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n the mid-1970s, economist Arthur Laffer was explaining his views on taxes to a
politician. To illustrate his argument, Laffer grabbed a paper napkin and sketched
the graph that now bears his name: the Laffer curve.
: The Laffer curve describes total government tax revenue as a function of the
tax rate. Obviously, if the tax rate is zero, the government gets nothing. But if the tax
rate is 100%, revenue would again equal zero, because there is no incentive to earn
money if it will all be taken away. Since tax rates between 0% and 100% do generate
revenue, Laffer reasoned, the curve relating revenue to tax rate must look, qualitatively,
more or less as shown in the figure below.

Laffer’s argument was not meant to show that the optimal tax rate was 50%. It was
meant to show that under some circumstances, namely when the tax rate is to the right

- of the peak of the curve, it is possible to raise government revenue by lowering taxes.

This was a key argument made for the tax cuts passed by Congress during the first term
of the Reagan presidency.

Because the Laffer curve is only a qualitative picture, it does not actually give an
optimal tax rate. Revenue-based arguments for tax cuts involve the claim that the point
of peak revenue lies to the left of the current taxation scheme on the horizontal axis. By
the same token, those who urge raising taxes to raise government income are assuming
either a different relationship between rates and revenues or a different location of the
curve’s peak.

By itself, then, the Laffer curve is too abstract to be of much help in determining the
optimal tax rate. But even very simple sketched curves, like supply and demand curves
and the Laffer curve, can help economists describe the causal factors that drive an econ-
omy. In this chapter, we will discuss techniques for sketching and interpreting curves.

Tax revenue

0 100%
Tax rate
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Objective

To find when a function is increasing or
decreasing, to find critical values, to
locate relative maxima and relative
minima, and to state the first-derivative
test. Also, to sketch the graph of a
function by using the information
obtained from the first derivative.

13.1 Relative Extrema

Increasing or Decreasing Nature of a Function

Examining the graphical behavior of functions is a basic part of mathematics and has
applications to many areas of study. When we sketch a curve, just plotting points may
not give enough information about its shape. For example, the points (—1,0), (0, —1),.
and (1, 0) satisfy the equation given by y = (x+1)3(x— 1). On the basis of these points,
we might hastily conclude that the graph should appear as in Figure 13.1(a), but in fact
the true shape is given in Figure 13.1(b). In this chapter we will explore the powerful
role that differentiation plays in analyzing a function so that we can determine the true
shape and behavior of its graph.

AN

-1

(a) (b)
FIGURE 13.1 Curves passing through (—1,0), (0, —1), and (1, 0).

We begin by analyzing the graph of the function y = f(x) in Figure 13.2. Notice
that as x increases (goes from left to right) on the interval I, between a and b, the
values of f(x) increase and the curve is rising. Mathematically, this observation means
that if x; and x, are any two points in /; such that x; < x, then f(x;) < f(x2). Here
f is said to be an increasing function on I;. On the other hand, as x increases on the
interval I between ¢ and 4, the curve is falling. On this interval, x3 < x4 implies that
f(x3) > f(xy), and f is said to be a decreasing function on I,. We summarize these
observations in the following definition.

Definition

A function f is said to be increasing on an mterval I when, for any two numbers
Xi, X in L ifx) < xp, then f () <f (x2). A functlon f is decreasing on an mterval I
when for any two numbers X1, m I, 1f ,xl < Xa, then f@) >f ().

y

y=f@®
Positive slope n Negative slope
F (x>0 A AN 7 (<0
1 1
(O -
! |
f(l1)< f(x) fx) >f(«\4)
| ! | |
Y Y ¥ ¥ x
X3 Xy b X3 Xy d
\ J
Y Y
I )
fincreasing fdecreasing

FIGURE 13.2 . Increasing or decreasing nature of function.
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In terms of the graph of the function, f is increasing on [ if the curve rises to the
right and f is decreasing on / if the curve falls to the right. Recall that a straight line
with positive slope rises to the right while a straight line with negative slope falls to the
right.

Turning again to Figure 13.2, we note that over the interval /;, tangent lines to the
curve have positive slopes, so f’(x) must be positive for all x in I;. A positive derivative
implies that the curve is rising. Over the interval I, the tangent lines have negative
slopes, so f'(x) < O for all x in I,. The curve is falling where the derivative is negative.
We thus have the following rule, which allows us to use the derivative to determine
when a function is increasing or decreasing:

Rule1 Crltena: lncreasmg rDecreasrng Func‘hon

Letf be differentiable on the interval (a, b) If f/(x) > O for all x in (a, b) then f 1s
_ increasing on (a, b). i) < O_for all xin (a b), then fis decreasmc on (q, b) -

To illustrate these ideas, we will use Rule 1 to find the intervals on which
y=18x— %x3 is increasing and the intervals on which y is decreasing. Lettingy = f(x),
we must determine when f'(x) is positive and when f’(x) is negative. We have

F)=18—2x* =209 —x) =23 +x)(3 —2)

Using the technique of Section 10.4, we can find the sign of f'(x) by testing the intervals
determined by the roots of 2(3 + x)(3 — x) = 0, namely, —3 and 3. These should be
arranged in increasing order on the top of a sign chart for f’ so as to divide the domain
of f into intervals. (See Figure 13.3.) In each interval, the sign of f'(x) is determined
by the signs of its factors:

—o -3 3 o
3+4x - 1] + +

3-x + + -

) - 1) + o -

@ T~ T

FIGURE 13.3 Sign chart for f'(x) = 18 — 9x® and its interpretation for f(x).

is a schematic version of what the signs of f” say aboutf itself. Notice that the horizontal

! y=18c— 3543? Ifx < -3, then sign(f’'(x)) = 2(—)(+) = —, sof is decreasing.
o -3 <x<3, then sign(f’(x)) = 2(+)(+) = +, sof is increasing.
Ifx>3 then sign(f’'(x)) = 2(+)(—) = —, sof is decreasing.
\ | ~ These results are indicated in the sign chart given by Figure 13.3, where the bottom line j

line segments in the bottom row indicate horizontal tangents for f at —3 and at 3. Thus,
f is decreasing on (—oo, —3) and (3, co) and is increasing on (—3, 3). This corresponds
to the rising and falling nature of the graph of f shown in Figure 13.4. Indeed, the point
of a well-constructed sign chart is to provide a schematic for subsequent construction

-36
of the graph itself.
Decreasing - Increasing =~ Decreasing
Extrema
FIGURE 13.4 Increasing/decreasing for ) . .
y=18x— 25, Look now at the graph of y = f(x) in Figure 13.5. Some observations can be

made. First, there is something special about the points P, O, and R. Notice that P
is higher than any other “nearby” point on the curve-—and likewise for R. The point
Q is lower than any other “nearby” point on the curve. Since P, , and R may not
necessarily be the highest or lowest points on the entire curve, we say that the graph
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a) = ‘ f(c)
T does not exist
e E X R -« Relative
' \ H maximum
1 Relative :
| maximum : sign (f'(x)) = —
H i !
: Relative .7 !/ (b) =0 !
: minimum ! ! .
’ a b c Y

FIGURE 13.5 Relative maxima and relative minima.

of f has relative maxima at a and at ¢; and has a relative minimum at b. The function

_:'l [ has relative maximum values of f(a) at a and f(c) at ¢; and has a relative minimum
CAUTION: value of f(b) at b. We also say that (a,f(a)) and (c,f(c)) are relative maximum points
Be sure to note the difference between and (b,f(b)) is a relative minimum point on the graph of f.

geclfi"e extreme values and where they Turning back to the graph, we see that there is an absolute maximum (highest point

on the entire curve) at a, but there is no absolute minimum (lowest point on the entire
curve) because the curve is assumed to extend downward indefinitely. More precisely,
we define these new terms as follows:

Defmmon

A function f has a relatwe maximum at a if there is an open interval containing a
on which f(a) > f(x) for all x in the interval. The relative maximum value is f(a). A
function f has a relative minimum at a if there is an open interval containing a on
Wthh f (a) <f (;x) for all x in the interval. The relatlve mmlmum value'is f(a).

Definition
If it exists, an absolute maximum value is
unique; however, it may occur at more A functlon f has an absolute maxzmum at aiff (@ > > f(x) for all x in the domain of

than one value of x. A similar statementis | Jf- The absolute maximum value is f(a). A function f has an absolute minimum ata
true for an absolute minimum. if f(@) < f(x) for all x in the domain of f. The absolute minimum value is f(a).

We refer to either a relative maximum or a relative minimum as a relative extremum
(plural: relative extrema). Similarly, we speak of absolute extrema.

When dealing with relative extrema, we compare the function value at a point with
values of nearby points; however, when dealing with absolute extrema, we compare the
function value at a point with all other values determined by the domain. Thus, relative
extrema are [ocal in nature, whereas absolute extrema are global in nature.

Referring to Figure 13.5, we notice that at a relative extremum the derivative may
not be defined (as when x = ¢). But whenever it is defined at a relative extremun, it is
0 (as when x = a and when x = b), and hence the tangent line is horizontal. We can
state. the following;

ipRuIe 2 A Necessary Condmon for Relatlve Extrema
Iff has a relatlve extremum ata, then r ’(a) Oor f’(a) does not exist.

