14.1
14.2
14.3

14.4
14.5
14.6

14.7

14.8
14.9
14.10

626

Differentials
The Indefinite Integral

Integration with Initial
Conditions

More Integration
Formulas

Technigues of
Integration

The Definite Integral

The Fundamental
Theorem of
Integral Calculus

Approximate Integration
Area between Curves

Consumers’ and
Producers’ Surplus

Chapter 14 Review

EXPLORE & EXTEND
Delivered Price

nyone who runs a business knows the need for accurate cost estimates. When
jobs are individually contracted, determining how much a job will cost is
generally the first step in deciding how much to bid.

For example, a painter must determine how much paint a job will take.
Since a gallon of paint will cover a certain number of square feet, the key is to deter-
mine the area of the surfaces to be painted. Normally, even this requires only simple
arithmetic—walls and ceilings are rectangular, and so total area is a sum of products
of base and height.

But not all area calculations are as simple. Suppose, for instance, that the bridge
shown below must be sandblasted to remove accumulated soot. How would the con-
tractor who charges for sandblasting by the square foot calculate the area of the vertical
face on each side of the bridge?

A B

D T C

The area could be estimated as perhaps three-quarters of the area of the trapezoid
formed by points A, B, C, and D. But a more accurate calculation—which might be
desirable if the bid were for dozens of bridges of the same dimensions (as along a
stretch of railroad)—would require a more refined approach.

If the shape of the bridge’s arch can be described mathematically by a function, the
contractor could use the method introduced in this chapter: integration. Integration has
many applications, the simplest of which is finding areas of regions bounded by curves.
Other applications include calculating the total deflection of a beam due to bending
stress, calculating the distance traveled underwater by a submarine, and calculating the
electricity bill for a company that consumes power at differing rates over the course of
a month. Chapters 11-13 dealt with differential calculus. We differentiated a function
and obtained another function, its derivative. Integral calculus is concerned with the
reverse process: We are given the derivative of a-function and must find the original
function. The need for doing this arises in a natural way. For example, we might have
a marginal-revenue function and want to find the revenue function from it. Integral
calculus also involves a concept that allows us to take the limit of a special kind of sum
as the number of terms in the sum becomes infinite. This is the real power of integral
calculus! With such a notion, we can find the area of a region that cannot be found by
any other convenient method.
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Objective

To define the differential, interpret

it geometrically, and use it in
approximations. Also, 1o restate the .
reciprocal relationship between dx/dy
and dy/dx.

TO REVIEW functions of several
variables, see Section 2.8.

14.1 Differentials

We will soon give a reason for using the symbol dy/dx to denote the derivative of y
with respect to x. To do this, we introduce the notion of the differential of a function.

, Definition

AXx can be any real number Then the dtﬂerentlal of y, denoted dy or d( f(x)) 1s
given by ;

- ,dy —ﬁf’(x)A’x'_ |

Note that dy depends on two variables, namely, x and Ax. In fact, dy is a function of
two variables.

LE1 Computing a Differential
Find the differential of y = x> —2x2+3x—4, and evaluate it whenx = 1 and Ax = 0.04.
Solution: The differential is

d

dy = —(@* —2x* +3x — 4) Ax
dx
= (3x" —4x +3) Ax
When x = 1 and Ax = 0.04,
dy = [3(1)* — 4(1) + 3](0.04) = 0.08
Now Work Problem 1

If y = x, then dy = d(x) = 1 Ax = Ax. Hence, the differential of x is Ax. We
abbreviate d(x) by dx. Thus, dx = Ax. From now on, it will be our practice to write dx
for Ax when finding a differential. For example,

dx* +5) = %(x2 +5)dx = 2xdx

Summarizing, we say that if y = f(x) defines a differentiable function of x, then
dy f (x) dx
where dx is any real number. Prov1ded that dx # 0 we can divide both sides by dx:

—’f()

That is, dy/dx can be viewed either as the quotient of two differentials, namely, dy
divided by dx, or as one symbol for the derivative of f at x. It is for this reason that we
introduced the symbol dy/dx to denote the derivative.

Finding a Differential in Terms of dx
a. If f(x) = /x, then
1

d(‘\/-i:) = 'C_;Z;('\/;)dx = -l/qu = -?:-fdx

b. If u = (x* + 3)°, then du = 5(x% + 3)*(2x) dx = 10x(x*> + 3)* dx.
Now Work Problem 3

Lety =f(x)bea d1fferent1ab1e fllIlCthIl of x, andlet Ax denote a change in x, where '
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y
y=16)
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o
flx +dx) = flx) Ay
P }dy ‘L
O : |
i dx i
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X x+ dx

FIGURE 14.1 Geometric interpretation of dy and Ax.

The differential can be interpreted geometrically. In Figure 14.1, the point
P(x,f(x)) is on the curve y = f(x). Suppose x changes by dx, a real number, to the
new value x + dx. Then the new function value is f(x + dx), and the corresponding
point on the curve is Q(x + dx,f(x -+ dx)). Passing through P and Q are horizontal
and vertical lines, respectively, that intersect at S. A line L tangent to the curve at P
intersects segment OS at R, forming the right triangle PRS. Observe that the graph of
f near P is approximated by the tangent line at P. The slope of L is f'(x) but it is also
given by SR/PS so that

SR
!
X) = —
) 75
Since dy = f'(x) dx and dx = PS,
SR —.
dy =f'(x)dx = =— - PS = SR
y =f(x) 73
Thus, if dx is a change in x at P, then dy is the corresponding vertical change along
the tangent line at P. Note that for the same dx, the vertical change along the curve

is Ay = SO = f(x+dx)—f(x). Do not confuse Ay with dy. However, from Figure 14.1,
the following is apparent:

When dx is close to 0, dy is an approximation to Ay. Therefore,

My dy
This fact is useful in estimating Ay, a change in y, as Example 3 shows.

3 Using the Differential to Estimate a Change in a Quantity

A governmental health agency examined the records of a group of individuals who
were hospitalized with a particular iliness. It was found that the total proportion P that

" are discharged at the end of ¢ days of hospitalization is given by

300 \?
P=P{)=1—
® (300+r>

Use differentials to approximate the change in the proportion discharged if ¢ changes
from 300 to 305. ’

Solution: The change in f from 300 to 305 is At = df = 305 — 300 = 5. The change
in P is AP = P(305) — P(300). We approximate AP by dP:

3 2 3 3003
AP~ dP =P ({t)dt = -3 00 ) (~ 00 7)ah‘:B———&— t
300+t (300 +1)? (300 + n*




Formula (1) is used to approximate a
function value, whereas the formula

Ay == dy is used to approximate a change
in function values.
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When ¢ = 300 and dt = 5,

300° 15 1
6004 23600 2340 320
For a comparison, the true value of AP is
P(305) — P(300) = 0.87807 — 0.87500 = 0.00307

(to five decimal places).

~ 0.0031

Now Work Problem 11 <1.

We said that if y = f(x), then Ay = dy if dx is close to zero. Thus,
Ay =f@x+dx)—fx)=dy
so that

e o

This formula gives us a way of estimating a function value f(x + dx). For example,
suppose we estimate In(1.06). Letting y = f(x) = Inx, we need to estimate f(1.06).
Since d(Inx) = (1/x) dx, we have, from Formula (1),

F&+dx) = f(x)+dy
1

In(x+dy)~Inx+ —dx
X

We know the exact value of In 1, so we will let x = 1 and dx = 0.06. Then
x+dx = 1.06, and dx is close to zero. Therefore,

1
In(140.06) = 1n (1) + -1~(0.O6)

In (1.06) =~ 0+ 0.06 = 0.06
The true value of In(1.06) to five decimal places is 0.05827.

IPLE4 = Using the Differential to Estimate a Function Value

The demand function for a product is given by

p=f@=20-./q
where p is the price per unit in dollars for g units. By using differentials, approximate
the price when 99 units are demanded.

Solution: We want to approximate £(99). By Formula (1),

flg+dg) =~ f(q)+dp

where
1 dp 1 5
. dp = ——— d, 112
D 272 q dq 74
We choose g = 100 and dg = —1 because g -+ dg = 99, dg is small, and it is easy to
compute (100) = 20 — +/100 = 10. We thus have

f(99) = f1100 + (—1)] ~ f(100) — (=D

1
2+/100
f(99) ~ 104-0.05 = 10.05
Hence, the price per unit when 99 units are demanded is approximately $10.05.

Now Work Problem 17 <

The equation y = x> + 4x + 5 defines y as a function of x. We could write f(x) =
%3 +4x + 5. However, the equation also defines x implicitly as a function of y. In fact,
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if we restrict the domain of f to some set of real numbers x so that y = f(x) is a one-to-
one function, then in principle we could solve for x in terms of y and get x = f~1(y).
[Actually, no restriction of the domain is necessary here. Since f/(x) = 3x> +4 > 0,
for all x, we see that f is strictly increasing on (—oo, c0) and is thus one-to-one on
(—00,00).] As we did in Section 12.2, we can look at the derivative of x with respect
to y, dx/dy and we have seen that it is given by

s Temuee

Since dx/dy can be considered a quotient of differentials, we now see that it is the
reciprocal of the quotient of differentials dy/dx. Thus

dx 1
dy  3x24+4
1t is important to understand that it is not necessary to be able to solve y = x> 4+ 4x +5
for x in terms of y, and the equation —— = holds for all x.
¥ d dy 3214

Finding dp/dq from dg/dp

d
Find d—p if ¢ = /2500 — 2.
q

Solution:

i"Strategy There area ‘iinber of ways to find dp/dg. One approach is to solve the ,:
 given equation for p explicitly in terms of ¢ and then differentiate dlrectly Another -
: approach to find dp/dq is to use implicit differentiation. However, since g is given
 explicitly as a function of p, we can easily find dg/dp and then use the preceding
remprocal relatlon to ﬁnd dp /dq We w111 take this approach o

We have
%9 _ 12500 p?y P (2p) = — B
dp 2 /2500 — p?
Hence,

dp 1 /2500~ p?
dg dq p
dp

Now Work Problem 27 <1

PROBLEMS 14.1
In Problems 1-10, find the differential of the function in terms of x 13 y=22+5x—7;x=-2,dc = 0.1

and dx. , 4. y=Cx+2)%x=—1,dv = —0.03
L.y=ax+b 2. y=2
- 15. y =32 —x%;x =4,dx = —0.05 Round your answer to
3 f@)=Vx-9 4. f(x) = (4x* = 5x +2)° three decimal places.
. 1
5. u—-;— 6. u=./x 16. y=1Inx;x = 1,dx =0.01
=In@r+7) 8. p=e¢ 4205 17. Letf(x) = -——~+ >
9. y = (9x +3)e>H 10. y=In/x2+12 x4+ 1
(a) Evaluate f’(l).
In Problems 11-16, find Ay and dy for the given values of x (b) Use differentials to estimate the value of f(1.1).
and d. 18. Letf(x) = x*.
11. y = ax + b; for any x and any dx (a) Evaluate f'(1).
12, y=5xx = —1,dx = —0.02 (b) Use differentials to estimate the value of f(0.98).




In Problems 19-26, approximate each expression by using
differentials. '

19. /288 (Hint: 17% = 289)) 20. /122
21. V9 22. Y163
23. 1In 0.97 . 24. 1n 1.01
25. (0001

26. 6“0‘002

In Problems 27-32, find dx/dy or dp/dq.

27. y=2x—1 28, y=5x+3x+2
29, g = (p*+5) 30. g=/p+5

1
3. g=— 32 g=é&7

e

33. Ify = 7x* — 6x + 3, find the value of dx/dy when x = 3.
34. Ify = Inx?, find the value of dx/dy when x = 3.

In Problems 35 and 36, find the rate of change of q with respect to
p for the indicated value of q.

500

3. p=——;9g=18 36. p=60— ./2q;q = 50
q+2

37. Profit  Suppose that the profit (in dollars) of producing

g units of a product is
P =397g — 2.3 — 400

Using differentials, find the approximate change in profit if the
level of production changes from ¢ = 90 to g = 91. Find the true
change.

Given the revenue function
r =250 +45¢* — ¢*

use differentials to find the approximate change in revenue if the
number of units increases from g = 40 to ¢ = 41. Find the true
change.

38. Revenue

39. Demand The demand equation for a product is

10

‘P=ﬁ

Using differentials, approximate the price when 24 units are
demanded.

40. Demand Given the demand function .
200

b= Jg+8
use differentials to estimate the price per unit when 40 units are
demanded.

41. If y = f(x), then the proportional change in y is defined to be
Ay/y, which can be approximated with differentials by dy/y. Use
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this last form to approximate the proportional change in the cost
function

,
1
2

c=f(q) = = + 5¢ + 300

when g = 10 and dg = 2. Round your answer to one decimal
place.

42. Status/Income  Suppose that S is a numerical value of
status based on a person’s annual income / (in thousands of
dollars). For a certain population, suppose S = 20+/T. Use
differentials to approximate the change in § if annual income
decreases from $45,000 to $44,500.

43. Biology The volume of a spherical cell is given by
V= %mj, where r is the radius. Estimate the change in volume
when the radius changes from 6.5 x 10~ cm to 6.6 x 107* cm.

44. Muscle Contraction The equation

P+av+b)=k

is called the “fundamental equation of muscle contraction.”! Here
P is the load imposed on the muscle, v is the velocity of the
shortening of the muscle fibers, and a, b, and k are positive
constants. Find P in terms of v, and then use the differential to
approximate the change in P due to a small change in v.

45. Demand The demand, ¢, for a monopolist’s product is
related to the price per unit, p, according to the equation

2 4000
2+ cl = —
200 p*

(a) Verify that 40 units will be demanded when the price per unit
is $20.
dq

(b) Show that — = —2.5 when the price per unit is $20.

. D.
(c) Use differentials and the results of parts (a) and (b) to
approximate the number of units that will be demanded if the
price per unit is reduced to $19.20.

46. Profit The demand equation for a monopolist’s product is

1
p= ;)~q2 — 66q + 7000

and the average-cost function is

(a) Find the profit when 100 units are demanded.
(b) Use differentials and the result of part (a) to estimate the
profit when 101 units are demanded.

Objective

To define the antiderivative and the
indefinite integral and to apply basic
integration formulas.

14.2 The Indefinite Integral

Given a function f, if F is a function such that
F'(x) = f(x) 1)

then F is called an antiderivative of f. Thus,

An antiderivative of f is simply a function whose derivative is f. |

IR.W. Stacy et al., Essentials of Biological and Medical Physics (New York: McGraw-Hill,- 1953).
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Multiplying both sides of Equation (1) by the differential dx gives F’(x) dx = f(x) dx.
However, because F'(x) dx is the differential of F, we have dF = f(x) dx. Hence, we
can think of an antiderivative of f as a function whose differential is f(x) dx.

Definion = L0
An antiderivative of a function f ,iS;?l functxon E suph thk’a,t"’ , =
Equivalently,in differential notation,

For example, because the derivative of x? is 2x, x> is an antiderivative of 2x.
However, it is not the only antiderivative of 2x: Since

d d
Z;(x2+ D=2x  and a;(xz —5)=2x

both x2 + 1 and x> — 5 are also antiderivatives of 2x. In fact, it is obvious that because
the derivative of a constant is zero, x>+ C is also an antiderivative of 2x for any constant
C. Thus, 2x has infinitely many antiderivatives. More importantly, all antiderivatives
of 2x must be functions of the form x> 4 C, because of the following fact:

 Any two antiderivatives of a function differ only by a constant,

Since x? + C describes all antiderivatives of 2x, we can refer to it as being the most
general antiderivative of 2x, denoted by [ 2x dx, which is read “the indefinite integral
of 2x with respect to x.” Thus, we write

fmw=£+c

The symbol [ is called the integral sign, 2x is the integrand, and C is the constant of
integration. The dx is part of the integral notation and indicates the variable involved.
Here x is the variable of integration.

More generally, the indefinite integral of any function f with respect to x is
written f f(x) dx and denotes the most general antiderivative of f. Since all antideriva-
tives of f differ only by a constant, if F is any antiderivative of f, then

f fx)dx = F(x) + C, where C is a constant

To integrate f means to find [ f(x)dx. In summary,

' 'ff(x)'dx = F(x)+ C  ifand onl‘yki-f' F’(x)’=f('x)ﬁ”,;i
Thus we have

d ) d
E(/f(x)dX> =f(x) and ‘/-&X—(F(A))dA=F(X)+C

which shows the extent to which differentiation and indefinite integration are inverse
procedures.




APPLY IT »

‘L If the rna:ginal cost for a company. is
F(g) = 28.3;find [ 28.3 dg, which gives
the form of the cost function. :

cautiol]\

A common mistake is to omit C, the
constant of integration.
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MPLE1 Finding an Indefinite Integral

Find f 5dx.
Soluticon:

Strategy First we must find (perhaps better words are guess at) a function whose
derivative is 5. Then we add the constant of integration. ‘

Since we know that the derivative of 5x is 5, 5x is an antiderivative of 5. Therefore,

dex=5x+C

Now Work Problem 1 <

Using differentiation formulas from Chapters 11 and 12, we have compiled a list of
elementary integration formulas in Table 14.1. These formulas are easily verified. For
example, Formula (2) is true because the derivative of x+!/(a + 1) is x% fora # —1.
(We must have a 3 —1 because the denominator is 0 when @ = —1.) Formula (2) states
that the indefinite integral of a power of x, other than x~!, is obtained by increasing the
exponent of x by 1, dividing by the new exponent, and adding a constant of integration.
The indefinite integral of x~! will be discussed in Section 14.4.

To verify Formula (5), we must show that the derivative of k f Fx)dx is kf(x).
Since the derivative of k [ f(x) dx is simply k times the derivative of [ f(x) dx, and the
derivative of f f) dxisf(x), Formula (5) is verified. The reader should verify the other

formulas. Formula (6) can be extended to any number of terms.

Indefinite Integrals of a Constant and of a Power of x

a. Find f ldx.

Solution: By Formula (1) withk =1
/1dx= x4+ C=x+C

Usually, we write [ 1dx as [ dx. Thus, [ dx =x+ C.
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APPLY IT »

E12 If the rate of chanae ofa company s
j dR
: revenues can be modeled by o ==

0127, then find [0.127dr, which
~gives the form of the cornpany ’s Tevenue

: funcmon

cauTion\

Only a constant factor of the integrand
can pass through an integral sign.

APPLY T >

' 3 Due to new competmon the number ,

of subscriptions to a certain maoazgloe
4

vis declining at'a rate of — = —__
: dt t3

subscnptlons per.month, where ¢ is the

number of months since the competition

“entered the market. Find the form of the -

i equation for the number of subscribers
to the magazine. :

b. Find / x° dx.

Solution: By Formula (2) with n = 5,

S5+1 6

5 X X
dx = c=%.1c
/x =iy teTgt

Now Work Problem 3 <

Indefinite Integral of a Constant Times a Function

Find / Txdx.

Solution: By Formula (5) with k = 7 and f(x) = x,

f7xdx:7/xdx

Since x is x!, by Formula (2) we have

, RS 2
dx = Ci=—+C
/x 1+1+ 1 2+ 1

where C; is the constant of integration. Therefore,

x? 7,
Txdx =7 | xdx =7 —2—-}—C1 :§x”+7C1

Since 7C; is just an arbitrary constant, we will replace it by C for simplicity. Thus,

7
/7xdx=—2-x2+C

It is not necessary to write all intermediate steps when integrating. More simply,
we write

2 7 .
f7xdx=(7)%+C:§x2+C

Now Work Problem 5 <

Indefinite Integral of a Constant Times a Function

Find/-—ge‘dx.

: 3 3
Solution: /——gerdx = —3 f e dx Formula (3)
3.
= —gef‘ +C Formula (4)

Now Work Problem 21 <

(AMPLE 5 Finding Indefinite Integrals
a. Find / —dt.

Solution: Here t is the variable of i integration. We rewrite the integrand so that a basic
formula can be used. Since 1//7 = 172 , applying Formula (2) gives

/ p / vy =172+ 12
—dl = e dt =

+C_T+C-9«/+C
S | -
2" 2
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1
b. Find | — dx.
n /6x3

) 1 1 [ 1\ x~3!
Solution: /@dngfx dx:(g> _3+1+C
- e
12 12x2

Now Work Problem 9 <

AMPLE 6 Indefinite Integral of a Sum

APPLY IT »

4. The rate of growth of the population of

Lol AN Find / (x% + 2x) dx.
~anew city is-estimated by e 500+

-300+/1, where  is inyears. Find - - Solution: By Formula (6),
/(500+300;/?)dr /(x2+2x)dx:/x2dx+[2xdx

Now,

x2+l X3
/xzdxz +Ci=—+C(C

241 3
and
RS
/2xdx=2/xdx:(2) +C =24+ C
141
Thus,
2 % 2
/(x”+2x)dx: ?+X"+C1 + Cy
When integrating an expression involving For convenience, we will replace the constant C, + C, by C. We then have

more than one term, only one constant of
integration is needed.

3
/(x2+2x)dx=%+x2+c

Omitting intermediate steps, we simply integrate term by term and write

x3 2

3
/(x2+2x)dx=—§+(2)%+C=%+x2+C

Now Work Problem 11 <

APPLY IT & AMPLE 7 Indefinite Integral of a Sum and Difference
5. Slyipposei the rate of :Savingsj'
in the United States is given by
: ‘;—f = 2.1 — 65.4t +491.6, where tis  Solution:

 the time in years and S is the amount of 5 3
money saved in billions of dollars. Find / (2Vx* —Tx" + 10e" — 1) dx

 the form of the equation for the amount

Find_ / @Vx* = Tx* + 10 — 1) dx.

. of money saved. - =2 f P dx —7 / dx+ 10] e dx — / ldx  Formulas (5) and (6)
i Ve o
i =) - (7)1— + 10" —x+C Formulas (1), (2), and (4)

wi

10 7
= —9—x9/5 - Zx“ +10e —x+C

Now Work Problem 15 <
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cauTion\

In Example 8, we first multiplied the
factors in the integrand. The answer
could not have been found simply in
terms of [ y*dy and [ (y + $)dy. There
is not a formula for the integral of a
general product of functions.

Another algebraic approach to part (b) is

.\'3 -] 3 _1a
—dv= | (&7 — I)x""dx
x?
= /(.\'—,\'"z)d.\'

and so on.

PROBLEMS 14.2 <

- In Problems 1-52, find the indefinite integrals.

2. /ldx
X
4. /5x24dx
2-3
f—S—dZ
. f%dx 8./

1. / 7dx
/ Bdx
. f 5x dx 6.

W

94}

q

Sometimes, in order to apply the basic integration formulas, it is necessary first to
perform algebraic manipulations on the integrand, as Example 8 shows.

Using Algebraic Manipulation to Find an
Indefinite Integral

2
Find fyz (y + -5) dy.

Solution: The integrand does not fit a familiar integration form. However, by multi-
plying the integrand we get

2 2 / .3 2,
it —Vdy = [y —v- | dv
f} <}’+3> y ¥+ 3 )@

4 2 3 4 2,3
:%+(§)1+C:)_+_.)__+C

Now Work Problem 41 <

AMPLE 9  Using Algebraic Manipulation to Find an
Indefinite Integral

a. Find f @_——16)(&3)(1&

Solution: By factoring out the constant % and multiplying the binomials, we get

[EE R w [t s-sar

__1_((7)£+(5)£_3 )—!-C
s\ 2

.3_1
b. Find/“ —~ dx.
=

Soluiion: We can break up the integrand into fractions by dividing each term in the
numerator by the denominator:

_3_1 3 1
/‘A > dx:f(é——;) dx:/(x—x"z)dx
x? x* 0 x?

S S S
T2 - T2 x

Now Work Problem 49 <

1
9. /z—"/_“d[

11. f(4+ ndt

7
10. /mdx

12. / (717 +4r* + D dr

13. f o° —5y)dy 14. f (5 — 2w — 6w dw

7

- 2
S 15. / (3r* — 41 + 5) dr

16. /(1 + 2+ Sdr
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17. /(\/j’l_—i—e)dx 18. /(5-2")(1;- 39 f I CS PR I
. ; s T e
19 / ("' 3#) dx 20 / 27 _ 84 1
. = — = b 20. — — =x" ] dx 2
7 4 7 3 40. / (S/E+ 7:) du 41. /(r +5)(x —3)dx
u
21. | wetdx 22. Y+ 337 + 2x) dx 2
! /Tg dx f(" +3x0 4+ ) 42. fﬁ(.r YSr4d 43, /ﬁ(x+3)¢\-
23. / (57— 0x® 4307 ) dx 44. / (z+2Ydz 45. / Gu +2)* du
3 2
24. / 0.7y + 10 + 2y ) dy 46. / 2 1) dx 47. / x72(3x% + 4 — 5)dx
2% VA '
= LY ) - 4 23
= [ SEa 2 [ a a8, [ 6o i+ au . [
5 —4 -
2 . ‘.4 — 5; -2 2% X 2x
7 f sk B | Gy ® 50. f e PN 51. / £EE
33 Lo > ¢
X
29. T 30. — — — | dx 2 3
G 2 (mg) o [EEV,
5 x
31. f (2‘; — 2 7) dw 32. / Te* ds 53. If F(x) and G(x) are such that F’(x) = G'(x), is it true that
2 3w? F(x) — G(x) must be zero?
33. / 3u—4 du 34. / .L (lg‘) dx 54. (a) Find a function F such that f Fx)ydy =xe* + C.
5 12\3 (b) Is there only one function F satisfying the equation given in
¥ ions?
35, /' W + ) du 36. / (3_)’3 P % ) dy part (a), or arc; there mlany such functions?
3 55. Flnd‘/z (_7——) dx.
37. / (—- - 12@&) dx 38. /om YAV A+
Jx

Objective

To find a particular antiderivative of
a function that satisfies certain
conditions. This involves evaluating
constants of integration.

