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Jhe philosopher Zeno of Elea was fond of paradoxes about motion. His most
famous one goes something like this: The warrior Achilles agrees to run a race
against a tortoise. Achilles can run 10 meters per second and the tortoise only
1 meter per second, so the tortoise gets a 10-meter head start. Since Achilles
is so much faster, he should still win. But by the time he has covered his first 10 meters
and reached the place where the tortoise started, the tortoise has advanced 1 meter and
is still ahead. And after Achilles has covered that 1 meter, the tortoise has advanced
another 0.1 meter and is still ahead. And after Achilles has covered that 0.1 meter,
the tortoise has advanced another 0.01 meter and is still ahead. And so on. Therefore,
Achilles gets closer and closer to the tortoise but can never catch up.

Zeno’s audience knew that the argument was fishy. The position of Achilles at time
t after the race has begun is (10 m/s)r. The position of the tortoise at the same time ¢
is (1 m/s)t + 10 m. When these are equal, Achilles and the tortoise are side by side. To
solve the resulting equation

(10m/s)t = (1 m/s)t + 10m

for ¢ is to find the time at which Achilles pulls even with the tortoise.

The solution is 7= lé seconds, at which time Achilles will have run
(15s) (10 m/s) = 113 meters.

What puzzled Zeno and his listeners is how it could be that

1 1 1

04+14+ — 4+ ——t oo =11~

tit 10 + 100 + 9
where the left side represents an infinite sum and the right side is a finite result. The
solution to this problem is the concept of a limit, which is the key topic of this chapter.
The left side of the equation is the sum of an infinite geometric sequence. Using limit
notation, summation notation, and the formula from Section 1.6 for the sum of a finite

geometric sequence, we write
1\ A
1011~ (——)
10 100 1

k
: I-n __ 13 — e —
kl—l—glo;lo = dm oL 9 119
10
and find the sum of this particular infinite geometric sequence. (In Section 1.6 we

showed that, for an infinite sequence with first term a and common ratio r, the sum of
the infinite sequence exists and is given by T provided that |r| < 1.)

B
—_—7
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460  Chapter 10 Limits and Continuity

Ob]ectlve ﬁ@ ‘ﬂ Lumr&s |
To stug_y limits and their basic - Perhaps you have been in a parking-lot situation in which you must “inch up” to the
properties.

car in front, but yet you do not want to bump or touch it. This notion of getting closer
and closer to something, but yet not touching it, is very important in mathematics and
is involved in the concept of limir, which lies at the foundation of calculus. We will let
a variable “inch up” to a particular value and examine the effect this process has on the
values of a function.

For example, consider the function

B -1
-1

Although this function is not defined at x = 1, we may be curious about the behavior

of the function values as x gets very close to 1. Table 10.1 gives some values of x that

are slightly less than 1 and some that are slightly greater, as well as their corresponding

function values. Notice that as x takes on values closer and closer to 1, regardless of

whether x approaches it from the left (x < 1) orfromthe right (x > 1), the corresponding

values of f(x) get closer and closer to one and only one number, namely 3. This is also

y clear from the graph of f in Figure 10.1. Notice there that even though the function is

not defined at x = 1 (as indicated by the hollow dot), the function values get closer and

[ closer to 3 as x gets closer and closer to 1. To express this, we say that the limit of f(x)
f(r)z x=1 as x approaches 1 is 3 and write '

f)=

7 We can make f(x) as close as we like to 3, and keep it that close, by taking x sufficiently
~_H close to, but different from, 1. The limit exists at 1, even though 1 is not in the domain of .

i
— ] -

X —
FIGURE 10.1 lim = 3.

1 X —

-3.003001 ¢

We can also consider the limit of a function as x approaches a number that is in the
domain. Let us examine the limit of f(x) = x + 3 as x approaches 2:

lim (x + 3)
x—>2

Obviously, if x is close to 2 (but not equal to 2), then x + 3 is close to 5. This is also
apparent from the table and graph in Figure 10.2. Thus,

lim(x+3)=5

Given a function f and a number a, there may be two ways of associating a number to the
pair (f, a). One such number is the evaluation of f at a, namely f(a). It exists precisely

when a is in the domain of f. For example, if f(x) = , our first example, then

S (1) does not exist. Another way of associating a number to the pair (f, a) is the limit

e T e ek e i £ 5 S A A 0 A S S e e b e e e e Sy
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x <2 x>2 B4
x fx) x Jx)
15 |45 25 |55 )= v 43
L9 |49 21 |51 SE
195 | 495 205 | 505 377
199 | 4.99 201 | 501 /
1.999 | 4.999 2.001 | 5.001
L X
2

FIGURE 10.2 lim (x+3) = 5.

of f (x) as x approaches a, which is denoted lim,_, , f (x). We have given two examples.
Here is the general case.

,Defmmon : S ;
The lumt of f (x) as r appmaches a 1s the numberL wntten -

: , hm f (t) ;
‘prov1ded that we can make the values f (,x) as close as we hke to L; and keep them
that close, by taking x sufficiently close to, but different from, a. If there is no such
number ‘we say that the limit of f(x) as x approaches a does not exist.

We emphasize that, when finding a limit, we are concerned not with what happens
to f(x) when x equals a, but only with what happens to f(x) when x is close to a. In
fact, even if f(a) exists, the preceding definition explicitly rules out consideration of it.
In our second example, f(x) = x + 3, we have f(2) = 5 and also lim,_,» (x +3) = 5,
but it is quite possible to have a function f and a number a for which both f(a) and
lim,, . f(x) exist and are different. Moreover, a limit must be independent of the way
in which x approaches a, meaning the way in which x gets close to a. That is, the limit
must be the same whether x approaches a from the left or from the right (for x < a or
x > a, respectively).

Estimating a Limit from a Graph

a. Estimate lim, | f(x), where the graph of f is given in Figure 10.3(a).

Solution: If we look at the graph for values of x near 1, we see that f(x) is near 2.
Moreover, as x gets closer and closer to 1, f(x) appears to get closer and closer to 2.

y y
DN EINE
y=fx) y=fx)
2+ 2L
L x ! x
1 1
(a) (b)

FIGURE 10.3 Investigation of lim,_,; f(x).
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APPLY IT >

1. The ‘greatest integer - function,”

~denoted, f(x)=|x], is used every
day: by. cashiers' making change for

customers. This function tells the

amount of paper. money: for each

~amount of change owed. (For example,

if a customer is owed $1.25 in change,
“he or she would get $1 in paper money;

thus, | 1:25] =1.) . Formally, |x] is:
defined as the greatest [integer Ie,ss,:
than or equal to x. Graph f, sometimes

“called a step function, on.a’graphing

calculator “in" the - standard’ viewing
rectangle. (It is in the numbers menu;
it’s called - “integer " part.”)  Explore
this graph uising' TRACE. " Determine
whether lim,.5;, f (x) exists.

B ’\ X fix)
y=f(x) / *1 1

Thus, we estimate that
lim f(x) =2
x—1
b. Estimate lim,.,1 f(x), where the graph of f is given in Figure 10.3(b).

Solution: Although f(1) = 3, this fact has no bearing whatsoever on the limit of f(x)
as x approaches 1. We see that as x gets closer and closer to 1, f (x) appears to get closer
and closer to 2. Thus, we estimate that '

lirr}f(x)=2
x>
Now Work Problem 1 <

Up to now, all of the limits that we have considered did indeed exist. Next we look
at some situations in which a limit does not exist.

Limits That Do Not Exist

a. Bstimate lim,., 5 f(x) if it exists, where the graph of f is given in Figure 10.4.

Solution: As x approaches —2 from the left (x < —2), the values of f(x) appear to get
closer to 1. But as x approaches —2 from the right (x > —2), f(x) appears to get closer
to 3. Hence, as x approaches —2, the function values do not settle down to one and only
one number. We conclude that

lim f(x) does not exist
L
Note that the limit does not exist even though the function is defined at x = —2.
. S NP
b. Estimate lim — if it exists.
x>0 X*

Solution: Let f(x) = 1/x%. The table in Figure 10.5 gives values of f(x) for some
values of x near 0. As x gets closer and closer to 0, the values of f(x) get larger and
larger without bound. This is also clear from the graph. Since the values of f(x) do not
approach a number as x approaches 0,

.1 .
lim —; does not exist

x>0 x*

Now Work Problem 3 <

y

N ‘
o 3 =05 4 = _35
o L, +0.1 100 B
» L1 1 x0.01 10,000 B

|/ I ] ) +0.001 | 1,000,000 1

FIGURE 10.4 lim,_. _»f(x) does not exist.

FIGURE 10.5 lirr(l) L, does not exist.
x—0 x=
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TECHNOLOGY

Problem: Estimate lim,_,, f(x) if

3 2 Ty
Fo) = X +27.Lx TO._A+4
x*+25x -9

Solution: One method of finding the limit is by construct-
ing a table of function values f(x) when x is close to 2.
From Figure 10.6, we estimate the limit to be 1.57. Alter-.
natively, we can estimate the limit from the graph of f.
Figure 10.7 shows the graph of f in the standard window L
of [ — 10, 10] x [ — 10, 10]. First we zoom in several times FIGURE 10.7 Graph of f(x) in standard window.
around x = 2 and obtain Figure 10.8. After tracing around : : : :
x = 2, we estimate the limit to be 1.57. V .-

<

HELBEOATES (V=1 ERYinEs

] - = ' FIGURE 10.8 Zooming and tracing around x =2
gives limy.,o f(x) =~ 1.57.

FIGURE 10.6 lim ., f(x) = 1.57.

Properties of Limits

To determine limits, we do not always want to compute function values or sketch
a graph. Alternatively, there are several properties of limits that we may be able to
employ. The following properties may seem reasonable to you:

1. If f(x) = c is a constant function, then
limf(x) =limc=c
X-ra X

2. lim x" = ", for any positive integer n

X—a

MPLE 3 Applying Limit Properties 1 and 2

a, lime 27 ="7;limys_57 =7
b. lim,_gx* = 6> =36
c. lim_ *=(-2)*=16
Now Work Problem 9 <

Some other properties of limits are as follows:

If i, f(x) and lim,. 4 g(x) exist, then

3. lim [f(x) £ g®)] = lim f(x) £ lim g(x)
: . L X-rd s X x=>a
That is, the limit of a sum or difference is the sum or difference, respectively, of the
limits. V ’ " :
4. : lim [f(x) - g()] = lim f(x) - lim g(x)
X—>a xX->a x->a

That is, the limit of a product is the product of the limits. :
5. lim [¢f (x)] = ¢ - lim f(x), where c is a constant
Cixssa A xX=>d :

That is, the limit of a constant times a function is the constant times the limit of the
function. , ' . i
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APPLY 1T &

2 The volume of hehum ina spher—f
. 1ca1 balloon (in cublc centxmeters) as
‘a funcnon of the radms ‘) m cennm

. Find:

ters, is mven by V(;)
hmr—->l V(’)

APPLY IT >

3 The revenue. funcnon for a certain.
_productis given by R(x) = 5001 —6x%
Fmd hm 8 R(x) o

Chapter 10 Limits and Continuity

Applying Limit Properties

a. lim (x* +x) = lim x® + lim x Property 3
x=—>2 x—2 x—2

=22+2=6 Property 2
b. Property 3 can be extended to the limit of a finite number of sums and differences.
For example,

hm @ —qg+1= 11m q - hrn q+ hmll
q—-)

= (-1)3 —-(D+1=1
c. lim [(x + 1)(x — 3)] = lim (x + 1) - lim (x - 3)
= (limx + lim 1) - (lim x — 1im 3)
2 x—>2 X2 X2
=Q2+1)-2-3)=3(-)=-3

Property 4

d. lim 3 =3 lim X3 Property 5
R 4 Xl
=3(-2)=—

Now Work Problem 11 <

: WIPLE5w _ Limit of a Polynomial Function

Cux" + Cpo X1 4 - 4 01x + ¢ define a polynomial function. Then

Let f(x) =
lim f(x) = lim (Cux + Cpoy XL+ -+ cx + co)
X—>a X—>

=c, - imx" 4+ ¢,—; -

X0

hm 4 - limx 4 lim g
X—>

X—a X>a
= ¢ud" 4 Cp1d” + -+ cra+co = f(a)
Thus, we have the following property:

i If fis apolynbi’ma funcnon then

1Mf (X) f (a)

In other words, if f is a polynomial and a is any number, then both ways of associating
a number to the pair (f,a), namely formation of the limit and evaluation, exist and
are equal.

Now Work Problem 13

The result of Example 5 allows us to find many limits simply by evaluation. For
example, we can find
hm O3 +4x* =)

Xy o3

by substituting —3 for x because x> + 4x*> — 7 is a polynomial function:

lim (3 +4x> =7 = (=3P +4(-3?>-7=2

A>3

Similarly,

lim Qh—1)=23-1)=4

We want to stress that we do not find limits simply by evaluating unless there is
a rule that covers the situation. We were able to find the previous two limits by evalu-
ation because we have a rule that applies to limits of polynomial functions. However,
indiscriminate use of evaluation can lead to errors. To illustrate, in Example 1(b) we

§
|
|
', !
.;‘i




cauTion]\

Note that in Example 6(a) the numerator
and denominator of the function are
polynomials. In general, we can
determine a limit of a rational function by
evaluation, provided that the denominator
isnot 0 at a.

cautio\

The condition for equality of the limits
does not preclude the possibility that
f(a) = g(a). The condition only concerns

x#a.

APPLY IT »

4. The rate of change of productivity p
: (m number of units produced per hotur).
increases with t1me on the j()b by the

functxon
. 50(t"+4t)
L op = e
- P()” 2436420
Fmd hI'l'l,_n p(t)
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have f(1) = 3, which is not lim,_, | f(x); in Example 2(a), f(-2) = 2, which is not
limy, o f(x).
The next two limit properties concern quotients and roots.

Ifhmr_.m f(x)and hrnt.Nz g(x) exist, then
6. ’ f x) hmx—+af 69)
Cxsag(x)  limy,,g(x)

Thatis, the lzmzt of a quotient is the quotzem‘ of lzmzz‘s provzded that the denommator
does not have a limit of 0.

7 o lim x/f(x = ‘"/hrnf(x)

if ‘lim’g(x) £ 0

See footnote 1

Applying Limit Properties 6 and 7

2 4+x=3  lime, (2P +x-3) 2+41-3 _0_,

a. lim - — o
1 x344 lime,; (3 +4) 1+4 5
b. limvV2Z2+1 = \/Iim (2 +1) =17
t—4 trd

c. lirr%«3/x2+7=\%l_irr%(x2+7)=«3/i€=«3/8-2=2€/i
Now Work Problem 15 <

Limits and Algebraic Manipulation

We now consider limits to which our limit properties do not apply and which cannot
be determined by evaluation. A fundamental result is the following:

=If f and: g are two funcnons for WhICh £ (x)
Nimf(x) =

(meamnc that 1f elther limit exists, then the other exists and they are equal)

g(x), forallx?;é c’z‘,‘then el
lim g(x)

The result follows directly from the definition of limit since the value of
lim.,,f(x) depends only on those values f(x) for x that are close to a. We repeat:
The evaluation of f at a, f(a), or lack of its existence, is irrelevant in the
determination of lim,_,,f(x) unless we have a specific rule that applies, such as in
the case when f is a polynomial. v

Finding a Limit

MPLE7

. Coxr—1
Find lim .
x~>-1 x+1

Solution: Asx - —1, both numerator and denominator approach zero. Because the
limit of the denominator is 0, we cannot use Property 6. However, since what happens
to the quotient when x equals —1 is of no concern, we can assume that x s —1 and
simplify the fraction:

2 —1 (x+1)(x—1)
x+1 x+1

x—1 forx # —1

1f n is even, we require that limy_, 4 f(x) be nonnegative.
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2
This algebraic manipulation (factoring and cancellation) of the original function ad n
. x
“yields a new function x — 1, which is the same as the original function forx # —1. Thus
the fundamental result displayed in the box at the beginning of this subsection applies
and we have

x2—1

=lm@E—-D=~-1—-1=-2

r->-1 X 1 x—>—1

Notice that, although the original function is not defined at —1, it does have a limit as

x = —1.

