

Electrical Machines II (ET-222) Semester / Session: <u>4th / Fall2018</u> Mid-Term Exam: Spring-2020

Date: 16 – 04 - 2020

Time Allowed: <u>150</u> minutes

Total Marks = 30

Note:

- 1. Attempt all questions.
- 2. Midterm is close book and close notes/Lecture slides.
- 3. Attempt the question in 150 Minutes and during that time make sure your books and notes are closed.
- 4. Try to explain your solutions in clear unambiguous words or figures/ diagrams or mathematical expressions. Marks will not be awarded on what you intended to write but what you actually wrote down.
- 5. Scan the hand written midterm question paper and answer book and send through email at ateeq.shaheen@uos.edu.pk on Friday dated 17/04/2020 before 10:00AM in morning.
- 6. Name the scan file as "Mid_your name_your ID.pdf" e.g. Mid_Ateeq_BEEF19M003.pdf

Q #(<u>)1</u>	<u>Marks: 10</u>	PLO: 02	<u>, CLO: 01</u>
	A 460-V, 60-Hz, fo	ur-pole, Y-connected	induction motor is ra	ated at 35 hp. The
	equivalent circuit parameters are			
	$R1 = 0.15\Omega$	$R2 = 0.154\Omega$	$XM = 20 \Omega$	$X1 = 0.852 \Omega$
	X2= 1.066 Ω	PF&W = 400 W	Pmisc = 150 W	Pcore = 400 W
	For a slip of 0.5, find			
a)	The input current			
b)	The stator power fact	or		
c)	The rotor power facto	or		
1)	TT1 (C			

- d) The rotor frequency
- e) The stator copper losses P_{SCL}
- f) The air-gap power P_{AG}
- g) The power converted from electrical to mechanical form P_{conv}
- h) The induced torque
- i) The load torque
- j) The overall machine efficiency

<u>Q # 02</u>

<u>Marks: 10</u>

PLO: 02, CLO: 01

An induction motor is running at the rated conditions. If the shaft load is now increased, how do the following quantities change?

- a) Mechanical speed
- b) Slip
- c) Rotor induced voltage
- d) Rotor frequency
- e) P_{RCL}

f) Synchronous speed

Q # 03

Marks: 5+5

PLO: 02, CLO: 01

- A. A 240 V, 3-phase, 60 Hz, two-pole induction motor is running at a slip of 3.5 percent. Find:
 - a) The speed of the magnetic fields in revolution per second
 - b) The revolution of the rotor in revolution per second
 - c) The slip speed of the rotor
 - d) The rotor frequency in hertz
- B. Write brief answers for the following questions.
 - e) What happened if voltage are not adjusted in variable frequency speed control method of induction motor?
 - f) What will happen if induction motor is started through direct line?
 - g) What will be the rotor frequency when the rotor is stationary?
 - h) Draw induction motor power flow diagram?