14.3 Integration with Initial Conditions

If we know the rate of change, f', of the function f, then the function f itself is an
antiderivative of ' (since the derivative of f is ). Of course, there are many antideriva-
tives of f*, and the most general one is denoted by the indefinite integral. For example, if

£/ =2x

then
fx) = / fx)dx = f 2xdx = x>+ C. (1)

That is, any function of the form f(x) = x>+ C has its derivative equal to 2x. Because of
the constant of integration, notice that we do not know f(x) specifically. However, if f
must assume a certain function value for a particular value of x, then we can determine
the value of C and thus determine f(x) specifically. For instance, if f(1) = 4, then, from
Equation (1),

fH=1>+cC
4=1+C
C=3
Thus,
f) =x"+3

That is, we now know the particular function f(x) for which f’(x) = 2x and f(1) = 4.
The condition f(1) = 4, which gives a function value of f for a specific value of x, is
called an initial condition.
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APPLY 1T >

6. The rate of growth ofa specxes of bac- .

,, dN
teriais estlmated by — =~800+2003

‘ where N is the number of bactena (m
thousands) after r hours. If N(5) =
40,000, find N(z). '

APPLY IT >

7. The acceleration of an object after ¢
seconds is given by y” = 84¢ + 24, the

velocity at 8 seconds is given by y/(8). =
2891 ft/s, and the position at 2 seconds

~1s given by ¥(2) =185 ft. Find y(t).

Initial-Condition Problem

If y is a function of x such that y’ = 8x — 4 and y(2) = 5, find y. [Note: y(2) = 5 means
that y = 5 when x = 2.] Also, find y(4).

Solution: Here y(2) = 5is theinitial condition. Since y’ = 8x—4, yis an antiderivative
of 8&x — 4:
2

=:/(8x—4)dx=8~%—4x+C:4x2—4x+C )

We can determine the value of C by using the initial condition. Because y = 5 when
x = 2, from Equation (2), we have

5= 4@ —42)+C
5=16—-8+C
C=-3
Replacing C by —3 in Equation (2) gives the function that we seek:
y=4x* —4x -3 3)
To find y(4), we let x = 4 in Equation (3):
y(4) =44 —4(4) -3 =64 — 16 — 3 =45
Now Work Problem 1 <

Initial-Condition Problem Involving y’

Given that y” = x> — 6,y'(0) = 2, and y(1) = —1, find y.
Solution:
S{raiegy To go from ¥ to y, two 1ntegrat10ns are needed the ﬁrst to take us from ,

)" toy" and the other to take us from y' to y. Hence, there w111 be two constants of
mtegratmn wh1ch we w1ll denote by C1 and C’) s

d "
Since y" = ;1;()/) = x?> — 6,y is an antiderivative of x2 — 6. Thus,

3
y = w~®w:%—m+a )

Now, y'(0) = 2 means that y’ = 2 when x = 0; therefore, from Equation (4), we have

3

0
2=—3——6(0)+C1

Hence, C; = 2, so

SO

X
y=1~7—3x +2x 4 C; (5)
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Now, since y = —1 when x = 1, we have, from Equation (5),

4

1
-1=5 — 32 +2(1) + G

Now Work Problem 5 <

Integration with initial conditions is applicable to many applied situations, as the
next three examples illustrate.

Income and Education

For a particular urban group, sociologists studied the current average yearly income y
(in dollars) that a person can expect to receive with x years of education before seeking
regular employment. They estimated that the rate at which income changes with respect
to education is given by

d
210032 4<x<16
where y = 28,720 when x = 9. Find y.
Solution: Here y is an antiderivative of 100x3/2. Thus,
y= f 100532 dx = 100/)53/2 dx

3/"

= (100)

2
y =40+ C (6)

The initial condition is that y = 28,720 when x = 9. By putting these values into
Equation (6), we can determine the value of C:

28,720 = 40(9)*%* + C
=40(243) + C
28,720 = 9720 4 C
Therefore, C = 19,000, and
y = 40x°>/% 4+ 19,000
Now Work Problem 17 <

Finding the Demand Function from Marginal Revenue

If the marginal-revenue function for a manufacturer’s product is
d "
& 2000 — 20g — 34
dq

find the demand function.

Solutlon

, Straiegy By 1ntegrat1n0 dr/dq and using an 1n1t1a1 condmon we can find
i’ evenue funcnon r. But revenue is also given by the general relanons
here pis the price per unit. Thus p=r/q. Replacmo rin this equatlon by the
 Tevenue function yields the demand function ,
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Revenue is 0 when ¢ is 0.

Although g = 0 gives C = 0, this is not
true in general. It occurs in this section
because the revenue functions are
polynomials. In later sections, evaluating
at g = 0 may produce a nonzero value
for C.

When ¢ is 0. total cost is equal to
fixed cost.

Although ¢ = 0 gives C a value equal to
fixed costs, this is not true in general. It
occurs in this section because the cost
functions are polynomials. In later
sections, evaluating at ¢ = 0 may
produce a value for C that is different,
from fixed cost.

Since dr/dq is the derivative of total revenue r,

r= / (2000 — 20 — 3¢®)dg

7> 7
= 2000g — Qo) - (3)-3- +C
so that
r=2000g — 10¢>* - ¢* + C (7

We assume that when no units are sold, there is no revenue; that is, r = 0 when
g = 0. This is our initial condition. Putting these values into Equation (7) gives

0 = 2000(0) — 10(0)* — 0* + C
Hence, C =0, and
r = 2000g — 104> — ¢°
To find the demand function, we use the fact that p = r/q and substitute for r:
r 2000q — 10¢> — ¢°
q q
p = 2000 — 10g — ¢

Now Work Probiem 11 <

XAMPLE 5 Finding Cost from Marginal Cost
In the manufacture of a product, fixed costs per week are $4000. (Fixed costs are costs,

such as rent and insurance, that remain constant at all levels of production during a
given time period.) If the marginal-cost function is

d
29 = 0.000001(0.002¢2 — 25¢) +0.2
q

where c is the total cost (in dollars) of producing g pounds of product per week, find
the cost of producing 10,000 ib in 1 week.

Solution: Since dc/dg is the derivative of the total cost c,
clg) = f [0.000001(0.002¢° — 25q) + 0.2)dg

= 0.000001 / (0.002¢> — 25¢) dg + f 0.2dg

0.0024> 2547
2

c(g) = 0.000001 ( ) +029+C
Fixed costs are constant regardless of output. Therefore, when ¢ = 0,c = 4000,

which is our initial condition. Putting ¢(0) = 4000 in the last equation, we find that
C = 4000, so '

0.002¢°> 25¢°
2

c(g) = 0.000001 < ) +0.2q + 4000 )

From Equation (8), we have ¢(10,000) = 5416%. Thus, the total cost for producing
10,000 pounds of product in 1 week is $5416.67.

Now Work Problem 15 <




PROBLEMS 14.3

In Problems 1 and 2, find y subject to the given conditions.

L dy/dx=3x—4; y-1)=2

2. dyjdx =x* —x; y(3)= 129

In Problems 3 and 4, if y satisfies the given conditions, find y(x)
for the given value of x. ‘

9
3.y = — y(16) = 10; x=9
Y Sﬁ}() x

4 y=—x+2,y2)=1 x=1

In Problems 5-8, find y subject to the given conditions.

5.y ==3x*4+4x; Yy1)=2, y(1)=3

6. y=x+1 y0)=0y0=5

7. y" =2 Y'(=1)=3,y(3)=10, y0)=13

8.y =2e+3; Y'(0)=T,Y(0) =530 =1

In Problems 9-12, dr/dq is a marginal-revenue function. Find the
demand function.

1
9. dr/dg = 0.7 10. dr/dg =10~ —q

11. dr/dq =275 — q — 0.3¢*> 12. dr/dg = 5,000—3(2g+2¢%)
In Problems 13-16, dc/dq is a marginal-cost function and fixed
costs are indicated in braces. For Problems 13 and 14, find the

total-cost function. For Problems 15 and 16, find the total cost for
the indicated value of q.

13. dc/dg =247, {159}  14. dc/dg=2q+75; {2000}
15. dc/dg = 0.08¢> — 1.6q +6.5; {8000}; g =25
16. dc/dg = 0.000204¢ — 0.046g +6; {15,000}; g = 200

17. Diet for Rats A group of biologists studied the nutritional
effects on rats that were fed a diet containing 10% protein.? The
protein consisted of yeast and corn flour.

Over a period of time, the group found that the (approximate) rate

of change of the average weight gain G (in grams) of a rat with
respect to the percentage P of yeast in the protein mix was
£=-—£+2 0<P=<100
dapP 25
If G = 38 when P = 10, find G.

Section 144 More integration Formulas 641

18. Winter Moth A study of the winter moth was made in
Nova Scotia.? The prepupae of the moth fall onto the ground from
host trees. It was found that the (approximate) rate at which
prepupal density y (the number of prepupae per square foot of
soil) changes with respect to distance x (in feet) from the base

of a host tree is

dy
dx
Ify =59.6 whenx =1, find y.
19. Fluid Flow In the study of the flow of fluid in a tube of
constant radius R, such as blood flow in portions of the body, one
can think of the tube as consisting of concentric tubes of radius r,
where 0 < r < R. The velocity v of the fluid is a function of r and

is given by*
. (P = Pyr &
21y

where P; and P, are pressures at the ends of the tube, i (a Greek
letter read *eta”) is fluid viscosity, and / is the length of the tube.
If v = 0 when r = R, show that

_ B =P)R -1

B 4y
20. Elasticity of Demand The sole producer of a product has
determined that the marginal-revenue function is

dr \
— = 100 — 3q~
dg 1

=—15-x 1<x<9

Determine the point elasticity of demand for the product when
g = 5. (Hint: First find the demand function.)

21. Average Cost A manufacturer has determined that the
marginal-cost function is

d
& 0.003¢% — 0.4q + 40
dq

where g is the number of units produced. If marginal cost is
$27.50 when g = 50 and fixed costs are $5000, what is the
average cost of producing 100 units?

22, If f"(x) = 30x* + 12x and f'(1) = 10, evaluate
f(965.335245) — f(—965.335245)

Objective

To learn and apply the formulas for
[udu, [ e du, and f —du.
“ The formula

M.éf More Integration Formulas

Power Rule for Integration

X = +
lZ-{ 1

ifa#~1

2Adapted from R. Bressani, “The Use of Yeast in Human Foods,” in Single-Cell Protein, eds. R. 1. Mateles and
S. R. Tannenbaum (Cambridge, MA: MIT Press, 1968).

3Adapted from D. G. Embree,“The Population Dynamics of the Winter Moth in Nova Scotia, 1954-1962,"
Memoirs of the Entomological Society of Canada, no. 46 (1965).

4R.W. Stacy et al., Essentials of Biological and Medical Physics (New York: McGraw-Hill, 1955).
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After integrating, you may wonder what
happened to 3x*. We note again that
du = 3x% dx.

which applies to a power of x, can be generalized to handle a power of a function
of x. Let u be a differentiable function of x. By the power rule for differentiation, if
a # —1, then '

\ya+-1 a0y
d ((u(x)) * ) _ @ DY w0 osa i

dx a+1 a+1
Thus,
a+1
/ W) - v'(x)dx = Q)™ +C a#-1
a+1

We call this the power rule for integration. Note that i/'(x)dx is the differential of u,
namely du. In mathematical shorthand, we can replace u(x) by 1 and #'(x) dx by du:

V 'Poukve'rf Rulé for !niegratioh -
. Ifuis diﬁ”éi‘eﬂﬁdblé, then

getl e . S o
Ydui—= — -+ ifazt=1 s 1)
fu dua+1+ a# ()

It is important to appreciate the difference between the power rule for integration and
the formula for f x*dx. In the power rule, 1 represents a function, whereas in f x% dx,
X is a variable.

Applying the Power Rule for Integration

a. Find f (x + 1) dx.

Solution: Since the integrand is a power of the function x + 1, we will set u = x + 1.
Thendu = dx,and [ (x+1)* dx has the form [ 4*° du. By the power rule for integration,

21 . 21
x+1D
c+ DPdx= [ Wdu=2—+C="2"_4¢C
(x Y dx /u i X C o

Note that we give our answer not in terms of u, but explicitly in terms of x.

b. Find / 323 4+ 7)Y dx.

Solution: We observe that the integrand contains a power of the function x> + 7. Let
u = x*>+7. Then du = 3x* dx. Fortunately, 3x” appears as a factor in the integrand and
we have

f 3x2(F° + T dx = / o7+ 7Y [Bx% dx] = f u® du

4 3 Ty
:y__I.C:u
4 4

Now Work Problem 3 <

+C

In order to apply the power rule for integration, sometimes an adjustment must be
made to obtain du in the integrand, as Example 2 illustrates.

AMPLE 2 Adjusting for du
Find ‘/x\/x2 + 5 dx.

Solution: We can write this as [ x(x*> + 5)!/? dx. Notice that the integrand contains
a power of the function x> + 5. If u = x> + 5, then du = 2xdx. Since the con-
stant factor 2 in du does not appear in the integrand, this integral does not have the




| :

cauTioN\

The answer to an integration problem
must be expressed in terms of the original
variable.

cauTion\

We can adjust for constant factors, but
not variable factors.

Section 14.4  More Integration Formulas 643

" du
form f i du. However, from du = 2x dx we can write x dx = - 80 that the integral
becomes -

fx(x2+5)‘/2dx=/(x2+5)’/2[xdx]=fu‘/2?

Moving the constant factor 4 in front of the integral sign, we have

/x(x2+5)‘/2d4v= ‘l‘fu’/zafuzl wl? ro=lpr
2 2\72 3

which in terms of x (as is required) gives

3/2
/MM + 5dx —-( +5) +C

Now Work Problem 15 <

In Example 2, the integrand x+/x> + 5 missed being of the form (u(x))!/2u/'(x)
‘(%)

u
by the constant factor of 2. In general, if we have / (u(x))“-Td\ for k a nonzero
constant, then we can write

/(l( ))" dJ\ —f C:[ = %/u“ du

to simplify the integral, but such adjustments of the integrand are not possible for

variable factors.
When using the form [ u“ du, do not neglect du. For example,

4x + 1)
/(4x+ 1) dx (—‘—;“——3-+c
The correct way to do this p‘rioblem is as follows. Let u = 4x - 1, from which it follows
that du = 4 dx. Thus dx = —Zg and

_ 2, 5 [ du _I 2 1 2 _(4.\‘-{-1)3
f(4,\+1) dx—/zt [z—]_zfzt du—-zl—-?—va-———t)———{-C

a. Find / J6ydy.

Solution: The integrand is (6y)!/ 3a power of a function. However, in this case the
obvious substitution u = 6y can be avoided. More simply, we have

3 6
/\3/6—}7(1]:-/‘61/3},1/3[1‘,_\/‘/),!/361), fL,+C_ {‘,4/3_,_(:

223 4+ 3x
Gt + 322 474

Solution: We can write this as [ (x* + 3x* + 7)~*(2x + 3x) dx. Let us try to use the
power rule for integration. If u = x* + 3x% 4+ 7, then du = (4x> + 6x) dx, which is two

b. Firid"

times the quantity (2x> + 3x) dx in the integral. Thus (2x® +3x) dx = 7“ and we again
illustrate the adjustment technique:

/ G 4327 + DT+ 30 dx] = fll_4 [%j] = 5]:"/‘1!_4 du

1 u‘3+c_ 1 fC= 1 iy,
2 -3 T 6 T 60t + 32+ 7)3

Now Work Problem 5«
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In using the power rule for integration, take care when making a choice for u. In
Example 3(b), letting u = 2x3 4 3x does not lead very far. At times it may be necessary
to try many different choices. Sometimes a wrong choice ‘will provide a hint as to
what does work. Skill at integration comes only after many hours of practice and
conscientious study.

An Integral to Which the Power Rule Does Not Apply
Find f 4 (x* + 1)? dx

Solution: If we set u = x* + 1, then du = 4x> dx. To get du in the integral, we need an
additional factor of the variable x. However, we can adjust only for constant factors.

Thus, we cannot use the power rule. Instead, to find the integral, we will first expand
ot 4+ 1%

/4x2(x4+ 1)2dx=4fx2(x8+2x4+ Ddx
—~4f(x’°+2xﬁ+x2)dx

xll 2x7 x3
= = c
(11 Tt 3>+

Now Work Problem 67 <

integrating Natural Exponential Functions

We now turn our attention to integrating exponential functions. If « is a differentiable
function of x, then

du
ell —
( )= ¢
c AUTIO@ Corresponding to this differentiation formula is the integration formula |
Do not apply the power-rule formula for du
Jutduto [e'du. f —dx=¢e"+C
du | . .
But = dx is the differential of 1, namely, du. Thus,
f e du = e" + C 2
APPLY IT »> T

~' 8 When an object is moved from one; .
f~‘env1ronment to another, its. tempera—':
‘ture’ T changes at a' rate given by
dl
= kCe™, wh(?re ¢ is the time (in: a. Find /‘ ertz .
hours) after changing environments, C
is the temperature difference (original
minus new) between the environments,*
and k is a constant. If the original envi-

Integrals Involving Exponential Functions

Solution: Let u# = x%. Then du = 2x dx, and, by Equation (2),

ronment. is 70°, the new. environment f 26" dx = / gxl [2x dx] = / e du
is. 602, andk = —0. 3; find the general i
- form of T(t)

—e"+C=¢" +C




R A S St

APPLY IT »

9. If the rate of vocabulary memoriza-

- tion of the average student in a foreign

e Lo ay
- languageisgivenby — = ——— where

dt = t+1

v is the number of vocabulary wode'
‘memorized in  hours of study, find the

general form of v(1).
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b. Find / G2 + 1)e" 3 gy,
J

Solution: If u = x3 + 3x, then du = (3x% + 3)dx = 3(x? + 1) dx. If the integrand
contained a factor of 3, the integral would have the form [ e du. Thus, we write

f @+ e dx = f e + 1) di]

._1‘/‘lld_]‘ll+c
—3 4 ll—-3€

1 o4s
= e &l C
3¢ T

1 1
where in the second step we replaced (x> + 1)dx by 3 du but wrote - outside the
integral.

Now Work Problem 41 <

Integrals Involving Logarithmic Functions
As we know, the power-rule formula [ u® du = u**! /(a+ 1) + C does not apply when

a = —1. To handle that situation, namely, uldu = | = du, we first recall from
124
Section 12.1 that

d 1d
—(In Ju)) = ZZ}L% for i # 0

which gives us the integration formula

a;y/—’lduzlnwl +C foru#0 3
; i

In particular, if u# = x, then du = dx, and

'f’-dx=1n'lx|+C forx#0 @

MPLE 6 Integrals Involving — du

u

7
a. Find / - dx.
X
Solution: From Equation (4),

7 1
/—dx=7/—¢t=7ln|x|+C
X X
Using properties of logarithms, we can write this answer another way:

7
f—dx:lnlx7{+C
X

2
b. Find / = dx.
x*+5

Solution: Let u = x> + 5. Then du = 2x dx. From Equation (3),

2x 1 1
dx = 2xdx}= | —d
fx2+5 * ,/x2+5[ o /u "

=Ihul+C=lx*+5+C

Since x? + 5 is always positive, we can omit the absolute-value bars:
ysp

’7.
fxz”isdlen(x2+5)+c

Now Work Problem 31 <<
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PROBLEMS 14.4
In Problems 1-80, find the indefinite integrals.

2. f 15(x + 2)* dx

1. f(x+5)7cbc

[

: f2.x(x2 +3Ydx

w

6. /(1512 —6t+ )52 =32+ 07 ar

4x
8. f ———-(21_2 0 dx

5
7. f@;-—_l)idx
. /\/7x+3dx

&

11. / (7x — 6)* dx

13. f11(5142 - gy

Integration

4, /(4x+3)(21:2+3x+1)d\'

' / Gy +6y)0° +3y* + ) dy

1
An Integral Involving — du
U

(2x% + 3x) dx
xt 432477
Solution: If u = x* + 3x2 4+ 7, then du = (4x> + 6x)dx, which is two times the

Find

numerator giving (2x> + 3x)dx = —211 To apply Equation (3), we write

2x3 + 3x 1 1
T = -4
/x4+3x2+7 2_/11 "

Inful+C _

Inp*+3x2+7|+C Rewrite 1 in terms of x.

InG*+32+7+C 4322 +7>0 forallx

N = DO = N

Now Work Problem 51 <

An Integral Involving Two Forms

1 1
Find dw.
n f((l — w)? + W — 1) Y

Solution:

1 1 S 1
f((l—yv)'l+w—1>dw:/(l~w) dw+‘/‘w__1dw
=——1/(1—w)'2[-a’w]+f !
w—1

1
The first integral has the form f 1~2 du, and the second has the form f — dv. Thus,
v

/ TR W el ) TS
A—wy? w—1)® =" T |

dw

1
= ——+Inw—1+C
I —w

joy
%4

5. / 4427 + ) gy 16. / 4 — 5x)° dx
17. f 363 dx 18.
19. f (3t + DU+ gy 20.

21. f xe™ dx 22.

/
/
/
23. f 4™ dy 24, / 24x°e™> gy
f .
/
/

. 1 127 4+ dx + 2
25. / dx 26. dx
10'/ 1 sdx X+5 A+\2+2\3 *
v —

3x2 4 443 6x? — 6x

12. f B3+ 7 dx 27. f PR dx 28. 1—32+r20 %
87 3
; -/ 12 dy 29, —dz ¢
14 /,\ 34 5x2dx /(22_5)7 (Bv—1)# dh

.




1
83. y'==; Y2 =3y1)=2
165 — 4 Y=g Y2 =350

s " ’ 572

3_os+as 84. ' = (x+ D% y(8) =19, y(24) = Z2
85. Real Estate The rate of change of tg?/ value of a house that
cost $350,000 to build can be modeled by I = 8¢%%" where t is

Section 14.5 Techniques of Integration ~ 647
4 3 r 1
31. —dx 32. dy - (2 — 16)% — :
/x f1+2)’ 'y 68. ‘/‘“l(x 16) 2x+5] dx
s* 3243 69./( = = >¢—70.f[ 3 S
33.fmds 34, /md) x2+1 (x2+1)2 X x_1+(x_1)2 X
5 7t i
3s. dx 36. | —dt ] C (442 953 — OV B gy
f4~2¥ X /51‘2 6 71 / i (4x 8x7)(x® —x%) } dx
37. f V/5x dx 38. / BN 72. f (r +5)dr 73. / VIR FI— | dx-
(3x)° X243
X 9 2
39. f——--—dx 40. / dx X -xT
vax* +b L—=3x 7 _/(7x2+2 3 +2)4) =
41. / 23 dy 42. f 24/2x — 1dx eVF .
75. 7 dx 76. /‘(e3 —3%dx
5 Px+tl x
43. / Ve 2 H gy 44, / —Yw——aﬁ\ 1+4e* 2 /1
‘ i + 32 4 3 77. / o dx 78. /t—z,/7+9dt
P
« “Sc | o ; 4x +3
l 45. f(e 3% 4 2e%) dx 46. /43/}+1dy 79, / f+ @2 +30d 80, /ﬁemdx
| 2x? 4 3x
- — 2y — 53 In Problems 81-84, find y subject to the given conditions.
i 47. | (8x+ 10)(7 — 2x? — 5x)° dx
X
L 8l. y =(3—2x)% y0)=1 8.y = ; y(1)=0
g 48, /2)’e3"ldy 49 f6xz+8dx FoOmE 0 P Tere MY
t ) ¥ ax

50. f (€ +2eF - yadx 51 /

52. f 6 +40E + 12+ D0 dr

53. f x(2x 4+ 1)~ dx the time in years since the house was built and V is the value (in
thousands of dollars) of the house. Find V(¢).

54. / (45w* + 18w2 + 12)(3w> + 2w° + 4)™* dw 86. Life Span  If the rate of change of the expected life span /
at birth of people born in the United States can be modeled by

. dl 12
55, / —(x% = 20) (o — %0 x pr vt where ¢ is the number of years after 1940 and the
3 2y 3 . expected life span was 63 years in 1940, find the expected life
56. / 5(1’ —2)e ™ dy 57. /(2X + )" +x%) dx span for people born in 1998.
3142 9+ 18x 87. Oxygen in Capillary In a discussion of the diffusion of

58. / (e™') dx 59. G_x—x2)7 X oxygen from capillaries,” concentric cylinders of radius r are used
as a model for a capillary. The concentration C of oxygen in the

60. / (¢ — ™) dx 61. / X(2x + 1)+ gy capillary is given by

N Rr Bl
62. / @ — ue®>")du 63. / x/(8 — 5x2)3 dx C= f (QE + 7) dr

ax 1 i where R is the constant rate at which oxygen diffuses from the
64. / e dx 65. _/ («/ix—- @) dx capillary, and K and B, are constants. Find C. (Write the constant
o ‘ s of integration as B,.)
. 2 2.
66. / S 67. / O+ 1)dx 88. Find f(2)iff (3) = 2 and f'(x) = €2 — 3y,

Objective 14.5 Technigues of Integration

To discuss technigues of handling We turn now to some more difficult integration problems.
;na%%ﬁhgge;gggré?éeg:ﬁimIg{i%?llzngg' When integrating fractions, sometimes a preliminary division is needed to get
by ﬁmn'g the integrand to a familiar familiar integration forms, as the next example shows.

form. To integrate an exponential
function with a base different.-from e
and to find the consumption fuinction,
given the marginal propensity to
consume. SW. Simon, Mathematical Technigues for Physiology and Medicine (New York: Academic Press, Inc., 1972).
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Here we split up the integrand.

Here we used long division to rewrite the
integrand.