Now Work Problem 21 <
When both f(x) and g(x) approach 0 as In Example 7, the method of finding a limit by evaluation does not work. Replacing
X — a, then the limit x by —1 gives 0/0, which has no meaning. When the meaningless form 0/0 arises,
Fi63) algebraic manipulation (as in Example 7) may result in a function that agrees with the
fly g(x) original function, except possibly at the limiting value. In Example 7 the new function,

is said to have the form 0/0. Similarly. x — 1, is a polynomial and its limit can be found by evaluation.

we speak of form k/0, for k # 0 if f(x) In the beginning of this section, we found

approaches k = 0 as x — « but g(v)
approaches 0 as x — a.

by examining a table of function values of f (x) = (x>*—1)/(x—1) and also by considering
the graph of f. This limit has the form 0/0. Now we will determine the limit by using
the technique used in Example 7.

XAMPLE 8 Form 0/0

CAUTION!\ B—-1
There is frequently confusion about Find }l_l;n x—1"
hich principle is bei d in thi
;(m;pﬁn;;ﬁ; ésxaig‘igeu;_eh 1151 thllss Solution: As x — 1, both the numerator and denominator approach 0. Thus, we will

try to express the quotient in a different form for x # 1. By factoring, we have

2-1 (x—l)(x +x+1)

Iff(x) = glx) forx £ a,

then lim f(x) = lim g(x). = 1 fi 1
x—a x—+a x—1 (.X _ 1) + + orx #
(Alternatively, long division would give the same result.) Therefore,
. x3 et 1 . 5 ]
lim =11n}(x”+x+1)=1"+1+1=3
X—>

=1 x—1
as we showed before.

Now Work Problem 23 <

MPLE9  Form 0/0

APPLY IT »
5. The lyengthbfa material increases as If f(x) = X2+ 1, find 1 w
_itis heated up according to the equation. . h
1 = 125 4 2x. The rate at which the. Solution:
: lenﬂth is mcreasmg is given by ~ lim fGx+h) —fx) — lim [(x+m2+1]1— G2+ 1)
15+ st H-(25+29 >0 I = I
=0 o h , Here we treat x as a constant because A, not x, is chahging. Ash — 0, both the numerator
Calculate this limit. and denominator approach 0. Therefore, we will try to express the quotient in a different
form, for i £ 0. We have ‘
e+ +H1-0+D) . WP uh R 1 -2 -1
lim = lim
=0 h » h—0 h
2xh + h?

|
= lim ——— !
h—0 h |

!

i
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The expression ' _ 1 h(2x 4 h)
fa+)—f) T h
h

is called a difference quotient. The limit

of the difference quotient lies at the heart =y

of differential calculus. We will '

encounter such limits in Chapter 1. h@2x + h)
h

and 2x + h are considered as functions of h, they

=lim @2x+h)
h—0

Note: It is the fourth equality above, lin%)
h(2x 4+ h)

= Ilir% (2x 4+ h), that uses the
—>

fundamental result. When
are seen to be equal, forall i 7 01 It follows that their limits as # approaches 0 are equal.
‘ Now Work Problem 35 <
A Special Limit
We conclude this section with a note concerning a most important limit, namely,
_li_gr(l)(l +x)'

Figure 10.9 shows the graph of f(x) = (1 + x)!/*. Although f(0) does not exist, as
x — 0 it is clear that the limit of (1 + x)"/* exists. It is approximately 2.71828 and
is denoted by the letter e. This, you may recall, is the base of the system of natural
logarithms. The limit

This limit will be used in Chapter 12. 1'1m'(1V +x)1/x =g
a0

can actually be considered the definition of e. It can be shown that this agrees with the
definition of e that we gave in Section 4.1.

fx)

x Q+x) x 1+ x)

0.5 2.2500 -0.5 4.0000

0.1 25937 || —01 2.8680 \
0.01 2.7048 -0.01 27320 2r

fey= @+t

0.001 2.7169 -0.001 2.7196 1+

FIGURE 10.9 lim,_o(1 +x)!” =e.

PROBLEMS 10.1

In Problems 14, use the graph of f to estimate each limit if it 2. Graph of f appears in Figure 10.11.

exists. T (@) lim,,_1f(x) (b) limeof(x) (¢) Lime, f(x)
1. Graph of f appears in Figure 10.10.

(@) lmesof@)  (b) limes f(x)  (¢) limesaf(x)

N

\1_
" & x
* -1 l\v §

FIGURE 10.10 FIGURE 10.11
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3. Graph of f appears in Figure 10.12. : 19. lin} /P2 +p+5 20, hnll /y+3
@ lime 1 f) () lme fG)  (©) limesf@) T o T e
| 21 fim 2 22 lim ——
y x>=2 x -2 x—>—1x2 —1
2 3, 3,2
d 23, lim X2 24. 1im =30
3k / =2 x—2 0 13 — 412
.. =flx 2 oy —6 2_4
2 & =) 25, lim T 22 26. lim
e =3 x—3 —=2 =2
! 1t x o4 2 — Oy
o 7. Jim, 7o 2 lin =
x> —9x+20 x*—81
29. lim —————— 30. lim ———
FIGURE 10.12 i 3 Jim e
4. Graph of f appears in Figure 10.13. - 332 —x—10 2. lim 2 —2x—3
(a) Iim.\'—-r—lf(x) (b) hm_r—»()f(x) (C) lim.\‘—r»lf(x) ) X2 xz -+ 5x — 14 ’ x=>3 x?— + 2x — 15
24 h? —2° c - 2)? —
y 33, lim 2XM =2 34, lig SFD 74

h—>0 h -0 X

N . Mt .
: 35. Find lim ———————— by treating x as a constant.
y=1x) h—0 h
3+ A 4+ T(x +h) — 32 — Tx
36. Find lim G B o+ 70 1) = 3 ud by treating x as a
-1 1+ h—0 h
! { x constant.
1 .
L e+ ) — Fx
1 In Problems 3742, find lim w
o 1
37. fx) =542 38, f(x)=2x+3
39. fx)=x>=3 40, f)=x+x+1
. '.=.3_4.2 . flx) = 2 — 5x 2
FIGURE 10.13 41. f(x) =x X 42, fx)=2-5x+=x

In Problems 5-8, use your calculator to complete the table, and

use your results to estimate the given

limir.

i e
=03 —4r+3

2 .
5. fm X rZ-l
Xl x+1
x |]—-09[-0.99]-0.999|-1.001|—1.01}—-1.1
&)
3
6. lim ¥ -9
—=-3 x4+ 3
x [-3.11-3.01|-3.001|—-2.999|-2.99|-2.9
f&)
7. lim x|™
x | —0.000010.000010.0001(0.001|0.01(0.1
f&)
. Vi+h—1
8. im e
-0 h
h |—0.1]1-0.01]~0.001(0.001]0.01]0.1
f)
In Problems 9-34, find the limits.
9, ling 16 10. lin%2x
11, lim (© —5) 12. lim (3t —35)
{5 t->1/2
. 3 5 4r—3
13. '11m7(3x —4x* 4+ 2x —3) 14. hr%T
] -2
15 lim = 16. lim 0
t==3145 —=—6 X — 6
17. 1 18, lim =24

Vx—-2-2
43. Find lin% 1—6_ (Hint: First rationalize the numerator

by multiplying both the numerator and denominator by
,

Vx—24+2)
x“+x+c

44. Find the constant ¢ so that lim = g exists. For that

=3 x% —5x+
value of ¢, determine the limit. (Hint: Find the value of ¢ for
which x — 3 is a factor of the numerator.)

45. Power Plant The maximum theoretical efficiency of a
power plant is given by
Th - TC

T,

where T}, and T, are the absolute temperatures of the hotter and
colder reservoirs, respectively. Find (a) limy, g E and
(b) HIIITC_,T,, E.

46. Satellite When a 3200-1b satellite revolves about the earth
in a circular orbit of radius r ft, the total mechanical energy E of
the earth—satellite system is given by

7.0 x 10V
"
Find the limit of E as r —.7.5 x 107 ft.

In Problems 47-50, use a graphing calculator to graph the
functions, and then estimate the limits. Round your answers to two
decimal places.

=232t -2 -3

E =

E= ft-1b

B 47. lim 7 E48. limx*
x—=3 x? -9 X0
¢ — 10./x + 21 342 —5x+3
49. lim l—o‘/{i 50. Im M
=9 3——,\/:\-,: .r—?lx3+?_x2—7x+4
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51. Water Purification  The cost of purifying water is given by 52. Profit Function The profit function for a certain business

50,000 . . . is given by P(x) = 225x — 3.2x> — 700. Graph this function on
=T 6500, where p is the percent of impurities your graphing calculator, and use the evaluation function to
remaining after purification. Graph this function on your graphing determine lim,—, 4.2 P(x), using the rule about the limit of a
calculator, and determine lim,_.o C. Discuss what this means. polynomial function.

Objective

To study one-sided limits, infinite limits,
and limits at infinity.

FIGURE10.14 lim,_¢f(x)does
not exist.

f)

&

FIGURE 10.15 lim, .3+ v/x—3=0.

X F@)
+1 1
*0.5 4
+0.1 100
+0.01 10,000
=0.001 1,000,000

FIGURE 10.16 lim — = oo.

x—0 x~

10.2 Limits (Continued)
One-Sided Limits

Figure 10.14 shows the graph of a function f. Notice that f(x) is not defined when
x = 0. As x approaches 0 from the right, f(x) approaches 1. We write this as

lir(r)x, fx) =1

x>0+

On the other hand, as x approaches O from the left, f(x) approaches —1, and we write
lim f(x) = ~1
x>0

Limits like these are called one-sided limits. From the preceding section, we know
that the limit of a function as x — a is independent of the way x approaches a. Thus,
the limit will exist if and only if both one-sided limits exist and are equal. We therefore
conclude that

lim f(x) does not exist
x=>0

As another example of a one-sided limit, consider f (x) = +/x — 3 asx approaches 3.
Since f is defined only when x > 3, we can speak of the limit of f(x) as x approaches
3 from the right. If x is slightly greater than 3, then x — 3 is a positive number that is
close to 0, so +/x — 3 is close to 0. We conclude that

lim Vx—-3=0

x—3+

This limit is also evident from Figure 10.15.

Infinite Limits

In the previous section, we considered limits of the form 0/0—that is, limits where
both the numerator and denominator approach 0. Now we will examine limits where
the denominator approaches 0, but the numerator approaches a number different from
0. For example, consider

Here, as x approaches 0, the denominator approaches 0 and the numerator approaches 1.
Let.us investigate the behavior of f(x) = 1/x* when x is close to 0. The number x? is
positive-and also close to 0. Thus, dividing 1 by such a number results in a very large
number. In fact, the closer x is to 0, the larger the value of f(x). For example, see the
table of values in Figure 10.16, which also shows the graph of f. Clearly, as x ~» 0 both
from the left and from the right, f (x) increases without bound. Hence, no limit exists at
0. We say that as x — 0, f(x) becomes positively infinite, and symbolically we express
this “infinite limit” by writing
-—1— =400 =00
x—0 x2

If lim, ., f (x) does not exist, it may be for a reason other than that the values f(x)
become arbitrarily large as x gets close to a. For example, look again at the situation in
Example 2(a) of Section 10.1. Here we have

lim7 f(x) does not exist but lim7 fx) # o0
X2 X i
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cauTion]\

The use of the “equality” sign in this
situation does not mean that the limit
exists. On the contrary, it is a way of
saying specifically that there is no limit
and why there is no limit.

]
L !

~0.99 ~0.9
FIGURE 10.18 x — —1%.

Consider now the graph of y = f(x) = 1/x for x 0. (See Figure 10.17.) As x
approaches 0 from the right, 1/x becomes positively infinite; as x approaches 0 from
the left, 1/x becomes negatively infinite. Symbolically, these infinite limits are written

! 1
lim —=c0 and lim —=-—00
a0t X -0 X

)v'

x s f(x) s
0.01 100 o
0.001 1000
0.0001 | 10,000 .

—0.01 —100
—0.001 —1000
—0.0001 | —10,000

1
FIGURE 10.17 Iin(l) ~ does not exist.
x—=4U X
Either one of these facts implies that

.1 .
lim — does not exist
-0 X

Infinite Limits

Find the limit (if it exists).

a. lim

x=—1+rx 41

Solution: Asx approaches —1 from the right (think of values of x such as —0.9, —0.99,
and so on, as shown in Figure 10.18), x 4 1 approaches 0 but is always positive. Since
we are dividing 2 by positive numbers approaching 0, the results, 2/(x + 1), are positive
numbers that are becoming arbitrarily large. Thus,

, 2
lim = 00
x=>—1t x 41

and the limit does not exist. By a similar analysis, we can show that
) 2
m = —00

s=>=1-x 41
x+2
. i
b ,\'EE'IZ x2 — 4

Solution: Asx — 2, the numerator approaches 4 and the denominator approaches 0.
Hence, we are dividing numbers near 4 by numbers near 0. The results are numbers
that become arbitrarily large in magnitude. At this stage, we can write
.ox+
lim

=2 x2 —

2
i does not exist

However, let us see if we can use the symbol co or —co to be more specific about “does
not exist.”” Notice that

.o x+2 . x+2 X 1
lim — = lim ——— = lim ——
=2xf =4 =2+ —2) xs2x—-2
Since '
1
lim =00 and lim = —00
RS DT X

Loox+2
lim — 7 is neither oo nor —oco.

X2 X& —

Now Work Problem 31 <




We can obtain

i I
lim —
=03 X

lim l and

Xm0 X
without the benefit of a graph or a table.
Dividing 1 by a large positive number
results in a small positive number, and as
the divisors get arbitrarily large, the
quotients get arbitrarily small. A similar
argument can be made for the limit as
X = —00.

APPLY IT »

6. The demand funcnon for a c%rtam
=

. product is g1ven by p(x)

Wwhere p is the price in doHars and x 1s;

the quant ity sold. Graph thJS function on.
jfw*your grap hxno calculator in the window.

10,101 x [0; 10,000]. Use. the TRACE
?j’functlon fo ﬁnd lime o p(x) Determme

~whatis happening to the graph and what

_ this means about the demand function.
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Example 1 considered limits of the form k/0, where £ # 0. It is important to
distinguish the form /0 from the form 0/0, which was discussed in Section 10.1.
These two forms are handled quite differently.

Finding a Limit

2

r—
Find li .
in m?——d,

Solution: Ast — 2,-both numerator and denominator approach 0 (form 0/0). Thus,
we first simplify the fraction, for 7 # 2, as we did in Section 10.1, and then take the limit:

t—12 t—12 1 1
1 lm——-———:—
x—n @+ —-2) 2142 4
Now Work Problem 37 <

Him
1>2 12 — 4

Limits at Infinity

Now let us examine the function

e =~

as x becomes infinite, first in a positive sense and then in a negative sense. From
Table 10.2, we can see that as x increases without bound through positive values,
the values of f(x) approach 0. Likewise, as x decreases without bound through nega-
tive values, the values of f(x) also approach 0. These observations are also apparent
from the graph in Figure 10.17. There, moving to the right along the curve through
positive x-values, the corresponding y-values approach 0 through positive values. Sim-
ilarly, moving to the left along the curve through negative x-values, the corresponding
y-values approach 0 through negative values. Symbolically, we write

1oo

= —00 X

1
Iim —=0 and lim
=00 X

Both of these limits are called limits at infinity.