The implication in Rule 2 goes in only one direction:

7 p— 0
relative extremum .. f@
at & implies or
f'(a) does not exist

Rule 2 does not say that if f/(a) is 0 or f*(a) does not exist, then there must be a relative
extremum at a. In fact, there may not be one at all. For example, in Figure 13.6(a), f'(a)
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-

“ f!(a) does not exist
but no relative
extremum at a

y=fx

filay=

0
but no relative
extremum at a

(@) (®

FIGURE 13.6 No relative extremum at a.

is 0 because the tangent line is horizontal at a, but there is no relative extremum there.
In Figure 13.6(b), f'(a) does not exist because the tangent line is vertical at a, but again
there is no relative extremum there.

But if we want to find all relative extrema of a function—and this is an important
task—what Rule 2 does tell us is that we can limit our search to those values of x in the
domain of f for which eitherf'(x) = 0 orf’(x) does not exist. Typically, in applications,
this cuts down our search for relative extrema from the infinitely many x for which f
is defined to a small finite number of possibilities. Because these values of x are so
important for locating the relative extrema of f, they are called the crirical values for
f, and if a is a critical value for f, then we also say that (a,f(a)) is a critical point on
the graph of f. Thus, in Figure 13.5, the numbers a, b, and c¢ are critical values, and P,
0, and R are critical points.

@eﬂmimn

For ain the domain of 1. 1f either f’(a) 0 or f’(a) does not exist, then a is called a
crzttcal value for f If a 1s a cntlcal value then the pomt (a; f (a)) is called a crztzcal
: pomt for f ‘ .

At a critical point, there may be a relative maximum, a relative minimum, or nei-
ther. Moreover, from Figure 13.5, we observe that each relative extremum occurs at
a point around which the sign of f'(x) is changing. For the relative maximum at a,
the sign of f'(x) goes from + for x < a to — for x > a, as long as x is near a.
For the relative minimum at b, the sign of f'(x) goes from — to +, and for the relative
maximum at c, it again goes from -+ to —. Thus, around relative maxima, f is increas-
ing and then decreasing, and the reverse holds for relative minima. More precisely, we
have the following rule:

[ Rule 3 Criteria for Relatlve Extrema e

| Suppose f is continuous on an open mterval r that contams the cnﬁcal value a and
f is dlfferentlable on 1, except p0551b1y at a. , , -
1. If f’(x) chanoes from posmve to necatwe asx 1ncreases throuch a, then f has a
relative maximum ata. - - -

- 2. IEf(x) changes from neoatlve to posmve as x increases throucrh a, then f has a
, relatlve minimum at a. ' ,

To illustrate Rule 3 with a concrete example, refer again to Figure 13.3, the

sign chart for f’(x) 18 — 2x2. The row labeled by f'(x) shows clearly that
2
fx) = 18x — §x2 has a relative minimum at —3 and a relative maximum at 3. The

row providing the interpretation of the chart for f, labeled f(x), is immediately deduced




cauTioN\

‘We point out again that not every critical

value corresponds to a relative extremum.

For example, if y = f(x) = x°, then
F'(x) = 3x%. Since f/(0) =0,01isa

critical value. But if x < 0, then 3x% > 0,

and if x > 0, then 3x> > 0. Since f'(x)
does not change sign at 0, there is no
relative extremum at 0. Indeed, since
f/(x) = 0 for all x, the graph of f never
falls, and f is said to be nondecreasing.
(See Figure 13.8.)

y=fx=x

~f' (x)>0
X

Fx)>0—

\

frx=0

FIGURE 13.8 Zerois a critical value,
but does not give a relative extremumn.
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)I
A
—0 0 o
1 _ n
2
Fx) + -
Fx)>0
(a) (b)

FIGURE 13.7 f'(0) is not defined, but 0 is not a critical value because 0 is not in the domain of f.

from the row above it. The significance of the f(x) row is that it provides an intermediate
step in actually sketching the graph of f. In this row it stands out, visually, that f has a
relative minimum at —3 and a relative maximum at 3.

‘When searching for extrema of a function f, care must be paid to those a that are
not in the domain of f but that are near values in the domain of . Consider the following
example. If

1 2
y=fx)=-~, then f'(x)=-=
X X

Although f'(x) does not exist at 0, 0 is not a critical value, because 0 is not in the domain
of f. Thus, a relative extremum cannot occur at 0. Nevertheless, the derivative may
change sign around any x-value where f'(x) is not defined, so such values are important
in determining intervals over which f is increasing or decreasing. In particular, such
values should be included in a sign chart for f’. See Figure 13.7(a) and the accompanying
graph in Figure 13.7(b).

Observe that the thick vertical rule at 0 on the chart serves to indicate that 0 is not
in the domain of f. Here there are no extrema of any kind.

In Rule 3 the hypotheses must be satisfied, or the conclusion need not hold. For
example, consider the case-defined function

1
— ifxz0
fO) =3 x2 7
0 ifx=0
Here, 0 is explicitly in the domain of f but f is not continuous at 0. We recall from
Section 11.1 that if a function f is not continuous at a, then f is not differentiable at a,

meaning that f’(a) does not exist. Thus f’(0) does not exist and 0 is a critical value that
must be included in the sign chart for /' shown in Figure 13.9(a). We extend our sign

T

—00 0 ]
L - K + gy
- r=re =%l
@) + - |
fx) /O\ .

(2 (d)
FIGURE 13.9 Zero is a critical value, but Rule 3 does not apply.
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APPLY IT »

1. The cost equation for a hot do*y stand
is given by c(g) = 2¢° — 21q” + 60g+
500, where g is the number of hot dogs
sold, and c(q) is the cost in dollars. Use :

- the first-derivative test to find where rel-
ative extrema occur. '

chart conventions by indicating with a x symbol those values for which f’ does not
exist. We see in this example that f’(x) changes from positive to negative as x increases

through
because

0 but f does not have a relative maximum at 0. Here Rule 3 does not apply
its continuity hypothesis is not met. In Figure 13.9(b), 0 is displayed in the

domain of f. It is clear that f has an absolute minimum at 0 because f(0) = 0 and, for
allx £ 0,f(x) > 0.

Summarizing the results of this section, we have the first-derivative test for the
relative extrema of y = f(x):

FirSf-Derlvatlve Test for Relatlve Extrema ,

~Step 1.
Step. 2

_in the domain of £, and construct a sign chart that shows for each of the
~ intervals deterrmned by these values whether f is mcreasmv ( f ‘A (x) > 0) or
- decreasmu ( f’(x) <0). - "

Step3.

ata 1f f' (x) changes from + to — - going from left to right and a relative

~does not change swn there isno relatlve extremum at a.

“Find f/(x).

Determine all critical values of f [those a where f’ (a) = O or f’ (a) does"‘f
not exist] and any a that are not in the domain of f but that are near values

For each cntrcal value a at Wthh f is contmuous determme whether;
f’ (x) chances sign as x 1ncreases throuoh a. There is a relative maximum

minimum if f’(x) chanoes from - to 4 going from left to right. If f’ x)

Step 4.

Ify=f() = x+ —
X

For crmcal values a at Wthh f is.not contmuous analyze the 31tuat1on by '
usrncr the deﬁmtlons of extrema directly. , ,

First-Derivative Test

T for x = —1 use the first-derivative test to find where relative

extrema occur.

Solution:
Step 1. f(x) =x+4(x+1)"', 50

Step 2.

rroN _ R -2 _ 1 _ 4
ffX)=14+4--Dx+1)7" =1 G 1?
G+ 1)?P—4 X 4+2x—3
T § R c e §
:_____(x+3)(x:1) forx #£ —1

(x +1)?

Note that we expressed f'(x) as a quotient with numerator and denominator
fully factored. This enables us in Step 2 to determine easily where f'(x) is 0 or
does not exist and the signs of .
Setting f'(x) = 0 gives x = —3, 1. The denominator of f'(x) is O when x is
—1. We note that —1 is not in the domain of f but all values near —1 are in the
domain of f. We construct a sign chart, headed by the values —3, —1, and 1
(which we have placed in increasing order). See Figure 13.10.

The three values lead us to test four intervals as shown in our sign chart.
On each of these intervals, f is differentiable and is not zero. We determine the
sign of f on each interval by first determining the sign of each of its factors
on each iterval. For example, considering first the interval (—oo, —3), it is not
easy to see immediately that f'(x) > 0 there; but it is easy to see thatx+3 < 0
forx < —3, while (x-+1)"2 > Oforallx # —1,andx—1 < Oforx < 1. These
observations account for the signs of the factors in the (—oco0, —3) column of
the chart. The sign of f(x) in that column is obtained by “multiplying signs”
(downward): (—)(+)(—) = +. We repeat these considerations for the other
three intervals. Note'that the thick vertical line at —1 in the chart indicates that




FIGURE 13.11 Graphofy = x+ ——4—
x+1

(x)~13 - b +

') - p: < +

o | T~ —

FIGURE 13.12 Sign chart for

Fo =57

FIGURE 13.13 Derivative
does not exist at 0 and there is a
minimum at 0.
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—o -3 -1 . 1 %
x+3 - [ + + +
@+ 172 + + + +
x—1 - - - ) +
F(x) + ) - - 0 +
@ | T~ | T~
(x+3)x — D

FIGURE 13.10 Si forf'(x) =
Sign chart for f'(x) GrIp

—1 is not in the domain of f and hence cannot give rise to any extrema. In the
bottom row of the sign chart we record, graphically, the nature of tangent lines
to f(x) in each interval and at the values where f” is 0.