Here the integral is fit to the form to
which the power rule for integration
applies.

" Solution: We can write this integral as

Preliminary Division before Integration

.3 .
aJ%df“+lm.

x2

Solution: A familiar integration form is not apparent. However, we can break up the
integrand into two fractions by dividing each term in the numerator by the denominator.

We then have -
3 . 3 1
/)t _,t”\ x:/(%%—é—)dx:f(x—!—“)dx
x2 x2  x? x

2

= %—j—\ln lx]+C

dx.

3 2,
b, Find/h +3x +x+1
2x+1

Solution: Here the integrand is a quotient of polynomials in which the degree of the
numerator is greater than or equal to that of the denominator. In such a situation we
first use long division. Recall that if f and g are polynomials, with the degree of f
greater than or equal to the degree of g, then long division allows us to find (uniquely)
polynomials g and r, where either r is the zero polynomial or the degree of r is strictly
less than the degree of g, satisfying

U

8 8
Using an obvious, abbreviated notation, we see that

[o=f(evg)=To ]

Since integrating a polynomial is easy, we see that integrating rational functions reduces
to the task of integrating proper rational functions—those for which the degree of the
numerator is strictly less than the degree of the denominator. In this case we obtain

207 +3x2 4 x+ 1 1
[RRE e [ (e )
2x+1 2x +1

x3+x"+/ 1 J
=—+— x
3773 2x 1

ﬁ+f+1/ L gore)
e — — X

37272 ) mr

x 2

2

3+x+11m+n+c
== —1In|2x
3 2

Now Work Problem 1 <

AMPLE 2 ' Indefinite Integrals
a. Find

1

/ﬁwhwm

f“ﬁ—md
x

dx. Let us try the power rule

. . . 1 dx
for integration with u = /x — 2. Then du = ——dx, so that —= = 2 du, and

25

[ i 5]
= / 3du—2<_;)+C
‘ 1

1
=4 C= s 4 C




Here the integral fits the familiar form

1
— du.
u

Here the integral is fit to the form to
which the power rule for integration
applies.
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dx.

1
b. Find /
xlnx

1
Solution: If ¥ = Inx, then du = — dx, and
X

f : dx:/—l—— ldx =/ldu
xInx Inx \x u

=Injul+C=In|lhx|+C

5
. Find | - dw.
¢ _/ w(ln w)3/2 W

1
Solution: If u = Inw, then du = —dw. Applying the power rule for integration, we
w

have
> 3| !
/ W"“ =5 / (Inw) I:‘—;dnjl

s v
:5/11"/‘d11=5- i +C
2
_ 10 _ 10
T2 T (lnw)!2

Now Work Problem 23 <
Integrating »"
In Section 14.4, we integrated an exponential function to the base e:
f du=¢e"+C

Now let us consider the integral of an exponential function with an arbitrary base, b.

f b du

To find this integral, we first convert to base ¢ using

- e( In byu (1)

(as we did in many differentiation examples too). Example 3 will illustrate.

IPLE3  An Integral Involving b*
Find f 237 dx.
Solqtion:

Strategy We want to integrate an exponential function to the base 2. To do this,
~ we will first convert from base 2 to base e by using Equation (1). ,

fz3——‘.\‘ dx = /e(ln2)(3~.r) dx

The integrand of the second integral is of the form &, where u = (In2)(3 — x). Since

du = —In 2 dx, we can solve for dx and write
g 1
f 026 gy 3 e du
1 1 N | .
=L C = ___e(ln..)(3 -X) +C= ______23 A

In2 In2 In2
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Thus,

1
23-—x dx = ____23—x c .
f In2 +

Notice that we expressed our answer in terms of an exponential function to the base 2,
the base of the original integrand.

Now Work Problem 27 <

Generalizing the procedure described in Example 3, we can obtain a formula for
integrating b":

/ b'du = / by,

1
= — f MO g((n byu) In b is a constant
Inb

1
— — (Inbu C
mpt

1
= ——pH C
Inb +

bldu=—b'+C.
| e ot e
Applying this formula to the integral in Example 3 gives

f23""dx =2, u=3—x

= — / 277d3 - x) —d(3 — x) = dx
1
=——24C
In2 +

which is the same result that we obtained before.

Application of Integration

We will now consider an application of integration that relates a consumption function
to the marginal propensity to consume.

Finding a Consumption Function from Marginal
Propensity to Consume

For a certain country, the marginal propensity to consume is given by
ac 3 1
d 4 23]

where consumption C is a function of national income /. Here [/ is expressed in large
denominations of money. Determine the consumption function for the country if it is
known that consumption is 10 (C = 10) when I = 12.

Solution: Since the marginal propensity to consume is the derivative of C, we have

—eny=[(3_2 Y N L TN
C_C(I)_/(4 zﬁ)dl_/4dl 2[(31) dr

301 ‘
=>1—= | @D~ V?dl
4 2f( )




This is an example of an initial-value
problem.

PROBLEMS 14.5

In Problems 1-56, determine the indefinite integrals.

L ‘/2t6—|-8x4—4xdx‘ 2

2x2

3, f G2+ V233 +4x + L dx

X
4. —/‘—‘———dx
VAN

6. flrf*‘l dx 7.
e~ —2
8. [ 5d 9,
* 4]
10. / el 11.
2 —

1. /(3A+ 2)x 4) 13,
14. f 6(e* 3% dx 15.
Iyt 6. -3 ¢ — 2
16. f A e 1
x—2

5 — 4x?
18. dx 19.
/ 342
5¢5
20. d
/ 14 3es g 2L
22. / VIV, 23.
Jx

24. f Vi3 — /D)% dr 25,

S xt — e
2. /de 27.
Tx*
4
28. ——dx 29,
f x1n (2x?) A
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If we 1e§ u = 31, then du = 3dIl = d(31), and

3 (N [ e
C=31 (2) 3/(31) d@3I)

3 13DY?
=—]—- K
4 6 1 +
2
3. 31
C=-1-—+K
4 3 +
When/ =12, C = 10, so
3 /312
10 = —(12) — ( )+K
4 3
0=9-2+K
Thus, K = 3, and the consumption function is
3. 43I
C=-—~—473
4 3 +

Now Work Problem 61 <

ax+b 8
30. dx 0 3 —o
‘/‘9,\‘2-1—5ch cx+d <7 /(«1‘4‘3)1“(1'*'3)
M 3x 5 3 2 e
! 32. f (€ +x° — 2x)dx 33. f "—“"—“7—;——3&
X -
4xin /1T + 22 263/In (ot + 1)
3 34./—————-"n N 3s. f————-———l IO+ 17 5
5. /————dx 142 o+ 1
4 —5x

/ 302 +2)" e 2 dx 37, ( ln7) dx

36.
f 47 dx

x—x2 214—-8x —-6\ +4
2“.(7 _ r’/4) dx 38. f m dx 39. f dx
652 —11x+5 et — e f x
o —llx+o i : 41. &
_/ 3x—1 d 40 /e‘—}-e“-‘d\ x41 §
5e> 2x xe©
42. dx .
f7er+4dx @rhm@+n 4 f T
13/x
/ Se‘z dx 44 > dx
* ") Gx+DI+InBx+ DP
f L (€ +5)
.l + 9 45. —gt— dl
Wx+ 7) 1
Watay 46. / L | dx
35 8x+1 e(8+e~)?
1/3 4
——~——-——5(l +2 dx 47. | 3 +ex)V/x2 +edx
Iz
d
/ E dx 48. /3"‘“"(1 +Inx)dx [Hint: Z—(xlnx) =1+1Inx]
X
7
ryln@r*+1) 49, f X/ (8x)32 + 3 dx 50.. f dx
x(Inx)*
r241 v
3lnr S / lﬂ A
51. d. 52.
[ e
f Vet Hdx 53. / D iy 54, f dx
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[
5. [
X

56. [ SOG4y assuming f7 > 0

In Problems 57 and 58, dr/dq is a marginal-revenue function.
Find the demand function.

dr 200 sg dr_ 900
Tdg (g+27 Tdg (29 +3)

In Problems 59 and 60, dc/dq is a marginal-cost function. Find
the total-cost function if fixed costs in each case are 2000.

Jde 20 60. 2 — 40005
dg q+5 dg
In Problems 61-63, dC/dI represents the marginal propensity to
consume. Find the consumption function subject to the given
condition.

ac 1
6l. — = —:; C(O) =38
a= ®)
dc 1 1 3
2, — = —— 2) ==
6 da 2 221 c@ 4
dc 3 1
63. —=——; C(25)=23
a4 61 @

64. Cost Function The marginal-cost function for a
manufacturer’s product is given by

d 100
C=10-

dg ~ q+10

where c is the total cost in dollars when ¢ units are produced.
When 100 units are produced, the average cost is $50 per unit.
To the nearest dollar, determine the manufacturer’s fixed cost.

65. Cost Function Suppose the marginal-cost function for a
manufacturer’s product is given by

dc _ 100g> — 3998 + 60
dg q> —40g + 1

where c is the total cost in dollars when ¢ units are produced.

(a) Determine the marginal cost when 40 units are produced.
(b) If fixed costs are $10,000, find the total cost of producing
40 units.

(c) Use the results of parts (a) and (b) and differentials to
approximate the total cost of producing 42 units.

66. Cost Function The marginal-cost function for a
manufacturer’s product is given by

7/0.04g7 +

dq 10

where c is the total cost in dollars when q units are produced.
Fixed costs are $360. :

(a) Determine the marginal cost wheh 25 units are produced.
(b) Find the total cost of producing 25 units.

(c) Use the results of parts (a) and (b) and differentials to
approximate the total cost of producing 23 units.

67. Value of Land It is estimated that 7 years from now the
value V (in dollars) of an acre of land near the ghost town of
Cherokee, California, will be increasing at the rate of

8

J0.21* + 800

$500 per acre, how much will it be worth in 10 years? Express
your answer to the nearest dollar.

dollars per year. If the land is currently worth

68. Revenue Function The marginal-revenue function for a
manufacturer’s product is of the form

dr a

dg~ ei+b
for constants a and b, where r is the total revenue received (in
dollars) when g units are produced and sold. Find the demand
function, and express it in the form p = f(g). (Hint: Rewrite
dr/dg by multiplying both numerator and denominator by ¢79.)

69. Savings A certain country’s marginal propensity to save is
given by

ds 5

dr (I +2)
where S and 7 represent total national savings and income,
respectively, and are measured in billions of dollars. If total
national consumption is $7.5 billion when total national income is
$8 billion, for what value(s) of / is total national savings equal to
zero?

70. Consumption Function A certain country’s marginal
propensity to save is given by

das 2 1.6

dl — 5 P
where S and I represent total national savings and income,
respectively, and are measured in billions of dollars.

(a) Determine the marginal propensity to consume when total
national income is $16 billion.

(b) Determine the consumption function, given that savings are
$10 billion when total national income is $54 billion.

(c) Use the result in part (b) to show that consumption is

$§52- = 16.4 billion when total national income is $16 billion

(a deficit situation).

(d) Use differentials and the results in parts (a) and (c) to
approximate consumption when total national income is

$18 billion.

Objective

To motivate, by means of the concept
of area, the definite integral as a limit of
a special sum; to evaluate simple
definite integrals by using a limiting
process.

14.6 The Definite Integral

Figure 14.2 shows the region R bounded by the lines y = f(x) = 2x,y
x-axis), and x = 1. The region is simply a right triangle. If b and & are the lengths of
the base and the height, respectively, then, from geometry, the area of the triangle is
A= lbh = 7(1)(2) = 1 square unit. (Henceforth, we will treat areas as pure numbers

= 0 (the

and write square unit only if it seems necessary for emphasis.) We will now find this
area by another method, which, as we will see later, applies to more complex regions.
This method involves the summation of areas of rectangles.




y

[}*]
1

fe)=2x
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y

NS}
I

foy=2c /[p,

R,

1

dafre

x X Sy x. L 3 o4
olfRa| Xy X | x3| X v 3 T3

PRINY.

1 -3
4 4 4

FIGURE 14.2 Region bounded FIGURE 14.4 Four circumscribed
by f(x) = 2x,y =0, and x = 1. FIGURE 14.3 Four subregions of R. rectangles.

flw) =2

1)

1
3

e

3 4
CR

FIGURE 14.5 Four mscnbed
rectangles.

Let us divide the interval [0, 1] on the x-axis into four subintervals of equal 1encrth
by means of the equally spaced points xg = 0,x; = L,M = 4,,13 4, and x4 = - =1.
(See Figure 14.3.) Each subinterval has length Ax = l . These subintervals determme
four subregions of R: Ry, Ry, R3, and Ry, as 1nd1cated

With each subregion, we can associate a circumscribed rectangle (Figure 14.4)—
that is, a rectangle whose base is the corresponding subinterval and whose height is
the maximum value of f(x) on that subinterval. Since f is an increasing function, the
maximum value of f(x) on each subinterval occurs when x is the right-hand endpoint.
Thus, the areas of the circumscribed rectangles associated with regions Ry, Ry, R3, and
Ry are ﬁf(}l), %f(%), %f(f’—;), and ﬁf(%), respectively. The area of each rectangle is an
approximation to the area of its corresponding subregion. Hence, the sum of the areas
of these rectangles, denoted by Sy (read “S upper bar sub 4” or “the fourth upper sum”),
approximates the area A of the triangle. We have :

Se=3f B +ir@+if(G)+]
1 2G) +2(3) +2()+2() =%

You can verify that S = Zle f(x;)Ax. The fact that S is greater than the actual area
of the triangle might have been expected, since S includes areas of shaded regions that
are not in the triangle. (See Figure 14.4.)

On the other hand, with each subregion we can also associate an inscribed rectangle
(Figure 14.5)—that is, a rectangle whose base is the corresponding subinterval, but
whose height is the minimum value of f(x) on that subinterval. Since f is an increasing
function, the minimum value of f(x) on each subinterval will occur when x is the
left-hand endpoint. Thus, the areas of the four inscribed rectangles associated with
Ri,R5,R3, and Ry are i 0, Ili f (};), % f (%), and th f (%), respectively. Their sum, denoted
S, (read *“S lower bar sub 4” or “the fourth lower sum”), is also an approximation to
the area A of the triangle. We have

Sy=3fO+3f (1) +3f B +31f(3)

1 1 2 3V 3
=3 Oo+2(3)+2()+2(3) =1
Using summation notation, we can write S, = Z?:o f(x)Ax. Note that S, is less than
the area of the triangle, because the rectangles do not account for the portion of the

triangle that is not shaded in Figure 14.5.
Since

f

%]}
N

=J,<A<



654 Chapter 14 'Integration

y we say that S, is an approximation to A from below and S4 is an approximation to A
from above.

If [0, 1} is divided into more subintervals, we expect that better approximations to
A will occur. To test this, let us use six subintervals of equal length Ax = é Then Sg, |

f (%) i o [/ the total area of six circumscribed rectangles (see Figure 14.6), and S, the total area

f ( s ) | f)=2x 7 of six inscribed rectangles (see Figure 14.7), are

10 So=3f (@ +sf @ +sf @A +sf Q) +5/ Q) +5, ()

fBF AL =50 ()+2(%) 2@)+2(3)+2() +2(R) =3

f(%)‘ ; | | and

o || $o= 41O+ 31 () + 4 B+ 1 @)+ T )+ ()
AL —LEO+2() +2 () 12 () 2 +2 () =

Note that §4 <A < S¢. and, with appropriate labeling, both S and S will be of

FIGURE 14.6 Sixci ibed . R . . . .
1 cireimseribe the form Xf(x) Ax. Clearly, using six subintervals gives better approximations to the

tangles.
rectangles area than does four subintervals, as expected.
Y More generally, if we divide [0, 1] into n subintervals of equal length Ax, then
Se Ax=1/n, and the endpoints of the subintervals are x=0,1/n,2/n,...,(n—1)/n,
- and n/n = 1. (See Figure 14.8.) The endpoints of the kth subinterval, for k =
L 1,...n, are (k — 1)/n and k/n and the maximum value of f occurs at the right-
) = 2 hand endpoint k/n. It follows that the area of the kth circumscribed rectangle is
B (%) - B 1/n-f(k/n) = 1/n - 2(k/n) = 2k/n?, for k = 1,...,n. The total area of all n cir-
. cumscribed rectangles is
f (E) - ]
_ n n 2k
1O Si= Y flk/max=>"= W
2 k=1 =
(B =
2 2
f (%) ~ AT = Zk by factoring— from each term
0 n? n’
1 123 4 56 * 2 1
creseE == nint ) from Section 1.5
FIGURE 14.7 Six inscribed rectangles. n- 2
_n+1
TO REVIEW surmmation notation, T

refer to Section 1.5.
(Werecall that ), _, k = 142+ - -+nis the sum of the first 2 positive integers and the
y formula used above was derived in Section 1.5 in anticipation of its application here.)

For inscribed rectangles, we note that the minimum value of f occurs at the left-
hand endpoint, (k — 1)/n, of [(k — 1)/n,k/n], so that the area of the kth inscribed
f(_)l)__ _ rectangle is 1/n - f(k — 1/n) = 1/n - 2((k — 1)/n) = 2(k — 1)/n?, fork = 1,...n. The
" =2 total area determined of all n inscribed rectangles (see Figure 14.9) is
X) 7 LX
n n
2k — 1)
= — . = 2
D fk=Dmar=3 —— @)
k=1 k=1
2
f (_’21_) I = Z k—1 by factoring— " from each term
1Ol ) Zl
. k adjusting the summation
0| 12 n * T2
nn n
n—1 — 2 (”_ Dn . . c
n-l = 5 adapted from Section 1.5

FIGURE 14.8 »ncircumscribed - n—1
rectangles. -

n
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y From Equations (1) and (2), we again see that both S, and S ,, are sums of the form

Zf(x)Ax, namely, S, = Zf (%) AxandS, = Zf (k - 1) Ax
k=1

From the nature of S, and S, it seems reasonable—and it is indeed true—that

f(”;l)‘ fley=2x / | §” §A§§,,

As n becomes larger, S, and S, become better approximations to A. In fact, let us take
the limits of S, and S, as n approaches oo through positive integral values:

—1

lim S, = lim ’1—1-_—;1i.m (1_1>=1

1n->00 n-»o0  J n—c0 n
1) A
f (") - . n+1 . 1
. lim S, = lim =lm(l14+-)=1
X n—od n->00 n n->0o n
0] 12 n
nn n . - ..
Since S, and S, have the same limit, namely,
n—1
n lim S, = lim S, = 3)
n—+oo n—>o0
FIGURE 14.9 1 inscribed rectangles. .
and since
_'S.n S A S :S—"II

we will take this limit to be the area of the triangle. Thus A = 1, which agrees with our
prior finding. It is important to understand that here we developed a definition of the
notion of area that is applicable to many different regions.

We call the common limit of S, and S, namely, 1, the definite integral of f(x) = 2x
on the interval from x = 0 to x = 1, and we denote this quantity by writing

1
f 2xdx =1 (4)
0

The reason for using the term definite integral and the symbolism in Equation (4) will
become apparent in the next section. The numbers 0 and 1 appearing with the integral
sign [ in Equation (4) are called the limits of integration; 0 is the lower limit and 1 is
the upper limit.

In general, for a functionf defined on the interval fromx = atox = b, wherea < b,
we can form the sums S, and S S ,,» which are obtained by considering the maximum and
minimum values, respectively, on each of n subintervals of equal length Ax.® We can
now state the following:

'The common l1rmt of S, and S as n —> oo 1f it ex1sts 1s called the definite mtegral
of f over [a b] and is wntten S ,

f @

,‘WThe numbers a and b are called hmlts of mtegratmn, ais the lower limit and bis -
_ the upper lmut The symbol X is called the varlable of mtegratlon and f (x) is the
‘mtegrand '

In terms of a limiting process, we have

b
> f@) Ax — f fx)dx
a
The definite integral is the limit of sums Two points must be made about the definite integral. First, the definite integral is
of the form 3~ f(x) Ax. This definition the limit of a sum of the form ) f(x) Ax. In fact, we can think of the integral sign as
will be useful in later sections. an elongated “S,” the first letter of “Summation.” Second, for an arbitrary function f

6Here we assume that the maximum and minimum values exist.
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APPLY IT >

10, A company has determmed that its.
,marfrmal-revenue function is given by

R/(x) = 600 — 0.5x, where R is the
_revenne (in dollars) received when x

“units: are sold. Find the. total revenue
received for selling 10 units by finding

“the area in the first quadrant bounded by -
y = R!(x).= 600 — 0.5x and the lines-

y=0,x=0,andx = 10.

In general, over [a, b]. we have

b—a

) =412

2
FIGURE 14.10 Region of Example 1.
‘y

4

J

14

f(x),'=4 e '\;

s

e
23

FIGURE 14.11 n subintervals and -
corresponding rectangles for Example 1.

(n—l)%

defined on an interval, we may be able to calculate the sums S,, and S, and determine
their common limit if it exists. However, some terms in the’ ‘sums may be negative if
f(x) is negative at points in the interval. These terms are not areas of rectangles (an area
is never negative), so the common limit may not represent an area. Thus, the definite
integral is nothing more than a real number; it may or may not t represent an area.

As we saw in Equation (3), lim,—« S, is equal to lim,c S ... For an arbitrary
function, this is not always true. However, for the functions that we will consider, these
limits will be equal, and the definite integral will always exist. To save time, we will just
use the right-hand endpoint of each subinterval in computing a sum. For the functions
in this section, this sum will be denoted S,.

Computing an Area by Using Right-Hand Endpoints

Find the area of the region in the first quadrant bounded by f(x) = 4 — x? and the lines

x=~0andy=0.

Solution: A sketch of the region appears in Figure 14.10. The interval over which
x varies in this region is seen to be [0,2], which we divide into n subintervals of
equal length Ax. Since the length of [0, 2] is 2, we take Ax = 2/n. The endpoints of the
subintervalsarex = 0,2/n,2(2/n), ..., (n— 1)(7 /n), and n(2/n) = 2, which are shown
in Figure 14.11. The diagram also shows the corresponding rectangles obtained by
using the right-hand endpoint of each subinterval. The area of the kth rectangle, fork =
1,...n, is the product of its width, 2/n, and its height, f(k(2/n)) = 4 — (2k/n)?, which
is the function value at the right-hand endpoint of its base. Summing these areas, we get

=g ()5 (- ()3

n 8 8k" 8 n
=Y (2= g 2% - 12
;( 1 113> Zn 2___: n n,; 1132
8 8 n(n+1H2n+1)
T ] e
n n3 6

_3 4((71+1)(211+1)>
=8 (—F—

n?

The second line of the preceding computations uses basic summation manipulations
as discussed in Section 1.5. The third line uses two specific summation formulas, also

from Section 1.5: The sum of n copies of 1 is # and the sum of the first n squares is
nn+1D2n+1)

6
Finally, we take the limit of the S, as n — oo:

9
lim S, = lim (g - (W.I_)))
100 n—00 3 n?

—S—i i (2112+311+1>

100 12

4 3 1
—8—Tim (24 2+ —

3 ni?c}o( + n'+ ”2>

8 16
=8 - — = —

3 3

16

Hence, the area of the region is 3

Now Work Problem 7 <




-

No units are attached to the answer, since
a definite integral is simply a number.

= an]

=
=
n

2(3) -3

¥

FIGURE 14.12 Dividing [0, 3] into n
subintervals.

i 99
=
—
e
—

f)=x-5

FIGURE 14.13 f(x)isnegative ateach
right-hand endpoint.

y=fx)

X

a ) b

FIGURE 14.14 Iffis contiriuous and
f(x) > 0 on [a,b], then fabf(x) dx
represents the area under the curve.
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EXAMPLEZ Evaluating a Definite Integrél

2
Evaluate / (4 — x*) dx.
0

Solution: We want to find the definite integral of f(x) = 4 — x? over the interval [0, 2].

Thus, we must compute lim,_, S,. But this limit is precisely the limit ey found i in
Example 1, so we conclude that

2 9 16
4—'“d‘-:—
/o( FIm=3

Now Work Problem 19 <

Integrating a Function over an Interval

Integrate f(x) = x — 5 from x = 0 to x = 3; that is, evaluate f03 (x —5)dx.

Solution: We first divide [0, 3] into 1 subintervals of equal length Ax = 3/n. The
endpoints are 0,3/n,2(3/n),.. ., (n — 1)(3/n),n(3/n) = 3. (See Figure 14.12.) Using
right-hand endpoints, we form the sum and simplify

n 3 3

k=1

n n 15 9 5 n
E(E9)-EG D25

k=1 =1 k=1 k=1

_9_ (n(n + l)) B ——(n

O9n+1 9 1
= - —15==(14+~-)-15
2 n 7(+n>

Taking the limit, we obtain

9 1 9 21
lim S, = lim (= (1+-)~15)=2-15=-"
ningo n-l->ngc> (2 ( + n) ) 2 2

f?’(_ 5)d 21
A X X = 2

Note that the definite integral here is a negative number. The reason is clear from the
graph of f(x) = x — 5 over the interval [0, 3]. (See Figure 14.13.) Since the value of f (x)
is negative at each right-hand endpoint, each term in S, must also be negative. Hence,
lim,,_. oo Sy, which is the definite integral, is negative.

. Geometrically, each term in S, is the negative of the area of a rectangle. (Refer
again-to Figure 14.13.) Although the definite integral is simply a number, here we can
interpret it as representing the negative of the area of the region bounded by f(x) =
x —5,x = 0,x = 3, and the x-axis (y = 0).

Thus,

Now Work Problem 17 <

In Example 3, it was shown that the definite integral does not have to represent
an area. In fact, there the definite integral was negative. However, if f is continuous
and f(x) > O on [a, b], then S, > O for all values of n. Therefore, lim,_, o S, > 0, so

fab f(x)dx = 0. Furthermore, this definite integral gives the area of the region bounded
by y =f(x),y = 0,x = a, and x = b. (See Figure 14.14.)