—1,000,000 1 -

Limits at Infinity

Find the 1iméi1t (if it exists).
a. lim ————
X—00 (x — 5)3
Solution: Asx becomes very large, so does x — 5. Since the cube of a large number is

also large, (x — 5)3 — 00. Dividing 4 by very large numbers results in numbers near
0. Thus,

4

lim ———— =0
\’—1->n<;lo x— 5)3

b. lim +/4-—x

X3 —00
Solution: As x gets negatively infinite, 4 — x becomes positively infinite. Because
square roots of large numbers are large numbers, we conclude that

lim /4 —-x=0c0

X~
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In our next discussion we will need a certain limit, namely, lim,_, ., 1/x”, where
p > 0. As x becomes very large, so does x”. Dividing 1 by: very large numbers results
in numbers near 0. Thus, hmr_mo 1/x” = 0. In general,

hm—-..O and = lim .1.=0 

~x—>00 XP 1= —c0 xP

for p > 0.2 For example,

1 1
Am, A = lim -7 =0

Let us now find the limit of the rational function

4?45
f&x) = il

as x — 00. (Recall from Section 2.2 that a rational function is a quotient of polyno-
mials.) As x gets larger and larger, both the numerator and denominator of any rational
function become infinite in absolute value. However, the form of the quotient can be
changed, so that we can draw a conclusion as to whether or not it has a limit. To do this,
we divide both the numerator and denominator by the greatest power of x that occurs
in the denominator. Here it is x. This gives

4x* +5 4x* 5
m puiies 5 im X2 = lim u
xr00 2x2 + 1 T oo 2x2 +1 x—00 9y2 1
x? x2 X2

5 1
4+ — lim 4+ 5- lim —

. xX- X—00 X—>00 X<
= hm =
x—>00 1 . . 1
+ — lim 2+ lim —
x* X—00 X—00 X
fx) Since limyo0 1/xP = 0 forp > 0,
47 +5 4450 4
lim =—=2

oo 2x2 41 240 2
Similarly, the limit as x — —oo is 2. These limits are clear from the graph of f in
Figure 10.19.

For the preceding function, there is an easier way to find lim,_, o f(x). For large
values of x, in the numerator the term involving the greatest power of x, namely, 4x2,
dominates the sum 4x2 + 3, and the dominant term in the denominator, 2x> + 1, is 2x2.
Thus, as x — 00,f(x) can be approximated by (4x?)/(2x?). As a result, to determine
-1 | 1 the limit of f(x), it suffices to determine the limit of (4x?)/(2x?). That is,

4> +5 . AxE
FIGURE 10.19  fim,_.o,f(x) = 2 and W ]~ Al 5z = im2=2
Hm‘(_;_mf(x) = 2. X=>00 + ; X -

as we saw before. In general, we have the following rule:

lelts at Infinity for Ratlonal Functlons

I f()is a rational Junction and a,x" and b,,x" are the terms in the numerator and
denominator, respectively, with the greatest powers of x, then

lim ) = o
r—)oo b x’"

and
Tim f(x) = o

x0T x—>——oob X7

2For limy— —co 1/xP, we assume that p is such that 1/x” is defined forx < 0.




APPLY lT B

7 The yearly amount of sales y of acer
“tain company (in thousands of dollars)
is related to the amount the company
spends on advertising; x (in thousands

-Graph this function

500x
) = 120

dow [0, 1000] x [0,550]. Use TRACE

what thls means to the company

cauTion\

The preceding technique applies only to
limits of rational functions at infinity.

of dollars), according to the equation ’

on your graphing calculator in the win-

to explore lim,., & y(x), and deterrmne;
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Let us apply this rule to the situation where the degree of the numerator is greater than
the degree of the denominator. For example,

T x4—3x__ i x* = i 1_3 .
\-_ir—noo 5 - 2% - \’——i{{loo —2x - r——il:—noo ?l =0

(Note that in the next-to-last step, as x becomes very negative, so does X3 moreover,
——% times a very negative number is very positive.) Similarly,

From this illustration, we make the following conclusion:

Ifthe deoree of the numerator ofa mtzorzal ﬁmctzon is Dreater than the deoree of the
denommator then the functlon has no’ limitas x —> oco-and no hrmt 28X => —00;

MPLE 4  Limits at Infinity for Rational Functions

Find the 11rmt (if it exists).

—1
a. lim —
\—)nolo 7 — 7,\ -+ 8x2
2 2
>4 2 11
Solution: lim — = lim 2 = lim - = -

100 T — 2x 4 8x2  i—o0 8x2  x—o0 §

X

b. lim ———es

Tt (3x — 12

x X 1

l . : S . e 3 ]

Solution Jim Gx— 17 xl_}r_flw 9x2 — 6x+ 1 Jm 9x?
N S 1
= dm g =g m =50 =0
x5 - x4

c. lim ———

x—o0 x4 — 13 42
Solution: Since the degree of the numerator is greater than that of the denominator,
there is no limit. More precisely,

ot e
Im —————=1lim — = lim x = 0
y—ooxt —x34+2  xso0xt  xmoo

Now Work Problem 21 <

2

To find lim 7—%~;—§~—;, we cannot simply determine the limit of gx . That simpli-

fication applies only in case x — oo orx — —oo. Instead, we have
lim 2—1 _ lim, x> —1 _ 0-—-1 :_l
=07 —=2x+8x2 lime,o7—2x+82 7-04+0 7
Let us now consider the limit of the polynomial function f(x) = 8x? — 2x as x — 00:

lim (8x% — 2x)

X=> 00

Because a polynomial is a rational function with denominator 1, we have

8x? — 2x 8x?
lim (8x% —2x) = lim —— = lim — = lim 8
X 00 X—00 1 x—>00 ] X—00
That is, the limit of 8x> — 2x as x — oo is the same as the limit of the term involving
the greatest power of x, namely, 8x%. As x becomes very large, so does 8x2. Thus,
lim (8x* — 2x) = lim 8x* = o0

X—>00 X 00
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APPLY IT &

8. The cost (o4 of producing x umts of£

a certain product is given by C(x) =

50,000 +200x +0.3x2. Use your graph-
ing-calculator to explore lim, ;o C(x)

and determine what this means.

Do not use dominant terms when a
function is not rational.

APPLY IT -

9. A plumber charges $100 for the first
hour of work at your house and $75 for
every ‘hour (or fraction thereof) -after-
ward, The function for what an x-hour
visit will cost you is

$100 if0<x<1

O f8175 il <x <2
) =16r50 if2-v<3
$325 if3<x<4

Find lim,_., f(x) and lim_»5 /().

In general, we have the following:

As X = © (or x — —oo) the limit of a polynomial ﬁmctzon is the same as the ';
 limit of its term that involves the greatest power ofx. -

Limits at Infinity for Polynomial Functions

a. 111111__>~oo (x> — x> 4+ x —2) = lim,, oo x°. As x becomes very negative, so does
x3. Thus,

lim (3 —x? +x—2) lim x* = -0
X—>—00 X OO

b. lim,_, —go (—2x% + 9x) = lim,, oo —~2x = oo, because —2 times a very negative
number is very positive.
Now Work Problem 9

The technigue of focusing on dominant terms to find limits as x — oo orx — —00
is valid for rational functions, but it is not necessarily valid for other types of functions.

For example, consider
lim (V2 +x—x) {1

X000

Notice that /x2 + x — x is not a rational function. It is incorrect to infer that because
x? dominates in x* + x, the limit in (1) is the same as

lim (Va2 —x) = lim (x—x)= lim 0=0
X>00 =0 =00
It can be shown (see Problem 62) that the limit in (1) is not 0, but is %

The ideas discussed in this section will now be applied to a case-defined function.

XAMPLE 6  Limits for a Case-Defined Function

i
“+1 ifx>1
Iff("')z{x 3 ifx <

a. Hm.\'—-> 1+f(X)

Solution: Here x gets close to 1 from the right. For x > 1, we have f(x) =x>+ 1.
Thus,

, find the limit (if it exists).

lim f(x) = lim (x*+ 1)
x—>1+ R
If x is greater than 1, but close to 1, then x> + 1 is close to 2. Therefore,
lim f(x) = lim (> +1)=2
x—1+ x—1+
b. lim. - f(x)
Solution: Here x gets close to 1 from the left. For x < 1,f(x) = 3. Hence,
linll_f(x) = lir?_ 3=3
c. lime,;f(x)

Solution: We want the limit as x approaches 1. However, the rule of the function
depends on whether x > 1 or x < 1. Thus, we must consider one-sided limits. The
limit as x approaches 1 will exist if and only if both one-sided limits exist and are the
same. From parts (a) and (b),

linll_ flx) # linll fx) since 2 # 3
X} X} T
Therefore,

lin} f) does not exist
x>
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d. limy, e f(x)
Solution: For very large values of x, we have x > 1, s0 f(x) = x2 4 1. Thus,
lim f(x) = lim (x> + 1) = lim »*> = 00
X000 Redee] X0
e lim,, o f(x)
Solution: For very negative values of x, we have x < 1, so f(x) = 3. Hence,
lim f(x)= lm 3=3
X—>— X—>—00

All the limits in parts (a) through (c) should be obvious from the graph of f in
Figure 10.20.

fix)

3

———— 0 1>l
2k = “{ 3,ifx<1

FIGURE 10.20 Graph of case-defined function.
Now Work Problem 57 <

PROBLEMS 10.2 SRR
(@) limeo-f(x)  (b) limeor f(x)  (0) limesof(x)
(@) Mo f(x)  (¢) limesy fx) () limenoof(x)
(8) limyo- f(x)

1. For the function f given in Figure 10.21, find the following
limits. If the limit does not exist, so state that, or use the symbol
00 or —00 where appropriate.

fx)

In each of Problems 3-34, find the limit. If the limit does not exist,
so state, or use the symbol co or —oo where appropriate.
\/ 2 o—s 3. lim (x—2) 4, lim (1-x* 5. lim 5x
1¢ >3+ x——1* X—>—00
o x 6. lim —6 7. tim & 8. 1
'7 1 " g2 g
9. lim x 10. Lim (¢t —1* 11 lim /A —1
X—>—00 100 h—17%
-3
FIGURE 1021 12. lim 5=k 13. lim 14. lim 2"
(@) limes oo f(x) (b) limes - f(x) (€) limes 1+ f(x) h=5- x=2x+2 x=0°
(d) lme, f(x) () imeo-fx) (@ lim,o+ f(x) 15. ﬁn;l+ 4/x—1) 16. lin?l‘ (x4 —x2) 17. rlirgo x4+ 10
(g) ﬁmx—)Of(x) (h) limx-—»l‘f(x) (i) hmr——»l‘“f(x) ’ o 3
() limy.;f(x) (k) limyoof(x) e 18. lim —+/1—10x 19. lim —=
. x——00 x—00 /X
2. For the function f given in Figure 10.22, find the folowing _6 5 oy — 4
limits. If the limit does not exist, so state that, or use the symbol 20. lim —— 21. lim * 22. lm *
00 or —oo where appropriate. : x=>00 5x.Yx x—00 2x + 1 700 3 —
fx) -1 ) 3
23. Jm F— 24. rlinolo Ay
, 3422+ 91 ) 4x?
24 A 25. lim, 512 -5 % mseoa +2
= .
o I A 27 % Im &y
—4x— 3—2x — 243
2. tim 2= 30.

FIGURE 10.22

o0 503 —8x + 1

Ny g
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31 Tim & 3 2 1 2w —3w+4 For example, the total cost of an output of 5 units is $5030, and
e g v M gz 3B lim ST T — 1 the average cost per unit at this level-of production is $1006. By
4 353 6 — 4x2 + 23 finding lim,.,« €, show that the averdge cost approaches a level
34, lim — 35. lim R ——) of stability if the producer continually increases output. What is
e AT 1‘ . e +_2 x 7)‘\ the limiting value of the average cost? Sketch the graph of the
36. lim o 37. _5*‘_‘1”_&1:3 average-cost function.
H—Dz **+ 19x — 64 H—3_—2 xj +3x 60. Average Cost Repeat Problem 59, given that the fixed cost
38. lim r-4+3 39. Iim A__;éi\.il. is $12,000 and the variable cost is given by the function ¢, == 7.
2 9 _ — 2
=3t 3 321 .23 oA 11 61. Population The population of a certain small city ¢ years
40. lim ;x ;i 41. lim (2 - ?> from now is predicted to be
x=>—1 Rt X — 4
42. lim “w_l 43. lim _‘.zilﬁ . N = 40,000 — foog
Taomo x5 —dx? s S TS o +

44. lim

45, lim ——
X0+ x -+ x*

Find the populatiéh in the long run; that is, find lim,_,oo N.
62. Show that

1 . . = 1
i i . o(x — 1)1 .l im (Va2 +x—x) =~
46. rlzrpoo (A + x) 47 11—13} l(l ]) 48 ,r-l-li?}l 2x — 1 oo ( ) 2
9. 1i -5 50. 1 7 51 0 ! (Hint: Rationalize the numerator by multiplying the expression
T \T % Pliml-r—3) b lm k-1l VAT Fx —x by
- ) - -
52. lim |- 53, fim S yEtxtx
x=0x X=r—00 X —\/36—2——}-,\: 4 x
54, 1 (3 2x° ) Then express the denorminator in a form such that x is a factor.)
o lim { - —
—oo\x  x*41 63. Host-Parasite Relationship For a particular host—parasite

In Problems 55--58, find the indicated limits. If the limit does not
exist, so state, or use the symbol 0o or —oo where appropriate.

relationship, it was determined that when the host density (number
of hosts per unit of area) is x, the number of hosts parasitized over

. 2 ifx<2 a period of time is
35 fo) = [1 ifx>2 _ 900x
@ lime o f(x) () lime () (©) limys /() Y 10 45x

(d) Timy oo f(x)

() lime,_o f(x)

If the host density were to increase without bound, what value

2—x ifx<3 would y approach?
56. f(x) = TS T e
—l4+3x-x" fx>3 64. Iff(x) = { 3., _2—’\ lfl = 3 , determine the value of
@ limesfG) M) limes () (0 limesf@) Chklr41) ifx>2

(d) Iime, o f(x)
. N
57. gx) = {—,x
(a) limg..o+ g(x)
(d) lim o g(x)
%2
58. g(x) = { x
(a) limy_.p+ g(x)
(d) limy. g(x)
59. Average Cost

(e) limy. o f(x)
ifx<0
ifx>0
(b) lim_.o- g(x)
(€) lim. o0 g(x)
ifx<0
ifx>0
(b) limy.,g- g(x)
(&) limy.. o g(x)

(c) limyog(x)

(C) 1imx—>0 g(«\')

If ¢ is the total cost in dollars to produce

q units of a product, then the average cost per unit for an output
of g units is given by € = ¢/g. Thus, if the total cost equation is
¢ = 5000 + 64, then

5000

T=""

+6

68. Graph f(x) =

69. Graphf(x) = {

the constant k for which lim,_,, f(x) exists.

In Problems 65 and 66, use a calculator to evaluate the given
Sfunction when x = 1, 0.5, 0.2, 0.1, 0.01, 0.001, and 0.0001. From
your results, speculate about lim,_,g+ f(x).

65. f(x) =x> 66. f(x) = €'/

67. Graph f(x) = +/4x? — 1. Use the graph to estimate

im0+ f(x).

7 Use the graph to estimate

limy. 3~ f(x)if it e)gists. Use the symbol oo or —co if appropriate.
22 4+3 ifx <2

245 ifx>2 . Use the graph to

estimate each of the following limits if it exists:

() limes+ f(x)

(@) lime.o- f(x) () lime.2f(x)

Objective

To study continuity and to find poinis
of discontinuity for a function.

10.3 Continuity

Many functions have the property that there is no “break” in their graphs. For example,
compare the functions

N . N Jx o ifx 1
f(A)fx and g) =1, 7




f)

No break
in graph

1

S

FIGURE 10.23 Continuous at 1.

g(x)
Break

in 9
graph —-

/

FIGURE 10.24 Discontinuous at 1.

FIGURE 10.25 f is continuous at 7.

g(x)

FIGURE 10.26 g is continuous at —4.
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whose graphs appear in Figures 10.23 and 10.24, respectively. The graph of f is unbro-
ken, but the graph of g has a break at x = 1. Stated another way, if you were to trace
both graphs with a pencil, you would have to lift the pencil off the graph of g when
x = 1, but you would not have to lift it off the graph of f. These situations can be
expressed by limits. As x approaches 1, compare the limit of each function with the
value of the function at x = 1:

lirr}f(X) =1=f()
whereas
15111 gx)=1+#2=g()

In Section 10.1 we stressed that given a function f and a number a, there are two
important ways to associate a number to the pair (f, a). One is simple evaluation, f(a),
which exists precisely if a is in the domain of f. The other is lim,,,f(x), whose
existence and determination can be more challenging. For the functions f and g above,
the limit of f as x —> 1 is the same as f(1), but the limit of g as x — 1 is nor the same
as g(1). For these reasons, we say that f is continuous at 1 and g is discontinuous at 1.

