with matrices as

Y=Xb+u
[ Y, 1 Xy Xy Uy
Y, I X Xp bo up
where Y=| . X=1 ) b=| b u=
: : : : b, :
L Yn 1 Xln X2n Up
— Z;O
b=|h [=(XX)'X'Y
L b
S}Z;O COV(bo, bl) COV(bo, bz)
) > ee ,~_1 (symmetrical, so lower and
= — | cov(by, b S5 cov(b, b = X'X : ) .
% (bo. 51) by (b1.52) (n— k)( ) upper triangle are identical)
cov(by, by) cov(by, by) si
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EXAMPLE 7. Recalculation of corn-fertilizer-insecticide example with matrices

111
h=|]l6 10 12
4 4 5
111
x||l6 10 12
4 4 5
T 136 —0.18
h=|—-0.18  0.03
0.16 —0.03

1
14
7

1

1
16
9

1

14 16

7

9

0.16
—0.03
0.04

therefore, by = 31.98, b, = 0.65, and b, = 1.11.

L, 13.6704
Sb =
(10-13)

44
46
48
52
58
60
68
74
80

- 407

0.16

— = e e e e e e

1

1.36 —0.18
—0.18

0.03
—0.03

therefore 5} = 2.66, 5; = 0.06, and s = 0.07.

by

1

12

1

12

6
10
12
14
16
18
22
24
26
32

1 1 1 1
18 22 24 26 32
14 20 21 24
1 1 1 1
18 22 24 26 32
14 20 21 24
570 31.98 ]
11,216 | = | 0.65
7740 1.11
4
4
5
7
9 31.98
. 0.65 | =
4 1.11
20
21
24
0.167] 2.66
0.03 | = | —0.34
0.04 | 0.31

10
12
14
16
18
22
24
26

— = e e e e e e

407"
44
46
48
52
58
60
68
74
80

M —0.327
1.08
0.67

—0.85

—0.37
1.00

—1.82

—1.78
1.81

0.58 |
—0.35

0.31

0.06 —0.07

—0.07

0.07

[CHAP. 7
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Solved Problems

THE THREE-VARIABLE LINEAR MODEL

7.1  (a) Write the equation of the multiple regression linear model for the case of 2 and k independent
or explanatory variables. (b) State the assumptions of the multiple regression linear model.

(a) For the case of 2 independent or explanatory variables, we have
Yi2b0+b1X1,'+b2X2,'+M,‘ (71)
For the case of k independent or explanatory variables, we have
Y= b+ b1 Xy + baXo + -+ + DXy +
where X5; represents, for example, the ith observation on independent variable X;.
(b) The first five assumptions of the multiple regression linear model are exactly the same as those of the
simple OLS regression model (see Prob. 6.4). That is, the first three assumptions can be summarized as
u; ~ N(0,02). The fourth assumption is E(u;u;) = 0 for i # j; and the fifth assumption is E(X;u;) = 0.
The only additional assumption required for the multiple OLS regression linear model is that there is no
exact linear relationship between the Xs. If two or more explanatory variables are perfectly linearly
correlated, it will be impossible to calculate OLS estimates of the parameters because the system of
normal equations will contain two or more equations that are not independent. If two or more
explanatory variables are highly but not perfectly linearly correlated, then OLS parameter estimates

can be calculated, but the effect of each of the highly linearly correlated variables on the explanatory
variable cannot be isolated (see Sec. 9.1).

7.2  With the OLS procedure in the case of two independent or explanatory variables, derive
(@) normal Eq. (7.2), (b) normal Eq. (7.3), and (¢) normal Eq. (7.4). (The reader without
knowledge of calculus can skip this problem.)

(@) Normal Eq. (7.2) is derived by minimizing Zef with respect to 150:

3_912 _ 93 (Y — by — by Xy, — by X)’ _

- 0
3by ab,

—23°(¥, — by = by Xy = ByXo) = 0 72
Z Y, = nby + b, ZXU +b, szi
(b)) Normal Eq. (7.3) is derived by minimizing Ze? with respect to I;I:
006 _ 03 (Yi—by = biXi = brXa)® _
b, b,
— 23 X, — by — B X — ByX) = 0 79
Y XY= by > oXy +by Zx%i+I;ZZX1iX2i
(¢) Normal Eq. (7.4) is derived by minimizing Ze? with respect to l;z:
323% _ (Y- by — §1X1i — by Xy) _0
b, b, 7

-2 XY, — by — by Xy — by X)) =0

> Xy, =I;OZX21‘+I;I ZXlinf‘l'l;zZXzzf

7.3  For the two independent or explanatory variable multiple linear regression model, (a) derive the
normal equations in deviation form. (Hint: Start by deriving the expression for p;; the reader



162

7.4

1.5

MULTIPLE REGRESSION ANALYSIS [CHAP. 7

without knowledge of calculus can skip this part of this problem.) (b) How are Egs. (7.5), (7.6),
and (7.7) derived for bl, bz, and bO

(@) o= by + by Xy + by X
Y = A0+l;1)?1+l;2 X,

Subtracting, we get
Pi= Y= ¥ = byxy + byxy,
Therefore, ¢; = y; — p; = y; — l;lxl,» - I;zxzj

Zez = Z(yi —ﬁi)z = Z(J’i - [;1?61[ - l;zxzi)z
Iy e 82(},—b1x1,—b2l21)

8b1 8bl
=2 lei(yi - E]xli - [;2x21') =0

D xuyi= by > oxi+ by > xpiy (7.16)

326’? Y (i — l;lxli - l;zxzi)z
b, ab,

—22’671()1 Mlz gzxzi)zo

Z X9 = by Z X1Xa + by Z X3 (7.17)

(b) Equations (7.5) and (7.6) to calculate l;l and I;Z, respectively, are obtained by solving Egs. (7./6) and
(7.17) simultaneously. It is always possible to calculate b; and b,, except if there is an exact linear
relationship between X and X, or if the number of observations on each variable of the model is 3 or
fewer. Parameter bo can then be calculated by substituting into Eq. (7.7) the values of b1 and b2
[calculated with Egs. (7.5) and (7.6)] and Y, X;, and X, (calculated from the given values of the
problem).