Although the approach that we took to discuss the definite integral is sufficient for
our purposes, it is by no means rigorous. The important thing to remember about
the definite integral is that it is the limit of a special sum.
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TECHNOLOGY

I"f:f deﬁned on[a, b]

Here is a program for the ’I‘I‘-S?,‘Plﬁg Graphmg calculator o
 that will estimate the hrmt of S asn -—> co for a functlon:; -

;PROGRAM RIG HTSUM
Ihir
 Input “SUBINTV" N

.
|
!
|

B - A)/N —>H
f—>S -
','~:A+H-—>X, -
11
Lbl2
Y1 +S =N
HI<N
Goto2
" H*S—>S
Disp S

Pause

‘Goto 1

'RIGHTSUM will compute Sy for a given number n of
subintervals. Before executing the program, store f ), a,
and b as Yy, A, and B, respectively. Upon execution of
the program, you will be prompted to enter the number
of subintervals. Then the program proceeds to display the

. Equlvalently,

FIGURE 14 15 Valuesof S, forf(x) -'x 5on [O 3

 value of S Each time ENTER is pressed the prooram
~ repeats. In this’ way, a display of values of S, for various
_ numbers of subintervals may be obtained. Figure 14.15
~shows values of S, .(n = 100, 1000, and 2000) for the func- |
- tionf(x) = x — 5 on the interval [0, 3]. Asn — oo, it
- appears thatS --> —10.5. Thus, we estlmate that

th’~—~105

N> OO

f (x~—5)dx ~-10.5

- which agrees with our result in Example 3.

It is interesting to note that the time required for an

older calculator to compute S2000 in Figure 14.15 was in

excess of 1.5 minutes. The time required on a TI-84 Plus
is less than 1 minute.

PROBLEMS 14.6

In Problems 1-4, sketch the region in the first quadrant that is
bounded by the given curves. Approximate the area of the region
by the indicated sum. Use the right-hand endpoint of each
subinterval.

L f)=x+1,y=0,x=0,x=1; S,

2. fx)=3xy=0,x=1;, ;s

L f)=xy=0x=1; S

4 f)=x*+1,y=0x=0,x=1; S

In Problems 5 and 6, by dividing the indicated interval into n

subintervals of equal length, find S, for the given function. Use the
right-hand endpoint of each subinterval. Do not find lim,,_, o S,.

5. f(x) =4x; [0,1] 6. fy=2x+1; [0,2]
In Problems 7 and 8, (a) simplify S, and (b) find im,,_, o0 S;.

1[/1 2
7. S,,=-[<~+1>+(—+1>+-~+(ﬁ+1>]
) n n n n

2| /2\? 2\? 2\?
s (D) e (2)

n n n n

Inn Problems 9-14, sketch the region in the first quadrant that is
bounded by the given curves. Determine the exact area of the
region by considering the limit of S, as n — oo. Use the
right-hand endpoint of each subinterval.

9. Region as described in Problem 1

10. Region as described in Problem 2
11. Region as described in Problem 3
12 y=x*y=0,x=1,x=2

13 fx) =3x*y=0,x=1

14, f(x)=9—x%y=0,x=0

In Problems 15-20, evaluate the given definite integral by taking
the limit of S,,. Use the right-hand endpoint of each subinterval.
Sketch the graph, over the given interval, of the function to be
integrated.

3 a
15. f Sxdx 16. f bdx
0
' 4
17. / —4x dx 18. / (2x+ dx
01 ]2
19. f (o +x)dx 20. / (x+2)dx
0 1
d ([ ,
21. Find = ( / V1—x? dx) without the use of limits.
0

3
22. Find / Sf(x) dx without the use of limits, where
0

2 f0<x<l
f)=4 4—2x fl<x<?2
5x—-10 if2<x<3
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E25. fx)=4—/x,y=0x=1x=9
= 26. fE@)=hx,y=0x=1Lx=2

I ifx<l In each of Problems 27-30, use a program, such as RIGHTSUM,
fx)= 2-x ifl<x=<?2 to estimate the value of the definite integral. Round your answer to
—1+ > ify>2 one decimal place.

3
23. Find f f(x) dx without the use of limits, where
-1

— Tx+1 — !
In each of Problems 2426, use a program, such as RIGHTSUM, 27. ﬁ x+2 dx 28. /; ; 2 dx
fo estimate the area of the region in the first quadrant bounded by '7 )
the given curves. Round your answer fo one decimal place. 29 / B (43 + x — 13) dx 30 f B Inxdx
E2d f)=x>+1,y=0x=2,x=37 -1 o !

Objective 14.7 TheFundamental Theorem ofintegral Calculus

To develop informally the Fundamental

Theorem of Integral Calculus and to The Fundamental Theorem
use it to compute definite integrals.

y Thus far, the limiting processes of both the derivative and definite integral have been
considered separately. We will now bring these fundamental ideas together and develop
the important relationship that exists between them. As a result, we will be able to
evaluate definite integrals more efficiently.

The graph of a function f is given in Figure 14.16. Assume that f is continuous on
the interval [a, 5] and that its graph does not fall below the x-axis. That is, f(x) > 0.
From the preceding section, the area of the region below the graph and above the x-axis
from x = a tox = b is given by fa b f(x)dx. We will now consider another way to
determine this area.

x Suppose that there is a function A = A(x), which we will refer to as an area function,
that gives the area of the region below the graph of f and above the x-axis from a to x,
where a < x < b. This region is shaded in Figure 14.17. Do not confuse A(x), which
is an area, with f(x), which is the height of the graph at x.

y From its definition, we can state two properties of A immediately:

a b

FIGURE 14.16 On [a,b],f is
continuous and f(x) > 0.

1. A(a) = 0, since there is “no area” froma to a
2. A(b) is the area from a to b; that is,

b
A(b)::/ f)dx

If x is increased by A units, then A(x + h) is the area of the shaded region in
Figure 14.18. Hence, A(x + h) — A(x) is the difference of the areas in Figures 14.18 and
14.17, namely, the area of the shaded region in Figure 14.19. For / sufficiently close
to zero, the area of this region is the same as the area of a rectangle (Figure 14.20)
whose base is & and whose height is some value y between f(x) and f(x + h). Here y
is a function of /. Thus, on the one hand, the area of the rectangle is A(x + 1) — A(x),
y ‘ and, on the other hand, it is 47, so

FIGURE 14.17 A(x)is an area
function.

Ax+h)—Ax)y=Hhy
Equivalently,
Alx +h)—AR)
h
Since ¥ is between f(x) and f(x + h), it follows that as i1 — 0, ¥ approaches f(x), so

=Yy dividing by A

' x A(x+h) — AGx
« wpp fim AED A _ L ¢
c il h—0 h
FIGURE 1418 A(x +k}13,gives But the left side is merely the derivative of A. Thus, Equation (1) becomes

the area of the shaded region. A'(x) =f(x)
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a .\'Tb
x+h

FIGURE 14.19 Area of shaded
region is A(x + h) — A(x).

_y

_fx+h)

R

fx)

FIGURE 14.20 Area of rectangle is
the same as area of shaded region in
Figure 14.19.

The definite integral is a number, and an
indefinite integral is a function.

We conclude that the area function A has the additional property that its derivative A’
is f. That is, A is an antiderivative of f. Now, suppose that F. is any antiderivative of f.
Then, since both A and F are antiderivatives of the same function, they differ at most
by a constant C:

Ax)=Fx)+C. (2)

Recall that A(a) = 0. So, evaluating both sides of Equation (2) when x = a gives

0=F@+C
so that 1
C=—-F(a)

Thus, Equation (2) becomes

Al) = F(x) — F(a) 3
If x = b, then, from Equation (3),

A(b) = F(b) — F(a) 4)
But recall that

Al) = /ﬂ bf(X) dx (5

From Equations (4) and (5), we get

b
/ fx)dx = F(b) — F(a)

A relatlonshlp between a definite integral and antidifferentiation has now become
clear. To find f f(x) dx, it suffices to find an antiderivative of f, say, F, and subtract
the value of F at the lower limit a from its value at the upper limit b. We assumed
here that f was continuous and f(x) > 0O so that we could appeal to the concept of
an area. However, our result is true for any continuous function’ and is known as the
Fundamental Theorem of Integral Calculus.

Fundamental Theorem of lntegral Calculus

I f is continuous on the interval [a, b] and Fis any antiderivative of f on [a b}, then

ff(x)dx FO) - @

It is important that you understand the dlfference between a definite integral and an
indefinite integral. The definite integral f f(x)dx is a number defined to be the limit

. of a sum. The Fundamental Theorem states that the indefinite integral f fx)dx (the

most general antiderivative of f), which is a function of x related to the differentiation
process, can be used to determine this limit.

Suppose we apply the Fundamental Theorem to evaluate fo (4 — x*)dx. Here
fx) =4—x%a=0,and b = 2. Since an antiderivative of 4 —x% is F (x) = 4x—(x3/3),
it follows that

/-(4—x2)dx=F(2)——F(O)= (8—§> =18
0 3 3

7Iff is continuous on {a, b}, it can be shown that fabf(x) dx does indeed exist.




APPLY IT »

11. The income (in dollars) from a fast-
" food chain is increasing at a-rate of

F(D:=10,000e"% where ¢ is in years.
Find [ 10,000¢%%% d, which gives the

total income for the chain between the

third and sixth years.
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This confirms our result in Example 2 of Section 14.6. If we had chosen F(x) to be
4x — (x3/3) + C, then we would have

F(2)~F(O)=[(8—§>+C]—[O+C]=%6

as before. Since the choice of the value of C is immaterial, for convenience we will
always choose it to be 0, as originally done. Usually, F(b) — F(a) is abbreviated by
writing :
b
F(b) — F(a) = F(x)|,

Since F in the Fundamental Theorem of Calculus is any antiderivative of f and [ f(x) dx
is the most general antiderivative of f, it showcases the notation to write

fa sy ds = ( [ dx)

Using the [Z notation, we have
2 3 8 16

f (4—x2)dx:<4x-f—) :(8—~>—0:——

0 3/ 10 3 3

MPLE‘! Applying the Fundamental Theorem

b
a

3
Find f (3x> — x + 6)dx.
-1
Solution: An antiderivative of 3x2 — x + 6 is
2
3 A
— e - 6
X 3 -+ 6x
Thus,

3
/ (3x* —x +6)dx
-1

2
= <x3 - %— +6x>

_[3.2 I PRSI G

__{3 2+6(3)} [( 1) 5 +6( 1)}
81 15

=<7)"<—7)=48

Properties of the Definite Integral

For fab f(x)dx, we have assumed that a < b. We now define the cases in which a > b
or a = b. First,

3

-1

Now Work Problem 1 <

Ifa>b, then f f@dx=— / fO)dx.
B - 4 “Ja e b S

That is, interchanging the limits of integration changes the integral’s sign. For example,

0 2
/(4—x2)dx=—/ 4 —x»dx
2 0
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If the limits of integration are equal, we have
f f®)dx=0
Ja & ;
Some properties of the definite integral deserve mention. The first of the properties

that follow restates more formally our comment from the preceding section concern-
ing area.

Propertles of the Deflmte lntegral

k"k 1. If f is continuous and f(x).=0on [a bl, then f f x) dx can be interpreted as the
- area of the reomn bounded by the curve y = f(x), the x-axis, and the linesx = a =
. andx—-b o = ’ ‘
2. P S f f(;\) dx where kisaconstant

3 [F@m)dr= [0 drt [Ty

Properties 2 and 3 are similar to rules for indefinite integrals because a definite
integral may be evaluated by the Fundamental Theorem in terms of an antiderivative.
Two more properties of definite integrals are as follows.

4. ff(x)dx—f f(t)dt

The vanable ofi mtefrratlon isa “dummy vanable” in the sense that any other variable
produces the same result——that is, the same number .

To illustrate property 4, you can verify, for example, that

2 2
/ xzdx:/ 2 dt
0 0

,, 5 If f is continuoué onan infervél I and a, b, and careinl, fhén f
o i c b k c
ffmﬂ=/f®ﬁ+/fmﬂ
a a b

Property 5 means that the definite integral over an interval can be expressed in
terms of definite integrals over subintervals. Thus,

2 1 2
/(4—x2)a’x:/ (4——x2)dx+/ (4 —x*)dx
¢ 0 i

We will look at some examples of definite integration now and compute some areas
in Section 14.9.

LE2  Using the Fundamental Theorem

3
Find/ — .
0o ~14+x*

Solution: To find an antiderivative of the 1nteorand we will apply the power rule for

integration:
CAUTIONT\ x ! ,
—————dx: O+ xH2 gy

In Example 2, the value of the o 1-+x% 0
antiderivative (1 + x*)!/ at the lower |
limit 0 is £(1)/2. Do not assume that an 1! dne1/2 4 1\ (1+xH172
evaluation at the limit zero will yield 0: = '54'/ (I +2H72d(1 +a2% = 4) 1T

0 3 0




|

|
|

FIGURE 14.21 Graph of y = x’ on the
interval [—2,1].

cauTiod\

Remember that fa[ " f(x)dvis alimit of a
sum. In some cases this limit represents
an area. In others it does not. When
f(x) = 0on [a, ], the integral represents
the area between the graph of f and the
x-axis fromx =atox =b.
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1

_.l AN1/2 __l 1)2_ 172
= S +xh 0—-2((2) '7?)

1
==(~2-1)
2
Now Work Problem 13 <

PLE3  Evaluating Definite Integrals

2

a. Find f [4:'3 + 1 + 1)% dt.
1

Solution:

2 2 2
& & 1 A
f [411/3+t(t2+1)3]dt:4/ t1/3dt+5/ @+ 12dE+1)
1 1

1
i
#3 1\ ¢+ 1D
+(_)(_t_>__
2 4
1

2

=)
3

, 1
=32 -+ g(s4 —2%

609
8

1

___324/3_3+

585
=6v2+—
i
b. Find / e dr.
0

Solution:

1 1 1
f edt =~ f > d(31)
0 3Jo
1
-()°
3

\MPLE 4 Finding and Interpreting a Definite Integral

__1_ 3_ 0 ___l 3
—3(e e)—3(e D

0
Now Work Problem 15 <

1
Evaluate f X dx.

2

Solution:

1 411

X 14 (—2)4 1 16 15

3. M0 e
B

The reason the result is negative is clear from the graph of y = x3 on the interval [—2, 1].

(See Figure 14.21.) For -2 < x < 0, f(x)is neoatlve Since a definite integral is a limit
of a sum of the form Zf(x) Ax, it follows that f ) X x> dx is not only a negative number,
but also the negative of the area of the shaded region in the third quadrant. On the other
hand, fo x3 dx is the area of the shaded region in the first quadrant, since f(x) > 0 on
[0, 1]. The definite integral over the entire interval [—2, 1] is the algebraic sum of these
numbers, because, from property 5,

1 0 1
/ x3dx=/ x3dx+/ X dx
-2 -2 0

Thus, f_l2 x dx does not represent the area between the curve and the x-axis. However,
if area is desired, it can be given by

0 1
x3dx} +/ dx
0
Now Work Problem 25 <
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The Definite Integral of a Derivative .

Since a function f is an antiderivative of /7, by the Fundamental Theorem we have

[ roa=ro-r@ ®

But f’(x) is the rate of change of f with respect to x. Hence, if we know the rate of
change of f and want to find the difference in function values f(b) — f(a), it suffices to
evaluate f fl(x)dx.

MPLE 5 Finding a Change’in Function Values by Definite
Integration

APPLY IT »

'12 A manafrenal service determmes
that the rate of increase in maintenance A manufacturer’s marginal-cost function is

. costs (in dollars per year) for a par-

ticular apartment'complex is'given by ic_ =0.6g+2
M!(x) = 9022 + 5000, where x is the dg

‘age of the apartment complex in years
and M (x) is the total (accumulated) cost
of maintenance for x years. Find the total
 cost for the first five years. ' -

If production is presently set at ¢ = 80 units per week, how much more would it cost
to increase production to 100 units per week?

Solution: The total-cost function is ¢ = ¢(g), and we want to find the difference
¢(100) — ¢(80). The rate of change of ¢ is dc/dg, so, by Equation (6),

100 . 100
¢(100) — ¢(80) = / g = f (0.6 +2)dg
g0 dq 8

0
0.602 100 100
=[ ;’ ] = [0.3¢% + 2q]
80 80

= [0.3(100)* + 2(100)] — [0.3(80)% + 2(80)]
= 3200 — 2080 = 1120

If ¢ is in dollars, then the cost of increasing production from 80 units to 100 units
is $1120.

Now Work Problem 59 <

TECHNOLOGY BE

Many graphini’T calculators have the capabﬂlty to estimate
the value of a definite mtegral On a TI-83 Plus, to estlmate '

100
/ m@+m@
80

: eusethe“fnlnt(”command asmdlcatedelguxe 14. 22   '

fjf"mandare - - - eruaamzz Estimating fso (069 +2)dg

functionto Variable of lower . upper j we enter
be mtegrated integration - limit hmlt

fnlnt(X3 X,-2,1)
We see that the value of the definite mtegral 1s approx1—
1 mately 1120, which agrees with the result in Example 5. oL, altemaﬂvely if we first: store X as Yl’ we can enter

Sunﬂarly,toestlmate : » - f e .' ntnt(Yl,X 21)

fl 3 T ’ In each case we obtain —3. 75 Wthh acrees with the result
Y s in Example4 : : L :
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PROBLEMS 14.7

o — ;

In Problems 1-43, evaluate the definite integral. 2 2.
3 A 5 s 43, / fx)dx where f(x) = {4’\ lfO =x<
< 0 2x 1f <x<2
1. / 5dx 2. / (e + 3e)dx
0 i 3 3 3
2 8 44. Evaluate ( / X dx) — / X dx.
3. / Sxdx 4, f —Sxdx 1 1
i 2 X 1 1
] 1 N 4 N
5 / (2x — 3)dx 6. /‘ (4 — 9y)dy 45. Suppose f(x) _/ 3 2 dr. Evaluate[ fx)ydx.
-3

4
9. f (}'2+4y+4)dy 31 )df 46. Evaluateﬁ g d.k+/ —dl
1

-1 3
9. / Gwr —w—=Ddw 10. f 47. Iff f(x)dx = 5 and / fx)dx =2, find / fx)dx.
-2 i 3 2

3 4 4 3
3
11. / 3673 dr 12. ;; 48. If/ f(x)dx=6,f fx)dx =35, andf fx)dx =2, find
1 - 1 2 1
8 /2 3
13. f Jat dx 14.f 7 +x+ 1)dx ff(x)ctv.
-8 2
3 / 3704 3
15. / — dx 16. (f —2)dx 49. Evaluate / (-— / & dx) dx
12 X7 9 2 \dx Js 3
2 8 (Hint: It is not necessary to find [, e* dx.)
17. | +1)dz 18. f P —x'Pydx . f‘_l
_12 ‘3 50. Suppose that f(x) = f e’—_—e—:a’t where x > e. Find f'(x).
19. / 22 — 1) dx 20. / (x+2) dx e € Te
0 51. Severity Index In discussing traffic safety, Shonle®

R A R e A R A AN

84 : 2 considers how much acceleration a person can tolerate in a crash
21. | Zdy 22. = dx . Accele person can toter
fl y /_ o X so that there is no major injury. The severity index is defined as
[ e+1 1 T
23. / & dx 24. f dx SL= [ odt
01 2 x—1 0
25, 5:26° dr 26. 34 4 4 where o (a Greek letter read “alpha”) is considered a constant
> fo v ( ¥+ 4n + 20 dr involved with a weighted average acceleration, and T is the
7 f 43 s 28 (2073 SIS duration of the crash. Find the severity index.
. : . X by
3 (x4 3)? —13 ‘
1
qvq* +3dq
—1

2
29. / V10 =3pdp 30. f
i v _
31. / XT3 4 1dx 32. / e — 2 N
0 o (2 1273

1 2x3 +x
33. / LR dx 34. (m -+ ny)dy 52. Statistics In statistics, the mean u (a Greek letter read
0 X -+ X% 4 1 a
Ut g 1 “mu’) of the continuous probability density function f defined on
3s. / 5 dx 36 / 8lx|dx the interval [a, b] is given by
0 F4 -2 b
vz w= / xf(x)dx
37. / 37+ a7 — x 7 dx a
e, 3 and the variance o? (o is a Greek letter read “sigma™) is given by
[lergp)a » [urnes b
38. 6/x——=)dx 39 | (x+ D dx
1 2x 1 ? =/ (o — wPf(x)dx
95 a
40. f 1 X - dx Compute 1 and then o*ifa=0,b=1, and f(x) = 6(x — x2).
: ) ne 53. Distribution of Incomes  The economist Pareto® has stated
2 .6 4.4 .3 2. . Y . . .
4L / AT+ 8+ x+5 dr an empirical law of distribution of higher incomes that gives the
B45x+1 number N of persons receiving x or more dollars. If
dN
42, . —_— = — A B
i dx x

&1 Shonle, Environmental Applications of General Physics (Reading, MA:
Addison-Wesley Publishing Company, Inc., 1975).

9G. Tintner, Methodology of Mathematical Economics and Econometrics
(Chicago: University of Chicago Press, 1967), p. 16.
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where A and B are constants, set up a definite integral that gives
the total number of persons with incomes between a and b, where

a<b.

54. Biology
integral occurs:

In a discussion of gene mutation,!? the following

104
f x V2 dx
0

55. Continuous Income Flow  The present value (in dollars) of
a continuous flow of income of $2000 a year for five years at 6%
compounded continuously is given by

5
/ 2000096 g¢
0

Evaluate the present value to the nearest dollar.

56. Biology In biology, problems frequently arise involving the
transfer of a substance between compartments. An example is a
transfer from the bloodstream to tissue. Evaluate the following
integral, which occurs in a two-compartment diffusion problem:’!

1
/ (e-—ar _ e_br)df
0

Here, t (read “tau”) is a Greek letter; a and b are constants.

Evaluate this integral.

57. Demography For a certain small population, suppose / is a
function such that /(x) is the number of persons who reach the age
of x in any year of time. This function is called a life rable
Junction. Under appropriate conditions, the integral

b
f (t)dr

gives the expected number of people in the population between
the exact ages of a and b, inclusive. If

l(x) = 1000+/110 —x for0 <x <110

determine the number of people between the exact ages of 10 and
29, inclusive. Give your answer to the nearest integer, since
fractional answers make no sense. What is the size of the
population?

58. Mineral Consumption If C is the yearly consumption of a

mineral at time ¢ = 0, then, under continuous consumption, the
total amount of the mineral used in the interval [0, ] is

t
f Ce* dr
0

where k is the rate of consumption. For a rare-earth mineral, it has
been determined that C = 3000 units and k = 0.05. Evaluate the
integral for these data.

59. Marginal Cost A manufacturer’s marginal-cost function is

dc
— = 0.2 8
dq 9 +

If ¢ is in dollars, determine the cost involved to increase
production from 65 to 75 units.
'60. Marginal Cost Repeat Problem 59 if
di
& 0.004¢% — 0.5¢ + 50
dq

and production increases from 90 to 180 units.

w7 Ewens, Population Genetics (London: Methuen & Company Ltd., 1969).

. Simon, Mathematical Techniques for Physiology and Medicine (New York:
Academic Press, Inc., 1972).

61. Marginal Revenue

A manufacturer’s marginal-revenue
function is

dr 2000
dg — /300q

If r is in dollars, find the change in the manufacturer’s total
revenue if production is increased from 500 to 800 units.

Repeat Problem 61 if

62. Marginal Revenue
d -
.~ 100 + 50q — 3¢
dq

and production is. increased from 5 to 10 units.

63. Crime Rate A sociologist is studying the crime rate in a
certain city. She estimates that # months after the beginning of
next year, the total number of crimes committed will increase at
the rate of 8¢ 4 10 crimes per month. Determine the total number
of crimes that can be expected to be committed next year. How
many crimes can be expected to be committed during the last six
months of that year?

64. Hospital Discharges For a group of hospitalized
individuals, suppose the discharge rate is given by

81 x 108

0= Goo+ o

where f (1) is the proportion of the group discharged per day at the
end of t days. What proportion has been discharged by the end of
700 days?

65. Production Imagine a one-dimensional country of length
2R. (See Figure 14.23.'%) Suppose the production of goods for this
country is continuously distributed from border to border. If the
amount produced each year per unit of distance is f(x), then the
country’s total yearly production is given by

R
G= / fx)dx
-R
Evaluate G if f(x) = i, where i is constant.

One-dimensional country
A ———
—R

0 R

b
1
1
1
1
1
1

1 3
Border Border

FIGURE 14.23

66. Exports For the one-dimensional country of Problem 65,
under certain conditions the amount of the country’s exports is
given by

R i
E= / i [eHR=) 4 p=kR+D] gy
r2

where i and k are constants (k 3 0). Evaluate E.

2R Taagepera, “Why the Trade/GNP Ratio Decreases with Country Size,”
Sacigl Science Research, 5 (1976), 385-404.
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67. Average Delivered Price In a discussion of a delivered In Problems 68-70, use the Fundamental Theorem of Integral
price of a good from a mill to a customer, DeCanio'? claims that Calculus to determine the value of the definite integral. Confirm
the average delivered price paid by consumers is given by your result with your calculator.
33
_ 1
/ (m+x)[1 — (n+x)}dx &l 68. / (1+2x+ 32 dr E69. f sl
25 o (4x+4)
I
/ [1—(n +J\)] dx 70. f ¢ dr Round your answer to two decimal places.
0
where m is mill price, and x is the maximum distance to the point In Problems 71-74, estimate the value of the definite integral.
of sale. DeCanio determines that Round your answer to two decimal places.
R R 2 : 4
m+——m?—mR— — El71. f : +1£Lr : 72.[ !
A= 2 3 X2+ 4 3 xlnx
R
—_— - — 6/
t=m=3 73. f 2/ 4 3dr 74. f ‘_’:;
Verify this. 0 -

Objective 14.8 Approximate Integration

To estimate the value of a definite .
integral by using either the trapezoidal Trapezosdal Rule
rule or Simpson’s rule.