Definition = , o ,

' A,quné/tioﬁf is continuous at a1f and only if the following three conditions are met:
1. f(a) exists - o

2. Tim o f () exists

3. limeo /() =f@)

If f is not continuous at a, then f is said to be discontinuous at a, and a is called a
point of discontinuity of f.

/ MPLE1 Applying the Definition of Continuity

a. Show that f(x) = 5 is continuous at 7.

Solution: We must verify that the preceding three conditions are met. First, f(7) = 5,
so f is defined at x = 7. Second,

liyf) = iy 5 =3
Thus, f has a limit as x — 7. Third,
Limf(x) = 5 =£(7)
Therefore, f is continuous at 7. (See Figure 10.25.)
b. Show that g(x) = x> — 3 is continuous at —4.
Solution: The function g is defined at x = —4 : g(—4) = 13. Also,
lim g(x) = lim (" —3) =13 = g(-4)
Therefore, g is continuous at —4. (See Figure 10.26.)

Now Work Problem 1 <

We say that a function is continuous on an interval if it is continuous at each
point there. In this situation, the graph of the function is connected over the interval.
For example, f(x) = x* is continuous on the interval [2, 5]. In fact, in Example 5
of Section 10.1, we showed that, for any polynomial function f, for any number a,
limy, f(x) = f(a). This means that

A polynomial function is continuous at every point.
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fx)

FIGURE 10.28 Infinite discontinuity

at 0.

fx)

w-{3

1ﬁx>0
yif x =0
1ﬁ\<0

FIGURE 10.29 Discontinuous

case-defined function.

It follows that such a function is continuous on every interval. We say that a function is
continuous on its domain if it is continuous at each pointin its domain. If the domain
of such a function is the set of all real numbers, we may simply say that the function is
continuous.

XAMPLE 2 = Continuity of Polynomial Functions

The functions f(x) = 7 and g(x) = x> — 9x + 3 are polynomial functions. Therefore,
they are continuous on their domains. For example, they are continuous at 3.

Now Work Problem 13 <

When is a function discontinuous? We can say that a function f defined on an open
interval containing a is d1scontmuous ata 1f

1 fhasnohrmtan—> a
or

2. asx —> a, f has a limit that is different from £(a)

If f is not defined at a, we will say also, in that case, that f is discontinuous at a. In
Figure 10.27, we can find points of discontinuity by inspection.

y y y
// fp
e
X L X S L
a a a
Defined ata Defined at a Not defined at @
but no limit and limit as but defined
asx-—a Xx-—>a exists, but for all nearby values
limit is not ofa
fla)

FIGURE 10.27 Discontinuities at a.

MPLE3 Discontinuities

a. Letf(x) = 1/x.(See Figure 10.28.) Note that f is not defined atx = 0, butitis defined
for all other x nearby. Thus, f is discontinuous at 0. Moreover, lim,_, g+ f(x) = 00 -
and lim,_,o- f(x) = —oo. A function is said to have an infinite discontinuity at a
when at least one of the one-sided limits is either co or —oco as x —> a. Hence, f has
an infinite discontinuity at x = 0.

1 ifx>0
b. Letf(x) = 0 ifx=0.
) ~1 ifx<0

(See Figure 10.29.) Although f is defined at x = 0, lim,_, ¢ f (x) does not exist. Thus,
f is discontinuous at 0.

Now Work Problem 29 <
The following property indicates where the discontinuities of a rational function occur:

Dlscontmuntles of a Ratlonal Functlon :

A rational function is discontinuous at pomts where the denominator is 0 and is
continuous otherwise. Thus, a rational function is continuous on its domain.
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AMPLE 4 Locating Discontinuities in Rational Functions

. . x+1, For each of the following functions, find all points of discontinuity.
The rational function f(x) = ] is
X+ 9
continuous on its domain but it is not a. f(x) = A3
defined at —1. It is discontinuous at —1. 324 2x—8

The graph of f is a horizontal straight line

oS P Solution: This rational function has denominator
with a “hole” in it at —1.

P+ —8=(x+DHx—-2)

which is O when x = —4 orx = 2. Thus, f is discontinuous only at —4 and 2.
x+4
b. h(x) = —
) x* 44

Solution: For this rational function, the denominator is never 0. (It is always positive.)
Therefore, & has no discontinuity.

Now Work Problem 19 <

Locating Discontinuities in Case-Defined Functions

For each of the following functions, find all points of discontinuity.

x+6 ifx>3
2 ifx<3

a. f(X)={

Solution: The cases defining the function are given by polynomials, which are con-
tinuous, so the only possible place for a discontinuity is at x = 3, where the separation
of cases occurs. We know that f(3) = 3 4+ 6 = 9. So because
lim f(x)= lim (x+6)=9
x—3F x=»3+F
and

lim f(x) = lim x> =9
X3 x—>3-

—3

we can conclude that lim,,3 f(x) = 9 = f(3) and the function has no points of discon-
tinuity. We can reach the same conclusion by inspecting the graph of f in Figure 10.30.

b. F(x) = {x+2 ifx>2

X2 ifx<?2
Solution: Since f is not defined at x = 2, it is discontinuous at 2. Note, however, that

lim £(x) = lim x> =4 = lim x+2 = lim f(x)
X2 x—2" 2 x—2F

X2+
shows that lim,_,, f(x) exists. (See Figure 10.31.)
Now Work Problem 31

TS

. [x+6itx>3
=12

2ifx<3

FIGURE 10.30 Continuous case-defined function. FIGURE 10.31 Discontinuous at 2.
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f0)
111 O
87+ O
631 [
39—
| H | i

FIGURE 10.32 Post-office
function.

This method of expressing continuity at ¢
is used frequently in mathematical proofs.

TECHNOLOGY

Post-Office Function

The post-office function

39 if0<x<1
63 fl<x<?2
87 f2<x<3
111 if3<x<4

c=fx)=

gives the cost ¢ (in cents) of mailing, first class, an item of weight x (ounces), for
0 < x < 4, in July 2006. It is clear from its graph in Figure 10.32 that f has disconti-
nuities at 1, 2, and 3 and is constant for values of x between successive discontinuities.
Such a function is called a step function because of the appearance of its graph.

Now Work Problem 35 <

There is another way to express continuity besides that given in the definition. If
we take the statement

lim £x) = £(@)

and replace x by a -+ h, then as x — a, we have i — 0; and as & — 0 we have x — a.
1t follows that lim,_, , f(x) = limy,—.0f(a -+ 1), provided the limits exist (Figure 10.33).
Thus, the statement

lim f(a + 1) = f(a)

assuming both sides exist, also defines continuity at a.

y
y=1@
fla+ B
as x—a,
N then 1—0
fla) / P
N
] | ¥
a a+h

Ry

FIGURE 10.33 Diagram for continuity at a.

defined neither at —1 nor at 1.

By observing the graph of a function, we may be able to
determine where a discontinuity occurs."However, we'can ==
be fooled. For example, the function

x—=1
X)= 5
fO=5—
is discontinuous at +1, but the discontinuity at 1 is not , ——

obvious from the graph of f in Figure 10.34. On the other
hand, the discontinuity at —1 is obvious. Note that f is

FIGURE 10.34 . Discontinuity at 1 is nbt apparent from
x-— , ,
2

graph of f(x) =

21

Often, it is helpful to describe a situation by a continuous function. For example,
the demand schedule in Table 10.3 indicates the number of units of a particular product
that consumers will demand per week at various prices. This information can be given
graphically, as in Figure 10.35(a), by plotting each quantity—price pair as a point.
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p P
chel 20¢ 20¢
 Price/Unit,p  Quantity/Week, g
. s : 0 15 15
5 a5 104 10-
5 sk HEAN
1 95 . 25 ,
1 ! i ° 1 q I | l i q
25 50 75 100 25 35 50 75 100
(a) (b)

FIGURE 10.35 Viewing data via a continuous function.

Clearly, the graph does not represent a continuous function. Furthermore, it gives us
no information as to the price at which, say, 35 units would be demanded. However, if
we connect the points in Figure 10.35(a) by a smooth curve [see Figure 10.35(b)], we
get a so-called demand curve. From it, we could guess that at about $2.50 per unit, 35
units would be demanded.

Frequently, it is possible and useful to describe a graph, as in Figure 10.35(b), by
means of an equation that defines a continuous function f. Such a function not only gives
us a demand equation, p = f(g), which allows us to anticipate corresponding prices and
quantities demanded, but also permits a convenient mathematical analysis of the nature
and basic properties of demand. Of course, some care must be used in working with
equations such as p = f(g). Mathematically, f may be defined when ¢ = /37, but from
a practical standpoint, a demand of +/37 units could be meaningless to our particular
situation. For example, if a unit is an egg, then a demand of /37 eggs make no sense.

We remark that functions of the form f(x) = x?, for fixed a, are continuous on
their domains. In particular, (square) root functions are continuous. Also, exponential
functions and logarithmic functions are continuous on their domains. Thus, exponential
functions have no discontinuities while a logarithmic function has only a discontinuity
at 0 (which is an infinite discontinuity). Many more examples of continuous functions
are provided by the observation that if f and g are continuous on their domains, then
the composite function f o g, given by f o g(x) = f(g(x)) is continuous on its domain.

For example, the function
Wi 1
f@ = fn (" i )

x—1

is continuous on its domain. Determining the domain of such a function may, of course,
be fairly involved.

PROBLEMS 10.3

In Problems 1-6, use the definition of continuity to show that the

3

x— 3
given function is continuous at the indicated point. 9. g) = x2 -9’ 3,3 10. hx) = x2+9’ 3,-3
x—3 .
. = — 5x1x = . ) = x = — x+2 ifx>2
L fo) =2 —55x=2 2 f) =g mx =3 11 f(x)={ 2 ir=20
3. g =2 =3nx=0 4. f(x):%;x=2 .
- ifx#0

x+3 12 f(x) =3 x ;0,—1
S =Thx=3 6 f@ == f X
In Problems 7-12, determine whether the function is continuous at In Problems 1316, give a reason why the function is continuous
the given points. L on its domain. -

x+4 2 4y ' 2+ 3x — x?
T f@=200-2,0 8. f(x) = *ﬁ; ) 13. fx) =222 —3 4. f) = ———
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15. f(x) = In ()

17. f(x) = 3x* -3

16. f(x) = x(1 —x)
In Problems 17-34, find all points of discontinuity.
18. h(x) =x—2

California, is $0.08 for the first minute or fraction thereof and
$0.04 for each additional minute or fraction thereof. If y = £(r) is
a function that indicates the total charge y for a call of t minutes
duration, sketch the graph of f for 0 < ¢ < 31. Use your graph to

N ¥ +5x-2 determine the values of t, where 0 < t < 31, at which
1. fl) = x+4 20. f) = 29 discontinuities occur.
(22 -3) N\ 36. The greatest integer function, f(x) = |x], is defined to be the

2. gt = 15 2. fx)=-1 greatest integer less than or equal to x, where x is any real number.

X 4+6x+9 . x—3 For example, [3] =3, [1.999] =1, |}] =0, and | -4.5] = —5.
23 () = ——— 24. g(x) = — : : 4

24+2x—15 2 4x Sketch the graph of this function for —3.5 < x < 3.5. Use your
95, x—3 26 2x —3 sketch to determine the values of x at which discontinuities occur.

- ) = x3—9x 0= 3—2x 37. Inventory  Sketch the graph of

27. p(x) = —— 28. f(x) = — —100x + 600 f0<x<5

x4 =1 ] y=f(x)={—-100x+1100 if5<x<10

1 ifx>0 3x+5 ifx>-2 — i :
29, f() = {_1 3200 30, = { > iz 2 100x + 1600 if 10 <x < 15
e o A function such as this might describe the inventory y of a
31. flx) = {x _(1) gi i i 32, fx) = {3"(_—23; gi z 5 company at time x. Is f continuous at 27 At 57 At 10?
38. Graph g(x) = ¢~/ Because g is not defined at x = 0, g is
16 Pl & h of
2 iy > 2 20 el discontinuous at 0. Based on the graph of g, is
3. f0) = {" Y P72 =] @ Tx=2
roHxr<s 3x—2 ifx<?2 ifx#0

35. Telephone Rates  Suppose the long-distance rate for a
telephone call from Hazleton, Pennsylvania to Los Angeles,

N e 1/e
f(")“{ 0 ifx=0

continuous at 0?7

Objective
To develop techniques for solving
nonlinear inequalities.

y=g(®

(r2,0) /

/(11,0) ] \_ (.0

FIGURE 10.36 1,1, and r3 are
roots of g(x) = 0.

fix)
f) =2 +3x -4

X
—4 / 1

25

4

FIGURE 10.37 —4and1 are
roots of f(x) = 0.

o> 0\0—0, 0) X

fix) < o\ —4

FIGURE 10.38 Change of sign

for a continuous function.

10.4 Continuity Applied to Inegualities

In Section 1.2, we solved linear inequalities. We now turn our attention to showing
how the notion of continuity can be applied to solving a nonlinear inequality such as
x* 4+ 3x — 4 < 0. The ability to do this will be important in our study of calculus.
Recall (from Section 2.5) that the x-intercepts of the graph of a function g are
precisely the roots of the equation g(x) = 0. Hence, from the graph of y = g(x) in
Figure 10.36, we conclude that ry, r», and r3 are roots of g(x) = 0 and any other roots
will give rise to x-intercepts (beyond what is actually shown of the graph). Assume that
in fact all the roots of g(x) = 0, and hence all the x-intercepts, are shown. Note further
from Figure 10.36 that the three roots determine four open intervals on the x-axis:

(—oo,r1) (r1,m3) (r2,r3) (13,00)
To solve x2 + 3x — 4 > 0, we let
fO=x+3x—4=Ex+Hx-1)

Because f is a polynomial function, it is continuous. The roots of f(x) = 0 are —4 and
1; hence, the graph of f has x-intercepts (—4,0) and (1,0). (See Figure 10.37.) The
roots determine three intervals on the x-axis:

(=o0,—4) (—4,1) (1,00)

Consider the interval (—oo, —4). Since f is continuous on this interval, we claim
that either f(x) > 0 or f(x) < O throughout the interval. If this were not the case, then
f(x) would indeed change sign on the interval. By the continuity of f, there would be a
point where the graph intersects the x-axis—for example, at (xp, 0). (See Figure 10.38.)
But then xp would be a root of f{x) = 0. However, this cannot be, because there is no
root less than —4. Hence, f (x) must be strictly positive or strictly negative on (—oco, —4).
A similar argument can be made for each of the other intervals.

To determine the sign of f(x) on any one of the three intervals, it suffices to determine
its sign at any point in the interval. For instance, —5 is in (—00, —4) and

f(=5)=6>0 Thus, f(x) > 0 on (—o0, —4)
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Fx)>0 floy<o Flx)>0

A4 ATA
AN Ay

—4 1

FIGURE 10.39 Simple sign chart for x> + 3x — 4.
Similarly, 0 is in (—4, 1), and

fO)=-4<0 Thus, f(x) < Oon (—4,1)
Finally, 3 is in (1, co), and

F3)=14>0  Thus, /(x) > 0on (1, 00)
(See the “sign chart” in Figure 10.39.) Therefore,

X*+3x—4>0 on (—oo,~4)and(l,0c0)

so we have solved the inequality. These results are obvious from the graph in Fig-
ure 10.37. The graph lies above the x-axis, meaning that f(x) > 0, on (—o0, —4) and
on (1, c0).

In more complicated examples it will be useful to exploit the multiplicative nature
of signs. We noted that f(x) = x> +3x —4 = (x +4)(x — 1). Each of x + 4 and x — 1
has a sign chart that is simpler than that of x*> + 3x — 4. Consider the “sign chart” in
Figure 10.40. As before, we placed the roots of f(x) = 0 in ascending order, from left
to right, so as to subdivide (—o00, c0) into three open intervals. This forms the top line
of the box. Directly below the top line we determined the signs of x 4 4 on the three
subintervals. We know that for the linear function x + 4 there is exactly one root of
the equation x + 4 = 0, namely —4. We placed a 0 at —4 in the row labeled x + 4.
By the argument illustrated in Figure 10.38, it follows that the sign of the function
x + 4 is constant on (—oo, —4) and on (—4, co) and two evaluations of x 4 4 settle the
distribution of signs for x + 4. From (—5) + 4 = —1 < 0, we have x + 4 negative
on (—o0, —4), so we entered a — sign in the (—oo, —4) space of the x + 4 row. From
(0) +4 =4 > 0, we have x + 4 positive on (—4, co). Since (—4, co) has been further
subdivided at 1, we entered a -+ sign in each of the (—4, 1) and (1, co) spaces of the
x -+ 4 row. In a similar way we constructed the row labeled x — 1.

fx) + { - ¢ +

FIGURE 10.40 Sign chart for x* + 3x — 4.