=0

=0

With reference to multiple regression analysis with two independent or explanatory variables,
indicate the meaning of (a) by, (b) by, (¢) by. (d) Are by, by, and b, BLUE?

(a) Parameter bq is the constant term or intercept of the regression and gives the estimated value of Y},
when Xli = X2i =0.

() Parameter b; measures the change in Y for each one-unit change in X; while holding X, constant.
Slope parameter b, is a partial regression coefficient because it corresponds to the partial derivative of ¥
with respect to X, or 9Y/9.X].

(¢) Parameter b, measures the change in Y for each one-unit change in X, while holding X constant.

Slope parameter b, is the second partial regression coefficient because it corresponds to the partial
derivative of Y with respect to X;, or Y /dX,.

(d) Since Z;O, l;l, and 192 are obtained by the OLS method, they are also best linear unbiased estimators
(BLUE; see Sec. 6.5). That is, E(bo) = by, E(bl) = by, and E(bz) = by, and Spye S, and s; are lower
than for any other unbiased linear estimator. Proof of these properties is very cumbersome without the
use of matrix algebra, so they are not provided here.

Table 7.3 gives the real per capita income in thousands of U.S. dollars Y with the percentage of
the labor force in agriculture X and the average years of schooling of the population over 25
years of age X, for 15 developed countries in 1981. (a) Find the least-squares regression
equation of Y on X; and X,. (b) Interpret the results of part a.

(a) Table 7.4 shows the calculations required to estimate the parameters of the OLS regression equation of
Y on X, and X,.
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Table 7.3 Per Capita Income, Labor Force in Agriculture, and Years of Schooling

n

1 2 3 4 5 6 7 8 91 10 | 11 12 | 13 14 | 15

Y 6 8 8 7 71 12 9 8 9 (10| 10 | I1 9 1 10 | 11
X, 9 10 8 7 | 10 4 5 5 6 8 7 4 9 5 8
X, 8 13 | 11 10|12 16| 10| 10| 12| 14|12 | 16 | 14 | 10 | 12

= (Zx) (X)) = (Exon)(Txx) _ (22874 - (8)(=12)
| = =
(X)) = (Zxix)’ (60)(74) — (=12)°
—2072 + 456
= 220 — 144 = 038
j = () (D i) = (C ) (C i) _ (38)(60) — (-28)=12)
y = =
(E)(E9) - ()’ (60)(74) — (=127
2280 — 336
~2aq0—1aa = O®
by=Y — b X; — byX, =9 — (—0.38)(7) — (0.45)(12) = 9 + 2.66 — 5.40 = 6.26
Thus the estimated OLS regression equation of Y on X; and X, is
Y, =6.26 —0.38X,; + 0.45X5,;
(b) The estimated OLS regression equation indicates that the level of real per capita income Y is inversely

related to the percentage of the labor force in agriculture X; but directly related to the years of
schooling of the population over 25 years (as might have been anticipated). Specifically, b, indicates
that a 1 percentage point decline in the labor force in agriculture is associated with an increase in per
capita income of 380 U.S. dollars while holding X, constant. = However, an increase of 1 year of
schooling for the population over 25 years of age is associated with an increase in per capita income of
450 U.S. dollars, while holding X constant. When X|; = X5, =0, I?, = by = 6.26.

Table 7.5 extends Table 6.11 and gives the per capita GDP (gross domestic product) to the
nearest $100 (Y) and the percentage of the economy represented by agriculture (X), and the
male literacy rate (X,) reported by the World Bank World Development Indicators for 1999 for
15 Latin American countries. (a) Find the least-squares regression equation of Y on X; and X,.
(b) Interpret the results of part ¢ and compare them with those of Prob. 6.30.

(a)

(b)

Table 7.6 shows the calculations required to estimate the parameters of the OLS regression equation of
Y on X and X,.

- (Ex)(23) = (Cn) (T ) _ (—1149)(1093.7335) — (1637.7335)(=543)

= ~ —1.95
(X2 () - (X xx) (442)(1093.7335) — (—543)>

5 — Ean) (X x1) = (Z ) (X xix) _ (1637.7335)(442) — (—1149)(=543) 0.53
(X2 (X 2) - (X xx) (442)(1093.7335) — (=543

by =Y — b X, — by X, = 30.53 — (—1.95)(11) — (0.53)(88.53) = 5.06
Thus the estimated OLS regression equation of Y on X; and X, is
Y =5.06 — 1.95X, +0.53X,

The estimated OLS equation indicates that the level of per capita income Y is inversely related to the
percentage of the economy represented by agriculture X, but directly related to the literacy rate of the
male population (as might have been anticipated). Specifically, b, indicates that a 1 point decline in the
percentage of the economy represented by agriculture is associated with an increase in per capita