Any function f constructed from polynomials, exponentials, and logarithms using alge-
braic operations and composition can be differentiated and the resulting function f” is
again of the same kind—one that can be constructed from polynomials, exponentials,
and logarithms using algebraic operations and composition. Let us call such functions
elementary (although the term usually has a slightly different meaning). In this ter-
minology, the derivative of an elementary function is also elementary. Integration is
more complicated. If an elementary function f has F' as an antiderivative, then F may
fail to be elementary. In other words, even for a fairly simple-looking function f it is
sometimes impossible to find [ f(x)dx in terms of the functions that we cons1der in
this book. For example, there is no elernentary function whose derivative is ¢ so that

you cannot expect to “do” the integral [ e* * dx.

On the other hand, consider a function f that is continuous on a closed interval [a, b]
with f(x) > 0 for all x in [a, b]. Then f f(x)dx is simply the number that gives the
area of the region bounded by the curves y = f(x),y = 0, x = g, and x = b. It is
unsatisfying, and perhaps impractical, not to say anything about the number f fx)dx
because of an inability to “do” the integral [ f(x) dx. This also applies when the integral

[f®)dxis merely too difficult for the person who needs to find the number f F(x)dx.

Since f . J(x) dx is defined as a limit of sums of the form ) f(x) Ax, any partic-
ular well-formed sum of the form ) f(x) Ax can be regarded as an approximation of
fa b f(x)dx. At least for nonnegative f such sums can be regarded as sums of areas of
thin rectagles. Consider, for example, Figure 14.11 in Section 14.6, in which two rect-
angles are explicitly shown. It is clear that the error that arises from such rectangles is
associated with the small side at the top. The error would be reduced if we replaced
the rectangles by shapes that have a top side that is closer to the shape of the curve.
We will consider two possibilities: using thin trapezoids rather than thin rectangles,
the trapezoidal rule; and using thin regions surmounted by parabolic arcs, Simpson’s
rule. In each case only a finite number of numerical values of f(x) needs be known and
the calculations involved are especially suitable for computers or calculators. In both
cases, we assume that f is continuous on [a, b].

In developing the trapezoidal rule, for convenience we will also assume that f'(x) >
0 on [a, b}, so that we can think in terms of area. This rule involves approximating the
graph of f by straight-line segments.

135 1. DeCanio, “Delivered Pricing and Multiple Basing Point Equationilibria: A Reevaluation,” The Quarterly
Journal of Economics, XCIX, no. 2 (1984), 329-49.
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@l fla+h)

a a+h

FIGURE 14.25 First trapezoid.

y

»=1x)

R} R3] X X3 Xn—1 Xn

FIGURE 14.24 ApproxXimating an area by using trapezoids.

In Figure 14.24, the interval {a, b] is divided into n subintervals of equal length by
the points a = xp, x1, X2, .. .,and x, = b. Since the length of [a, b] is b — a, the length
of each subinterval is (b — a)/n, which we will call h.

Clearly,

xx=a+hxy=a+2h,....x,=a-+nh=1>

With each subinterval, we can associate a trapezoid (a four-sided figure with two parallel
sides). The area A of the region bounded by the curve, the x-axis, and the lines x = a and
x=2>bis f f(x) dx and can be approximated by the sum of the areas of the trapezoids
determined by the subintervals.

Consider the first trapezoid, which is redrawn in Figure 14.25. Since the area of a
trapezoid is equal to one-half the base times the sum of the lengths of the parallel sides,
this trapezoid has area

%h[f(a) -+ fla + )]
Similarly, the second trapezoid has area
Ihlf(a+ h) +f(a+ 2h)]
The area A under the curve is approximated by the sum of thé areas of n trapezoids:
A = Jh[f(a)+f(a+h)]+ $hif(a+h)+f(a+2h)]
+ %h[f(a +20) +fla+ 3]+ + %h[f(a + (n — Dh) + f(b)]

Since A = [, b f{x)dx, by simplifying the preceding formula we have the trapezoidal
rule:

|
=
|
|

~The Trapezo:dal Rule

/f(x)dx%‘-[f(a)+'7f(a+h)+2f(a+7h)+ +7f(a+(n—1)h)+f(b)]
fwhereh—.(b~a)/n .

The pattern of the coefficients inside the braces is 1, 2, 2, ..., 2, 1. Usually, the
more subintervals, the better is the approximation. In our development, we assumed
for convenience that f(x) > 0 on [a, b]. However the trapezoidal rule is valid without
this restriction.

IPLE1 Trapezoidal Rule

Use the trapezoidal rule to estimate the value of

rl

1
/ 5 dx
0 1+x°




APPLY IT »

13. An oil tanker is losing oil"at a rate

G 60

of RI(t) = s where ¢ is the
AP

- time in minutes and R(7) is the radius
of the oil slick in feet. Use the trape-

- zoidal rule with n=35 to approxim‘ate'

260
- dt the sxze of the radms,
o VPFEO e

“after five seconds.

APPLY IT »

; 14 A yeast culture is growing at the

rate of A'(t) = 0.36%2° , where ¢ is the
- time in hours and A(t) is the amount in
“grams; Use Simpson’s rule withn = 8 to:

~approximate fo 0.3¢%2" df, the amount
_the culture grew over the first four hours.
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for n = 5. Compute each term to four decimal places, and round the answer to three
decimal places.

Solution: Here f(x) = 1/(1 +x%),n=15,a=0, and b = 1. Thus,
p=ltma _120_1_ 4,
n 5 5

The terms to be added are
fla) = f(0) =1.0000
2f(a+h) = 2f(0.2) = 1.9231
2f(a+2h) = 2f(0.4) = 1.7241

2f(a + 3h) = 2f(0.6) = 1.4706
2f(a + 4h) = 2f(0.8) = 1.2195
f) = f(1) =0.5000 a-+nh==5b
7.8373 = sum

Hence, our estimate for the integral is

0.784

| 0.2
_[) e dx ~ —2—(7.8373) 5

The actual value of the integral is approximately 0.785.
Now Work Problem 1 <

Simpson’s Rule

Another method for estimating fab f(x)dx is given by Simpson’s rule, which involves
approximating the graph of f by parabolic segments. We will omit the derivation.

Slmpson s Rule

ff(x)dx’&:—[f(a)+4f(a+h)+2f(a+7h)+ +4f(a+(n—1)h)+f(b)]

. vwhere h=

= y(b‘— a)/nand n is even.

The pattern of coefficients inside the braces is 1,4,2,4,2,...,2,4, 1, which requires
that n be even. Let us use this rule for the integral in Example 1.

MPLE 2 Simpson’s Rule

Use Simpson’s rule to estimate the value of dx for n = 4. Compute each

2

. 0 .
term to four decimal places, and round the answer to three decimal places.

Solution: Heref(x)=1/(1+x?),n=4,a=0,andb=1.Thus,h=(b—a)/n= 1/4=
0.25. The terms to be added are

fla)= f@©) = 1.0000
4f (a + h) = 41(0.25) = 3.7647
2f(a+2h) = 2f(0.5) = 1.6000
4f (a + 3h) = 41(0.75) = 2.5600
fby= f) =0.5000

9.4247 = sum

Therefore, by Simpson’s rule,

| 025
dx ~ 4247) =~ 0.785
/O 2% (9.4247) ~

This is a better approximation than that which we obtained in Example 1 by using the
trapezoidal rule.

Now Work Problem 5 <
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In Example 3, a definite integral is
estimated from data points; the function
itself is not known.

Both Simpson’s rule and the trapezoidal rule can be used if we know only f(a),
f(a + h), and so on; we do not need to know f(x) for all x in [a, b]. Example 3 will
illustrate.

Demography

A function often used in demography (the study of births, marriages, mortality, etc.,ina
population) is the life-table function, denoted /. In a population having 100,000 births
in any year of time, /(x) represents the number of persons who reach the age of x in any
year of time. For example, if /(20) = 98,857, then the number of persons who attain age
20 in any year of time is 98,857. Suppose that the function / applies to all people born
over an extended period of time. It can be shown that, at any time, the expected number
of persons in the population between the exact ages of x and x+m, inclusive, is given by

x-+m
/ I(t) dt
x

The following table gives values of I(x) for males and females in the United States.!*
Approximate the number of women in the 20-35 age group by using the trapezoidal
rule with n = 3.

Solution: We want to estimate

35
/ () dt
20

We have h = = = 5. The terms to be added under the trapezoidal -

b—a 35-20

n 3
rule are

1(20) = 98,857
21(25) = 2(98,627) = 197,254
21(30) = 2(98,350) = 196,700
1(35) = 97,964
590,775 = sum
By the trapezoidal rule,
‘[ :5 (H)ydt ~ -2-(590,775) = 1,476,937.5
Now Work Problem 17 <

Formulas used to determine the accuracy of answers obtained with the trapezoidal
or Simpson’s rule can be found in standard texts on numerical analysis.

14 National Vital Statistics Report, vol. 48, no. 18, February 7, 2001.




PROBLEMS 14.8

In Problems 1 and 2, use the trapezoidal rule or Simpson’s rule
(as indicated) and the given value of n to estimate the integral.

4170 .
1. f > dx; trapezoidal rule, n = 6
2 14x?
4
170
2. f > dx;  Simpson’s rule, n = 6
-2 X*

In Problems 3-8, use the trapezoidal rule or Simpson’s rule (as
indicated) and the given value of n to estimate the integral.
Compute each term to four decimal places, and round the answer
to three decimal places. In Problems 3~6, also evaluate the
integral by antidifferentiation (the Fundamental Theorem of
Integral Calculus).

1
3. / x*dx; trapezoidal rule, n = 5
0

I
4. / x*dx; Simpson’s rule, n = 4
0

—; Simpson’srule, n =4

X
dx
x

.
s./d"
i

; trapezoidal rule,n = 6

4
6./
{

; trapezoidal rule, n = 4

2 xdx
7.f v
0 .\"*‘1

* dx .
8. —; Simpson’s rule, n =6
X

In Problems 9 and 10, use the life table in Example 3 to estimate
the given integrals by the trapezoidal rule.

70
= o. /

45

22

I(t) dt, males, n = 5 10. f i(t)dt, females, n = 4

15
In Problems 11 and 12, suppose the graph of a continuous
Sfunction f, where f(x) > 0, contains the given points. Use
Simpson’s rule and all of the points to approximate the area
between the graph and the x-axis on the given interval. Round
the answer to one decimal place.

11. (1,0.4),(2,0.6),(3,1.2),(4,0.8),(5,0.5); [1,5]
12. (2,0),(2.5,6),(3,10),(3.5,11), (4, 14),(4.5,15),(5, 16); [2,5]

13. Using all the information given in Figure 14.26, estimate
fff(x) dx by using Simpson’s rule. Give your answer in
fractional form.

¥y

o
T

G.1

FIGURE 14.26

3
=14, /
1

17. Area of Pool

Section 14.8 Approximate Integration 671

In Problems 14 and 15, use Simpson’s rule and the given value
of n to estimate the integral. Compute edach term to four decimal
places, and round the answer to three decimal places.

2

VJI4x

Fundamental Theorem of Integral Calculus.

dx;n =4 Also, evaluate the integral by the

1
=l 1s. / V1—x2dvin =4
4]

16. Revenue Use Simpson’s rule to approximate the total

revenue received from the production and sale of 80 units of a
product if the values of the marginal-revenue function dr/dq are
as follows:

g (units)

0 10 20 30 40 50 60 70 80

;:5—;(3; perunit) 10 9 85 8 8575 7 65 7

Lesley Griffith, who has taken a commerce
mathematics class, would like to determine the surface area of her
curved, irregularly shaped swimming pool. There is a straight
fence that runs along the side of the pool. Lesley marks off points
a and b on the fence as shown in Figure 14.27. She notes that the
distance from a to b is 8 m and subdivides the interval into eight
equal subintervals, naming the resulting points on the fence x|, x,
X3, X4, X5, Xg, and x7. Lesley (L) stands at point x;, holds a tape
measure, and has a friend Chester (C) take the free end of the tape
measure to the point P, on the far side of the pool. She asks her
other friend Willamina (W) to stand at point 0, on the near side of
the pool and note the distance on the tape measure. See

Figure 14.27.

| 1
i 1
1 | 1 ! i 1 |
PZI T 1
7 |

!
t
I
f
{
E }B
i i
! !
Tt
A (I T B
T
) N
i N
| o0 0 0L
0 Ge v
I
I L e
I e
L L e e e
I L
I L L D
(I e D
(I 7% A R T H R R A
1 5 & L L 1 1 1 L
a X X; X3 Xy X5 X5 X7 b

FIGURE 14.27

Lesley then moves to point x» and the three friends repeat the
procedure. They do this for each of the remaining points x3 to x7.
Lesley tabulates their measurements in the following table:

Lesley says that Simpson’s rule now allows them to approximate
the area of the pool as

58
%(4(3) +2(4) +403) +203) +42) +2(2) +4(2)) = 3
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square meters. Chester says that this is not how he remembers
Simpson’s rule. Willamina thinks that some terms are missing, but
Chester gets bored and goes for a swim. Is Lesley’s calculation
correct? Explain.

18. Manufacturing A manufacturer estimated both marginal
cost (MC) and marginal revenue (MR) at various levels of output
(g). These estimates are given in the following table:

(a) Using the trapezoidal rule, estimate the total variable costs of
production for 100 units. E

(b) Using the trapezoidal rule, estlmate the total revenue from the
sale of 100 units.

(c) If we assume that maximum profit occurs when MR = MC
(that is, when g = 100), estimate the maximum profit if fixed
costs are $2000.

Objective

To find the area of a region bounded
by curves using integration over both
vertical and horizontal strips.

y=x’-x-2

FIGURE 14.28 Diagram
for Example 1.

14.9 Area between Curves

In Sections 14.6 and 14.7 we saw that the area of a region bounded by the lines x = q,
x = b,y = 0, and a curve y =fl(]x) with f(x) > 0 for a < x < b can be found by

evaluating the definite integral f(x)dx. Similarly, for a function f(x) < 0 on an

interval [a, b], the area of the IEUIOD boundedbyx =a,x = b,y =0, and y = f(x) is
given by — f fx)dx = / —f(x) dx. Most of the functions f we have encountered,

and will encounter, are continuous and have a finite number of roots of f(x) = 0. For
such functions, the roots of f(x) = 0 partition the domain of f into a finite number of
intervals on each of which we have either f(x) > 0 or f(x) < 0. For such a function
we can determine the area bounded by y = f(x), y = 0 and any pair of vertical lines
x = aand x = b, with a and b in the domain of f. We have only to find allqthe roots

fx)dx,

€1 < ¢ < --- < ¢ witha < ¢; and ¢; < b; calculate the integrals
b

f(x) dx; attach to each integral the correct sign to correspond to an

fx)dx, -,

arcéa; and add the results. Example 1 will provide a modest example of this idea.

For such an area determination, a rough sketch of the region involved is extremely
valuable. To set up the integrals needed, a sample rectangle should be included in the
sketch for each individual integral as in Figure 14.28. The area of the region is a limit
of sums of areas of rectangles. A sketch helps to understand the integration process and
it is indispensable when setting up integrals to find areas of complicated regions. Such
a rectangle (see Figure 14.28) is called a vertical strip. In the diagram, the width of
the vertical strip is Ax. We know from our work on differentials in Section 14.1 that
we can consistently write Ax = dx, for x the independent variable. The height of the
vertical strip is the y-value of the curve. Hence, the rectangle has area y Ax = f(x) dx.
The area of the entire region is found by summing the areas of all such vertical strips
between x = g and x = b and finding the limit of this sum, which is the definite integral.
Symbolically, we have

S
2yAx —> f ' f dx
a
For f(x) = 0 it is helpful to think of dx as a length differential and f(x)dx as an area

differential dA. Then, as we saw in Section 14.7, we have ol = f(x) for some area
function A and *

b b -
[ rwa= [ =40 -a@

[If our area function A measﬁres area Starting atthe linex = a as it did in Section 14.7,
then A(a) = 0 and the area under f (and over 0) from a to b is just A(b).] It is important

.




|

caution\

It_‘is wrong to write hastily that the area is
f_"2 ydx, for the following reason: For the
left rectangle, the height is y. However,
for the rectangle on the right, y is
negative, so its height is the positive
number —y. This points out the
importance of sketching the region.

Section 14.9 Area between Curves 673

to understand here that we need f(x) > 0 in order to think of f(x) as a length and hence
f(x)dx as a differential area. But if f(x) < 0O then —f(x) > 0 so that —f(x) becomes a
length and —f(x)dx becomes a differential area.

AMPLE 1 An Area Requiring Two Definite Integrals
Find the area of the region bounded by the curve

y=x"—x—2
and the line y = 0 (the x-axis) fromx = —2tox = 2.

Solution: A sketch of the region is given in Figure 14.28. Notice that the x-intercepts
are (—1,0) and (2, 0).
On the interval [—2, —1], the area of the vertical strip is

ydx = (x> — x — 2)dx
On the interval [—1, 2], the area of the vertical strip is
(—y)dx = —(x* — x — 2)dx
Thus,

Now Work Problem 22 <

Before embarking on more complicated area problems, we motivate the further
study of area by seeing the use of area as a probability in statistics.

AMPLE 2 Statistics Application
In statistics, a (probability) density function f of a variable x, where x assumes all
values in the interval [a, b], has the following properties:

® £0) >0
Gi) [*fe)de=1

The probability that x assumes a value between c and d, which is written P(c < x < d),
where a < ¢ < d < b, is represented by the area of the region bounded by the graph
of f and the x-axis between x = ¢ and x = d. Hence (see Figure 14.29),

d
P(Cﬁxsd)=f fx)dx

[In the terminology of Chapters 8 and 9, the condition ¢ < x < d defines an event
and P(c < x < d) is consistent with the notation of the earlier chapters. Note too that
the hypothesis (ii) above ensures that a < x < b is the certain event.]

For the density function f(x) = 6(x — x?), where 0 < x < 1, find each of the
following probabilities.
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y=1@®

d
Plc<x<d)= | f{x)dx

L —
| & ¢ d b

FIGURE 14.29 Probability as an area.
a. PO<x=<}
Solution: Here [a, b]is [0, 1], c is 0, and d is §. We have

74 174
PO<x<d)= [ 6a-dar=6 [ w-ar
0 0

(59
<3

174
= (3x* — 2%°)
0

B-+()--3

1/4

I

il

b. P(x > %)

Thus,

i ‘ ‘
P(xZ_)z 6(x — x})dx =6 (x — x*)dx
2 1,2 1/2

X2 X3
=6( -
(5-5)

1 i

= (3x? — 2x%)
1/2

1/2
Now Work Problem 27 <

N

Vertical Strips

We will now find the area of a region enclosed by several curves. As before, our proce-
dure will be to draw a sample strip of area and use the definite integral to “add together”
the areas of all such strips.

For example, consider the area of the region in Figure 14.30 that is bounded on
the top and bottom by the curves y = f(x) and y = g(x) and on the sides by the lines
x = a and x = b. The width of the indicated vertical strip is dx, and the height is the
y-value of the upper curve minus the y-value of the lower curve, which we will write
as Yypper — Ylower- 1hus, the area of the strip is

- @upper"" '}’loix}er) dx -

y

y=f)

/ y=g()

ower)

—~
-~
-
g
Z
g

s i PR,

-—->| dx |<—

FIGURE 14.30 Region between curves.
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FIGURE 14.31 Diagram for Example 3.

It should be obvious that knowing the
points of intersection is important in
determining the limits of integration.
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which is _
(f(x) — g(x)) dx

Summing the areas of all such strips from x = a to x = b by the definite integral gives
the area of the region:

b
Z (f(x) — g(x)) dx — / (f(x) — g(x)) dx = area

We remark that there is another way to view this area problem. In Figure 14.30 both
S and g are above y = 0 and it is clear that the area we seek is also the area under f
minus the area under g. That approach tells us that the required area is

b b b
f £ dx — f o) dx = f (FO) — g dx

However, our first approach does not require that either f or g lie above 0. Our usage of
Yupper @0d Yiower 18 Teally just a way of saying that f > g on [a, b]. This is equivalent to
saying that f — g > 0 on [a, b] so that each differential (f(x) — g(x)) dx is meaningful
as an area.

XAMPLE 3 Finding an Area between Two Curves

Find the area of the region bounded by the curves y = ,/x and y = x.

Solution: A sketch of the region appears in Figure 14.31. To determine where the
curves intersect, we solve the system formed by the equations y = /x and y = x.
Eliminating y by substitution, we obtain

Vx=x
x = x* squaring both sides
0=x*—x=x(x—1)
x=0 or x=1
Since we squared both sides, we must check the solutions found with respect to the
original equation. It is easily determined that both x = 0 and x = 1 are solutions of
Jx=x.1fx=0,theny = 0;if x = 1, then y = 1. Thus, the curves intersect at (0, 0)

and (1, 1). The width of the indicated strip of area is dx. The height is the y-value on
the upper curve minus the y-value on the lower curve:

Yupper = Ylower = \/-; —X

Hence, the area of the strip is (/x — x) dx. Summing the areas of all such strips from
x = 0 tox = 1 by the definite integral, we get the area of the entire region:

Now Work Problem 47 <
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Finding an Area between Two Curves

Find the area of the region bounded by the curves y = 4x oy +8and y = x* — 2x.

Solution: A sketch of the region appears in Figure 14.32. To find where the curves
intersect, we solve the system of equations y = 4x — x> + 8 and y = x? —2x:

4x —x* +8 = x2~—2x,
22 4+6x+8 = 0,

2—3x—4 = 0,

FIGURE 14.32 Diagram for Example 4.

E+Dx—4 =0 factoring
x=—1 or x=4

When x = —1, then y = 3; when x = 4, then y = 8. Thus, the curves intersect at
(—1,3) and (4, 8). The width of the indicated strip is dx. The height is the y-value on
the upper curve minus the y-value on the lower curve:

Yupper — Ylower = (4x — x* +8) — (x2 — 2x)
Therefore, the area of the strip is
[(4x — x* + 8) — (x* — 2x)] dx = (—2x> + 6x + 8) dx

Summing all such areas from x = —1 to x = 4, we have
4
area = / (—2x% 4+ 6x + 8)dx = 41%
-1

Now Work Probiem 51 <

XAMPLE 5 Area of a Region Having Two Different Upper Curves

Find the area of the region between the curves y =9 — x* and y = x> + 1 from x = 0

tox = 3.
Solution: The region is sketched in Figure 14.33. The curves intersect when
)"))?—1”24"1 9-—x2=x2+1
8 = 2x*
4 =x*
Al x =42 two solutions
%Xi When x = 42, theny = 5, $0 the points of intersection are ( & 2, 5). Because we are
x interested in the region from x = 0 to x = 3, the intersection point that is of concern to

us is (2, 5). Notice in Figure 14.33 that in the region to the /eft of the intersection point

FIGURE 14.33 yuperis 9 —x2on [0,2] (2, 5); astrip has

and is x> + 1 on [2, 3].

2 and Yiower = x? +1

Yupper = 9 — x
" but for a strip to the right of (2, 5) the reverse is true, namely,
Yupper =%+ 1 and  Yigwer = 9 — ¥*
Thus, from x = 0 to x = 2, the area of a strip is .
(upper — Yiower) dx = [(9 — x*) — (&* + 11 dx
= (8 — 2x%) dx
but from x = 2tox = 3, it is
Oupper — Viower) dx = [(x* +1) — (9 — x*)] dx
= (2> — 8) dx




FIGURE 14.34 Vertical strip of area.

cauTion\
With horizontal strips, the width is dy.

FIGURE 14.35 Horizontal"
strip of area.
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Therefore, to find the area of the entire region, we need two integrals:

2 3
area:/ (8—2x2)dx+f (2x? — 8)dx
0 2
2x3 2 253
= <8X‘T) - (7“8*>
16 16
= [(16- ?) —0] + [(18 —24) — <? - 16)]

46

T3

3

2

Now Work Problem 42 <

Horizontal Strips

Sometimes area can more easily be determined by summing areas of horizontal strips
rather than vertical strips. In the following example, an area will be found by both
methods. In each case, the strip of area determines the form of the integral.

(EXAMPLE 6 Vertical Strips and Horizontal Strips

Find the area of the region bounded by the curve y* = 4x and the linesy = 3 and x = 0
(the y-axis).

Solution: The region is sketched in Figure 14.34. When the curves y = 3 and y* = 4x
intersect, 9 = 4x, so x = %. Thus, the intersection point is (%, 3). Since the width of
the vertical strip is dx, we integrate with respect to the variable x. Accordingly, yupper
and yjower must be expressed as functions of x. For the lower curve, y* = 4x, we have
y = +2,/x. Buty > 0 for the portion of this curve that bounds the region, so we use
y = 24/x. The upper curve is y = 3. Hence, the height of the strip is

Yupper — Ylower = 3 - 2\/;

Therefore, the strip has an area of (3 — 2./x) Ax, and we wish to sum all such areas
fromx =0tox = % We have

9/4 4x3/2
areazf (3—-2«/})(1')(::(3)6— 3 )
0

[E)-56)-o
T

Let us now approach this problem from the point of view of a horizontal strip as
shown in Figure 14.35. The width of the strip is dy. The length of the strip is the x-value
on the rightmost curve minus the x-value on the leftmost curve. Thus, the area of the
strip is

9/4

0

(xnght — xleft) dy k

We wish to sum all such areas fromy=0toy = 3:

3
Z (Xright = Xieft) dy —> f (Xright — Xieft) dy
0
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Since the variable of integration is y, we must express Xright and xjer as functions of y.
The rightmost curve is y* = 4x so that x = y?/4. The left-curve is x = 0. Thus,

3

3
area = / (Xright — Xief) dy
]
9

3 2 3
> ¥
= e dy = —| =

Note that for this region, horizontal strips make the definite integral easier to evaluate
(and set up) than an integral with vertical strips. In any case, remember that the limits
of integration are limits for the variable of integration.