Now the bottom row is obtained by taking, for each component, the product of the
entries above. Thus we have (x + 4)(x — 1) = f(x), (—)(—) = +, O(any number) = 0,
(+)(=) = —, (any number)0 = 0, and (+)(+) = +. Sign charts of this kind are useful
whenever a continuous function can be expressed as a product of several simpler,
contintious functions, each of which has a simple sign chart. In Chapter 13 we will rely
heavily on such sign charts.

Solving a Quadratic Inequality

Solve x2 —3x — 10 > 0.

Solution: Iff(x) = x*> — 3x — 10, then f is a polynomial (quadratic) function and thus
is continuous everywhere. To find the real roots of f(x) = 0, we have

2 =3x—10=0
E+DE=5 =0
x=-2,5
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APPLY IT &

10. ‘An open box is formed by cuttmo a
-square piece out of each cormer of an
. 8-inch- by-lO-mch piece. of metal Ify
ﬁ;_’each side of the cut-out squares isx
“inches long, the volume of the box is .

given by V(x) = x(8 — 2x)(10 — 2x).
This problem makes sense only when
_ this volume is positive. Find the values

of x for which the volume is positive. =
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fx) + ) - ) +

FIGURE 10.41 Sign chart for x* — 3x — 10.

The roots —2 and 5 determine three intervals:
(—‘OO, _2) ("25 5) (59 OO)

In the manner of the last example, we construct the sign chart in Figure 10.41. We see
that x2 — 3x — 10 > 0 on (—00, —2) U (5, c0).

Now Work Probiem 1 <

MPLE2 Solving a Polynomial Inequality
Solve x(x — I)(x+4) < 0.

Solution: If f(x) = x(x — 1)(x +4), then f is a polynomial function and hence contin-
uous everywhere. The roots of f(x) = 0 are (in ascending order) —4, 0, and 1 and lead
to the sign chart in Figure 10.42.

-0 —4 0 1 oo

x+1 - ) + + +

f&x) - 0 + il - ] +

FIGURE 10.42 Sign chart for x(x — 1)(x +4).

~ From the sign chart, noting the endpoints required, x(x — 1)(x +4) < 0 on
(—o0, —4]U [0, 1].

Now Work Problem 11 <

The sign charts we have described are certainly not limited to solving polynomial
inequalities. The reader will have noticed that we used thicker vertical lines at the
endpoints, —co and oo, of the chart. These symbols do not denote real numbers, let
alone points in the domain of a function. We extend the thick vertical line convention to
single out isolated real numbers that are not in the domain of the function in question.
The next example will illustrate.

EXAMPLE 3  Solving a Rational Function Inequality

2 e
Solve =205 o
X

Solution: Let

¥ —6x+5 =D -=5)

f&x)y= -

x
For a rational function f = g/h, we solve the inequality by considering the intervals
determined by both the roots of g(x).= 0 and the roots of i(x) = 0. Observe that the
roots of g(x) = 0 are the roots of f(x) = 0 because the only way for a fraction to be
0 is for its numerator to be 0. On the other hand, the roots of /(x) = 0 are precisely
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e . L )

x-1 . - b N .

x—35 - _ ~ ) -

“Ux - N N -

fx) - . - ) B I :
FIGURE 10.43 Sign chart for W

f)

O o T T
f(,\,) ’,,.X .5£L+’3 "'-'—‘\/""—"“A

FIGURE 10.44 Graph of f(x) = = - 13

the points at which f is not defined and these are also precisely the points at which f is
discontinuous. The sign of f may change at a root and it may change at a discontinuity.
Here the roots of the numerator are 1 and 5 and the root of the denominator is 0. In
ascending order these give us 0, 1, and 5, which determine the open intervals

(=00,0) (0, 1) (1,5 (5,00)

These, together with the observation that 1/x is a factor of f, lead to the sign chart in
Figure 10.43.

Here the first two rows of the sign chart are constructed as before. In the third
row we have placed a x sign at 0 to indicate that the factor 1/x is not defined at 0.
The bottom row, as before, is constructed by taking the products of the entries above.
Observe that a product is not defined at any point at which any of its factors is not
defined. Hence we also have a x entry at 0 in the bottom row. )

From the bottom row of the sign chart we can read that the solution of W >0
is (0, 1] U [5, 00]. Observe that 1 and 5 are in the solution and 0 is not. )

In Figure 10.44 we have graphed f (x) = f—:%*'—s, and we can confirm visually that
the solution of the inequality f(x) > 0 is precisely the set of all real numbers at which
the graph lies on or above the x-axis.

Now Work Problem 17 <

A sign chart is not always necessary, as the following example shows.

Solving Nonlinear Inequalities

a. Solvex? +1 > 0.

Solution: The equation x> + 1 = 0 has no real roots. Thus, the continuous function
f(x) = x%+1 has no x-intercepts. It follows that either f(x) is always positive or £ (x) is
always negative. But x? is always positive or zero, so x> + 1 is always positive. Hence,
the solution of x> + 1 > 0 is (—0c0, c0).
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b. Solvex?+1 < 0.

Solution: From part (a), x> + 1 is always positive, so x24+1 < 0 has no solution,
meaning that the set of solutions is @, the empty set.

Now Work Problem 7 <

We conclude with a nonrational example. The importance of the function introduced
will become clear in later chapters.

MPI.:ENSw Solving a Nonrational Function Inequality

SolvexInx —x > 0. e

Solution: Let f(x) = xInx — x = x(Inx — 1), which, being a product of continuous
functions, is continuous. From the factored form for f we see that the roots of f(x) =0
are 0 and the roots of Inx — 1 = 0. The latter is equivalent to Inx = 1, which is
equivalent to €™ = ¢!, since the exponential function is one-to-one. However, the last
equality says that x = e. The domain of f is (0, 0o) because Inx is only defined for
x > 0. The domain dictates the top line of our sign chart in Figure 10.45.

0 € = The first row of Figure 10.45 is straightforward. For the second row, we placed a 0
x + + at e, the only root of Inx — 1 = 0. By continuity of Inx — 1, the sign of Inx — 1 on (0, )
and on (e, co) can be determined by suitable evaluations. For the first we evaluate at 1 in
Inx—1 - + (0,e)andgetln1—1 = 0—1 = —1 < 0. For the second we evaluate at ¢? in (e, c0) and
) - ) . getlne? —1=2—1=1 > 0. The bottom row is, as usual, determined by multiplying
the others. From the bottom row of Figure 10.45 the solution of xInx — x > 0 is

FIGURE 10.45 Sign chart for evidently [e, co).
*lnx —x. Now Work Problem 35 <

PROBLEMS 10.4

In Problems 1-26, solve the inequalities by the technique how wide can the strip be if the company wants at least 1753 mi® of
discussed in this section. forest to remain? '
Lx?=3x—4>0 2. ¥ —8x+15>0 29. Container Design A container manufacturer wishes to
3. x2-3x—10<0 4. 15—2x—x2>0 make an open box by cutting a 3-in.-by-3-in. square from each
5 o B - corner of a square sheet of aluminum and then turning up the
5. 2 +1lx+14 <0 6. x—4<0 sides. The box is to contain at least 192 cubic inches. Find the
7. x2+4<0 8 22 —x-2<0 dimensions of the smallest square sheet of aluminum that can
9. G+ DE—E+7) <0 10. ¢+ +Dx~7)<0 be used.
11 —x(x —5)(x+4) > 0 12. (x4+2? >0 30. Wo'rkshop‘ Participation . Imperial de{cation Services
s o (LE.S.) is offering a workshop in data processing to key personnel
13. °+4x>0 14, (x+3)°(x* -4 <0 at Zeta Corporation. The price per person is $50, and Zeta
15. B+ 82+ 15 <0 16. X2 +6x2+9x < 0 Corporation guarantees that at least 50 people will attend.
. 21 Suppose LE.S. offers to reduce the charge for everybody by $0.50
17. — - <0 18. — < 0 for each person over the 50 who attends. How should 1.E.S. limit
¥ =9 * the size of the group so that the total revenue it receives will never
3 - 3 be less than that received for 50 persons?
19. >0 20. — - >0 p
X j‘ 1 r Sx+6 31. Graph f(x) = x3 + 7x* — 5x + 4. Use the graph to determine
21, X X 6 0 2 X -5 , the solution of
Adr—5" 243427 P47 -5x+4<0
23 <0 2% 3x+2 <0 3x* - 0.5y 42
T2 r6x45 T T a—-12 7 32. Graph f(x) = 1Al Use the graph to determine the
2—4.1x
25. 22 +2x>2 26. x* —16>0 solution of
. . 3% —0.5x +2
27. Revenue Suppose that consumers will purchase q units of Tea_alr
2—4.1x

a product when the price of each unit is 28 — 0.2g dollars. How

many units must be sold for the sales revenue to be at least $7507 A novel way of solving a nonlinear inequality Iike f(x) > 0 is by

examining the graph of g(x) = f(x)/|f(x)\, whose range consists
28. Forest Management A lumber company owns a forest that only of 1 and —1:

is of rectangular shape, 1 mi x 2 mi. The company wants to cut a @
uniform strip of trees along the outer edges of the forest. At most, s

_f(-\') _[ 1 iffx)>0
T |- iff) <0
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The solution of f(x} > O consists of all intervals for which 35. Graph xInx — x. Does the function appear to be continuous?
g(x) = 1. Using this technique, solve the inequalities in Does the graph support the conclusions of Example 57 At what
Problems 33 and 34. value does the function appear to have a minimum value?
33, 6x2—xr—2>0 36. Graph e~ . Does the function appear to be continuous? Can
the conclusion be confirmed by invoking facts about continuous
a4, xj +x—1 <0 " funcfions? At what value does the function appear to have a
24r—6 , maximum value?

Chapter10 Review

Important Terms and Symbols Examples
Section 10.1 Limits

limy . f(x) =L Ex. 8, p. 466
Section 10.2 Limits (Continued)

limy .- f(x) =L lim+f(x) =L limy.,f(x) =00 Ex. 1,p. 470

limy o f(x) =L lmys e f(x) =L Ex. 3,p. 471
Section 10.3 Continuity

continuous at a discontinuous at a Ex. 3,p. 478

continuous on an interval continuous on its domain Ex. 4,p. 479
Section 10.4 Continuity Applied to Inequalities

sign chart Ex. 1, p. 483
Summary
The notion of limit is fundamental for calculus. To say that The infinity symbol oo, which does not represent a num-

lim,_,,f(x) = L means that the values of f(x) can be made  ber, is used in describing limits. The statement
as close to the number L as we like by taking x sufficiently . _
close to, but different from, a. If lim,_, o £ (x) and lim,._, g(x) im f(x) =

X OQ
exist and c is a constant, then . .
means that as x increases without bound, the values of f(x)

approach the number L. A similar statement applies for the
situation when x — —co, which means that x is decreasing
without bound. In general, if p > 0, then

1. lime,,c=c
s
3. hm\_.,a Feo ig(x)] = hmt_.mf(l) :I:hm\_m g(t) - T 1 f~='0 and lim L 0
4 limsq [F(x) g(xﬂ-hmx_,af(x) 11mx~mg(x) | ey e
5. lim,., [Cf(x)] =c- hmx»af(X) ‘

f(x) _ lim . f ()

If f(x) increases without bound as x — a, then we write

6. 11 1f hmx o g(x) # 0,  lime,,f(x) = oo.Similarly, if f(x) decreases without bound,
o , g( x) llm\—m g(x) ; - we have lim,,, f(x) = —oo. To say that the limit of a func-
7 hm\——m «/f (x) = /lim,_,, f (X) ~ tionisoco(or —co) does not mean that the limit exists. Rather,

it is a way of saying that the limit does not exist and tells why
there is no limit.

’ There is a rule for evaluating the limit of a rational func-
tion (quotient of polynomials) as x — co or —co. If f(x) is
a rational function and a,x" and b, x™ are the terms in the
numerator and denominator, respectively, with the greatest
powers of x, then

8 If f is a polynormal func t1on, then hm,g.',g 1 (J’,r)y'l_—“ f(a)

Property 8 implies that the limit of a polynomial function as
x — acan be found by simply evaluating the polynomial ata.
However, with other functions, f, evaluation at @ may lead to
the meaningless form 0/0. In such cases, algebraic manipu-
lation such as factoring and canceling may yield a function g
that agrees with f, for x # a, and for which the limit can be
determined.

If f(x) approaches L:as x approaches a from the right,
then we write lim,_,o+ f(x).= L. If f(x) approaches L as x
approaches a from the left, we write lim,_, o~ f(x) = L. These
limits are called one-sided limits.

hrn f(,x)- 11m
= —oob




26, limf(x) if f(x) = [ y
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In particular, as x — 00 or —oo, the limit of a polynomial
is the same as the limit of the term that involves the greatest
power of x. This means that, for a nonconstant polynomial,
the limit as x — 00 or —o0 is either co or —oco.

A functionf is continuous at ¢ if and only it
L. f(a) exists ‘
-2, lime,of (x) exists

3 hm\—mf ®=f ([l)

Geometrically this means that the graph of f has no break
at x = q. If a function is not continuous at g, then the

Review Problems

function is said to be discontinuous at a. Polynomial functions
and rational functions are contiﬁljpus on their domains. Thus
polynomial functions have no discontinuities and a rational
function is discontinuous only at points where its denomina-
tor is zero.

To solve the inequality f(x) > 0 (or f(x) < 0), we first
find the real roots of f(x) = 0 and the values of x for which
f is discontinuous. These values determine intervals, and on
each interval, f(x) is either always positive or always nega-
tive. To find the sign on any one of these intervals, it suffices
to find the sign of f(x) at any point there. After the signs are
determined for all intervals and assembled on a sign chart, it
is easy to give the solution of f(x) > 0 (orf(x) < 0).

In Problems 1-28, find the limits if they exist. If the limit does not
exist, so state, or use the symbol oo or —co where appropriate.

o2 —3x 41
1. r1—1)11_1 @xr+6x—1) 2. P_x}(l)—————zxz_z
—16 2x+3
4.
3' 11_)4 X“ — 4\ x—lvrildf x2 e 4
xt—4
5. im(x 4/ 6. li
S fm &+ 2 312
x4 4x? x2 —Tx+10
7. lim e 8. lim ——es
.v—l,»II—l4,t2+2x——8 xl—I;% 24x—6
: 2 241
9. 1 im -
ey x+1 10. Vlingo 2x?
2x+5 .
11. I 12. 1 —
rirrgo 7.’( fd 4 .v—ir—noo X
3tr—4 6
13. 1 im e
II—T‘ r—4 14 \EIPOO X3
x+3 :
15. lim T 16. lim /64
x—+—00 | — x
~1 22y — 1
7. fim 5L 18. lim 213
x=00 (3x 4+ 2)2 =35  x=35
9
19. Tim 22 20, lim =2
=3 x? =9 x=2 X =2
21. lim ~/3x 22. lim /y -5
X400 y—>5*
X190 1 (1/x%) ex? —x*

23. lim

24. lim
X 00 e — x9

x=—00 3]x — 2x3

x ifx>1

ifx <3
ifx>3

25. ﬁ;r}f(,y) iff(x) = [«\'" if0<x <1
x+5

X2 —

27. lim
=4+ 4 —x

Vit =16 = Jx —4/x+4)
Px-12 * 3

(Hint: Forx > 3, =
=3 fx —3 ( Vx—3

29. If f(x) = 8x — 2, find IAOW\—)

6
(Hint: Forx > 4,

28. lim

x—3)

—3, find lim W

h=0 h
31. Host-Parasite Relationship For a particular host—parasite
relationship, it was determined that when the host density (number
of hosts per unit of area) is x, then the number of hosts parasitized
over a certain period of time is

1
p=2311—
) < l+2x>

If the host density were to increase without bound, what value
would y approach?