Step 3. From the sign chart alone we conclude that at —3 there is a relative maximum
(since f'(x) changes from + to — at —3). Going beyond the chart, we compute
f(=3) = =3+ (4/-2) = —35, and this gives the relative maximum value of
—5 at —3. We also conclude from the chart that there is a relative minimum
at 1 [because f'(x) changes from — to + at 1]. From f(1) = 1 +4/2 = 3 we
see that at 1 the relative minimum value is 3.

Step 4. There are no critical values at which f is not continuous, so our considerations
above provide the whole story about the relative extrema of f(x), whose graph
is given in Figure 13.11. Note that the general shape of the graph was indeed
forecast by the bottom row of the sign chart (Figure 13.10).

Now Work Problem 37 <

\MPLE2 A Relative Extremum where f'(x) Does Not Exist

Test y = f(x) = x*? for relative extrema.

Soluiion: We have
2
t — :J_—l/3
fx) 7

2

G

and the sign chart is given in Figure 13.12. Again, we use the symbol x on the vertical
line at O to indicate that the factor x~!/3 does not exist at 0. Hence f'(0) does not exist.
Since f is continuous at 0, we conclude from Rule 3 that f has a relative minimum at 0 of
f(0) = 0, and there are no other relative extrema. We note further, by inspection of the
sign chart, that f has an absolute minimum at 0. The graph of f follows as Figure 13.13.
Note that we could have predicted its shape from the bottom line of the sign chart in
Figure 13.12, which shows there can be no tangent with a slope at 0. (Of course, the
tangent does exist at 0 but it is a vertical line.)

Now Work Problem 41 <

AMPLE 3 Finding Relative Extrema
Test y = f(x) = x*¢* for relative extrema.
Solution: By the product rule,

Fi(x) = x% 4+ ¢ (2x) = xe"(x + 2)
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APPLY IT »

2. A drug is injected into a patient’s
_bloodstream. The concentration of the
“drug in the bloodstream t hours after:
- the injection is approximated by C(f) =

0.14¢
a4

forz > 0, and use them ,to,det‘err;nigekﬁ
- when the drug is at its greatest concen-

fration.

Curve Sketching

Find the relative extrema

—o -2 0 %
x+2 - ) + +
x - - ) +
& + + +
() + ) - ) +
| T~ —

FIGURE 13.14 Sign chart for f'(x) = x(x + 2)e*.

Noting that e* is always positive, we obtain the critical values 0 and 2. From the
sign chart of f'(x) given in Figure 13.14, we conclude that there is a relative maximum
when x = —2 and a relative minimum when x = 0.

Now Work Problem 49 <

Curve Sketching

In the next example we show how the first-derivative test, in conjunction with the
notions of intercepts and symmetry, can be used as an aid in sketching the graph of a
function.

Curve Sketching

Sketch the graph of y = f(x) = 2x? — x* with the aid of intercepts, symmetry, and the

first-derivative test.

Solution:

Intercepts If x = 0, then f(x) = 0 so that the y-intercept is (0, 0). Next note that
fx) = 22— =20 - = xz(«/i+x)(ﬁ — x)

Soify = 0, then x = 0,4+/2 and the x-intercepts are (—~/2,0), (0,0), and (+/2,0).

We have the sign chart for f itself (Figure 13.15), which shows the intervals over which

the graph of y = f(x) is above the x-axis (+) and the intervals over which the graph of
y = f(x) is below the x-axis (—).

~ V2 0 V2 ©
V2Z+x - ) + + +
x? + + 0 + +
V2Z-x + + * ) -
flx) - ) + o + 0 -

FIGURE 13.15 Sign chart for f(x) = (+/2 + x)22(+/2 — x).

Symmetry Testing for y-axis symmetry, we have

F(=x) = 2(=x)* — (=x)* = 2% —x* = f(%)

So the graph is symmetric with respect to the y-axis. Because y is a function (and not the
zero function), there is no x-axis symmetry and hence no symmetry about the origin.

First-Derivative Test

Step 1. y' = 4x — 423 = 4x(1 — x?) = 4x(1 + x)(1 — x).

Step 2. Setting y' = 0 gives the critical values x = 0, &1. Since f is a polynomial, it is
defined and differentiable for all x. Thus the only values to head the sign chart
for f’ are —1, 0, 1 (in increasing order) and the sign chart is given in Figure
13.16. Since we are interested in the graph, the critical points are important to

us. By substituting the critical values into the original equation, y = 2x* — x*,
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— -1 0 1 o
1+x - 0 + + +
4x - - { + +
1-x + + + 0 -
i) 0 0 )
) /"\_ /“\

FIGURE 13.16 Sign chart of ¥ = (1 + x)4x(1 — x).

we obtain the y-coordinates of these points. We find the critical points to be
(—1,1),(0,0), and (1, 1).

Step 3. From the sign chart and evaluations in step 2, it is clear that f has relative
maxima (—1, 1) and (1, 1) and relative minimum (0, 0). (Step 4 does not apply

here.)
Relative )i Relative y Z o
maximum | maximum (-1,1) y o t
e 1+ e y 1 (1 1)
P A\ /’\ /“\
H { i |
-1 LR —J2 -1 0,0 1 W2
Relative
minimum
(a) (b)
FIGURE 13.17 Putting together the graph of y = 2x* — a*.
Discussion  In Figure 13.17(a), we have indicated the horizontal tangents at the rela-

tive maximum and minimum points. We know the curve rises from the left, has arelative
maximum, then falls, has a relative minimum, then rises to a relative maximum, and
falls thereafter. By symmetry, it suffices to sketch the graph on one side of the y-axis
and construct a mirror image on the other side. We also know, from the sign chart for f,
where the graph crosses and touches the x-axis, and this adds further precision to our

sketch, which is shown in Figure 13.17(b).
As a passing comment, we note that absolute maxima occur at x == =1, See
Figure 13.17(b). There is no absclute minimum.

TECHNDLDGY

Now

Work Problem 59 <

A crralphmg calculator isa powerful tool for mvestwatma

relatwe extrema. For example consxder the funct1on ,
@) =3 — 4x +4ffff’ﬂ .

‘whose Oraph is shown n Floure 13.18. It appears that there ;

_ is arelative minimum near x = 1. We can locate this mini-
_ mumby either using “trace and zoom” or (on a TI-83 Plus)

using the “minimum” feature. Figure 13.19 shows the lat- -
ter approach. The relative rmmmum pomt is estlmated to

fbe (1. OO 3).

 FIGURE13.18

Graph of f(x) = 3x* — 4x* + 4.

- -8
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—
FlGURE 13 19 Relatlve mmunum at (1 OO 3)

; f,f(x) = 12x _ 122

. whose orraph is shown in Flcure 13 20 It appears that f’(x),;,, o
isOat two. pomts Using “trace and zoom’’ or the “‘zero”
L feature we estrmate the 10Ot of /=0 (the critical values ,
off) to be 1 and 0. Aroundx =1, we see thatf’(x) goes:

_ from negative values to posmve values. (That is, the graph
_of f' goes from below the x-axis to above 1t) Thus, we
_ conclude that f has a relative mmlmum at x= 1 whrch .
k conﬁrms our prev1ous result -

- Now let us see how the oraph of f’ 1ndlcates when
extrema occur We have ~ , '

»The graph of Yz approxunates the graph of f/(x).

"FIGURE 13 20 Graph off'(a.) = 12x3 — 1?.x“

Around the cntlcal value x = 0, the values of f/(x) are
- 'negatlve Since, f’(x) does not change sign, we conclude
__ that there is no relative extremum at x = 0. ThlS is also
- apparent from the graph in Figure 13.18. .
It is worthwhile to note that we can approxrmate the
: graph of 7/ without determining f/(x) itself. We make use
of the “nDeriv” feature FlI'St we enter the functlon fas Yl
~3Thenweset - o o

Y = nDenv(Y 1 X X)

PROBLEMS 13.1

In Problems 14, the graph of a function is given

(Figures 13.21-13.24). Find the open intervals on which the
Junction is increasing, the open intervals on which the function is
decreasing, and the coordinates of all relative extrema.

1.

y

_ N W A

FIGURE 13.21

1 : | [
-2 V \1/ 2
L\

FIGURE 13.22

3. y
A
X i
i y=f)
1_
H H i | 1 H | 1 I | i | X
-4 -2 | 4
FIGURE 13.23

4. y

FIGURE 13.24




In Problems 5--8, the derivative of a continuous function f is
given. Find the open intervals on which f is (a) increasing; (b)
decreasing; and (c) find the x-values of all relative extrema.