Now Work Problem 56 <

AMPLE 7  Advantage of Horizontal Elements

o

Find the area of the region bounded by the graphs of y> = x and x — y = 2.

Solution: The region is sketched in Figure 14.36. The curves intersect when
y* —y = 2. Thus, > — y — 2 = 0; equivalenly, (y + 1)(y — 2) = 0, from which
it follows that y = —1.or y = 2. This gives the intersection points {1, —1) and 4, 2).
Let us try vertical strips of area. [See Figure 14.36(a).] Solving y* = x for y gives
y = %/x. As seen in Figure 14.36(a), to the left of x = 1, the upper end of the strip
lies on y = /x and the lower end lies on y = —./x. To the right of x = 1, the upper
curve is y = +/x and the lower curve isx — y = 2 {or y = x — 2). Thus, with vertical
strips, two integrals are needed to evaluate the area:

! 4
area=/ (ﬁ—(-ﬁ))dx+f (Vx—(x = 2))dx
0 1

(b)
FIGURE 14.36 Region of Example 7 with vertical and horizontal strips.

Perhaps the use of horizontal strips can simplify our work. In Figure 14.36(b), the width
of the strip is Ay. The rightmost curve is always x —y = 2 (or x = y -+ 2), and the
leftmost curve is always y* = x (or x = y?). Therefore, the area of the horizontal strip
is [(y + 2) — y*1 Ay, so the total area is

2 9
area.—./ O+2—-y)dy= 5
-1

- Clearly, the use of horizontal strips is the most desirable approach to solving the prob-
lem. Only a single integral is needed, and it is much simpler to compute.

Now Work Problem 57 <

PROBLEMS 14.9

In Problems 1-24, use a definite integral to find the area of the 2. y=x+5 x=2, x=4 3, y=32 x=1 x=3
region bounded by the given curve, the x-axis, and the given lines.

= x* =2, =3 5 y=x+x7 443, =
In each case, first sketch the region. Watch out for areas of regions yELL X * y=xhat 4y v=1
that are below the x-axis. 6. y=x>—2x, x=-3, x=-—1
Ly=53x42 x=1, x=4 7. y=32-4x, x=-2, x=-1




4
8. y=2—-x—x* 9. y=~, x=1, x=2
x
10 y=2—x—x% x=-3, x=0
. y=¢% x=1, x=3
1
2. y= —ou x=2 x=3
YRe-pr T T
1
3. y=~, x=1, x=¢
x
4. y=v/x+9, x=-9, x=0
15, y=x2—4x, x=2, x=6
16. y=/2x~1, x=1, x=
17. y=x3+3x2, x= -2, x=2
18, y=Jx, x= 19. y=¢€"+1, x=0, x=1
200 y=x], x=-2, x=2
2
2l y=x+—, x=1, x=2
2. y=x, x=-=2, x=4
23 y=4/x—-2, x=2, x=6
24, y=x>4+1, x=0, x=4
25. Given that
32 if0<x<?2
f("):{m—:)x ifx>2

determine the area of the région bounded by the graph of y = f(x),
the x-axis, and the line x = 3. Include a sketch of the region.

26. Under conditions of a continuous uniform distribution (a topic
in statistics), the proportion of persons with incomes between a
and r, where a < t < b, is the area of the region between the curve
¥ = 1/(b — a) and the x-axis from x = a to x = . Sketch the
graph of the curve and determine the area of the given region.

27. Suppose f(x) = x/8, where 0 < x < 4. If f is a density
function (refer to Example 2), find each of the following.
(@ PO=x<1)
(b) P2<x=<4
(© Plx=3)
28. Suppose f(x) = %(1 —x)*, where 0 < x < 3. If f is a density
function (refer to Example 2), find each of the following.
(@) P(1=xx<2)
() P(1<x<i)
@ Px=<1)
(d) P (x> 1) using your result from part (c)
29. Suppose f(x) = 1/x, where e < x < &2, If f-is a density
function (refer to Example 2), find each of the following.
(@ PBG=<x=<T7
(b) P(x <5)
(© Px=4)
(d) Verify that Ple <x <é&*) = 1.
30. (a) Let r be a real number, where r > 1. Evaluate
"1
—dx
e
(b) Your answer to part (a) can be interpreted as the area of a
certain region of the plane. Sketch this region.
r 1 .
(c¢) Evaluate lim ( f - dx)
r—»00 1 x*
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(d) Your answer to part (c) can be interpreted as the area of a
certain region of the plane. Sketch this region.

In Problems 31-34, use definite integration to estimate the area of
the region bounded by the given curve, the x-axis, and the given
lines. Round your answer to two decimal places.

- 1

31.y=x2+1, x=-2, x=1

32 y=—2— x=2 x=7
) Vx+35

33, }’=x4—2.x3~2,.
B34 y=1+3x—x

In Problems 35-38, express the area of the shaded region in terms
of an integral (or integrals). Do not evaluate your expression.

35. See Figure 14.37.

}l
x =4
y=2
N
N
y= X2y
, | N
0 4
FIGURE 14.37
36. See Figure 14.38.
)Y
y = x(x ~ 3)
X
FIGURE 14.38

37. See Figure 14.39.

y

FIGURE 14.39
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38. See Figure 14.40.

FIGURE 14.40

39. Express, in terms of a single integral, the total area of the
region to the right of the line x = 1 that is between the curves
y =2x*—5andy =7 — 2x>. Do not evaluate the integral.

40. Express, in terms of a single integral, the total area of the
region in the first quadrant bounded by the x-axis and the graphs
of y? = x and 2y = 3 — x. Do nor evaluate the integral.

In Problems 41-56, find the area of the region bounded by the
graphs of the given equations. Be sure to find any needed points of
intersection. Consider whether the use of horizontal strips makes
the integral simpler than when vertical strips are used.

41, y=x>, y=2x 42, y=x, y=-x+3, y=0
43. y=10-x% y=4 4.y =x+1, x=1
45. x=8+2y, x=0, y=-1, y=3

46, y=x—6, y=x 47 Y =dy, y=2x—4
48. y=123, y=x+6, x=0.

(Hint: The only real root of x> —x — 6 = 0is 2.)

49, 2y=dx—x%, Zy=x—4

50, y=./x, y=2x*

5. y=8—x2, y=2x% x=-1, x=1

5. y=x"4+xy=0x=-1,x=2

8 y=x"—-1, y=x—1

54, y=x3, y=./x

55. dx +4y+17 =0, y=;1;

56, ¥ =-x—2, x—y=5 y=-1, y=1

57. Find the area of the region that is between the curves
y=x-—1 and y=5-2x
fromx=0tox =4.
58. Find the area of the region that is between the curves
y=x*—4x+4 and y= 10 — x*
fromx=2tox=4.
" 59. Lorenz Curve A Lorenz curve is used in studying income
distributions. If x is the cumulative percentage of income
recipients, ranked from poorest to richest, and y is the cumulative
percentage of income, then equality of income distribution is
given by the line y = x in Figure 14.41, where x and y are
expressed as decimals. For example, 10% of the people receive

E6d. y=x>—4dx+1,

10% of total income, 20% of the people receive 20% of the
income, and so on. Suppose the actual distribution is given by the
Lorenz curve defined by :

14 2 1
= X A —X
YEBT TS
y
1_.

Q
=1
1<}
£
: y=v
g .
g .
3 —
b7} e A4 Loy
S y=i5% F s
% Lorentz curve
=
g ,
O 0104 -2

: L x

0.10 030 1

Cumulative percentage of income recipients

FIGURE 14.41

Note, for example, that 30% of the people receive only 10.4% of
total income. The degree of deviation from equality is measured
by the coefficient of inequality'® for a Lorenz curve. This
coefficient is defined to be the area between the curve and the
diagonal, divided by the area under the diagonal:

area between curve and diagonal

area under diagonal

For example, when all incomes are equal, the coefficient of
inequality is zero. Find the coefficient of inequality for the Lorenz
curve just defined. i

60. Lorenz curve Find the coefficient of inequality as in
1.2, 1

Problem 59 for the Lorenz curve defined by y = 53" + 5.

61. Find the area of the region bounded by the graphs of the
equations y* = 3x and y = mx, where m is a positive constant.

62. (a) Find the area of the region bounded by the graphs of
y=x*—landy=2x+2.

(b) What percentage of the area in part (a) lies above the x-axis?
63. The region bounded by the curve y = x” and the line y = 4 is

divided into two parts of equal area by the line y =k, where k is a
constant. Find the value of £.

In Problems 64-68, estimate the area of the region bounded by the
graphs of the given equations. Round your answer to two decimal
places.

6
y=--
X

E65. y=+/25—12, y=_7—2x-—x4
E66. y = —8x+ 1,

Ee67. y=x—3x° 4 2x,
E68. y=x—3x> —15x* +19x+30, y=x>+x>—20x

y=x>=5
y=3x>—4

5a, Stigler, The Theory of Price, 3rd ed. (New York: The Macmillan
Company, 1966), pp. 293-94.
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FIGURE 14.45 Producers’ surplus.
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14.10 Consumers’ and Producers’ Surplus

Determining the area of a region has applications in economics. Figure 14.42 shows
a supply curve for a product. The curve indicates the price p per unit at which the
manufacturer will sell (or supply) ¢ units. The diagram also shows a demand curve for
the product. This curve indicates the price p per unit at which consumers will purchase
(or demand) ¢ units. The point (go, po) Where the two curves intersect is called the point.
of equilibrium. Here pq is the price per unit at which consumers will purchase the same
quantity go of a product that producers wish to sell at that price. In short, py is the price
at which stability in the producer—consumer relationship occurs.

Let us assume that the market is at equilibrium and the price per unit of the product
is po. According to the demand curve, there are consumers who would be willing to pay
more than pg. For example, at the price per unit of p;, consumers would buy g, units.
These consumers are benefiting from the lower equilibrium price pg.

The vertical strip in Figure 14.42 has area p dg. This expression can also be thought
of as the total amount of money that consumers would spend by buying dg units of
the product if the price per unit were p. Since the price is actually pg, these consumers
spend only ppdq for the dqg units and thus benefit by the amount pdg — pg dg. This
expression can be written (p — po) dg, which is the area of a rectangle of width dg and
height p — pg. (See Figure 14.43.) Summing the areas of all such rectangles fromg = 0
to g = gop by definite integration, we have

4o
/ (p —po)dq
0

This integral, under certain conditions, represents the total gain to consumers who are
willing to pay more than the equilibrium price. This total gain is called consumers’
surplus, abbreviated CS. If the demand function is given by p = f(g), then

CS= ; [f(q) — poldq

Geometrically (see Figure 14.44), consumers’ surplus is represented by the area between
the line p = pg and the demand curve p = f(g) from g = 0 to g = go.

Some of the producers also benefit from the equilibrium price, since they are willing
to supply the product at prices less than pg. Under certain conditions, the total gain to
the producers is represented geometrically in Figure 14.45 by the area between the
line p = pp and the supply curve p = g(g) from ¢ = 0 to ¢ = gqo. This gain, called
producers’ surplus and abbreviated PS, is given by

: q0 :
PS= 0 [po — g(@)ldq

V' MPLE‘i Finding Consumers’ Surplus and Producers’ Surplus
The demand function for a product is

o p =f(g) = 100 — 0.05¢
where p is the price per unit (in dollars) for g units. The supply function is

p= g(q) = 10 4 0.1q
Determine consumers’ surplus and producers’ surplus under market equilibrium.

Solution: First we must find the equilibrium point (pg, gg) by solving the system
formed by the functions p = 100 — 0.05¢g and p = 10 + 0.1g. We thus equate the
two expressions for p and solve:

10 +0.1g = 100 — 0.05¢
0.15¢ = 90
g = 600
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When g = 600 then p = 10 4 0.1(600) = 70. Hence, go = 600 and py = 70.
Consumers’ surplus is s

q0

' 600 ‘
cs= [ 7@ - poldg = f (100 — 0.05q — 70)dq
0

2
7
= |30g —0.05%

Producers’ surplus is

600

= 9000
0

q0 600
Ps= [t - st@dg = /0 [70 — (10 + 0.1q)] dg

5 (600
- (60q - o.1q—> = 18,000
2 0

Therefore, consumers” surplus is $9000 and producers’ surplus is $18,000.

Now Work Problem 1 <

Using Horizontal Strips to Find Consumers’ Surplus
and Producers’ Surplus

The demand equation for a product is
90
9=fP)=— -2
4
and the supply equation is ¢ = g(p) = p — 1. Determine consumers’ surplus and
producers’ surplus when market equilibrium has been established.

Solution: Determining the equilibrium point, we have

90
p—l=—-2
p
pPP+p—90=0
P+10p-9=0

Thus, pp = 9,50 gp = 9 — 1 = 8. (See Figure 14.46.) Note that the demand equation
expresses g as a function of p. Since consumers’ surplus can be considered an area, this
area can be determined by means of horizontal strips of width dp and length g = f(p).
The areas of these strips are summed from p = 9 to p = 45 by integrating with

FIGURE 14.46 Diagram for Example 2.




respect to p:

45 90
9

Using horizontal stri

PROBLEMS 14.10

In Problems 1-6, the first equation is a demand equation and the
second is a supply equation of a product. In each case, determine
consumers’ surplus and producers’ surplus under market
equilibrium.

1. p=22-0.8¢g 2. p=2200 - g*
p=6+12g p =400 +¢°
50
cp== 4. p =900 —¢*
f1q+ p = 10g + 300
=445
P=15"
5. g = 100(10 — 2p) 6. gq=./100—p
q=502p —1) q_%’—lo

7. The demand equation for a product is

g =10,/100 — p

Calculate consumers’ surplus under market equilibrium, which
occurs at a price of $84.

8. The demand equation for a product is

q = 400 — p*
and the supply equation is ‘
q
= =45
P=% "

Find producers’ surplus and consumers’ surplus under market
equilibrium.

9. The demand equation for a product is p = 2199, and the
supply equation is p = 29*2, where p is the price per unit (in
hundreds of dollars) when g units are demanded or supplied.
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45

9
=90In5 - 72 = 72.85

ps for producers’ surplus, we have

9 e
PS:[ (p_l)dp_.:u
1

9
=32

2

Now Work Problem 5 <

Determine, to the nearest thousand dollars, consumers’ surplus
under market equilibrium.

10. The demand equation for a product is
(p + 10)(g + 20) = 1000
and the supply equation is
g—4p+10=0

(a) Verify, by substitution, that market equilibrium occurs when
p =10and g = 30.
(b) Determine consumers’ surplus under market equilibrium.
11. The demand equation for a product is
50q

V4% + 3600

p=60—

and the supply equation is

p = 101In(g + 20) — 26
Determine consumers’ surplus and producers’ surplus under
market equilibrium. Round your answers to the nearest integer.

12, Producers’ Surplus  The supply function for a product is
given by the following table, where p is the price per unit (in
dollars) at which ¢ units are supplied to the market:

g0

5

10
=

Use the trapezoidal rule to estimate the producers’ surplus if the
selling price is $80.

Important Terms and Symbols Examples
Section 14.1  Differentials
‘ differential, dy, dx Ex. 1,p. 627
Section 14.2  The Indefinite Integral
antiderivative indefinite integral [fx)dx integral sign Ex. 1,p. 633
integrand variable of integration constant of integration Ex. 2, p. 633
Section 14.3  Integration with Initial Conditions
initial condition Ex. 1, p. 638

More Integration Formulas
power rule for integration

Section 14.4

Ex. 1, p. 642
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Section 14.5  Techniques of Integration

preliminary division Ex. 1, p. 648
Section 14.6  The Definite Integral

definite integral f f&x) dx limits of integration Ex. 2, p. 657
Section 14.7  The Fundamental Theorem of Integral Calculus

Fundamental Theorem of Integral Calculus F(x) Ex. 1, p. 661
Section 14.8  Approximate Integration

trapezoidal rule Simpson’s rule Ex. 2, p. 669
Section 14.9  Area between Curves

vertical strip of area Ex. 1,p. 673

horizontal strip of area ) Ex. 6, p. 677
Section 14.10 Consumers’ and Producers’ Surplus

consumers’ surplus producers’ surplus Ex. 1, p. 681

Summary

If y = f(x) is a differentiable function of x, we define the
differential dy by
dy = f'(x) dx
where dx = Ax is a change in x and can be any real num-
ber. (Thus dy is a function of two variables, namely x and
dx.) If dx is close to zero, then dy is an approximation to
Ay =f(x +dx) — f(x).
Ay o dy
Moreover, dy can be used to approximate a function value
using
fx+dx) = f(x)+dy
An antiderivative of a function f is a function F such that
F'(x) = f(x). Any two antiderivatives of f differ at most by
a constant. The most general antiderivative of f is called the
indefinite mteoral of f and is denoted f f (x) dx. Thus,

/f(x)dx F(x)+C

where C is called the constant of mtegratlon, if and only if
F =f.

Some elementary integration formulas are as follows:

fkc:ix‘:kx-}—C : kacon:s’,tant’ :

a+1 .
/ldx-l +C

a+1 a7

‘/%dx‘:—;mx+c  forx>0
fﬁﬁ:é%C
/ o dx =k f fG)dx  kaconstant

[ rw e = [roa [

Another formula is the power rule for integration:

a+1
/u"du I
a-+1

+C, ifa#-1

Here u represents a differentiable function of x, and du is its
differential. In applying the power rule to a given integral, it is
important that the integral be written in a form that precisely
matches the power rule. Other integration formulas are

- f ddui=e"+C

and - /edu=InIuI+C u#£0

If the rate of change of a function f is known—that is, if
f' is known—then f is an antiderivative of f’. In addition, if
we know that f satisfies an initial condition, then we can find
the particular antiderivative. For example, if a marginal-cost
function dc/dq is given to us, then by integration, we can find
the most general form of c. That form involves a constant of
integration. However, if we are also given fixed costs (that
is, costs involved when ¢ = 0), then we can determine the
value of the constant of integration and thus find the particular
cost function c. Similarly, if we are given a marginal-revenue
function dr/dg, then by integration and by using the fact that
r = 0 when ¢ = 0, we can determine the particular rev-
enue function 7. Once r is known, the corresponding demand
equation can be found by using the equation p = r/gq.

It is helpful at this point to review summation notation
from Section 1.5. This notation is especially useful in deter-
mining areas. For continuous f > 0, to find the area of the
region bounded by y = f(x),y = 0, x = g, and x = b, we
divide the interval [a, b] into n subintervals of equal length

= (b—a)/n. If x; is the right-hand endpoint of an arbitrary
subinterval, then the product f(x;) dx is the area of a rectan-
gle. Denoting the sum of all such areas of rectangles for the
n subintervals by S,,, we define the limit of S,, as n — oo as
the area of the entire reOion'

lim s,, = hm Z f(x,)dx area

S N—>00
i=1""

If the restnctlon that f (x) > 0is omltted thIS hmlt is defined
as the definite integral of f over [a, b]:

n ) b
lim Y roids= [ swar
i=1 : nida




Instead of evaluating definite integrals by using limits,
we may be able to employ the Fundamental Theorem of
Integral Calculus. Mathematically,

f £ dx—F(x) =FO)-F@

where F' is any antlderlvauve of f
Some properties of the definite mtegral are

» o
fkf(x)dt;:kf f&)dx  kaconstant

[ rooanas= ff“‘”‘ = ?("5,"’* |

and o

, Cf (l)dxz bf(x)dx-{- , Cf(x)dx

If f(x) > 0 is continuous on [a, b], then the definite inte-
gral can be used to find the area of the region bounded by
¥y = f(x), the x-axis, x = a4, and x = b. The definite integral

Review Problems
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can also be used to find areas of more complicated regions. In
these situations, a strip of area should be drawn in the region.
This allows us to set up the proper definite integral. In this
regard, both vertical strips and horizontal strips have their
uses.

One application of finding areas involves consumers’ sur-
plus and producers’ surplus. Suppose the market for a prod-
uct is at equilibrium and (qo, po) is the equilibrium point (the
point of intersection of the supply curve and the demand curve
for the product). Then consumers’ surplus, CS, corresponds
to the area from ¢ = 0 to g = go, bounded above by the
demand curve and below by the line p = pg. Thus,

LCS; (f(q) po)dq

where f is the demand function. Producers’ surplus, PS, cor-
responds to the area from g = 0 to ¢ = qg, bounded above
by the line p = pg and below by the supply curve. Therefore,

a0

PS - (po-g(q))dq

where g is the supply funcnon

In Problems 1-40, determine the integrals.

1 /(x3+1\'—7)dx 2. /dx

12 ) 4
3. (9@ +3x%) dx 4. / dx

5 —3x
9
6. / (v — 6 gy
3

(x+ 5)3
- 19 3 5
7. f —i—l——m 8. f 2x¢5 dx
.l — 6): + 1 0
1 4 —2x
9. f ¥ 8dr 10. / 7““ dx
0 .
o
11. f ¥+ 1)*dy 12. f 1078 dx
0
Ve 0.5x — 0.1)*
13. M dr 14. (_‘____l
3 0.4
3 2 2 . 4 2
15. / L 16. / it N
1 3 -+ 2[3 X ~
17. / 2/3x3 4+ 2dx 18. / (6x* + 4x)(° 4+ X2 dx
8x
19. | (¥ — e ¥)dy 20. f R —;
/ )b ER

1 2 2 3e¥
21. — 4+ =) dx 22. —dx
/(x+x2> ./(l T+ev

2 70
23. / O*+y¥ +y +ydy 24, dx
-2 : 7

2 = 1
25. f 5xy/5 — x2dx 26. / @x + DE* 4+ x) dx
1 0

l 1 18

r—3 37
29. “/, dt 30. f *_dz
t* z—1
0 .2 . 4)?
31_/ ﬁji__l_dl 32, o+ )d_‘
1 x+2 a2
vE V3
evt 4 x e
33. / dx 34. / dx
2./x +/3x
e e!n.r 6x2 +4
35. /; xz dx 36. / F*‘? [IA
(14 >y / c
38. — X
37. e—2x dx ebx(a + e~b.\')n

forns#landb #0

40 /5.1:3 +15x2 +37x+3
) 24347

39. /3\/103"dx dx

In Problems 41 and 42, find y, subject to the given
condition.

‘45
41, y = +3, y0) = i

—7;: 42. _}’,: : s

y)=3

In Problems 43-50, determine the area of the region bounded by
the given curve, the x-axis, and the given lines.

43, y=x3, x=0,x=2 4. y=4¢', x=0, x=3
45 y=/x+4, x=0

46. y=x*—x—6, x=-—4, x=3

47. y =5x —x° 48. y=Jx, x=8, x=16

1
49, y=~-+2, x=1, x=4 50. y=x'-1, x=-1
X
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In Problems 51-58, find the area of the region bounded by the
given curves.

51y’ =4x, x=0, y=2 52 y=3-5 =x=0, y=4
53. y=—x(x—a), y=0forO<a

54, y=2x% y=x+9
56, y=./x, x=0, y=3
57. y=1Inx, x=0, y=0, y=1

55. y=x>—x, y=10-—x?

58. y=3—x, y=x—4, y=0, y=3
59. Marginal Revenue If marginal revenue is given by
dr 3
— =100 — =/2
dq v
determine the corresponding demand equation.
60. Marginal Cost If marginal cost is given by
de
—=q"+79+6
dq
and fixed costs are 2500, determine the total cost of producing six
units. Assume that costs are in dollars.

61. Marginal Revenue A manufacturer’s marginal-revenue
function is

dr 5
— =250 — g - 0.2g9"

dgq
If r is in dollars, find the increase in the manufacturer’s total
revenue if production is increased from 15 to 25 units.

62. Marginal Cost A manufacturer’s marginal-cost function is

dc 1000
dqg = J3g+70

If ¢ is in dollars, determine the cost involved to increase
production from 10 to 33 units.

63. Hospital Discharges For a group of hospitalized
individuals, suppose the discharge rate is given by

F(r) = 0.007¢™0-007

where f(¢) is the proportion discharged per day at the end of ¢ days
of hospitalization. What proportion of the group is discharged at
the end of 100 days?

64. Business Expenses The total expenditures (in dollars) of a
business over the next five years are given by

5
/ 4000e%% dr
0

Evaluate the expenditures.

65. Find the area of the region between the curves y = 9 — 2x and
y=xfromx=0tox =4.

66. Find the area of the region between the curves y = 2x* and
y=2-5xfromx=—ltox=1.

67. Consumers’ and Producers’ Surplus The demand
equation for a product is

p=001g>—1.1g+30

and the supply equation is
p=001g"+8

Determine consumers’ surplus and producers’ surplus when
market equilibrium has been established.

68. Consumers’ Surplus The demand equation for a product is
p=(g—4°
and the supply- eqqation is
. p=q+q+7
where p (in thousands of dollars) is the price per 100 units when

g hundred units are demanded or supplied. Determine consumers’
surplus under market equilibrium.