30. Iff(x) =

32. Predator-Prey Relationship For a particular predator—
prey relationship, it was determined that the number y of prey
consumed by an individual predator over a period of time was a
function of the prey density x (the number of prey per unit of
area). Suppose

10x
140.1x

If the prey density were to increase without bound, what value
would y approach?

y=f(x)=

33. Using the definition of continuity, show that the function
f(x) = x -+ 3 is continuous at x = 2.

34. Using the definition of continuity, show that the function

x._
J’(A)=XZ+2

35. State whether f(x) = x?/5 is continuous at each real number.
Give a reason for your answer.

is continuous at x == 5.

36. State whether f(x) = x> — 2 is continuous everywhere. Give a
reason for your answer.

In Problems 37-44, find the points of discontinuity (if any) for
each function.

2 . 0
37. f(x): ‘;3 38 f =
—1 © 40 = (2 —3x)}
f(x) % ,+3 fo = 31)
4 — 3?2 2x 4+ 6
)= 2. f)="——
A S0 = 5a & =57
L J2x+3 fx>2 I/x ifx <1
43‘f(“')‘[3x+5 ifx<2 M f()“{ 1 ifx>1




In Problems 4552, solve the given inequalities.

45, ¥ 4+4x—12>0 46. 3x> -3x—6<0

47, 557x4 48. ¥ 49324 14x <0

49. 272 o 59, X HE
x* -1 3 .
x4+ 3x =9

51 — = > 52, > <

> 42 —-8 " > x-’-—16"0

x4 32 — 19x 4+ 18
322 px -2

53. Graph f(x) =
estimate lim, ., f(x).

\/l+3
1

. Use the graph to

54. Graph f(x) =
lim,; f(x).

~. From the graph, estimate
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&= 55. Graph f(x) = xInx. From the graph, estimate the one-sided
limit lim,... g+ f(x).

ef—1

56, Graph f(x) = ————.
El 56 Glaphf(\) (er+1)(elr_e‘)

ﬁmx-éOf (J_‘).

57. Graph f(x) = x* — x* +x — 6. Use the graph to determine the
solution of

Use the graph to estimate

P 4x—6>0

-2

58. Graph f(x) = =
X
solution of

—4
1 Use the graph to determine the

X —
.3+1

N

<0

"

@ EXPLORE & EXTEND National Debt

he size of the U.S. national debt is of great concern
to many people and is frequently a topic in the news.

The magnitude of the debt affects the confidence in -

the U.S. economy of both domestic and foreign investors,
- corporate officials, and political leaders. There are those
~ who believe that to reduce the debt there must be cuts in
government spending, which could affect government pro-
* grams, or there must be an increase in revenues possibly
through tax increases.

Suppose that it is pos31ble for the debt to be reduced

continuously at an annual fixed rate. This is similar to com-
pounding interest continuously, as studied in Chapter 53,

Thus you want to ﬁnd'
: kt
hm Do (1- E)

which can be rewntten as

po[m (-]

- except that instead of adding interest to an amount ateach

instant of time, you would be subtracting from the debt at
each instant. Let us see how you could model this situation.

Suppose the debt Dy at time ¢ = 0 is reduced at an

annual rate r.
periods of equal length in a year. At the end of the first

period, the original debt is reduced by Dy (

debtis S
=0 5) = (1-1)

At the enld o’ﬁ the second period, this debt is reduced by
Dy (1 = E) k S0 the new debt is :

k) so the new

Po(l—i)-

=Do(1-¢

=Do<1—';>2

The pattern cont1nu3es At the end of the thll‘d period the
debt is: Dy (1 e %) , and so on. At the end of ¢ years the

¥

-\ ke .
number of periods is k¢ and the debtis Do (1 — =) . Ifthe

debt is to be reduced at each instant of time, then k — oco.

Furthermore, assume that there are k time

If you let x = —r/k, then the condition k — oo implies
that x — 0. Hence the limit inside the brackets has the
- form lim,_,o (1 4+ x)!/*, which, as we pointed out in Sec- -
tion 10.1, is e. Therefore, if the debt Dy at time £ = 0 is
+=-teduced continuously at an annual rate r, then r years later.
the debt D is given by

D Doe r( -
For exarnple assume the U.Ss. natlonal debt of $ 1 1, 195
billion (rounded to the nearest billion) in the middle of April

2009 and a continuous reduction rate of 3% annually. Then
the debt ¢ years from now is given by
D = 11,195¢ %% ;

where D is in billions of dollars. This means that in 10
years, the debt will be 11,195¢ %2 ~ $8293 billion. Fig- -
ure 10.46 shows the graph of D = 11, 195¢ " for various
rates r. Of course, the greater the value of r, the faster the
debt reduction. Notice that for: 7 = 0.03; the debt at the
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end‘ of 30 years is stﬂl con51derab1e (apprommately $4552
; bllhon)

To find out where the U.S. natlonal debt currently

_ stands, visit one of the national debt clocks on the Inter-
‘net. You can find them by looking for “national debt clock”
using any search engine. - =

| - I” thefOZZOWln ploblems assume a cunent natzonal debt, ;
of $11,195 billion. i ;,

1. If the debt were reduced to $10 000 billion a year fromy -
now, what annual rate of continuous debt reduction would
be 1nvolved‘7 lee your answer to the nearest percent.

-

e
pe]
o)
e}
P

O
2
=
A
m

2. Fora continuous debt reduction at an annual rate of 3%,
~ determine the number of years from now required for the
,  debtto be reduced by one—ha]f Give your answer to the

' nearest year. '

3. What assumptlons underhe a model of debt reductlon‘
HGURE 10.46 Budget debt reduced connnuously. that uses an exponentlal function? ,

Years i
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11.2 Rules for Differentiation

11.3 The Derivative as a Rate
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P the Quotient Rule
‘ 115 The Chain Rule

}
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EXPLORE & EXTEND

Marginal Propensity
to Consume

P(n+1)

P(n)

ifferentiation

overnment regulations generally limit the number of fish taken from a given
_fishing ground by commercial fishing boats in a season. This prevents
overfishing, which depletes the fish population and leaves, in the long run,
fewer fish to catch.

From a strictly commercial perspective, the ideal regulations would maximize the
number of fish available for the year-to-year fish harvest. The key to finding those ideal
regulations is a mathematical function called the reproduction curve. For a given fish
habitat, this function estimates the fish population a year from now, P( + 1), based on
the population now, P(n), assuming no external interventions such as fishing or influx
of predators.

The figure to the bottom left shows a typical reproduction curve. Also graphed is the
line P(n+ 1) = P(n), the line along which the populations P(n + 1) and P(n) would be
equal. Notice the intersection of the curve and the straight line at point A. This is where,
because of habitat crowding, the population has reached its maximum sustainable size.
A population that is this size one year will be the same size the next year.

For any point on the horizontal axis, the distance between the reproduction curve
and the line P(n + 1) = P(n) represents the sustainable harvest: the number of fish
that could be caught, after the spawn have grown to maturity, so that in the end the
population is back at the same size it was a year ago.

Commercially speaking, the optimal population size is the one where the dis-
tance between the reproduction curve and the line P(n + 1) = P(n) is the great-
est. This condition is met where the slopes of the reproduction curve and the line
P(n + 1) = P(n) are equal. [The slope of P(n + 1) = P(n) is, of course, 1.] Thus,
for a maximum fish harvest year after year, regulations should aim to keep the fish
population fairly close to Pyq.

A central idea here is that of the slope of a curve at a given point. That idea is the
cornerstone concept of this chapter.

Now we begin our study of calculus. The ideas involved in calculus are completely
different from those of algebra and geometry. The power and importance of these ideas
and their applications will become clear later in the book. In this chapter we introduce
the derivative of a function and the important rules for finding derivatives. We also
show how the derivative is used to analyze the rate of change of a quantity, such as the
rate at which the position of a body is changing.

491
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Chapter 11 Differentiation

Objective

To develop the idea of a tangent line to
a curve, to define the slope of a curve,
and to define a derivative and give it a
geometric interpretation. To compute
derivatives by using the limit definition.

-~

Tangent lines

FIGURE 11.1 Tangent lines to
a circle.

y=16)
P
/~—

Secant line

FIGURE 11.3 Secant line PQ.

11.1 The Derivative : !

The main problem of differential calculus deals with finding the slope of the tangent
line at a point on a curve. In high school geometry a tangent line, or tangent, to a circle is
often defined as a line that meets the circle at exactly one point (Figure 11.1). However,
this idea of a tangent is not very useful for other kinds of curves. For example, in
Figure 11.2(a), the lines L; and L, intersect the curve at exactly one point P. Although
we would not think of L, as the tangent at this point, it seems natural that L; is. In
Figure 11.2(b) we intuitively would consider L to be the tangent at point P, even
though Ls intersects the curve at other points.

- . /

A
N/

Ljis a tangent
line at P.

L, is a tangent line
at P, but L, is not.

(@) (®)

FIGURE 11.2 Tangent line at a point.

From these examples, we see that the idea of a tangent as simply a line that intersects
a curve at only one point is inadequate. To obtain a suitable definition of tangent line,
we use the limit concept and the geometric notion of a secant line. A secant line is a
line that intersects a curve at two or more points.

Look at the graph of the function y = f(x) in Figure 11.3. We wish to define the
tangent line at point P. If Q is a different point on the curve, the line PQ is a secant
line. If O moves along the curve and approaches P from the right (see Figure 11.4),
typical secant lines are PQ’, PQ", and so on. As Q approaches P from the left, typical
secant lines are PQ;, PO», and so on. In both cases, the secant lines approach the same
limiting position. This common limiting position of the secant lines is defined to be the
tangent line to the curve at P. This definition seems reasonable and applies to curves
in general, not just circles.

A curve does not necessarily have a tangent line at each of its points. For example,
the curve y = |x| does not have a tangent at (0,0). As can be seen in Figure 11.5, a secant
line through (0,0) and a nearby point to its right on the curve must always be the line

N\ y =1
// Limiting positipn X
1 (tangent at P)
A
y=-xx<0 y=xx >0

FIGURE 11.4 The tangent line is a limiting position of secant lines.

(6.0)

FIGURE 11.5 No tangent line
to graph of y = |x| at (0,0).
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¥ = x. Thus the limiting position of such secant lines'is also the line y = x. However, a
secant line through (0,0) and a nearby point to its left on the curve must always be the
line y = —x. Hence, the limiting position of such secant lines is also the line y = —x.
Since there is no common limiting position, there is no tangent line at (0,0).

Now that we have a suitable definition of a tangent to a curve at a point, we can
define the slope of a curve at a point.

Definition s
The slope of a curve at a point P is the slope, if it exists, of the tangent line at P.

Since the tangent at P is a limiting position of secant lines PQ, we consider the
slope of the tangent to be the limiting value of the slopes of the secant lines as Q
approaches P. For example, let us consider the curve f(x) = x” and the slopes of some
secant lines PQ, where P = (1, 1). For the point Q = (2.5, 6.25), the slope of PQ (see
Figure 11.6) is '

rise 625-—1 35
Mpp = —— == —— =3,
tP0 run 25-1
}V
y=flx)=+

FIGURE 11.6 Secant line to f(x) = x? through (1, 1) and (2.5, 6.25).

Table 11.1 includes other points Q on the curve, as well as the corresponding slopes
of PQ. Notice that as Q approaches P, the slopes of the secant lines seem to approach
2. Thus, we expect the slope of the indicated tangent line at (1, 1) to be 2. This will be
confirmed later, in Example 1. But first, we wish to generalize our procedure.
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y ey
QVQM>
y=fx ) - fla)
\ (@, f@)) gy = T =L@
"
z—a=h
) ~li; é -t

FIGURE 11.7 Secant line through P and Q.

For the curve y = f(x) in Figure 11.7, we will find an expression for the slope at
the point P = (a,f(a)). If Q = (z,f(z)), the slope of the secant line PQ is

_J@) —fla)
"= e

If the difference z — a is called k, then we can write z as a + . Here we must have
h # 0, forif h = 0, then z = a, and no secant line exists. Accordingly,

_f@—f@ _fa+h-f@

z—a h

mpg

Which of these two forms for mpgp is most convenient depends on the nature of the
function f. As Q moves along the curve toward P, z approaches a. This means that
h approaches zero. The limiting value of the slopes of the secant lines—which is the
slope of the tangent line at (a, f{a))—is

o — 1 1O L@ _ o fa+ B —1@

a7z —q >0 'h’

Again, which of these two forms is most convenient—which limit is easiest to
determine~—depends on the nature of the function f. In Example 1, we will use this
limit to confirm our previous expectation that the slope of the tangent line to the curve
f)=x%at(1,1)is 2.

Finding the Slope of a Tangent Line

Find the slope of the tangent line to the curve y = f(x) = x? at the point (I, 1).

Solution: The slope is the limit in Equation (1) with f(x) = x* and a = 1:

. fQ+B-f1) . (A+h*-QQ)
lim~—————">—— = lim ———
h—0 h h—0 h
o 142neR -1 2h4+ K
= lim = lim
h—0 h h—0 h
h(2+ 1
—im PR ima e =2
h—=0 h h—>0

Therefore, the tangent line to y = x? at (1, 1) has slope 2. (Refer to Figure 11.6.)
Now Work Problem 1 <




Calculating a derivative via the definition
requires precision. Typically, the
difference quotient requires considerable
manipulation before the limit step is
taken. This requires that each written step
be preceded by “lim,_" to acknowledge
that the limit step is still pending.
Observe that after the limit step is taken,
It will no longer be present.

cauTion]\

dy
The notation d._} which is called Leibniz

notation, should not be thought of as a
fraction, although it looks hke one. Itis
a single symbol for a derivative. We
have not yet attached any meaning to -
individual symbols such as dy and dx.

x =1, thentheslopeis f'(1)=2-1=
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We can generalize Equation (1) so that it applie$ to any point (x, f(x)) on a curve.
Replacing a by x gives a function, called the derivative of f, whose input is x and
whose output is the slope of the tangent line to the curve at (x,f(x)), provided that the
tangent line exists and has a slope. (If the tangent line exists but is vertical, then it has
no slope.) We thus have the following definition, which forms the basis of differential
calculus:

Definition

The derivative of a functlon f is the fUHCtIOH denoted fl (read “f prime”) and
, deﬁned by

. flx+ h) —f()
§ e
h=0 h

hm

o= f(~) = (1)’ :

@
provided that this limit exists. If f’(a) can be found [while perhaps not all £(x) can
be found] f is said to be differentiable at a, and f'(a) is called the derivative of f at
a or the derivative of f with respect to x at a. The process of ﬁndmo the denvanve
is called dzﬁerentzatzon.

In the definition of the derivative, the expression
J@Q-f® _fe+h)—-f®
z—x h

where z = x 4 h, is called a difference quotient. Thus f'(x) is the limit of a difference
quotient.

EXAMPLE 2 Using the Definition to Find the Derivative

If f(x) = x?, find the derivative of f.
Solution: Applying the definition of a derivative gives

f(\+h) —f)

fx) = ]
(x + lz)- - X2+ 2ch 4+ R — X2
= lim ——————— = lim
h—0 h h—0 h
2xh + h? h(2x +F
= tim 2 i D @by = 20
-0 h h—0 h h—0

Observe that, in taking the limit, we treated x as a constant, because it was h, not x, that
was changing. Also, note that f'(x) = 2x defines a function of x, which we can interpret
as giving the slope of the tangent line to the graph of f at (x,f(x)). For example, if
2, which confirms the result in Example 1.

Now Work Problem 3 <

‘Besides the notation f'(x), other common ways to denote the derivative of y = f(x)
at x are

, d_y - : Vpronoiinced ’=’=déé’ } dee x’or'dee ¥ by dee x’
== L
d
: Z(f(x)) “dee f(x), deex or “dee by dee xeff(x)
bd
o )"_,,  prime” —
Dy " ; “dee x of y ‘
D(f(x))  “deexoff(x)”

Because the denvatwe ‘TIVES the slope of the tancrent line, f’(a) is the slope of the
lme tancent to the graph of y= f (x) at (a f (a)) ~ ‘
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In Example 3 it is nzot correct to say that,
since the derivative is 4x -+ 2, the tangent
lineat (1,7)isy — 7 = (dx 4+ 2)(x — 1).
(This is not even the equation of a line.)
The derivative must be evaluated at the
point of tangency to determine the slope
of the tangent line.