5. () = (x + 3)(x — D(x — 2)
6. f'(x) = 2x(x — 1)}

7. f'(x) = (x + D(x —3)? x(x +2)

1Y o
8. f0="5
In Problems 9-52, determine where the function is (a) increasing;
(b) decreasing; and (c) determine where relative extrema occur.
Do not sketch the graph.
9, y=—x>—1

10 y=x>4+4x+3
5
1. y=x—x>+2 12. y=x3—3x2—-2x+6

3 -4

B.y=-2-2245:—2 14 y=-1 3
3 4
15. y =x* — 252 16. y = -3+ 12x —x°

7,
17.y:,x3—;x”+lr——5 18 y=x>~6x2+12x—6

19
19, y=2x% — 7)—x2+ 10x+2 20 y= -5 +x2+x—7
3 9 . 47
21. y=i3——5x2+22x+1 22-)’=§x3—?x3+10x
6
23. y =35 — 5 24, y=3x— % (Remark: x* +
¥+ x> +x+1=0hasno
real roots.)
< 3t
25. y = —x° — 5x* 4200 26. y=%—4x3+17
4 . 13
27. y = 8x* — 18 28.y=§x°——3-x3+3x+4
29, y = (x? — 4)* 30. y = Jx(x —2)
5 3
31. y= 32, y=-
x—1 X
' 10 ax+b
33. ) == 34, m
y="7 e
(@) forad — bc > 0
(b) forad — bc < 0
x 36 .
P— . Y = 4xT -
35. y T y :
x2-3 2x?
37. y= 38, y= —
YT 312 Y= s
ax®+b '
39, y=— ford/c <0 40, y = ~/x3 =~9x
cx*+d -

(a) forad — bc > 0
(b) forad — bc <0

41, y=(x — 1)*3 42, y=x*(x+3)*
43. y =x}(x —6)* 44, y = (1 —x)*?
45. y=e¢""+m 46. y=xInx
47. y =x*~—9lnx 48, y=x"'¢
49, y=¢' — ™ 50, y=e /2
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51. y=xlnx —x 52. y=(x*+ e

In Problems 53—64, determine intervals on which the function is
increasing; intervals on which the function is decreasing; relative
extrema; symmetry; and those intercepts that can be obtained
conveniently. Then sketch the graph.

53 y=x*—3x—10 54, y=2x"4+x-10

55. y = 3x —-,1‘3 36. ¥y =x4 — 16

57. y=2x" —9x? + 12 58. y=2x3 —x2—dx +4
6

59, y= 3 —9y2 60. y = 6 gxa

61, y=(x— 1Y x+2)? 62. y= /302 —x—2)

63. _}’:2 X —X 64. )7:;1_'5/3_21-2/3

65. Sketch the graph of a continuous function f such that
f@Q=2f@=612)=f# =0, f'x) <Oforx <2,

J'(x) > 0for2 < x < 4, f has a relative maximum at 4, and
limx—»oof(x) = 0.

66. Sketch the graph of a continuous function f such that

) =2,f@ =5 Ff1)=0,f(x)>0forx <4, fhasa
relative maximum when x = 4, and there is a vertical tangent line
when x = 4.

67. Average Cost If ¢; = 25,000 is a fixed-cost function, show
that the average fixed-cost function ¢f = ¢ /g is a decreasing
function for ¢ > 0. Thus, as output g increases, each unit’s portion
of fixed cost declines.

68. Marginal Cost If c = 3g — 3¢* + ¢° is a cost function,
when is marginal cost increasing?

Given the demand function

p=500-5q

69. Marginal Revenue

find when marginal revenue is increasing.

70. Cost Function For the cost function ¢ = /@, show that
marginal and average costs are always decreasing for ¢ > 0.

71. Revenue For a manufacturer’s product, the revenue
function is given by r = 240q + 57¢* — ¢*. Determine the output
for maximum revenue.

72. Labor Markets Eswaran and Kotwal' consider agrarian
economies in which there are two types of workers, permanent
and casual. Permanent workers are employed on long-term
contracts and may receive benefits such as holiday gifts and
emergency aid. Casual workers are hired on a daily basis and
perform routine and menial tasks such as weeding, harvesting,
and threshing. The difference z in the present-value cost of hiring
a permanent worker over that of hiring a casual worker is given by

z = (1 4+ b)w, — bw,

where w), and w, are wage rates for permanent labor and casual
tabor, respectively, b is a positive constant, and w,, is a function
of w,.

(a) Show that

dz dw b
=(l1+b L
dw, (+0) [dwc 1+ b]
(b) I dw,,/dw. < b/(1 + b), show that z is a decreasing function
of w,.

M. Eswaran and A. Kotwal, “A Theory of Two-Tier Labor Markets in Agrarian
Economics,” The American Economic Review, 75, no. 1 (1985), 162-77.
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73. Thermal Pollution - In Shonle’s discussion of thermal
pollution,” the efficiency of a power plant is given by

E=071(1 ik
o Ty

where T}, and T, are the respective absolute temperatures of the
hotter and colder reservoirs. Assume that 7 is a positive constant
and that T}, is positive. Using calculus, show that as T}, increases,
the efficiency increases.

74. Telephone Service In a discussion of the pricing of local
telephone service, Renshaw® determines that total revenue r is
given by

;-=2F+(1—%)p—p2+a—;

where p is an indexed price per call, and a, b, and F are constants.

Determine the value of p that maximizes revenue.

75. Storage and Shipping Costs  In his model for storage and
shipping costs of materials for a manufacturing process,
Lancaster* derives the cost function

144
C(k) =100 <1oo+9k+ —k-> 1<k =< 100

where C(k) is the total cost (in dollars) of storage and
transportation for 100 days of operation if a load of k tons of
material is moved every k days.

(a) Find C(1).
(b) For what value of k does C(k) have a minimum?
(¢) What is the minimum value?

the bends. Suppose the percentage P of people who suffer effects
of the bends at an altitude of & thousand feet is given by>
100
1 + 100,000¢—0-36%
Is P an increasing function of 4?
In Problems 77-80, from the graph of the function, find the

coordinates of all relative extrema. Round your answers to two
decimal places. ‘

P =

E77. y=03x2+23x+51 EH78 y=3x"—4dx® —5x +1
79. y ==

8.2x

e (3 —x)
0.4x2+3

E80. y=
) Tx? 41

81. Graph the function

£ = Ix(x — 2)2x — 3)P

in the window —1 < x < 3, —1 <y < 3. Upon first glance, it may
appear that this function has two relative minimum points and one
relative maximum point. However, in reality, it has three relative

minimum points and two relative maximum points. Determine the
x-values of all these points. Round answers to two decimal places.

82. Iff(x) = 3x° — 7x? 4 4x -+ 2, display the graphs of f and f’

on the same screen. Notice that f'(x) = 0 where relative extrema
of f occur.

83. Letf(x) = 6 + 4x — 3x> — x°. (a) Find f'(x). (b) Graph f'(x).

(c) Observe where f'(x) is positive and where it is negative. Give
the intervals (rounded to two decimal places) where f is increasing
and where f is decreasing. (d) Graph f and f” on the same screen,

and verify your results to part (c).

84. I f(x) =x* —x% — (x + 2)%, find f'(x). Determine the critical
values of f. Round your answers to two decimal places.

76. Physiology—The Bends When a deep-sea diver undergoes
decompression or a pilot climbs to a high altitude, nitrogen may
bubble out of the blood, causing what is commonly called

13.2 Absolute Extrema on a Closed Interval

Objective
.TOt ﬁndlex’[reme values on a closed If a function f is continuous on a closed interval [a, b], it can be shown that of all
interval.

the function values f(x) for x in [a, b], there must be an absolute maximum value and
an absolute minimum value. These two values are called extreme values of f on that
interval. This important property of continuous functions is called the extreme-value
theorem

Extreme—Value Theorem

Ifa functlon 1s contmuous ona closed interval, then the functlon has both a maxunum
- value and a minimum value on that mterval o

For example, each function in Figure 13.25 is continuous on the closed interval [1, 3].
Geometrically, the extreme-value theorem assures us that over this interval each graph
has a highest point and a lowest point.

In the extreme-value theorem, it is important that we are dealing with

1. aclosed interval and
2. a function continuous on that interval

I Shonle, Environmental Applications of General Physics (Reading, MA: Addison-Wesley Publishing Com-
pany, Inc., 1975).

3E. Renshaw, “A Note on Equity and Efficiency in the Pricing of Local Telephone Services,” The American
Economic Review, 75, no. 3 (1985), 515-18.

4P. Lancaster, Mathematics: Models of the Real World (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1976).
5Adapted from G. E. Folk, Ir., Textbook of Environmental Physiology, 2nd ed. (Philadelphia: Lea & Febiger, 1974).
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¥y y .
4 Highest Highest
point point
;
I ] I
1 I |
I | 1
1 1 I 1
H i 1 1
1 i i
! Lowest ! : Lowest ;
! point ! 1 point :
i . i i
{ ] x { - x
1 3 1 3

FIGURE 13.25 Tllustrating the extreme-value theorem.