69. Biology In a discussion of gene mutation,’® the equation
In d. n
———q7\= —(u+v)f dt
qo —q 0
occurs, where 1 and v are gene mutation rates, the g’s are gene
frequencies, and n is the number of generations. Assume that all
letters represent constants, except g and ¢. Integrate both sides and
then use your result to show that
1 o~
n qo0 ’q\
u+v Gn—4q
70. Fluid Flow In studying the flow of a fluid in a tube of
constant radius R, such as blood flow in portions of the body, we
can think of the tube as consisting of concentric tubes of radius r,
where 0 < r < R. The velocity v of the fluid is a function of r and
is given by!’

I il Py)(R* —1?)
- 4l
where P, and P, are pressures at the ends of the tube, 17 (a Greek

letter read “eta”™) is the fluid viscosity, and / is the length of the
tube. The volume rate of flow through the tube, Q, is given by

R
0= / 2arvdr
0

R*(P, — P
Z——(S—‘T———zl. Note that R occurs as a factor to
n
the fourth power. Thus, doubling the radius of the tube has the
effect of increasing the flow by a factor of 16. The formula that
you derived for the volume rate of flow is called Poiseuille’s law,
after the French physiologist Jean Poiseuille.

Show that 0 =

71. Inventory In a discussion of inventory, Barbosa and
Friedman!® refer to the function

1 1/x
gx) = - / ku" du
. k J

16w, B. Mather, Principles of Quaﬁtirative Genetics (Minneapolis: Burgess
Publishing Company, 1964).

IR w. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill, 1955).

181, C. Barbosd and M. Friedman, “Deterministic Inventory Lot Size

Models—a General Root Law,” Management Science, 24, no. 8 (1978),
819-26.

!
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where k and r are constants, A>Oand1>—2,and,\>OVer1fy E74. y =3+ 12— 5x 3, y=xt42x4+3

the claim that

s 1
& ('1) = _xr+'l
(Hint: Consider two cases: when r % —1 and when r = —1.)

In Problems 72-74, estimate the area of the region bounded by the
given curves. Round your answer to two decimal places.

E72 y=x*4+ 90+ 14x— 24,y =0
E73. y=X+2+x+1,y=x2+2x+1

& 75. The demand equation for a product is.

200
P=T7F20
and the supply equation is
p=2In(g+10)+5

Determine consumers’ surplus and producers’ surplus under
market equilibrium. Round your answers to the nearest integer.

@E/\PLDRE & EXTEND Delivered Price

uppose that you are a manufacturer of a product

whose sales occur within R miles of your mill.
s/ Assume that you charge customers for shipping at
the rate s, in dollars per mile, for each unit of product sold.
If m is the unit price (in dollars) at the mill, then the deliv-
ered unit price p to a customer x miles from the mill is the
mill price plus the shipping charge sx: :
0<x=<R (1)

. The problem is to determme the average dehvered price of
the units sold.

p=m-sx

Suppose that there is a function £ such that f (t) >0on
the interval [0, R] and such that the area under the craph of
f and above the t-axis from t = O to ¢ c represents the
total number of units Q sold to customers w1thm x miles
of the mill. [See Florure 14.47(a).] You canrefer to f as the
distribution of demand. Because 0 isa functlon of x and
is represented by area,

0w = f S
DAL

In particular, the total number of units sold within the mar-

ket area is
R
| rwa
0

Number of units
sold within x mi

Total number of units
sold within market area

FIGURE 14.47 ' Number of uhits sold as an area:

[see Figure 14.47(b)]. For example, if 7() = 10 and
R =100, then the total number of units sold: within the
market area is

100
0(100) = / 10dt = 10:]“’" = 1000 — 0 = 1000
; ;

The average delivered price Als given by
total revenue

~total number of units sold .

Because the denominator is O(R), A can be determined
once the total revenue is found. V V

To find the total revenue, first consider the number of
units sold over an interval. If | < 15 [see Figure 14.48(a)];
then the area under the graph of f and above the r-axis from
t = 0 to t = t; represents the number of units sold within
t; miles of the mill. Similarly, the area under the graph of
f and above the r-axis from? = 0 to t = £, represents the
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f@)

1)

‘ (®
FIGURE 14.48 Number of units sold over an interval.

~ number. of units sold within f, miles of the mill. Thus
the difference in these areas is.geometrically the area of
the shaded region in Figure 14.48(a) and represents the
number of units sold between #; and #, miles of the mill,
- whichis O(5) — O(t;). Thus

0() — O(1) = f Fde

For example, if f() =.10, then the number of units sold to

customers located between 4 and 6 miles of the mill is
: 6

=60 —40 =20
4
The area. of ‘the shaded region-in:Figure '14.48(a) can
be approximated by the area of ‘a rectangle [see Fig-
ure 14.48(b)] whose height is £ (f) and whose width is dt,
where dt-= t, —ti. Thus the number of units sold over the
interval of length dt is apprommately f(r) dt. Because the
- price of each of these units is [from Equation (1)] approx-
imately m - st, the revenue received is approximately

(m+st)f () dt

The sum of all such products from ¢ = 0 to t = R approx-
~ imates the total revenue. Definite integration gives

‘ 6
0(6) - 0@ = / 10dr =10t
: 4

R
Z (m~+s)f(Hdt — f (n+sHf() dt
0 X
© Thus, :

R g
total revenue = f (n4s)f (Hde -
0

Consequently, the average delivered priee Ais given by

R s
' f (m + sOf (7 dt
A— 0

0oR)

Equivalently,

/ (m + s dt

f f@®drt

For example 1ff(t)—-10 m=200,5s=0.25,and R= 100

then:

R 100 : :
/ (m -+ st)f(t) dt = / (200 4-0.25¢) - 104t
0 0: i :

100 G
=10 f (200.+0.251) dt
Jo

: 0 .
= 10”(2001‘ =+ -)
e 8 /)1,

,:10[< - 10:00)_0]

+'=212,500

100

From before,

; R 100 :
/ f(t)’dt:/" 10dr =1000

Thus the average delivered pnce is
212 500/1000 $212.50.

Problems

1. If () = 100 —2t, determme the number of units sold
to customers located (a) within 5 miles of the mill, and;
(b) between 20.and 25 miles of the mill.

2 Iff(t)_40 0.5¢t,m = 50,5 = 0.20, and R = 80,

determine (a) the total revenue, (b) the total number of

units sold, and (c) the average dehvered price. ;
3. Iff(t) =900 — 72, m =100,s = 1, and R = 30, deter~

‘mine (a) the total revenue (b) the total number of units

sold, and (c) the average delivered price. Use a crraphmvﬂf
calculator if you like. .

4. How do real—world sellers of such things as books
and clothing generally determine shipping charges for an
order? (Visit an online retailer to find out.) How WOuld you
calculate average delivered price for their products? Is the
procedure fundamentally different from the one discussed
in this Explore & Extend?




16.1
15.2

15.3
154

15.5
15.6

16.7

Integration by Parts

Integration by Partial
Fractions

Integration by Tables

Average Value of
a Function '

Differential Equations

More Applications of
Differential Equations

Improper Integrals
Chapter 15 Review

EXPLORE & EXTEND
Dieting

Integration

7/ € now know how to find the derivative of a function, and in some cases
/' we know how to find a function from its derivative through integration.
However, the integration process is not always straightforward.

Suppose we model the gradual disappearance of a chemical sub-
stance using the equations M’ = —0.004¢ and M(0) = 3000, where the amount M, in
grams, is a function of time ¢ in days. This initial-condition problem is easily solved
by integration with respect to ¢ and identifying the constant of integration. The result is
M = —0.002¢> + 3000. But what if, instead, the disappearance of the substance were
modeled by the equations M’ = —0.004M and M (0) = 3000? The simple replacement
of ¢ in the first equation with M changes the character of the problem. We have not yet
learned how to find a function when its derivative is described in terms of the function
itself.

In the Explore & Extend in Chapter 13, there was a similar situation, involving an
equation with P on one side and the derivative of P on the other. There, we used an
approximation to solve the problem. In this chapter, we will learn a method that yields
an exact solution for some problems of this type.

Equations of the form y' = ky, where k is a constant, are especially common.
When y represents the amount of a radioactive substance, y = ky can represent the
rate of its disappearance through radioactive decay. And if y is the temperature of a
chicken just taken out of the oven or just put into a freezer, then a related formula,
called Newton’s law of cooling, can be used to describe the change in the chicken’s
internal temperature over time. Newton’s law, which is discussed in this chapter, might
be used to write procedures for a restaurant kitchen, so that food prone to contamination
through bacterial growth does not spend too much time in the temperature danger zone
(40°F to 140°F). (Bacterial growth, for that matter, also follows a y’ = ky law!)

689
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& = = = =

Obijective

To develop and apply the formula for
integration by parts.

aemnesenn e e e e eee e

@5 1 Emegmﬁl@n by Parts?

Many integrals cannot be found by our previous methods. However, there are ways of
changing certain integrals to forms that are easier to integrate. Of these methods, we
will discuss two: integration by parts and (in Section 15.2) integration using partial
fractions.

If 1 and v are differentiable functions of x, we have, by the product rule,

W) =w + v/
Rearranging gives
uv’ = (uv)' — v’

Integrating both sides with respect to x, we get

fuv dx —/(llv) dx — /vu dx 1

For f (uv) dx, we must find a function whose derivative with respect to x is (uv).
Clearly, uv is such a function. Hence f (uv) dx = uv + Cy, and Equation (1) becomes

fuv'dx:uv+C, —/vu'dx

Absorbing C; into the constant of integration for [ vu’ dx and replacing v’ dx by dv and
1’ dx by du, we have the formula for integration by parts:

Formulafor Integrationby Parts .
'fudv':.—_"uv;'fizdu* 7 .

This formula expresses an integral, [ u dv, in terms of another integral, [ v du, that may
be easier to find.

To apply the formula to a given integral [ f(x)dx, we must write f(x) dx as the
product of two factors {or parts) by choosing a function u and a differential dv such
that f (x) dx = udv. However, for the formula to be useful, we must be able to integrate
the part chosen for dv. To illustrate, consider

fxe"dx

This integral cannot be determined by previous integration formulas. One way to
write xe* dx in the form u dv is by letting

u=x and dv=eédx
To apply the formula for integration by parts, we must find du and v:

du=dx and v:/exdx=€"+C1

/xe‘dx:/udv
::uv——fvdu

:x(e"'—!—Cl)—/(e“‘—I—C;)dx
=x+Cix—e —~Cix+C
=xe —e +C
=x-1+C

Thus,

I'This section can be omitted without loss of continuity.
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1. The monthly sales of a computer,
keyboard are estimated to decline at the
rate of §'(f) = —4e®! keyboards peri
~month, where ¢ is time in months and
- S(t) is the number of keyboards sold
“each month. If 5000 keyboards are sold
-now (S(0) = 5000), find S@).

Example 2 shows how a poor choice for i
and dv can be made. If a choice does not
work, there may be another that does.

Section 15.1 Integration by Parts 691
The first constant, C}, does not appear in the final ahswer. It is easy to prove that the
constant involved in finding v from dv will always drop out, so from now on we will
not write it when we find v.

When using the formula for integration by parts, sometimes the best choice for u
and dv is not obvious. In some cases, one choice may be as good as another; in other
cases, only one choice may be suitable. Insight into making a good choice (if any exists)

will come only with practice and, of course, trial and error.

MPLE1 Integration by Parts

Find f d.x by integration by parts.

Solution: We try
1
u=Inx and dv=-——dx
f

x
Then

1
du= —dx and v=fx"”2dx:2xl/2
x

1
/hlx(—ﬁdx) =/udv=uv—/vdu

= (Inx)(2/x) — / 2x'% G dx)

Thus,

= 2ﬁ1nx—2/x—‘/2cix

=2/xInx —2Q2/%)+C V.
=2/x[In(x) = 2]+ C

JE

Now Work Problem 3

AMPLE 2 Integration by Parts

2
Evaluate f xInxdx.
1

Solution: Since the integral does not fit a familiar form, we will try integration by
parts. Let # = x and dv = Inx dx. Then du = dx, but v = | Inx dx is not apparent by
inspection. So we will make a different choice for u and dv. Let

t=Inx and dv=2xdx
Then

1 x2
du = ~dx and v= xdxz?

X

2 1
/Alnxd.x—(lnx)( > < )—
1 | x
“—1f~xdx
2

o 3]
)
(1

Theféfore,

1
2

x2 lnx
1

2In2-0) -

i

) ..21n2-i-

Now Work Problem 5 <
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cauTion\

Remember the simpler integration forms
too. Integration by parts is not needed
here.

APPLY IT »

2. Suppose a population of: bacteria_

_growsatartate of
- PO=01In1)’
Find the general form of P(zl).

Integration by Parts where u« Is the Entire Integrand

Determine / Inydy.

Solution: We cannot integrate In y by previous methods, so we will try integration by
parts. Let u = Iny and dv = dy. Then du = (1/y)dy and v = y. So we have

[myar = anno - | yG dy)

=y1ny—/dy=ylny—y+c
=y[ln@)-1]+C
Now Work Problem 37 <

Before trying integration by parts, see whether the technique is really needed.
Sometimes the integral can be handled by a basic technique, as Example 4 shows.

Basic Integration Form
Determine / xe® dx.

Solution: This integral can be fit to the form f e du.

2 l 2
fxe‘ dx:-z—fe‘(2xdx)

1 5
= 3 f e du where u = x~*
1, 1 o
= e 4+ C =" +C
26 -+ 5 +

Now Work Problem 17 <

Sometimes integration by parts must be used more than once, as shown in the
following example.

Applying Integration by Parts Twice

Determine f x2e¥H dx.

Solution: Let # = x? and dv = ¢>*! dx. Then du = 2xdx and v = ¢>+1/2.

2 2541 2041
/)cze?'“rl dx =25 - / ¢ (2x dx)

2 2
2 2x41
== xqe;ﬂ- — /XEZY.H dx

To find [ xe™*! dx, we will again use integration by parts. Here, let u = x and dv =
e *+1 dx. Then du = dx and v = ¢*+1/2, and we have

vt 2+
xe e
/xe2‘+ldx='2 -f 5 dx

‘ w2l g2t
2 4
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Thus, _
2 2x4+1 o2+ 2x-+1
2 9e] x“e xe e='"
' “dx = — C where C = —C
/A e X 2 3 -+ 7 + 1
e?.\-i-l ) ] 1
= |\¥ X + 3 +C

Now Work Problem 23 <

PROBLEMS 15.1

1. In applying integration by parts to 30. Find [ In(x + +/x2 + 1) dx. Hint: Show that
d 1
x)dx —[I@+V2+ D] = ——
Jro = s
a student found that i = x, du = dx, dv = (x + 5)!2, and 31. Find the area of the region bounded by the x-axis, the curve

y = Inx, and the line x = &°.

v = 2(x + 5)*/2. Use this information to find [ f(x) dx.

32. Find th f the region bounded by the x-axis and th
2. Use integration by parts to find e aeao region Donnced by the v-axis and fie

curve y = x’¢" between x = 0 and x = 1.

f xS gy 33. Find the area of the region bounded by the x-axis and the
curve y == x* lnx between x = 1 and x = 2.
by choosing 1 = x and dv = ¥+ dx. 34. Consumers’ Surplus  Suppose the demand equation for a
) manufacturer’s product is given by
In Problems 3-29, find the integrals. p=>5(q+5)e @I
3. / xe “dx V 4. f xe™dx fora#0 where p is the price per unit (in dollars) when g units are
demanded. Assume that market equilibrium occurs when g = 7.
Determine the consumers’ surplus at market equilibrium.
5. /y3lnydy 6 /lenxdx
35. Revenue Suppose total revenue r and price per unit p are
¢ differentiable functions of output 4.
7. / In (4x) dx 8. / - dr (a) Use integration by parts to show that
dp
12x =7 - — d.
9. /xdax+bdx 10. /ﬁdx f”dq ! _/qdq 1
X
: n 0 (b) Using part (a), show that
X nx -+
11, | ——dx 12, | -z dy dj
/(5x+2)3 / 26+ 1) r=/<p+q—d—z-) dg
13. / I_H:f - 14. / = ;'- 7 dx (c) Using part (b), prove that
x- e @ dp
: 2 (q0) ==/ <p+f13—) dq
1s. f 4xe™ dx 16. f 2xe ™ dx 0 1
1 1 (Hint: Refer to Section 14.7.)
! 2 3x3 36. Suppose f is a differentiable function. Apply integration by
1 e - - * &
17. /(; xe dx 18. d 2 o parts to [ f(x)e* dx to prove that
19, /8 4x e 20. /(lnx)2 o /f(x)e‘dx+ /f'(x)e‘dx =f(x)e* +C
5 v/9—x
X . L X P, R 4
21, / 32 -Dln(x—2)dx 22 f et (Hence’ / FE)+f e dr =fe” + C)
™ 2
) 4 37. Suppose that f has an inverse and that F/ = f. Use integration
23. / x“e dx 24. f Vxln(x®)dx by parts to develop a useful formula for [ f~'(x)dx in terms of F
! and f~'. [Hint: Review Example 3. It used the idea required here,
25. / (x—eYdx 26. / e’ dx ﬁggg’i;iedal case of f(x) = e*]If f~'(a) = c and f~' () = d,
5 S b d
27. ./x3g“dx . 28 /xjgrdx / f_l(x)dxzbd—ac-f fx)ydx
29, f(er +x)dx M For0 < a <bandf~' > 0on[a,b], draw a diagram that
illustrates the last equation.
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Objective

To show how to integrate a proper
rational function by first expressing it
as a sum of its partial fractions.

==

15.2 Integration by Partial Fractions?

Recall that a rational function is a quotient of polynomials N(x)/D(x) and that it is
proper if N and D have no common polynomial factor and the degree of the numerator
N is less than the degree of the denominator D. If N/D is not proper, then we can use
long division to divide N(x) by D(x):

o) NE) R&)
D(x)m thus 5(;)— = 0(x) + D)

Here the quotient Q(x) and the remainder.R(x) are also polynomials and either R(x) is
the constant 0-polynomial or the degree of R(x) is less than that of D(x). Thus R /D is
a proper rational function. Since

Ve, EO o [ oo s [ EO
M)d’“/ (Q(x)+D(x)> d"“f Ode+ [ 505 &

and we already know how to integrate a polynomial, it follows that the task of integrating
rational functions reduces to that of integrating proper rational functions. We emphasize
that the technique we are about to explain requires that a rational function be proper so
that the long divison step is not optional. For example,

4 _ 3 2 _ 4.2'__1 —
/2x 3x° —4x* — 17x 6dx=/<2x+1+ 5% 4x 6> e

x3 —2x2 3y x3—2x2 -3y

P 4x* —14x — 6
=7 +A+/x3~2x2—3xdx

Distinct Linear Factors
‘We now consider
/ 452 — 14x — 6
B r
X3 —2x2 - 3x

It is essential that the denominator be expressed in factored form:

4x? — 14x — 6
/ X X dr
x(x 4+ D —3)
Observe that in this example the denominator consists only of linear factors and that

each factor occurs exactly once. It can be shown that, to each such factor x — a, there
corresponds a partial fraction of the form

A
X —a

A aconstant

such that the integrand is the sum of the partial fractions. If there are n such distinct

- linear factors, there will be n such partial fractions, each of which is easily integrated.

Applying these facts, we can write
4x* — 14x — 6 _A+ B n C
Xx+1DE—-3) x x41 x-—3
To determine the constants A, B, and C, we first combine the terms on the right side:
4x> — 14x — 6 A+ D —3)+Bx(x —3)+ Cx(x + 1)
x4+ 1) —3) x(x + 1)(x — 3)

1)

2This section can be omitted without loss of continuity.
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Since the denominators of both sides are equal, we can equate their numerators:
4% — 14x — 6 = A(x + 1)(x — 3) + Bx(x — 3) + Cx(x + 1) 2)
Although Equation (1) is not defined for x = 0,x = —1, and x = 3, we want
to find values for A, B, and C that will make Equation (2) true for all values of x, so
that the two sides of the equality provide equal functions. By successively setting x in
Equation (2) equal to any three different numbers, we can obtain a system of equations
that can be solved for A, B, and C. In particular, the work can be simplified by letting

x be the roots of D(x) = 0; in our case, x = 0,x = —1, and x = 3. Using Equation (2),
we have, for x = 0, :

—6 =A(1)(-3)+B(0)+ C0) = —34, s0A=2
12=A0)+B(—-1)(—4)+ C(0) =4B, soB=3

~12=A0) 4+ B0) + C(3)4) = 12C, soC= -1
Thus Equation (1) becomes

4x2—14x~6_2+ 3 1
xx+Dx=3) x x+1 x-3

/4x2—14x~—6d / 2+ 3 1 )d
e ([ 2 - - x
x(x+ Dx —3) x x+1 =x-3

dx dx dx
=2 = -
fx+3_/x+1 fx—~3

=2In|x|+3Injx+ 1| —~Injx—-3|+C

Hence,

For the original integral, we can now state that

2t —3x3 —4x2 —17x— 6

P e dx=x"+x+2Inlx|+3n|x+1| —Injx = 3|+ C

An alternative method of determining A, B, and C involves expanding the right side of
Equation (2) and combining like terms:

7 4x? — 14x — 6 = AGE — 2x — 3) + B — 3%) + CG2 +x)
‘ = Ax?> — 2Ax — 3A + Bx®> — 3Bx + Cx* + Cx
4x* —14x — 6 = (A+ B+ O)x> + (=24 — 3B + O)x + (—34)

For this last equation to express an equality of functions, the coefficients of correspond-
ing powers of x on the left and right sides must be equal:

4=A+B+C
—14=-24-3B+C
—6=—3A

Solving gives A = 2,B = 3, and C = —1 as before.
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APPLY IT >

;3 The marcmal 1Tevenue for a com—fg

:'pany manufactunnc q radios per weekf
o g+ .
1s U1ven b r’ e h rez
L Y. (q) T 2

r(g) i 1s the revenue in thousands of dol—

: lars Fmd the equanon for r (q)

Distinct Linear Factors

2x+1
3x2 —27

Determine f

dx by using partial fractions.

Solution: Since the degree of the numerator is less than the degree of the denominator,

no long division is necessary. The integral can be written as

1 2x+1
- d
3/x2—9 *

Expressing (2x + 1)/(x> — 9) as a sum of partial fractions, we have
241 2x+1 A B
P9 Gt+3e-3) x+3 i3

Combining terms and equating numerators gives '

2x+1=Ax—-3)+Bx+3)

If x = 3, then
7
7 = 6B, B=-
S0 6
If x = -3, then
5
—5 = —6A, A=~
so ¢
Thus,

/2x+1 dx:l /gdx+/ %a’x
3x2 — 27 3 x+3 x—3
1/5 7

Now Work Problem 1 <
Repeated Linear Factors

If the denominator of N(x)/D(x) contains only linear factors, some of which are
repeated, then, for each factor (x — a)*, where k is the maximum number of times
X — a occurs as a factor, there will correspond the sum of k partial fractions:

A B K
x—a (x—a)? (x — a)

XAMPLE 2 Repeated Linear Factors

6x* +13x+6
Determine | ——————— dx by using partial fractions.

G T T IER
Solution: Since the degree of the numerator, namely 2, is less than that of the denom-
inator, namely 3, no long division is necessary. In the denominator, the linear factor

x + 2 occurs once and the linear factor x + 1 occurs twice. There will thus be three

 partial fractions and three constants to determine, and we have

6x2 4+ 13x+6 A B cC

x4+ 2+ 1)? ”x+2+x+1 “L,(x+1)2

6"+ 13x + 6 = A + 1)> + B+ 2)(x + 1) + C(x + 2)
Let us choose x = —2,x = —1, and, for convenience, x = 0. For x = —2, we have
4=A
If x = —1, then
—-1=C
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If x =0, then
6=A+2B+2C=4+2B—-2=2+2B
4 =2B
2=28

Therefore,

6x2+13x+6 / dx
—————dx =4 / 5
(x+2)x + 1)? x+2 x+1 (x+1)

—41n|,x+7[+21n]x+1[+~:*1‘+C

) 1
=In[(x+2)* G+ D+ —=+C

The last line above is somewhat optional (depending on what you need the integral for).
It merely illustrates that in problems of this kind the logarithms that arise can often be
combined.

Now Work Problem 5 <

Distinct Irreducible Quadratic Factors

Suppose a quadratic factor x> + bx + ¢ occurs in D(x) and it cannot be expressed
as a product of two linear factors with real coefficients. Such a factor is said to be
an irreducible quadratic factor over the real numbers. To each distinct irreducible
quadratic factor that occurs exactly once in D(x), there will correspond a partial fraction
of the form
Ax+B
X24+bx+c

Note that even after a rational function has been expressed in terms of partial fractions,
it may still be impossible to integrate using only the basic functions we have covered
in this book. For example, a very simple irreducible quadratic factor is x*> 4 1 and yet

i dx
f 5 dx = = =tan"'x+C
x* 41 x* 41
where tan™" is the inverse of the trigonometric function tan when tan is restricted to

(—m/2,7/2). We do not discuss trigonometric functions in this book, but note that any
good calculator has a tan~! key.