Two other notations for the derivative of f ata are -

Finding an Equation of a Tangent Line

If f(x) = 2x? + 2x + 3, find an equation of the tangent line to the graph of f at (1, 7).
Solutlon

; Stra‘éegy We wﬂl ﬁrst determme the slope of the tanaent line by computing the
denvanve and eva]uatmo itatx = 1. Using this result and the point (1,7) in a
; pomt—;sl_ope form gives an equation of “thg tangent line. ‘

‘We have
x+h x)
o) = -L__l_i_
— tm (2(x+h) 420+ R+ — @22+ 20+ 3)
T =0 h
-~ Im 202 4 4k + 207+ 2+ 20+ 3 — 24— 2~ 3
= h
4xh + 2h* + 21 '
= Jim DA AR (x 20+ 2)
h—0 h h—0
So
) =4x+2
and

) =41)+2=6

Thus, the tangent line to the graph at (1, 7) has slope 6. A point-slope form of this
tangent is

y—T=06(x—1)
which in slope-intercept form is
y=6x+1
Now Work Problem 25 <

Finding the Slope of a Curve at a Point

Find the slope of the curve y = 2x 4+ 3 at the point where x = 6.
Solution: The slope of the curve is the slope of the tangent line. Letting y = f(x) =
2x 4 3, we have

dy . fa+h—fx) . QCx+h+3)-2x+3)

— = lim ————= = lim

dx h—0 h h—0 h

. 2h .
= lim— =1lm2 =2
-0 h h—0

" Since dy/dx = 2, the slope when x = 6, or in fact at any point, is 2. Note that the curve

is a straight line and thus has the same slope at each point.

Now Work Problem 19 <

MPLE 5 A Function with a Vertical Tangent Line

EMé%Jﬂ

Solution: Letting f(x) = +/x, we have

i(ﬁ) - 1imw lim Y2 “*‘h NxX+h—x
dx =0 h h—0




Rationalizing numerators or
denominators of fractions is often helpful
in calculating limits.

Tangent
line at
(0.0

| X

FIGURE 11.8 Vertical tangent
line at (0, 0).

Variables other than v and y-are often
more natural in applied problems. Time
denoted by 1. quantity by ¢. and price by
p are obvious examples. Example 6
illustrates.

APPLY IT »

1.Tf a ball is thrown upward at a speed of
40ft/sfroma height of 6 feet, its height
_H in feet after ¢ seconds CII;I given by
H = 6+ 40t — 16/ Find — :
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As h — 0, both the numerator and denominator approach zero. This can be avoided by
rationalizing the numeraror:

«/x—}—lz-—ﬁ: Vx+h—Jx x+h+Jx

h h VXt R+ Jx
et h)y—x _ h
e N o NG
Therefore,
d h 1 1 1
(/X)) = lim —————— = lim — = =
P T e Y RV Y-l S W

Note that the original function, /x, is defined for x > 0, but its derivative, 1/(2./),
is defined only when x > 0. The reason for this is clear from the graph of y = /x in
Figure 11.8. When x = 0, the tangent is a vertical line, so its slope is not defined.

Now Work Problem 17

In Example 5 we saw that the function y = ./x is not differentiable when x = 0,
because the tangent line is vertical at that point. It is worthwhile to mention that y = |x|
also is not differentiable when x = 0, but for a different reason: There is no tangent
line at all at that point. (Refer to Figure 11.5.) Both examples show that the domain of
f/ may be strictly contained in the domain of f.

To indicate a derivative, Leibniz notation is often useful because it makes it con-
venient to emphasize the independent and dependent variables involved. For example,
if the variable p is a function of the variable ¢, we speak of the derivative of p with
respect to g, written dp/dg.

AMPLE 6  Finding the Derivative of p with Respect to g
1 dp
Ifp= = —, find —.
P=f@ 2 0 a7

Solution: We will do this problem first using the /i — 0 limit (the only one we have
used so far) and then using r — ¢ to illustrate the other variant of the limit.

dp _d (1N _ . flath—f@)
dg dg \2q T =0 h
o1 9-(q+h
2 2 2 h
— i 24D 29 2@ R
h=0 h h—0 h
q—(q-+h . —h
e = i

- == lim = lim ——
e =0 h(2q(q + h)) 10 h(2q(q + h))

~1 1
= lim —————s =
0 2qq ) 28

‘We also have

dp_l. F) —f(g)
— = |1 —
dg r1 r—q
1 1 q-—r
2r 2 2r
= lim ! q:lim M
r—q =g r=qr—gq
1. —1
= lim — = —=

2

r~q2rqg 2q
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FIGURE 11.9 f is not continuous
at a, so f is not differentiable at a.

We leave it you to decide which form leads to the simpler limit calculation in this case.
Note that when g = 0 the function is not defined, so the derivative is also not even
defined when g = 0. ‘

Now Work Problem 15 <

Keep in mind that the derivative of y = f(x) at x is nothing more than a limit,
namely

T fa+h)—fx)
im e
b0 h
equivalently
i @) —f)
im ———=
o =X

whose use we have just illustrated. Although we can interpret the derivative as a function
that gives the slope of the tangent line to the curve y = f(x) at the point {x, f(x)), this
interpretation is simply a geometric convenience that assists our understanding. The
preceding limit may exist, aside from any geometric considerations at all. As we will
see later, there are other useful interpretations of the derivative.

In Section 11.4, we will make technical use of the following relationship between
differentiability and continuity. However, it is of fundamental importance and needs to
be understood from the outset.

1If f is differentiable at a, thenf is continuous at a.

To establish this result, we will assume that f is differentiable at a. Then f'(a) exists, and

lim fla+h) —f(a) — @)
=0 h

Consider the numerator f(a + k) — f(a) as h — 0. We have

. L (flat+ ) —f@)
lim (f(a + ) — f(@)) = lim (—h-—— : h)
e —f@
= lim ————see” . 1im 1
h—0 h h—0

=f@)-0=0

Thus, limy.¢ (f(a + h) — f(a)) = 0. This means that f(a + 1) — f(a) approaches 0 as
h — 0. Consequently,

limf(a+ ) =f(a)

As stated in Section 10.3, this condition means that f is continuous at a. The foregoing,
then, proves that f is continuous at @ when f is differentiable there. More simply, we
say that differentiability at a point implies continuity at that point.

If a function is not continuous at a point, then it cannot have a derivative there. For

~ example, the function in Figure 11.9 is discontinuous at a. The curve has no tangent at

that point, so the function is not differentiable there.

Continuity and Differentiability
a. Let f(x) = x*. The derivative, 2x, is defined for all values of x, so f(x) = x? must
be continuous for all values of x.

1
b. The function f(p) = > is not continuous at p = 0 because f is not defined there.

Thus, the derivative does not exist at p = 0.
<
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y The converse of the statemnent that differentiability implies continuity is false. That
is, continuity does not imply differentiability. In Example 8, we give a function that is
continuous at a point, but not differentiable there.

MPLES Continuity Does Not Imply Differentiability

x) = x| . . . .
f® ] The function y = f(x) = || is continuous at x = 0. (See Figure 11.10.) As we
\ * mentioned earlier, there is no tangent line at x = 0. Thus, the derivative does not exist
Continuous at x = 0. but there. This shows that continuity does nor imply differentiability.
not differentiable at x = 0 o <
FIGURE 11.10 Continuity does not
imply differentiability. Finally, we remark that while differentiability of f at a implies continuity of f at a,

the derivative function, f”, is not necessarily continuous at a. Unfortunately, the classic
example is constructed from a function not considered in this book.

PROBLEMS 11.1

In Problems 1 and 2, a function f and a point P on its graph are 21. Find the slope of the curve y = 4x*> — 5 when x = 0.
grven. 22. Find the slope of the curve y = +/2x whenx = 18.

In Problems 23-28, find an equation of the tangent line to the
curve at the given point.

(a) Find the slope of the secant line PQ for each point Q =
(x,f (x)) whose x-value is given in the table. Round your answers
to four decimal places.

(b) Use your results from part (a) to estimate the slope of the 23. y=x+43.7 24, y =32 —4;(1,-1)
tangent line at P. 25. y = +2x +3:(1,6) 2. y=(x—7)% @6 1)
L f(x)=x>+3,P=(-2,-5) 4 5

x-value of 0] —3]|—2.5|—2.2]—2.1|—2.01| —2.001 27 y= oG D) 28 y= 15520

i’ 29. Banking Equations may involve derivatives of functions.
2. fx) =€ P =(0,1) In an article on interest rate deregulation, Christofi and Agapos'

solve the equation
x-valueof 0| 1]0.5}0.2]0.1]0.01]0.001

npg n dcC
In Problems 3-18, use the definition of the derivative to find each T ( I+ 77> (I.L - E)
of the following.
3 f(x) ff)=x 4, f'(x) iff@x)=4x—1 for 7 (the Greek letter “eta”). Here r is the deposit rate paid by
dy . dy . commercial banks, r, is the rate earned by commercial banks,
5. o Hfy=3x+35 6. . ify=—5x C is the administrative cost of transforming deposits into
P d o return-earning assets, D is the savings deposits level, and 7 is
9. Z(g —2x) 8, — (1 _ i‘,) the deposit elasticity with respect to the deposit rate. Find 7.
¢ dx 2
9. fi(x) iffx)=3 10. f/(x) iff(x) =17.01 In Problems 30 and 31, use the numerical derivative feature of

d 12y ify=a2+3x+2 your graphing calculator to estimate the derivatives of the
11. ;L——(x2 +4x —8§) - Y= Junctions at the indicated values. Round your answers to three
X

dp . d . decimal places.
13. i ifp=3¢"+2¢+1 14. E(xz—x‘— 3) B30, f(r) = V22 F3mx = 1,x =2
] c BB f@) = @x—T)x=0,x= L5
15,y ify=— 16. a0 if C=7+2g—3¢ In Problems 32 and 33, use the “limit of a difference quotient”
A q approact ; 1 . . .
pproach to estimate f'(x) at the indicated values of x. Round your
17. fi(x) if f(x) = /2% 18. H'(x) if H(x) = — 3 - answers to three decimal places.
r-e E32 f)=xhx—xx=1,x=10
19. Find the slope of the curve y = x* + 4 at the point (—2, 8). _ 244y 42
. P ey S epe B33, ="t =
20. Find the slope of the curve y = 1 — x~ at the point (1, 0). x3—3

IA. Christofi and A. Agapos, “Interest Rate Deregulation: An Empirical
Justification,” Review of Business and Economic Research, XX, no. 1 (1984),
39-49.
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34. Find an equation of the tangent line to the curve f(x) = x>+ x

at the point (-2, 2). Graph both the curve and the tangent line.
Notice that the tangent line is a good approximation to the curve
near the point of tangency.

35. The derivative of f(x) = x> — x + 2 is f'(x) = 3x* — 1. Graph

both the function f and its derivative f’. Observe that there are two
points on the graph of f where the tangent line is horizontal. For

have positive slopes over these intervals. Observe the interval
where f'(x) is negative. Notice thattangent lines to the graph of f
have negative slopes over this interval.

In Problems 36 and 37, verify the identity (z — x)

(3iy %'z =1F) = 2" — x" for the indicated values of n and
calculate the derivarive using the z — x form of the definition of
the derivative in Equation (2).

the x-values of these points, what are the corresponding values
of f/(x)? Why are these results expected? Observe the intervals
where f’(x) is positive. Notice that tangent lines to the graph of f

E36 n=4n=3n=2; fl)iff()=2"+2>-3x"
37 n=5n=>3 f®iff(x) =4 — 33

11.2 Rules for Differentiation

Objective

To develop the basic rules for
differentiating constant functions and
power functions and the combining
rules for differentiating a constant
multiple of a function and a sum of two
functions.

Differentiating a function by direct use of the definition of derivative can be tedious.
However, if a function is constructed from simpler functions, then the derivative of
the more complicated function can be constructed from the derivatives of the simpler
functions. Ultimately, we need to know only the derivatives of a few basic functions
and ways to assemble derivatives of constructed functions from the derivatives of their
components. For example, if functions f and g have derivatives f' and g’, respectively,
then f + g has a derivative given by (f + g) = f’ + g'. However, some rules are
less intuitive. For example, if f - g denotes the function whose value at x is given by
(f - ) = f(x) - gx), then (f - g) =f' - g+ f - ¢ In this chapter we study most
such combining rules and some basic rules for calculating derivatives of certain basic
functions.

We begin by showing that the derivative of a constant function is zero. Recall that
the graph of the constant function f(x) = c is a horizontal line (see Figure 11.11), which
. has a slope of zero at each point. This means that f'(x) = 0 regardless of x. As a formal
flx) . " .
proof of this result, we apply the definition of the derivative to f(x) = c:

] —
| f=c Flo) = f———-————-——(x Sall it 2P
h—0 h‘
Slope is zero 0
everywhere =lim—-=1m0=0

x h=0h  h—0
Thus, we have our first rule:

FIGURE 11.11 Theslopeofa
constant function is 0.

. BASIC RULE 0 Denva’nve of a Constant
Ifc 1s a constant then

d
a (C) =

That fis,ft’hey, derivative of a constant function is zero.

MPL =1 Derivatives of Constant Functions

d

a. 2—(3) = 0 because 3 is a constant function.
x

b. If g(x) = V3, then g'(x) = 0 because g is a constant function. For example, the
derivative of g whenx =4 is g'(4) =

c. If s(r) = (1,938,623)37# then ds/dt = 0.

Now Work Problem 1 <

The next rule gives a formula for the derivative of “x raised to a constant power’—
that is, the derivative of f(x) = x?, where a is an arbitrary real number. A function
of this form is called a power function. For example, f(x) = x* is a power function.
While the rule we record is valid for all real a, we will establish it only in the case where




cauTion\

There is a lot more to calculus than this
rule.

Section 11.2  Rules for Differentiation 501

a is a positive integer, . The rule is so central to differential calculus that it warrants
a detailed calculation—if only in the case where a is a positive integer, n. Whether we

use the h — 0 form of the definition of derivative or the z — x form, the calculation of
Cix"

—— is instructive and provides good practice with summation notation, whose use is
more essential in later chapters. We provide a calculation for each possibility. We must
either expand (x + )", to use the i — 0 form of Equation (2) from Section 11.1, or
factor z" — x", to use the z — x form.

For the first of these we recall the binomial theorem of Section 9.2:
n

x+h)"=) Cx" K
i=0

where the ,C; are the binomial coefficients, whose precise descriptions, except for
2»Co = 1 and ,,C; = n, are not necessary here (but are given in Section 8.2). For the
second we have

n—1

_ x) xizn—l——i =7 —x"

2
which is easily verified by carrying out the multiplication using the rules for manipu-
lating summations given in Section 1.5. In fact, we have

n-1 n—1 n—1
z —-X) § :xzzn—l—t — E :\_1,_11 I—i —x E :,XI"" Pomf
i=0

n—1 n—1

— le,n i Z \l-{'—l n—1—i
i=0
ne-1 n-2
=+ Z don—i ) in+lzn—l—i 4"
=0

_n n
=7 —X

where the reader should check that the two summations in the second to last line really
do cancel as shown.

BASICRULE1 Derivative of
Ifais any real number, then
dx (") =

That is, the derivative of a constant power of x 1s the exponent times x raused toa
power one less than the UIVCD pOWET. ~ ‘

For n a positive integer, if f(x) = x", the definition of the derivative gives

f x+—fxy . &+ —x"
Fe) = h =m0
By our previous dlscuss1on on expandmg x4+ m",
n

; Cixn——thl "
i=0

N

n
iy
,,C,'A h
1 A =1
D fim 4
;) h
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n

B ,Cx" iR ESY
@ ;. =1 !
D im
h—0 h
n
3 .. iy
D im LCx" I
h—0 4
=
n
@) .. ~ e
= Jim | nx" !+ Wolvil tnt
h—>0 =
[&)] —
= ! 4

where we justify the further steps as follows:

(1) The i = 0 term in the summation is ,Cox"h° = x" so it cancels with the separate,
last, term: —x".