If either condition (1) or condition (2) is not met, then extreme values are not guaranteed.
For example, Figure 13.26(a) shows the graph of the continuous function fx) = x?
on the open interval (—1, 1). You can see that f has no maximum value on the interval
(although f has a minimum value there). Now consider the function f(x) = 1 /%2
on the closed interval [—1, 1]. Here f is not continuous at 0. From the graph of f in
Figure 13.26(b), you can see that f has no maximum value (although there is a minimum
value).

y y
=1
fo =2 ¥
K\\j://; |
¢ > X { 1 x
-1 1 -1 1
Open interval (—1, 1) Not continuous at 0
No maximum, minimum = 0 No maximum, minimum = 1
(a) (b)

FIGURE 13.26 Extreme-value theorem does not apply.

In the previous section, our emphasis was on relative extrema. Now we will focus
our attention on absolute extrema and make use of the extreme-value theorem where
possible. If the domain of a function is a closed interval, to determine absolute extrema
we must examine the function not only at critical values, but also at the endpoints. For
example, Figure 13.27 shows the graph of the continuous function y = f(x) over [a, b].
The extreme-value theorem guarantees absolute extrema over the interval. Clearly, the
important points on the graph occur at x = 4, b, ¢, and d, which correspond to endpoints

)7
T y=f@)
fle) —— Absolute
maximum, f (¢)

f(a) -<— Absolute minimum, f(a)
[ | ] x
a c d b
UR SR

Endpoint  Critical values - - Endpoint

FIGURE 13.27 Absolute extrema.
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or critical values. Notice that the absolute maximum occurs at the critical value ¢ and
the absolute minimum occurs at the endpoint a. These results suggest the following
procedure:

’Procedure to Fmd Absolute Extrema for a Functlon f That Is Contlnuou’sﬁ;

on [a. b] ’ o , '
Step 1. Find the crmcal values of f

f Step 2. Evaluate f (x) at the endpomts aandb and at the cntlcal values in (a b)

‘Step 3 The maximum value of  is the greatest of the values found in step 2. The
’ _ minimum value of f isthe least of the values found in step 2.

Finding Extreme Values on a Closed Interval

Find absolute extrema for f(x) = x> — 4x -+ 5 over the closed interval [1, 4].
Solution: Since f is continuous on [1, 4], the foregoing procedure applies.
Step 1. To find the critical values of f, we first find f':
) =2x—-4=2(x—2)
This gives the critical value x = 2.
o S~ Absolute Step 2. Evaluating f(x) at the endpoints 1 and 4 and at the critical value 2, we have

maximum. f (4)

y=xl—dx+51<x<4

ﬁf 1) = k values of f at endpoints
2F / Absolute f(4) = 5 :
1k minimum, f(2) and :
) x f(2) = l '; value of f at critical value 2 in (1, 4)

Step 3. From the function values in Step 2, we conclude that the maximum is f(4) = 5
and the minimum is f(2) = 1. (See Figure 13.28.)

Now Work Problem 1 <

FIGURE 13.28 Extreme values for
Example 1.

PROBLEMS 13.2

In Problems l—] 4, find the absolute extrema of the given function 12. f(x) = [O 2]

on the given interval.

L f(x)=x"—2x+3,[0,3] 13. f() = (x - 1)’/3, [~26,28]

2. f(x) = —2x2 — 6x + 5, [-3,2] 14. f(x) =0.2x> - 3.6x> + 2+ 1,[-1,2]

3. f) = 4 + §x* — 2x + 1, [-1,0] 15. Consider the function

4. fn) = gx* = 22, [0,1] FOr) = x* + 83 + 21x% + 20x + 9

5, f(x) = x> — 5x% — 8x + 50, [0, 5]

over the interval [—4, 9].
6. f(x) = x>, [-8,8]

(a) Determine the value(s) (rounded to two decimal places) of x

7. f&x) = —3x 4 5x%, [-2,0] at which f attains a minimum value.

8. f(x) = % B4t =3x+1,[0,3] . (b) What is the minimum value (rounded to two decimal places)
N 3t 6 [ : of f?7

% fO)=3x"—x, [-1,2] (c) Determine the value(s) of x at which f attains a maximum

10, F(x) = x* — 8x% +22x% — 24x + 2, {0, 4] value.

11, f(x) = x* — 9% +2, [—1,3] (d) What is the maximum value of f?

Objective 13.3 Concavity

To test a function for concavity and The first derivative provides much information for sketching curves. It is used to deter-

w{’lﬁq{tﬁmoena?dogiﬁ :‘!ﬁ%:r% ;?g;cgb?gggg mine where a function is increasing, is'decreasing, has relative maxima, and has relative %

from the first and second derivatives. minima. However, to be sure we know the true shape of a curve, we may need more




caution]\

Concavity relates to whether f*, not f,
is increasing or decreasing. In

Figure 13. 30(b), note that fis concave
up and decreasing; however, in'

Figure 13.31(a), f is concave down
and decreasing.
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. ¥y

X I
(a) (b)

FIGURE 13.29 Two functions with f'(x) < 0 forx < 0 and f'(x) > 0 for x > 0.

y

Yy y o y
y=i®
/ y=re y=7®
Slope \\/
/ increasing . SIOP? — Slope
increasing . -
T = increasing
X
() (b) (©)

FIGURE 13.30 Each curve is concave up.

information. For example, consider the curve y = f(x) = x°. Since f'(x) = 2x,x = 0
is a critical value. If x < 0, then f'(x) < 0, and f is decreasing; if x > 0, then f'(x) > 0,
andf is increasing. Thus, there is a relative minimum when x = 0. In Figure 13.29, both
curves meet the preceding conditions. But which one truly describes the curve y = x??
This question will be settled easily by using the second derivative and the notion of
concavity.

In Figure 13.30, note that each curve y = f(x) “bends” (or opens) upward. This
means that if tangent lines are drawn to each curve, the curves lie above them. Moreover,
the slopes of the tangent lines increase in value as x increases: In part (a), the slopes go
from small positive values to larger values; in part (b), they are negative and approaching
zero (and thus increasing); in part (c), they pass from negative values to positive values.
Since f'(x) gives the slope at a point, an increasing slope means that f must be an
increasing function. To describe this property, each curve (or function f) in Figure 13.30
is said to be concave up.

In Figure 13.31, it can be seen that each curve lies below the tangent lines and
the curves are bending downward. As x increases, the slopes of the tangent lines are
decreasing. Thus, f' must be a decreasing function here, and we say that f is concave
down.

y ¥ y
y=f® »=fe
Slope < Z

decreasing Slope Slope

I=fk) decreasing decreasing
pa
() (® ©
FIGURE 13.31 Each curve is concave down.
'Deﬁnmon

; 'Let f be dlfferentlable on the 1nterva1 (a b) Then f is sa1d to be cmzcave up [concave
’down] on (a b) if f’ is 1ncreasm0 [decreasmg] on (a b) ~ ~ , ,

Remember: If f is concave up on an interval, then, geometrically, its graph is
bending upward there. If f is concave down, then its graph is bending downward.
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Sincef" is increasing when its derivative f”(x) is posmve and " is decreasing when
f"(x) is negative, we can state the following rule: -

?"'Rule 1 Crrtena for Concawty

o] Let f’ be dlfferentlable on the 1nterva1 (a b) If f” (x) =0 for all xin (a b) then f
s concave up on (a b) If f” (x) < O for all xin (a b) then [ is concave down on
’"(a b) , , ;

A function f is also said to be concave up at a point ¢ if there exists an open interval
around ¢ on which f is concave up. In fact, for the functions that we will consider, if
f"(c) > 0, then f is concave up at c. Similarly, f is concave down at ¢ if f”(c) < 0.

Testing for Concavity

Determine where the given function is concave up and where it is concave down.
ay=fx)=x—-1P3+1.
Solution: To apply Rule 1, we must examine the signs of y”. Now,
y =3(x— 1) s0

' =6(x—1)
Thus, f is concave up when 6(x — 1) > 0; that is, when x > 1. And f is concave down

when 6(x — 1) < 0; that is, when x < 1. We now use a sign chart for f” (together with
an interpretation line forf) to organize our findings. (See Figure 13.32.)

y
0 1 oo
Concave | _x_

=1 - + down fl—- Concave

k_Y__J up
) - ot

| x
) n u o

y=fE)=(-13+1

FIGURE 13.32 Sign chart for f and concavity for f(x) = (x — 1)* + 1.

b. y =x%.

Solution: We have y’ = 2x and y” = 2. Because y” is always positive, the graph of
y = x° must always be concave up, as in Figure 13.29(a). The graph cannot appear as

in Figure 13.29(b), for that curve is sometimes concave down.
Now Work Problem 1 <

A point on a graph where concavity changes from concave down to concave up,
or vice versa, such as (1, 1) in Figure 13.32, is called an inflection point or a point of
inflection. Around such a point, the sign of f”(x) goes from — to + or from -+ to —.
More precisely, we have the following definition:

Deammon

The definition of an inflection point A function f has an mﬂectwn pomt at a 1f and only 1f fis contmuous ata and f
implies that a is in the domain of f. Chan"eS concav1ty ata.