1

An Integral with a Distinct Irreducible Quadratic Factor

—-2x —4
x4+ 2% 4 x
Solu‘uon Since x> +x%+4x = x(x2+x+1), we have the linear factor x and the quadratic
factor x? + x + 1, which does not seem factorable on inspection. If it were factorable

as (x = F1)(x — r2), with r| and r, real, then r; and r, would be roots of the equation
x* 4+ x+ 1 = 0. By the quadratic formula, the roots are

—1+/1-4
- 2
Since there are no real roots, we conclude that x? + x + 1 is irreducible. Thus there will
be two partial fractions and three constants to determine. We have
—2x—4 A Bx+C
(2 4+x+1) ;+x2+x+1
2 —4=A*+x+ 1)+ Bx+Ox
=Ax* + Ax + A+ Bx* + Cx

0 —2x—4=A+BP+A+C)x+A

Determine / dx by using partial fractions.
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Equating coefficients of like powers of x, we obtain

0=A+B
—2=A+4+C
—4 =A

Solving gives A = —4,B = 4, and C = 2. Hence,
—2x—4 —4 dx 42
f——,,——-—-—-dx=f ——-+T£j:~—° dx
x(x*+x+1) X x*+x+1
2 1
af e
x24+x+1
Both integrals have the form / —, 8O

—2x — 4 ,
f————————-dx:—41n]x|+21n|x2+x+1|+C
xG24x+1)
(2 +x+ 1)?
=In| —n-—" C
n[ . -+
Now Work Problem 7 <

Repeated Irreducible Quadratic Factors

Suppose D(x) contains factors of the form (x? + bx + ), where k is the maximum
number of times the irreducible factor x* + bx -+ ¢ occurs. Then, to each such factor
there will correspond a sum of k partial fractions of the form

A+ Bx C+ Dx + M + Nx
X24+bx+c (Z4+bx+c) &2+ bx + o)

Repeated Irreducible Quadratic Factors

x°
Determine / W dx by using partial fractions.

Solution: Since the numerator has degree 5 and the denominator has degree 4, we first
use long division, which gives
x 8x3 + 16x
= X =
x* + 8x2 + 16 (2 4 4)?
The quadratic factor x> 4 4 in the denominator of (8x> + 16x)/(x> + 4)? is irreducible s
and occurs as a factor twice. Thus, to (x> 4 4)? there correspond two partial fractions =~
and four coefficients to be determined. Accordingly, we set
8 +16x Ax+B  Cx+D
(2442 244 (2447

and obtain
8x> +16x = Ax + B> +4)+ Cx+D
8x° +0x2 +16x +0 =Ax> + Bx*> + YA+ C)x +4B+D

Equating like powers of x yields

8=A
0=B
16=4A4+C

0=4B+D




caution\

Be on the lookout for simple
solutions tco.
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Integration by Partial Fractions

Solving gives A = 8,B=0,C = —~16, and D = 0. Therefore,

/ X e 8x 16x 5
(2 + 472 ’

TG
X4+4 (2442

2x
=/xdx—4 /(—:m-)—z‘dl

The second integral on the preceding line has the form / —, and the third integral has

d
the form / "

x2

—. So

u?
_/ (x2 +4)2 2

From our examples, you may have deduced that the number of constants needed
to express N(x)/D(x) by partial fractions is equal to the degree of D(x), if it is assumed
that N(x)/D(x) defines a proper rational function. This is indeed the case. Note also
that the representation of a proper rational function by partial fractions is unique; that
is, there is only one choice of constants that can be made. Furthermore, regardless of
the complexity of the polynomial D(x), it can always (theoretically) be expressed as a
product of linear and irreducible quadratic factors with real coefficients.

—4In(x?+4) - +C

¥+ 4
Now Work Problem 27 <

XAMPLES An Integral Not Requiring Partial Fractions

APPLY IT »
4. The rate of change of the voting pop- Find 2x+3
ulation of a city with respect to time ¢ (in x2+3x 41

3007

is estimated to be V/(f) = o
years) is estimated to be (,); 216

Find the general form of V().

PROBLEMS 15.2

1
Solution: This integral has the form f — du. Thus,
I

/

2x+3

mdx:lnlx2+3x+ll+C

Now Work Problem 17 <

In Problems 1-8, express the given rational function in terms of
partial fmctions Watch out for any preliminary divisions.

10x X + 5
1. =— 2.
foy = 2+Tx+6 fo = =1
2 ‘ _xz —15
3. = 4. f(x) = ——nu—"
0= f0) ==
3x—1 2x+3
5. = 6. [E———
5. fx) O fx) = 2a-1)
X2 +3 32245
7. 8. f(x) = ———
F0 =5 0= ot
In Problems 9-30, determine the integrals.
0, /Sx—- 10./‘1?1‘—}—5
x2—~x x*+5x
1 —1
11. / 210, 2 [ 22 4
xt—x=2 x*—x—12
32 —3x+4 7(4 ~ x*)
3. | —————dx 14.
4x2 — 4 f (x=Hx —2)(x +3)

19x% — 5x — 36 4—x
el i 16. dx
1> mp T fx"——xz
2 —
17./‘ (37 + 4x3 x)d
x4+t —x2 -2
18, /‘x — +6r-11x+7d
23— 332 4+ 2
2x2—5x——2 5x3 422 4+x—3
19, — dx 20. dx
(x—22x~1) _/ S
(2 — —
21 /._(,\ +8) 22./ ét,x 3x2 +2x -3
x3 4 4x @+ 3+ DHx —2)
3 2 Oy L9 4 2
23 x° 4 8x" — 9x 42 5x% 4 9x +3dx

/ dx 24./

(x2 -+ D(x —3)? x(x? 4 1)

1223 +20x2 + 28x + 4

7x3 4 24x /
25. dx 26.
f G2 +3DE2+4) 3(x2 + D2+ 1)
" ; 4
27, /3; + 8x 28, /‘ —8x+
(2 4 2)? B4l +4x—6



700 Chapter 15 Methods and Applications of Integration

2+ 5x+ 5 32. Consumers’ Surplus  Suppose the demand equation for a
29. / 21Tx+12 12 ST 30. / 2 43x+2 2 manufacturer’s product is given by
200(g+3
31. Find the area of the region bounded by the graph of = ﬁ
6(2+ 1) where p is the price per unit (in dollars) when g units are
= “+2?7 demanded. Assume that markfat equilibrium occurs at the point
(g, p) = (10,325/22). Determine consumers’ surplus at market

and the x-axis fromx =0tox = 1. equilibrium.

Objective 15.3 Integration by Tables

Toillustrate the use of the table of Certain forms of integrals that occur frequently can be found in standard tables of

integrals in Appendix B. integration formulas.? A short table appears in Appendix B, and its use will be illustrated

in this section.

A given integral may have to be replaced by an equivalent form before it will fit
a formula in the table. The equivalent form must match the formula exactly. Conse-
quently, the steps performed to get the equivalent form should be written carefully
rather than performed mentally. Before proceeding with the exercises that use tables,
we recommend studying the examples of this section carefully.

In the following examples, the formula numbers refer to the Table of Selected
Integrals given in Appendix B.

MPLE1 = Integration by Tables

xdx
Find | ———.
i RCRRETE
Solution: Scanning the table, we identify the integrand with Formula (7):
udu 1 a
—_ =1 b o c
(a+buy? b? (n]a—i— ul+a+bu>+

Now we see if we can exactly match the given integrand with that in the formula. If we
replace x by u, 2 by a, and 3 by b, then du = dx, and by substitution we have

xdx udu 1 Inla -+ bul + LC

= = nla+ bu| + ——
(2 + 3x)? (a+bu? b2 a—+ b

Returning to the variable x and replacing a by 2 and & by 3, we obtain

xdx _1 ) 2 e
Q+3x2 9 24 3x

Note that the answer must be given in terms of x, the original variable of integration.

Now Work Problem 5 <.

Integration by Tables

 Find f x2/x2 — 1dx.
Solution: This integral is identified with Formula (24):
-4
Wt +a?du = %(21(2 + a2 +a? — % Inlu+vVul+a?|+C

In the preceding formula, if the bottommost sign in the dual symbol “+" on the left side
is used, then the bottommost sign in the dual symbols on the right side must also be

3See, for example, W. H. Beyer (ed.), CRC Standard Mathematical Tables and Formulae, 30th ed. (Boca Raton,
FL: CRC Press, 1996).




This example, as well as Examples 4, 5,
and 7, shows how to adjust an integral so
that it conforms to one in the table.
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used. In the original integral, we letu = x and a = 1. Then du = dx, and by substitution
the integral becomes

-/xzx/xz — ldx = /uz\/ u? — a? du
4
= g(Zuz — )Vt —a? - % Inlu+vVur—a?|+C

Sinceu =xanda=1,

1
/‘xlvx?- ldx = %(sz —Dyvx2—1- gln}x+\/x2 —-1+C

Now Work Problem 17 <

LE3 Integration by Tables

dx
Find / e
x4/16x2 4+ 3
Solution: The integrand can be identified with Formula (28):
du 1 |(Vi2+a?—a
—_— = - [— | - C
uviut +a>  a u

If we let u = 4x and a = /3, then du = 4 dx. Watch closely how, by inserting 4’s
in the numerator and denominator, we transform the given integral into an equivalent
form that matches Formula (28):

/ dx _/ (4 dx) _f du
X4/ 16x2+3 (4«\:) ,(4x)2+(ﬁ)2 U/ llz+a2
=lln Jul4+a?—a +c
a u
1 V16x2 +3—4/3

= —1In +C
J3 4x

Now Work Problem 7 <

MPLE4 Integration by Tables
. dx
Find / x-—————-——-2(2_-3x2)1/2.
Solution: The integrand is identified with Formula (21):
du Y a? —u?
Ny a’u

Letting u = /3x and a® = 2, we have du = +/3 dx. Hence, by inserting two factors of
/3 in both the numerator and denominator of the original integral, we have

+C

dx (+/3 dx) du
—_— = ./3 = -
/ x2(2 —3x2)1/2 f/ (+/3x)2[2 — (+/3%)2]1/2 ﬁf u*(a* — u?)\/?
=«/§[-——-—M}+c=«/§[-— “2*3x2}+c

a’u 2(+/3%)
/2 — 3x2
B ﬂ__ﬂi +e

Now Work Problem 35 <
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Here we determine the limits of

integration with respect to u.

Integration by Tables

Find f 7x% In (4x) dx.

Solution: This is similar to Formula (42) with n = 2:

W inu Tian
"Inudu = - C
/u nudu ——l (12+1)2+

If we let u = 4x, then du = 4 dx. Hence,

f 7x% In (4x) dx = —73- f (4x)? In (4x)(4 dx)

7 ) 7 (WPlnu 3
niidy = — ~)+c
64/14 nudu 64( 3 9>+

7 (@x)PIn(dx)  (4x)
’62( 3 9 >+C

_ 1n(4x)_l
=7 ( 3 9>+C

3
= %(3 In(4x) - 1)+ C

Now Work Problem 45 <

MPLE 6 Integral Table Not Needed

e* dx
Find .
" /7+e2x

Solution: At first glance, we do not identify the integrand with any form in the table.
Perhaps rewriting the integral will help. Let « = 7 + %', then du = 2¢* dx. So
j e dx Qe¥dx) 1 fdu 1

= — e T —_—= -1 C
Them 2] T 2 w ok

1 : 1
= Eln|7+ez‘|—|—C=;1n(7+e7“‘)+C

Thus, we had only to use our knowledge of basic integration forms. [Actually, this form
appears as Formula (2) in the table, witha = 0 and b = 1.]

Now Work Problem 39 <

MPLE 7 Finding a Definite Integral by Using Tables
4
dx
Evaluate '/lv W
Solution: We will use Formula (32) to get the indefinite integral first:
du
2 7= +C
@ +a®’? 2/ £ a?

Letting u = 2x and a® = 2, we have du = 2 dx. Thus,

1 2dx)
/ @222 " 2) @7 +2P f P
_ 1 u c
=2 (zm> i

Instead of substituting back to x and evaluating from x = 1 to x = 4, we can determine
the corresponding limits of integration with respect to u and then evaluate the last
expression between those limits. Since # = 2x, when x = 1, we have 1 = 2; when




o e o S o o i, R
H i A i :

cauTioN\

When changing the variable of
integration x to the variable of integration
i, be sure to change the limits of
integration so that they agree with u.
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x =4, we have u = 8. Hence, -

/ _ 1 du
1 @x2 42072 2 [, (WP +2)32
1
)

B I 2 1
2vu? +2

Integration Applied to Annuities

Tables of integrals are useful when we deal with integrals associated with annuities.
Suppose that you must pay out $100 at the end of each year for the next two years.
Recall from Chapter 5 that a series of payments over a period of time, such as this,
is called an annuity. If you were to pay off the debt now instead, you would pay the
present value of the $100 that is due at the end of the first year, plus the present value
of the $100 that is due at the end of the second year. The sum of these present values
is the present value of the annuity. (The present value of an annuity is discussed in
Section 5.4.) We will now consider the present value of payments made continuously
over the time interval from t = Qtot = T, with 7 in years, when interest is compounded
continuously at an annual rate of r.

Suppose a payment is made at time 7 such that on an annual basis this paymentis ().
If we divide the interval [0, 7] into subintervals [#;_1, ;] of length dr (where dt is small),
then the total amount of all payments over such a subinterval is approximately f(z;) dz.
[For example, if () = 2000 and dt were one day, the total amount of the payments
would be 2000(3%5).] The present value of these payments is approximately e~ " f (1;) dt.
(See Section 5.3.) Over the interval [0, T'], the total of all such present values is

D ey dt

This sum approximates the present value A of the annuity. The smaller dt is, the bet-
ter the approximation. That is, as dt — 0, the limit of the sum is the present value.
However, this limit is also a definite integral. That is,

2 - V66 B 2./6
Now Work Problem 15 <1

oy :
A= f fe "dt : 1y
0 , '

~ where A is the present value of a continuous annuity at an annual rate r (com-
~ pounded continuously) for T years if a payment at time ¢ is at the rate of f (¢) per year. -

We say that Equation (1) gives the present value of a continuous income stream.
Equation (1) can also be used to find the present value of future profits of a business.
In this situation, f(¢) is the annual rate of profit at time .

‘We can also consider the future value of an annuity rather than its present value. If
a payment is made at time ¢, then it has a certain value at the end of the period of the
annuity—that is, T — ¢ years later. This value is

amount of n interest on this
payment payment for 7' — ¢ years
If § is the total of such values for all payments, then S is called the accumulated amount
of a continuous annuity and is given by the formula

S= / f(t)e'U-‘) dt

- where S'i is the accumulated amount of a contmuous annmty at the endof T years
 at an annual rate r (compounded contmuously) when a payment at time ¢ is at the
%rateoff(t)peryear ... ___...__ __ .
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PROBLEMS 15.3

In Problems I and 2, use Formula (19) in Appendix B to determine

the integrals.

dx
1. f T 2. /

In Problems 3 and 4, use Formula (30) in Appendix B to determine

the integrals.

Chapter 15 Methods and Applications of Integration

Present Value of a Continuous Annuity

Find the present value (to the nearest dollar) of a continuous annuity at an annual rate
of 8% for 10 years if the payment at time ¢ is at the rate of 2 dollars per year.

Solution: The present value is given by

T 10
= f fOe " dr = / 2008 gy
0 0

We will use Formula (39),

nau
u'e n _
ue™ du = —— | "™ du
a a

This is called a reduction formula, since: it reduces one integral to an expression that
involves another integral that is easier to determine. If u = t,n = 2, and @ = —O0. 08,
£2—0.081

then du = dt, and we have
2 10 0.081
— te” > dr
~0.08 ~0.08 / ¢

In the new integral, the exponent of ¢ has been reduced to 1. We can match this integral
with Formula (38),

10

/ue‘"‘ du = E7((111 -4+ C
2

by letting # = t and a = —0.08. Then du = dr, and

10 > 008 10 2 —0.08¢
A= tre N dr = —
/0 ¢ o —0.08 <(—0.08)2
10008 2 ( e08

1
" 2008 (—0.08)2(“0'8_1) (— 008)’( D)

— 10
12 e 0.08:

—0.08

(—0.08r — 1))

0

—0.08
~ 185

The present value is $185.

Now Work Problem 59 <

7 dx
13, | ——— 14.
f x(5 + 2x)? f x«/S—lLv
dx
e S, xdx —3x" dx
T Ax2V3/2 5. 16.
(25 ~ 422y 15 fo Tix /2—5,\'

17. f V2 —3ax 18. f &

(1 -+ 5x)(2x +3)

dx 4 3dx 1/12 s 2 F 3x
W T o = 19. ./0 xe " dx 20. f \ 5T dx
' - integrals by usi i 2 4dx
In Plobl.e.ms 5-38, find the integrals by using the table in 21, f Bt d 2. / .
Appendix B. p X1 4x)
dx 2 dx ¢
5. f — = 6. / dr b [V S o
x(6 + 7x) (24 3x)? Y T X2 —x
dx xdx 2dx
7. | —— 8. / ———re 25, | ———— 26.
f x/x24+9 @247y (1 4 3x)? V(203 + 2x)
xdx dx 2
—_— 10. | 2% dx 27. | ——— 28. / 7x7V/3x2 — 6 dx
2 +30@ +5%) / 7552 !
1 dx 120 [ 2 T e 29. / 36x° In (3x) dx 30. / Lo
1. / TToE 2. | x +xdx X2(3 4+ 2x)?
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31 ST Zx dx 32 9% Inx d - occurs, where the g’s represent gene frequencies. Evaluate this
: : Y integral.
33 / dx 4 dx 58. Biology Under certain conditions, the number 1 of
) J4x2 — 13 ) x1In(2x) generations required to change the frequency of a gene from 0.3
. 2dx B2 to 0.1 is given by’
B. | s 36. = dx o
x2/16 — 9x2 x "= __hl_ / dgq _—
37 f dx [ 3 dx 04 Jos @20 —0)
TS a(r +TeVE) 38 _/0 14 2x3 Find n (to the nearest integer).
In Problems 39-56, find the integrals by any method. 59. Continuoqs Annuity . Find the present value, to the nearest
vdx - dollar, of a continuous annuity at an annual rate of r for T years if
39. / - I 40. / 3x/xe" dx the payment at time ¢ is at the annual rate of () dollars, given that
iR , @ r=004 T=9  f(r)=1000
(Inx) 5x° — . fx b) r= _ __
41. dx Q. | ———d () r=006 T=10 f() =500
* ‘ ‘:‘ 60. If f(r) = k, where k is a positive constant, show that the value
43. f ___‘2__ 44, e dx of the integral in Equation (1) of this section is
x> —5x+6 /e 1+ 3 k<1_e_rT)
4s. / ¥ Inxdx 46. f (9x — 6)e™ 3020 gy r
, 61. Continuous Annuity  Find the accumulated amount, to the
47. / 436 dy 48. / 35x2/3 + 2x dx nearest dollar, of a continuous annuity at an annual rate of r for T
1 years if the payment at time ¢ is at an annual rate of f(¢) dollars,
49 /12-dx 50. [ arinadc given that
o A /1 ranx @ r=002 T=10 f@©)=100
U vdx i} 3 (b) r=0.01 T=10  f(@) =200
51' 234 x 52. /2 xV2+ 3xdx 62. Value of Business  Over the next five years, the profits of
U oxdy In2 a business at time ¢ are estimated to be 50,0007 dollars per year.
53. f = 54, / x> dx The business is to be sold at a price equal to the present value of
0 /8-—x* 0 these future profits. To the nearest 10 dollars, at what price should
) P
2 Ry 2 the business be sold if interest is compounded continuously at the
55. . xln (2x) dx 56. /; dA annual rate of 7%7?

57. Biology In a discussion about gene frequency,* the integral

/“ln dq
qo Q(l - Q)

Objective 15.4 Average Value of a Function

TOI devef!o% thefconoept ofthe average  If we are given the three numbers 1, 2, and 9, then their average value, or mean, is their
value ora function. sum divided by 3. Denoting this average by ¥, we have
14+249

S_lv249
Y 3

Sirmilarly, suppose we are given a function f defined on the interval [a, b], and the
points x1,Xa, . . ., X, are in the interval. Then the average value of the n corresponding
function values f(x;),f(x2), ..., f(xy) is

3 =f(xl) +f) + -+ F ) _ ;f(xi)
n 7

We can go a step further. Let us divide the interval [a, b] into » subintervals of equal
length. We will choose x; to be the right-hand endpoint of the ith subinterval. Because

(1

4W. B. Mather, Principles of Quantitative Genetics (Minneapolis: Burgess Publishing Company, 1964).
SE. O. Wilson and W. H. Bossert, A Primer of Population Biology (Stamford, CT: Sinauer Associates, Inc., 1971),
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waf~t

1 ‘ 2

FIGURE 15.1 Geometric interpretation
of the average value of a function.

b—
[a, b] has length b — a, each subinterval has length
Equation (1) can be written

3 f) (;@ %Zf(xi) dx
f=1

_ o =1 1
y= = =— ;f(x") dx )

n n

,'Wpich we will call dx. Thus,

b— 1
Since dx = a , it follows that ndx = b — a. So the expression — in Equation (2)
n

can be replaced by o Moreover, as n —> ©0, the number of function values used in
a

computing y increases, and we get the so- caHed average value of the function f, denoted
by f:

f=Jim [ Zf( ) dx} — lim Zf(xo dx

But the limit on the right is just the definite integral f e (x) dx. This motivates the
following definition:

Find the average value of the function f(x) = x® over the interval [1,2].
Solution:

Now Work Pro‘blem 14

In Example 1, we found that the average value of y = f(x) = x? over the 1nterval
[1,2]i 1s z. We can interpret this value geometrically. Since
1 2
2—-1
by solving for the integral we have

2 7
‘/fa=—@~n
) 3

However, this integral gives the area of the region bounded by f(x) = x* and the x-axis
from x = 1 to x = 2. (See Figure 15.1.) From the preceding equation, this area is
(%) (2 — 1), which is the area of a rectangle whose height is the average value f = %
and whose widthisb —a=2—1=1.

7
2

2 dy = =
* 3

XAMPLE 2 Average Flow of Blood

Suppose the flow of blood at time ¢ in a system is given by
7
F)= — 0<t<T
,( ) (14 ar)? T
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where F| and « (a Greek letter read “alpha”) are constants.® Find the average flow F
on the interval [0, T'].

Solution:
. T
F=—— F(t)dt
-0/, ®
1 TR F (T 5
== T—dt=— “adt
Tfo 1+ ar)? anO (1 +an)™(adn)

R (Q+ad™\[| R 1 .
" aT —1 o of \ 1+4aT

Fl —1+14+aT _Fl al N F1
aT 1+aT T aT \14aT) 1+aT

Now Work Problem 11 <

f

PROBLEMS 15.4

In Problems 1-8, find the average value of the function over the value S (in dollars) is given by S = 3000e%9%, Find the average
given interval. value of a two-year investment.

1L fx)=x% [-1,3] 2. fy=2x+1; [0,1] 12. Medicine Suppose that colored dye is injected into the
3. F(¥) =2 —3x% [—l; 2] 4 fo)=x>+x+1; [1,3] bloodstream at a constant rate R. At time ¢, let

5. f() =27 [-3,3] 6. f(t) = /TG, [0, 4] C) = 'ﬁ%

7. f&x) = Vx; [0,1] 8. f(x) =5/x* [1,3]

be the concentration of dye at a location distant (distal) from the
point of injection, where F(¢) is as given in Example 2. Show that
the average concentration on [0, 7] is

—  R(l+aT + 30°T?)
where g is the number of units of the product sold. Find the C= Fi
average profit on the interval from ¢ = 0 to ¢ = 100.

9. Profit The profit (in dollars) of a business is given by

P = P(q) = 369q — 2.14* — 400

13. Revenue Suppose a manufacturer receives revenue r from

10. Cost  Suppose the cost (in dollars) of producing g units the sale of ¢ units of a product. Show that the average value of the
of a product is given by marginal-revenue function over the interval [0, go] is the price per
¢ = 4000 + 10g + 0.1¢° unit when ¢gg units are sold.
. 1
Find the average cost on the interval from ¢ = 100 to ¢ = 500. 14. Find the average value of f(x) = m over the
11. Investment An investment of $3000 earns interest at an interval [0, 1] using an approximate integration technique. Round
annual rate of 5% compounded continuously. After ¢ years, its your answer to two decimal places.

Objective ‘ 15.5 Differential Equations

g? SOIVteha giﬁ?r ential ?guatifon b_ytl)Jlsing Occasionally, you may have to solve an equation that involves the derivative of an
Toed?;?:us% p%ﬂsi‘gag;asgﬂt%nvsagﬁd 5. unknown function. Such an equation is called a differential equation. An example is
general solutions. To develop interest , 2

compounded continuously in terms of Y =xy (1)
a differential equation. To discuss . . . . . . . .

exponential growth and decay. More precisely, Equation (1) is called a first-order differential equation, since it

involves aderivative of the first order and none of higher order. A solution of Equation (1)
is any function y = f(x) that is defined on an interval and satisfies the equation for all
x in the interval.

6W. Simon, Mathematical Techniques for Physiology and Medicine (New York: Academic Press, Inc., 1972).
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To solve y' = xy?, equivalently,

dy 2 '

cAp—— 2
=P )
we think of dy/dx as a quotient of differentials and algebraically “separate variables”
by rewriting the equation so that each side contains only one variable and a differential
is not in a denominator:

&

=xdx

tol

<

Integrating both sides and combining the constants of integration, we obtain

1
f;dy:/xdx

—— = C
2+1

1___x2+2C1

y_ 2

Since 2C is an arbitrary constant, we can replace it by C.

1 x*+C
= 3
y 2
Solving Equation (3) for y, we have
2
=— 4
Y 24+C @

We can verify that y is a solution to the differential equation (2):
For if y is given by Equation (4), then

dy 4x
dx P+ CF
while also
) 2 P 4x

showing that our y satisfies (2). Note in Equation (4) that, for each value of C, a differ-
ent solution is obtained. We call Equation (4) the general solution of the differential
equation. The method that we used to find it is called separation of variables.

In the foregoing example, suppose we are given the condition that y = —% when
x = 1;thatis, y(1) = —%. Then the particular function that satisfies both Equation (2)

. and this condition can be found by\ substituting the values x = l and y = —-% into
Equation (4) and solving for C:
2 2
37 12+¢C
cC=2

Therefore, the solution of dy/dx = xy* such that y(1) = ——% is

2
T x22

y=

We call Equation (5) a particular solution of the differential equation.