To test a function for concavity and inflection points, first find the values of x
where f(x) is 0 or not defined. These values of x determine intervals. On each interval,




L y=et-gded
Inflection
points
/
1
2
3
STV *
27

Concave Concave Concave
up down up

FIGURE 13.35 Graph of
y=6x* -8 + 1.
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determine whether f”(x) > 0 (f is concave up) or f”(x) < 0 (f is concave down). If
concavity changes around one of these x-values and f is continuous there, then f has
an inflection point at this x-value. The continuity requirement implies that the x-value
must be in the domain of the function. In brief, a candidate for an inflection point must
satisfy two conditions:

1. f” must be O or fail to exist at that point.
2. f must be continuous at that point.

y
3

=ell3
_ x) =x!
j‘rr('\.) > / f( )
fconcave up Inflection poi
point
—Ht

X
(R
Fix) <0
frconcave down

FIGURE 13.33 Inflection point for f(x) = x!/3

The candidate will be an inflection point if concavity changes around it. For example,
if f(x) = x'73, then f'(x) = 1x~*3 and
2 2
7" _=.~5/3 — =

f'o) =5z 557
Because f” does not exist at 0, but f is continuous at 0, there is a candidate for an
inflection point at 0. If x > 0, then f”(x) < 0, so f is concave down for x > 0;ifx < 0,
then f(x) > 0, so f is concave up for x < 0. Because concavity changes at 0, there is
an inflection point there. (See Figure 13.33.)

Concavity and Inflection Points

Test y = 6x* — 8x* + 1 for concavity and inflection points.
Solution: We have

y = 24x’ — 24x*

y' = T72x* — 48x = 24x(3x — 2)

— 0 2/3 e
x - ( + +
3x — - - { +
3 + { - +
- y U n U

FIGURE 13.34 Sign chart of y" = 24x(3x — 2) for y = 6x% — 8x% + 1.

To find where y = 0, we set each factor in y” equal to 0. This gives x = 0, 3 2 We
also note that y” is never undefined. Thus, there are three intervals to conmder as
recorded on the top of the sign chart in Figure 13.34. Since y is continuous at 0 and 2,
these points are candidates for inﬂection points. Having completed the sign chart, we
see that concavity changes at 0 and at § 2. Thus these candidates are indeed inflection
points. (See Figure 13.35.) In summary, the curve is concave up on (-oo 0) and (3 ,00)
and is concave down on (0, 3) Inflection points occur at 0 and at 5 2 These points are

(0,_)’(0)) = (0: 1) and (3’}’(3)) = (3, 27)~
Now Work Probiem 13 <
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—c0 0 o
i +
.\'3 B '
1) - +
£x) n u

FIGURE 13.36 Sign chart for f"(x).

y

Concave
down

Concave
up

FIGURE 13.37 Graphofy = l
x

cauTioN]\

A candidate for an inflection point may
not necessarily be an inflection point. For
example, if f(x) = x*, then f"(x) = 12x°
and f7(0) = 0. But f"(x) > 0 both when
x < 0 and when x > 0. Thus, concavity
does not change, and there are no
inflection points. (See Figure 13.38.)

y=fx=x

FIGURE 13.38 Graph of
f@) =x"

As we did in the analysis of increasing and decreasing, so we must in concavity
analysis consider also those points a that are not in the domain of f but that are near
points in the domain of f. The next example will illustrate.

A Change in Concavity with No Inflection Point

1
Discuss concavity and find all inflection points for f(x) = —.
x

Solution: Since f(x) =x~! forx #0,
f)=—x? forx#0

ffoy=2a"= = forx#0
We see that f(x) is never 0 but it is not defined when x = 0. Since f is not continuous at
0, we conclude that 0 is not a candidate for an inflection point. Thus, the given function
has no inflection point. However, 0 must be considered in an analysis of concavity. See
the sign chart in Figure 13.36; note that we have a thick vertical line at O to indicate
that O is not in the domain of f and cannot correspond to an inflection point. If x > 0,
then f”(x) > 0;if x < 0, thenf”(x) < 0. Hence, f is concave up on (0, 0o) and concave
down on (—o0, 0). (See Figure 13.37.) Although concavity changes around x = 0, there
is no inflection point there because f is not continuous at 0 (nor is it even defined there).

Now Work Problem 23 <

Curve Sketching

Curve Sketching

Sketch the graph of y = 2x3 — 9x? + 12x.
Solution:

Intercepts If x = 0, then y = 0. Setting y = 0 gives 0 = x(2x*> — 9x + 12). Clearly,
x = 0 is a solution, and using the quadratic formula on 2x> — 9x 4+ 12 = 0 gives no
real roots. Thus, the only intercept is (0, 0). In fact, since 2x% — 9x + 12 is a continuous
function whose value at 0is 2-02—9.0+12 = 12 > 0, we conclude that 2x2—9x+12 >
0 for all x, which gives the sign chart in Figure 13.39 for y.

Note that this chart tells us the graph of y = 2x> — 9x? + 12x is confined to the
third and first quadrants of the xy-plane.

Symmetry None.

Maxima and Minima We have
y =6x*—18x+ 12 =6(* —3x+2) = 6(x — 1)(x — 2)
The critical values are x = 1, 2, so these and the factors x — 1 and x — 2 determine the
sign chart of ¥’ (Figure 13.40).
From the sign chart for y’ we see that there is a relative maximum at 1 and a relative

minimum at 2. Note too that the bottom line of Figure 13.40, together with that of
Figure 13.39, comes close to determining a precise graph of y = 2x3 — 9x? + 12x.

-0 1 2 oo
» . 3} v -1 -0+ +
x - + =2 - M
222 — 9x + 12 + + Y R
y - 0 + y / \‘/

FIGURE 13.32 Sign chart for y. FIGURE 13.40 Sign chart of ¥ = 6(x — 1)(x - 2).




y ?5213 =0 +12¢

LI
[N

‘! 1
FIGURE 13.42 Graph of
y=2x3 —9x? + 12x.
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yu o { 4+

y M U

FIGURE 13.41 Sign chart of y".

Of course, it will help to know the relative maximum y(1) = 5, which occurs at 1, and
the relative minimum y(2) = 4, which occurs at 2, so that in addition to the intercept
(0, 0) we will actually plot also (1, 5) and (2, 4).

Concavity
¥y = 12x — 18 = 6(2x — 3)

Setting y” = O gives a possible inflection point at x = 2 5 from which we construct the
simple sign chart for y” in Figure 13. 41
Since concavity changes at x = 2 , at which point f is certainly continuous, there

is an inflection point at 3.

Discussion We know the coordinates of three of the important points on the graph.
The only other important point from our perspective is the inflection point, and since
¥(3/2) = 2(3/2)° — 9(3/2)* + 12(3/2) = 9/2 the inflection point is (3/2,9/2).

We plot the four points noted above and observe from all three sign charts jointly
that the curve increases through the third quadrant and passes through (0, 0), all the
while concave down until a relative maximum is attained at (1, 5). The curve then falls
until it reaches a relative minimum at (2,4). However, along the way the concavity
changes at (3/2,9/2) from concave down to concave up and remains so for the rest of
the curve. After (2, 4) the curve increases through the first quadrant. The curve is shown
in Figure 13.42.

Now Work Problem 39

TECHNOLOGY
Suppose that 'yaﬁfﬁeea'fa ﬁﬁastaemﬁécﬁgaapci;;tig;f;;g'fl*’ -
- 73, 45 o . -
,f %) =55x _ 35 4 e32, 3 J _128 , 7+ 4 5__{;’} S
[ 'frhe second den'{fative of flS ’giijer’x’ by
| 51 W “‘ys'i“g 'ﬁ,zosﬁ - VFIGURE13 43 Geaphof ", oots of of "“Oa‘l‘eapprommately

Here the roots. of f” = O are not obv1ous Thus we w111],,: .
_graph f” using a graphing calculator. (See Figure 13.43)

We find that the roots of f” = 0 are approximately 3.25
and 6.25. Around x = 6.25,f" (x) goes from negative o
positive values. Therefore atx = 6.25, there is an inflec-

Ty = 2 2% . 3osandens
f(x) © 4,,+16x 64 - aﬂw

a0

‘tion. pomt Around x = 3.25,f"(x) does not. chanoe sign,
so no inflection point ex1sts atx = 3.25. Comparmrr our -

results with the graph of f in qure 13 44, we see. thatglkolGURE 13, 44 Graph of f,

' feverythmg checks out

mﬂectieri point at x = 6.25, but not

. oatx = 3 25.
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PROBLEMS 13.3 e

In Problems 1-6, a function and its second derivative are given.
Determine the concavity of f and find x-values where points of
inflection occur.

L fx) =x* =323 =622 + 6x + 1; f"(x) = 6(2x + 1)(x — 2)

x5 4 ” i
2 fG) = oo+ o 2450 = (= D+ 27
_ 2+x—-x2_ 1" _2(7_x)
O= g et 0= ey
_ X2+ D)
410 = oo W=y
24l 632 +2)
5. f(x)= [Ep 27f x) = (2 —2)3
2 2.2
6. f(X) =xva? -3, f"(x) = "(Zf—f?}
(a® — x)32

In Problems 7-34, determine concavity and the x-values where
points of inflection occur. Do not sketch the graphs.

7. y=—2x* +4x 8. y= —T74x? 4+ 19x — 37
9, y=4x3 + 1227 — 12x 10 y=x> —6x2 +9x + 1
1. y=a +bx® +ex+d 12 y=x* -8~ 6

2 xt o
13, y=2x* —48x2 + Tx 4+ 3 14.y:-z+7+2x
a
15. y=2x1/5 16. y=;3_
x19x 7P
17 y=2 425 % 5
¥y 5 + 6 ) + x4
5_4 1_3 1'2 1‘ 2
18. }-——‘El 6‘/\ +2A +3;\_ z
1 1 1 1 2
19, y= —y° — 3t 23 Iy Z
9.y 201 41 +6x 21 3
1 -
20. )’=-l-6x°——3x3+17x+43
21 “‘ixs—lx4+6x2+5x—4
AR AT .
22. = .6_3.4 23. P
y=s * Y x—1
24 y=1-— 2 X2
- Y= 2 V 25. y_.m
2 21x + 40
26' = a 27- y:ﬁ
x+b 6(x + 3)2
28. y =3(x*—2) 29, y = 5¢&°
30. y=e"—e™" 31. y = axe®
Inx 241
32 y=xe” 33 y= 2 _
Y XxXe y o 34, y =

In Problems 35-62, determine intervals on which the function

is increasing, decreasing, concave up, and concave down; relative
maxima and minima; inflection points; symmetry; and those
intercepts that can be obtained conveniently. Then sketch the graph.

38 y=x>-x—6
37. y=5x—2x°
39, y=x>—9x?+24x—19

36, y=x>+a fora>0
38. y=x—x*+2
40. y = x> — 2557

x3 I

41.y=—3——-5x 42, y=x3 —6x* +9x
5
43. y=x3 -3 +3x -3 M. y=2x3+§x2+2x
45, y = 4x3 — 3x* 46. y = —x> +8x> —5x 43
47. y= -2+ 12x — 3 48, y = (3 + )
, s © oyt
49. y=2x" — r—2 50, y= — — —
9. y=2x" — 6x° + 6x y 100~ 20
51, y=16x —x° 52, y=x*(x—1)
53. y=3x*—4F +1 E54. y =32 — 5
55. y=4x? —x* 56. y = x*e*
57. y=x"3x-8) 58. y=(x—1*(x+2)
159, y = 4x!/3 4 x*3 BEE60. y=@+DJ/x+4
6l y=2x%% —x 62. y=5x23 — 13
63. Sketch the graph of a continuous function f such that

@ =4,2)=0,f'(x) <0ifx < 2,and f"(x) > 0if x > 2.
64. Sketch the graph of a continuous function f such that
J@) =4,f"4)=0,f"(x) < 0forx < 4, and f"(x) > 0 forx > 4.
65. Sketch the graph of a continuous function f such that
f()=1,f(1) =0, and f"(x) < O for all x.

66. Sketch the graph of a continuous function f such that
f(1) =1, both f'(x) < O and f"(x) < 0 forx < 1, and both
fx) > 0andf"(x) < Oforx > 1.

67. Demand Equation = Show that the graph of the demand

. 100 .
equation p = is decreasing and concave up for g > 0.
q 7+2 p 1or g

68. Average Cost For the cost function

c=q"+2q+1

show that the graph of the average-cost function € is always
concave up for g > 0. ‘

69. Species of Plants  The number of species of plants on a plot
may depend on the size of the plot. For example, in Figure 13.45,
we see that on 1-m? plots there are three species (A, B, and C on
the left plot, A, B, and D on the right plot), and on a 2-m? plot
there are four species (A, B, C, and D).

2 sq'meters
A

4 A
A
;A~
: C B
B
D
A A J
Y hd
1 sq meter 1 sq meter
FIGURE 13.45

In a study of rooted plants in a certain geographic region,® it was
determined that the average number of species, S, occurring on

6Adapled from R. W. Poole, An Introduction to Quantitative Ecology (New
York; McGraw-Hill Book Company, 1974).
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plots of size A (in square meters) is given by 73. Insect Dispersal In an experiment on the dispersal of a
N . - lo .
S =FA) =12 JA 0<A<625 pa@cglar insect, - a large numbf:r of 1psech are placed at a release
point in an open field. Surrounding this point are traps that are
Sketch the graph of f. (Note: Your graph should be rising and placed in a concentric circular arrangement at a distance of 1 m,
concave down. Thus, the number of species is increasing with 2 m, 3 m, and so on from the release point. Twenty-four hours
respect to area, but at a decreasing rate.) after the insects are released, the number of insects in each trap is
70. Inferior Good In a discussion of an inferior good, Persky counted. It is determined that at a distance of r meters from the

considers a function of the form release point, the average number of insects contained in a trap is ‘

7
g(x) = o Uo/A) g2 /(24) n=f=01ln{)+ - 08 1=<r=<10

(a) Show that the graph of f is always falling and concave up.
(b) Sketch the graph of f. (c) When r = 5, at what rate is the
average number of insects in a trap decreasing with respect to
distance?

74. Graphy = —0.35x% 4+ 4.1x% + 8.3x — 7.4, and from the graph
determine the number of (a) relative maximum points, (b) relative
minimum points, and (c) inflection points.

i

I

i

!

| .

| where x is a quantity of a good, Uy is a constant that represents

i utility, and A is a positive constant. Persky claims that the graph of

. g is concave down for x < +/A and concave up for x > +/A.
Verify this.

i

!

!

71. Psychology In a psychological experiment involving
conditioned response,8 subjects listened to four tones, denoted 0,
1, 2, and 3. Initially, the subjects were conditioned to tone 0 by )
receiving a shock whenever this tone was heard. Later, when each =2 75. Graph y = x°(x — 2.3), and from the graph determine the

.

of the four tones (stimuli) were heard without shocks, the subjects’ number of inflection points. Now, prove that for any a # 0, the
responses were recorded by means of a tracking device that curve y = x”(x — a) has two points of inflection.
measures galvanic skin reaction. The average response to each 76. Graph y = xe™ and determine the number of inflection
stimulus (without shock) was determined, and the results were points, first using a graphing calculator and then using the
plotted on a coordinate plane where the x- and y-axes represent the  techniques of this chapter. If a demand equation has the form
stimuli (0, 1, 2, 3) and the average galvanic responses, g = q(p) = Qe for constants O and R, relate the graph of the
respectively. It was determined that the points fit a curve that is resulting revenue function to that of the function graphed above,
approximated by the graph of by taking O = 1 = R.
y = 12.5 + 5.8(0.42)° 77. Graph the curve y = x3 — 2x% + x + 3, and also graph the
tangent line to the curve at x = 2. Around x = 2, does the curve
Show that this function is decreasing and concave up. lie above or below the tangent line? From your observation
72. Entomology In a study of the effects of food deprivation determine the concavity atx = 2.

on hunger,’ an insect was fed until its appetite was completely 78. Iff(x) = 2x% + 3x% — 6x -+ 1, find f'(x) and f”(x). Note
satisfied. Then it was deprived of food for ¢ hours (the deprivation that where f” has a relative minimum, f changes its direction of
period). At the end of this period, the insect was re-fed until its bending. Why?
appetite was again completely satisfied. The weight H (in grams) 79. Tf f(x) = x5 + 325 — dx* + 262 + 1, find the x-values
of the food tl}&t was consumed at this time was statistically found (rounded to two decimal pl;ices) of the ir’lﬂe ction points of f.
to be a function of ¢, where 1

H = 1.00[1 — ¢~ 00464400670 80. Iff(x) = fz’j:?? find the x-values (rounded to two decimal

. o . . places) of the inflection points of f.
Here H is a measure of hunger. Show that A is increasing with

respect to f and is concave down.

Objective 13.4 The Second-Derivative Test

To locate relative extrema by applying  The second derivative can be used to test certain critical values for relative extrema.

the second-derivative test. Observe in Figure 13.46 that at a, there is a horizontal tangent; that is, f'(a) = 0.

Furthermore, around a, the function is concave up [that is, f”(a¢) > 0]. This leads us
to conclude that there is a relative minimum at a. On the other hand, around b, the
function is concave down [that is, f”(b) < 0]. Because the tangent line is horizontal at

y Concave up and

| relative minimum  concave down and
¥ relative maximum

y L f (t ) 7A. L. Persky, “An Inferior Good and a Novel Indifference Map,” The American Economist XXIX, no. 1 (1985),
: \ . 67-69.
a b ’ 8 Adapted from C. I. Hovland, “The Generalization of Conditioned Responses: 1. The Sensory Generalization of

Conditioned Responses with Varying Frequencies of Tone,” Journal of General Psychology, 17 (1937), 125-438.

FIG'TJ RE 1346 Relating cOngavity to 9C.S. Holling, “The Functional Response of Invertebrate Predators to Prey Density,” Memoirs of the Entomological
relative extrema. Society of Canada, no. 48 (1966).

10Adapted from Poole, op. cit.
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b, we conclude that a relative maximum exists there. This technique of examining the
second derivative at points where the first derivative is 0 is: called the second-derivative
test for relative extrema.

Second Derlvat ve Test for Relatlve Extrema '

SupDosef’(a)” 0. -
f”(a) < 0, then f has arelatlve max1mum ata. - _
f”(a) >0, then f has arelatwe minimumatg.

We want to emphasize that the second-derivative test does not apply when
f"(@) = 0. If both f'(a) = 0 and f”(@). = 0, then there may be a relative maxi-
mum, a relative minimum, or neither, at a. In such cases, the first-derivative test should
be used to analyze what is happening at a. [Also, the second-derivative test does not
apply when f”(a) does not exist.]

Second-Derivative Test

Test the following for relative maxima and minima. Use the second-derivative test,
if possible.

a. y=18x — x’.
Solution:
Y =18-2x> =209 —-x) =23 +x3 —x)
7" . d N 5
y = —4x taking — of 18 — 2x°
dx
Solving y' = 0 gives the critical values x = 3.
Ifx=3, theny =-43)=-12<0.
There is a relative maximum when x = 3. V

Ifx=-3, theny”"=-—4(=3)=12>0.

There is a relative minimum when x = —3. (Refer to Figure 13.4.)
CAUTIONT\ b. y=6x* —8x% 4 1.
Although the second-derivative test can Solution:
be very useful, do not depend entirely on )
it. Not only may the test fail to apply, but y = 24x3 — 2452 = 24x2(x -1
also it may be awkward to find the second
derivative. y' = T2x* — 48x

Solving y' = 0 gives the critical values x = 0, 1. We see that

ifx=0, theny =0

y ~and
ifx=1, theny” >0
y=x% By the second-derivative test, there is a relative minimum when x = 1. We cannot apply
the test when x = O because y” = 0 there. To analyze what is happening at 0, we turn
< x to the first-derivative test:
Relative and ,
absolute extremum Ifx <0, theny <O.
when x = 0
IfO<x<1, theny <0.

FIGURE 13.47 Exactly one relative Thus, no maximum or minimum exists when x = 0. (Refer to Figure 13.35.)

extremum implies an absolute extremum. Now Work Problem 5 <
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If a continuous function has exactly one relative extremum on an interval, it can be
shown that the relative extremum must also be an absolute extremum on the interval. To
illustrate, in Figure 13.47 the functiony = x2 has a relative minimum when x = 0, and
there are no other relative extrema. Since y = x2 is continuous, this relative minimum
is also an absolute minimum for the function.

AMPLE 2 Absolute Extrema

If y = f(x) = x> — 3x> — 9x+5, determine when absolute extrema occur on the interval
(0, 00).

Solution: We have

F) =327 —6x—9=30>—2x—3)

}1
y=x=32 0S5 =3+ D& - 3)
5 ' 7 The only critical value on the interval (0, co) is 3. Applying the second-derivative test
3 * at this point gives
ffx)y=6x—6
—nt '3 =63)—6=12>0
FIGURE 13.48 On (0, 00), there is Thus, there is a relative minimum at 3. Since this is the only relative extremum on
an absolute minimum at 3. (0, o0) and f is continuous there, we conclude by our previous discussion that there is
an absolute minimum value at 3; this value is f(3) = —22. (See Figure 13.48.)

Now Work Problem 3 <

PROBLEMS 13.4 «

In Problems 1-14, test for relative maxima and minima. Use the 7. y=23-3x2-36x+17 8 y=x*-—2"+4
second-derivative test, if possible. In Problems 14, state whether
the relative extrema are also absolute extrema. 9 y=7-—2* 10. y = —2x7

2 — 5y ;= 3y -
Ly=x—5c+6 2.y =30+ lax+ 14 11 y = 81x° — 5x 12, y =158 + 22 — 15 +2
3, y=—4x"+2x—8 4, y=3x*—5x+6
5. y=1iP+22 - 5x+1 6. y=x—12x+1 13, y = (x? + Tx 4 10)? 14, y= —x> 432> +9x ~2

Objective 13.5 Asymptotes

To determine horizontal and vertical .

asymptotes foracurve and to sketch - Vertical Asymptotes

the graphs of functions having . . . .
asymptotes. . In this section, we conclude our discussion of curve-sketching techniques by investi-

gating functions having asymptotes. An asymptote is a line that a curve approaches
arbitrarily closely. For example, in each part of Figure 13.49, the dashed line x = a
is an asymptote. But to be precise about it, we need to make use of infinite limits.

fx) fx) fx) fx)
a E \ * a i ‘(/ X

(a) (b)
FIGURE 13.49 - Vertical asymptotes x = a.

(@
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cauTion\

To see that the proviso about lowest
terms is necessary, observe that
o) Ix—=5 Gx=-5x-2)
X)) o= frend
x—2 (x—2)

that x = 2 is a vertical asymptote of
GBx —5)(x —2)

(r—2)2
the denominator and the numnerator 0.

, and here 2 makes both

Vertical
asymptote

—

3x—35

FIGURE 13.50 Graphofy =

x—2"

In Figure 13.49(a), notice that as x — a™, f(x) becomesupositively infinite:

R

li =
.t——lgl"'f(x)
In Figure 13.49(b), as x — a™, f(x) becomes negatively infinite:

lim f x) =

x—>at

In Figures 13.49(c) and (d), we have

lim f(x) =co and
I—>a”

lim f(x) = —
X—a~

respectively.

Loosely speaking, we can say that each graph in Figure 13.49 “blows up” around
the dashed vertical line x = g, in the sense that a one-sided limit of f(x) at a is either
00 or —oo. The line x = a is called a vertical asymptote for the graph. A vertical
asymptote is not part of the graph but is a useful aid in sketching it because part of the
graph approaches the asymptote. Because of the explosion around x = a, the function
is not continuous at a.

: Deﬂnmen -

The hne x= —-' aisa vertzcal asymptote for the oraph of the functlon f 1f and only if
at least one of the followmcr is true:

limf@ =400
Cixesat -
or

| hm f(x) = :i:oo

R e o/

To determine vertical asymptotes, we must find values of x around which f(x)
increases or decreases without bound. For a rational function (a quotient of two poly-
nomials) expressed in lowest terms, these x-values are precisely those for which the
denominator is zero but the numerator is not zero. For example, consider the rational
function

x—5
-2

fx) =

When x is 2, the denominator is 0, but the numerator is not. If x is slightly larger than 2,
then x —2 is both close to 0 and positive, and 3x — 5 is close to 1. Thus, (3x — 5)/(x—2)
is very large, so

3x—5

lim =00
=2t x —2

This limit is sufficient to conclude that the line x = 2 is a vertical asymptote. Because
we are ultimately interested in the behavior of a function around a vertical asymptote,
it is worthwhile to examine what happens to this function as x approaches 2 from the
left. If x is slightly less than 2, then x — 2 is very close to 0 but negative, and 3x — 5 is
close to 1. Hence, (3x — 5)/(x — 2) is “very negative,” so

. 3x-—5
lim

=27 X - L

= X

We conclude that the function increases without bound as x — 2% and decreases
without bound as x — 27. The graph appears in Figure 13.50.
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In summary, we have a rule for vertical asymptotes.

Vertical- Asymptote Rule for Rahonal Func’uons
Suppose that :

where P and 0 are polynomial functtons and the quot1ent isin Iowest terms. The
linex =aisa vertlcal asymptote for the oraph of f if and only if O(a) = 0 and
~P(a)# O e o

[It might be thought here that “lowest terms” rules out the possibility of a value a
making both denominator and numerator 0, but consider the rational function
Bx—=5x—-2)

(x—12)
the polynomial 3x — 5, because the domain of the latter is not equal to the domain of
the former.]

. Here we cannot divide numerator and denominator by x — 2, to obtain

fx) ' '
o Finding Vertical Asymptotes
@)= ;‘“ ; | ) Determine vertical asymptotes for the graph of
X =4x+ ! !
i | X2 — 4x
X=] ! le—x =3 ) —
i | &) x2—4x+3
2 i Solution: Since f is a rational function, the vertical-asymptote rule applies. Writing
1 1 I
_________ [ S c(x — 4
! e fx) = —A(—%———l— factoring
T .3 N (x=3)x-1
\E E / makes it clear that the denominator is O when x is 3 or 1. Neither of these values
! : makes the numerator 0. Thus, the lines x = 3 and x = 1 are vertical asymptotes. (See

FIGURE 13.51 Graph of

fy=
X ) T mmem—e—
X —4x4+3

Although the vertical-asymptote rule
guarantees that the linesx = 3 and x = |
are vertical asymptotes, it does not
indicate the precise nature of the
“blow-up™ around these lines. A precise
analysis requires the use of one-sided
limits.

Figure 13.51.)
Now Work Problem 1 <

Horizontal and Oblique Asymptotes

A curve y = f(x) may have other kinds of asymptote. In Figure 13.52(a), as x increases
without bound (x — ©0), the graph approaches the horizontal line y = b. That is,

lim f(x) =
X200
In Figure 13.52(b), as x becomes negatively infinite, the graph approaches the
horizontal line y = b. That is,
lim f(x)=0b
X——00

In each case, the dashed line y = b is called a horizontal asymptote for the graph. It is
a horizontal line around which the graph “settles” either as x — co oras x — —oo.

flx) fx)
X A
b \_> —b b = b
.................. y S N,
—
X \ X
(a) (b)

FIGURE 13.52 Horizontal asymptotes y = b.