(2) We are able to extract a common factor of /2 from each term in the sum.

(3) This is the crucial step. The expressions separated by the equal sign are limits as
h — 0 of functions of h that are equal for &z # 0.

(4) Thei = 1 term in the summation is ,C;x"~'h® = nx"~!.Itis the only one that does
not contain a factor of 7, and we separated it from the other terms.

(5) Finally, in determining the limit we made use of the fact that the isolated term is
independent of #; while all the others contain / as a factor and so have limit 0 as
h— 0.

Now, using the z — x limit for the definition of the derivative and f(x) = x",
we have
o) = timtD=S@ 2o

X Z—X h—0 7 —Xx

By our previous discussion on factoring z" — x", we have

n-—}i
(z—%) <Z xizn—-l—i>
i=0

Z—X

o) = lim

n—1

(1) . . 1
:hmE :xlzn 1—i
X
i=0

n—1

@ R
b § :xlxn I—i
i=0

n—1

3)2 -
=27 xn 1

i=0

[C) —
=) " H

—~

where this time we justify the further steps as follows:

(1) Here the crucial step comes first. The expressions separated by the equal sign are
limits as z — x of functions of z that are equal for z # x.

(2) The limit is given by evaluation because the expression is a polynomial in the
variable z.

(3) An obvious rule for exponents is used.
(4) Each term in the sum is "}, independent of i, and there are n such terms.




cauTion\

i
In Example 3(b), do not rewrite —= as

x/x

T and then merely differentiate the

denommator.
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XAMPLE 2  Derivatives of Powers of x

d
a. By Basic Rule 1, E—(xz) =2x""1 = 2.
X

b. If F(x) =x =x!, then F'(x) = 1 - x'7! = 1. x0 = 1. Thus, the derivative of x with
respect to x is 1.

c. Iff(x) =x"19 then f'(x) = —10x~10-1 = —10x~'L.

Now Work Problem 3 <

When we apply a differentiation rule to a function, sometimes the function must
first be rewritten so that it has the proper form for that rule. For example, to differentiate

1
fx)= —o we would first rewrite f as £ (x) = x~'? and then proceed as in Example 2(c).

(AMPLE 3 Rewriting Functions in the Form x*

a. To differentiate y = ./, we rewrite ,/x as x!/? so that it has the form x". Thus,

& _Lapa_1ap_ 1
de 2 2 2./x
which agrees with our limit calculation in Example 5 of Section 11.1.
b. Let h(x) = 1«1/{ To apply Basic Rule 1, we must rewrite i(x) as i(x) = x 3
that it has the fc;rm x". We have
H(x) = %(x-yz) — _%x(—3/2)—1 — _%X—S/Z

Now Work Probliem 39 <

Now that we can say immediately that the derivative of x? is 3x?, the question arises
as to what we could say about the derivative of a multiple of x3, such as 5x>. Our next
rule will handle this situation of differentiating a constant times a function.

COMBINING RULE 1 Constant Facior Rule
If f isa dlfferentlable funcuon and cisa constant then cf (x) is dlfferentlable and
—(Cf(x)) =cf' ()

That is, the denvatlve of a constant times a functlon is the constant times the denva—
t1ve of the function. V

Proof. If g(x) = cf (x), applying the definition of the derivative of g gives

'®) = lim gt h) — 80 = lim Jet+h— o)
8 =300 h T 0 h

G -
=c- lim —— ™
h—0 h

= lim
hi—>0

< f(x+h)—f(x)>
¢ h

But lim Of(X+h) —f@) .

is f'(x); so g'(x) = ¢f"(x).
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cauTion\

In differentiating f(x) = (4x)*, Basic
Rule 1 cannot be applied directly. It
applies to a power of the variable x, not to
a power of an expression involving x,
such as 4x. To apply our rules, write

Fx) = (4x)° = 43x3 = 64x3. Thus,

F) = 64%@3) = 64(3x%) = 192x7.

Differentiating a Constant Times a Function

Differentiate the following functions.
a. g(x) = 5x3

Solution: Here g is a constant (5) times a function (x3). So
—(5 = 5 (x3) Combining Rule 1
= 5(3x3") =15x> Basic Rule 1
b. f(g) = —

Solutlon

S‘%ra*egy We first rewnte f as a constant times a funcuon and then apply
Basm Rule 1 , ~ ;

13 13 13
Because —5—2 = —q,f is the constant 5 times the function ¢. Thus,

5
13 d
flg) = —-—(q) Combining Rule 1
13 13
A= — Basic Rule 1
5 5
025
cy=- =

Solution: We can express y as a constant times a function:

—2/35
y=025- — =0.25x"

2
Hence,

d -
y = O.25d—(x"2/’) Combining Rule 1
[x .
2 —7/5 ~7/5 :
= 0.25 —ga -0.1x Basic Rule 1
Now Work Problem 7 <

The next rule involves derivatives of sums and differences of functions.

; ,COMBINING RULE 2 Sum or leference Rule

If f and g are dlfferentlable functlons then f+g and f= g are dltterentlab]e ancl

. = —(f(X)+g(x)) f (x)+g(1)
—(f (x) (l)) f (l) g (x)

fThat 15 the denvatwe of the sum (d1fference) of two functlons is the sum (dafference)
of thelr denvanves ~

Proof. For the case of a sum, if F(x) = f(x) + g(x), applying the definition of the
derivative of F gives
F h) — F(x
F(x) = lim (x+h)—-Fx)
h—0 h )
— lim F&+h)+ g+ h) — (F(x) + gx))
h->0 . h




APPLY IT »

2. If the revenue furiction for a certain
~'product is ¥(g) = 50g — 0.34¢%, find the
~derivative of this function, also known

as the marginal revenue.
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— 1 (fx+h) —f(x) + (gx + h) — g(x)) o
= lim regrouping
h—0 h -
i (f(x +h)—fx) glx+h)— g(x))
= lim +
h=0 h h

Because the limit of a sum is the sum of the limits,
Je+n—fx) . glx+h)—gl)
-+ lim
h h—0 h

"(x) = li
F (\) le—l;r(l)
But these two limits are f'(x) and g'(x). Thus,
F'(x) =f'(x)+g'(
The proof for the derivative of a difference of two functions is similar.

Combining Rule 2 can be extended to the derivative of any number of sums and
differences of functions. For example,

d
E;_(f(x) = 8(x) + h(x) + k()] = f'(x) — g'(x) + 1'(x) + K'(x)

\MPLE 5 Differentiating Sums and Differences of Functions
Differentiate the following functions.
a. F(x) =3x° + /x

Solution: Here F is the sum of two functions, 3x° and «/x. Therefore,

d . d
F'(x) = —(3x°) + — (') Combining Rule 2
dx dx

1 d
= 3(—(x5) + —@E'% Combining Rule 1
dx dx

a1 ‘
=3(5x") + —2-x'1/2 = 15x* + —— Basic Rule 1

1
2/x

25
b'f(Z):Z—Zm

Solution: To apply our rules, we will rewrite f(z) in the form f(z) = }z* — 5z71/3.
Since f is the difference of two functions,

d (1, d
@)= = (Zz4> - ;(52"1/3) Combining Rule 2
1d | d
— 121_(24) — 5;;(2"”3) Combining Rule 1
z z
= £(4Z3) -5 <-—%Z“4/3> Basic Rule 1
5
=7+ 52‘4/3
. y=6x"—2x>+7x—8
Solution: P 4 J 4 4
Y 3 2
= —(6x%) — — (2% + —(Tx) — —(8
&= ) T my@ 00— ®

= 6d—‘i(x3) — 2%@2) + 7%@) — j—x(S)
= 6(3x%) —2(2x) +7(1) = 0
=18x* —4x+7
Now Work Problem 47 <



506 Chapter 11" Differentiation

In Examples 6 and 7, we need to rewrite
the given function in a form to which our
rules apply.

cauTion]\

To obtain the y-value of the point on the
curve when x = I, evaluate the original
function atx = 1.

Finding a Derivative N
Find the derivative of f x) = 2x(x% — 5x + 2) when x = 2.
Soluiion: We multiply and then differentiate each term:
fx) =2x> — 10x* + 4x
F/(x) = 2(3x%) — 10(2x) + 4(1)

=6x> —20x +4
@) =6(2)* —202)+4=—12

Now Work Problem 75 <

AMPLE 7  Finding an Equation of a Tangent Line

Find an equation of the tangent line to the curve

_3x2—2
T x

when x = 1.

Solution:
Sirategy  First we find a—z— which gives the slope of the tangent line at any point.
dy
Evaluatmv E)- whenx = 1 gives. the slope of the required tangent line. We then

determine the y-coordinate of the point on the curve when x = 1. Finally, we
substitute the slope and both of the coordinates of the point in point-slope form to
obtain an equation of the tangent line.

Rewriting y as a difference of two functions, we have

3x 2
y:i———-—fﬂl-—'),\
X x
Thus,
dy _a 2
T =31 -2((-1x") =3+ = =z
The slope of the tangent line to the curve when x = 1 is
dy 2
dx|, + 12
To ﬁnd the y-coordinate of the pomt on the curve where x = 1, we evaluate
3 2
y= * atx = 1. This gives
. x
31> -2
y = —1————— =1

Hence, the point (1, 1) lies on both the curve and the tangent line. Therefore, an equation
of the tangent line is

y—1=>5x—-1) |
In slope-intercept form, we have
y=05x—4
Now Work Problem 81 <




PROBLEMS 11.2

In Problems 1-74, differentiate the functions.

L f@)=n 2. f) = (8
3, y=2a® 4, f(x) = x
5 y=x% 6. y=x"!
7. f(x) = 9? 8. y=4d
9. g(w) = 8w’ 10. v(x) = x°
11 y= 48 12. f(p) = /3p*

7 7
13. () = ;—3 4. y= ‘7
15. f(x)=x+3 16. f(x) =5x—e
17. f(x) =42 —2x +3 18. F(x) =5x - 9x
19. g(p)=p* —3p° —1 20. f(t) = —13> + 14t + 1
2l y=x*~3x 22, y=-8x*+1n2
23, v=—13x3 4+ 14x> —2x +3
24. Vi =¥ =T +32 4+ 1
25. f(x) =2(13 — x4 26. U(t) = e(t’ — 5%)
27, gy = 2 '3""4 28. f(x) = %—6—)

29.

2
h(x) = 4x* + 23 — 9—;— + 8x

30. k() = -2+ éx +11 3L f) = 5.\-9 + §x7
3 7 5
K 2 ]
32, p(x) = ‘7 + —31 33, f(x) = 5
34, fx) =215 35, y=x3* 4 23
36. y =4x* —x3F 3. y=11/x
38 y =7 39. f(r)=6r
40. y = 49/x? 41. f(x)=x"5
42, f(s) =253 43, f(x) =x3 4 x73 — 26
1
44. f(x) = 100x7> + 10x'?2 45 y= -
3 8
46. f0) =~ 47,y ==
1 4
1 3 7
5 - N 5 . e ]
0. y== L f() =15
7 -7
52. g() = — 53. f(x) == + -
Ox 7 x
X2 3 <
54, O(x) = T3 55. f(x) = —9x!/3 4+ 5x721
X
56

. f(z) =53% — 6% — 8714
1

« QX)) = T 538. f(x) =

q(x) Ten Fx) 7
2 60 1

-J’—ﬁ, -}—Er/—;
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61 y=x3x 62. f(x) = (2x*)(4x?)
63. f)=x(Bx>—10x+7) 64. f(x) =x°Gxb —5x2 +4)
65. f(x) = x*(3x) 66. s(x) = xS+ Tx+2)
67. v(x) =x"Px+3) 68. f(x) =x3 P +Tx+11)
2 = ) —35
6. fig= LT g0 pony =" =
71 f(x) = (x — I)(x +2) 72. f(x) = 22(x — 2)(x + 4)
' _.t2+.\'3 ; _7,\'3+x
73. W(l) = 2 74. f(.'»\) = —6—\/‘7

For each curve in Problems 75-78, find the slopes at the indicated
points.

75. vy =3x" +4x — 8:(0,=8),(2,12),(-=3.7)

76. y =3+ 5x —3x%(0,3). (3. §). (2, —11)

77. y=4;whenx = —4,x=T7,x =22

78. y=3x—4,/x;whenx =4,x = 9,x = 25

In Problems 79-82, find an equation of the tangent line to the

curve at the indicated point.
2

79. y = dx? +5¢ +6:(1,15)  80. y= "5“'";(4, ~3)
1

8. y==:;(2. D) 82. y=—x;(8,-2)
x-

83. Find an equation of the tangent line to the curve
y=3+x—57+x*

whenx = 0.

84. Repeat Problem 83 for the curve
VA2 =¥

X

y

whenx = 4.
85. Find all points on the curve

5
y==x*—x*

2

where the tangent line is horizontal.

86. Repeat Problem 85 for the curve

¥ X
yY=%-"3 +1
87. Find all points on the curve
y=x*—5x+3

where the slope is 1.
88. Repeat Problem 87 for the curve

y=x*=3Ix+11

1
89. If f(x) = /x+ 7 evaluate the expression
x

x—1

—f'(x)
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90. Economics - Eswaran and Kotwal® consider agrarian Eswaran and Kotwal claim that .

economies in which there are two types of workers, permanent dz "g[wp b

and casual. Permanent workers are employed on long-term dw, =(1+D) l: divc - m]

contracts and may receive benefits such as holiday gifts and . .

emergency aid. Casual workers are hired on a daily basis and Verify this.

perform routine and menial tasks such as weeding, harvesting, and [ 91. Find an equation of the tangent line to the graph of

threshing. The difference z in the present-value cost of hiring a y = x> — 2x + 1 at the point (1, 0). Graph both the function and

permanent worker over that of hiring a casual worker is given by the tangent line on the same screen.

2= (1 + byw, — bw, (& 92. Find an equation of the tangent line to the graph of y = f at

the point (—8, —2). Graph both the function and the tangent line -

where w, and w, are wage rates for permanent labor and casual on the same screen. Notice that the line passes through (—8, —2)

labor, respectively, b is a constant, and w, is a function of w,. and the line appears to be tangent to the curve.

Objective 11.3 The Derivative as a Rate of Change

To motivate the instantaneous rate of ~ We have given a geometric interpretation of the derivative as being the slope of the

change of a function by means of : . o . < -
velocity and to interpret the derivative ~ [2RgeNt line to a curve at a point. Historically, an important application of the derivative

as an instantaneous rate of change. To ~ involves the motion of an object traveling in a straight line. This gives us a convenient
develop the “marginal” concept, which  way to interpret the derivative as a rate of change.
gg%%ﬁg? used in business and To denote the change in a variable such as x, the symbol Ax (read “delta x”)
is commonly used. For example, if x changes from 1 to 3, then the change in x is
Ax = 3 — 1 = 2. The new value of x(=3) is the old value plus the change, which is
1+ Ax. Similarly, if 7 increases by At, the new value is t + Ar. We will use A-notation
in the discussion that follows.
Suppose an object moves along the number line in Figure 11.12 according to the

equation
s=f(t)=7r
5= where s is the position of the object at time ¢. This equation is called an equation of
L1 L § motion, and f is called a position function. Assume that ¢ is in seconds and s is in
01 9 _ LA T - S0
. meters. At f = 1 the position is s = f(1) = 1 = 1, and at ¢+ = 3 the position is
=1 =2 s = f(3) = 3% = 9. Over this two-second time interval, the object has a change in
FIGURE 11.12 Motion along position, or a displacement, of 9 — 1 = 8m, and the average velocity of the object
a number line. is defined as
displacement @
Vave = . .
ave length of time interval
8
= — =4 m/s
2

To say that the average velocity is 4 m/s from t = 1 to ¢ = 3 means that, on the average,
the position of the object changed by 4 m to the right each second during that time
interval. Let us denote the changes in s-values and #-values by As and Ar, respectively.
Then the average velocity is given by

A
Vave = —A:; =4 m/s (fortheintervalt =1tot = 3)

The ratio As/At is also called the average rate of change of s with respect to r over
the interval from ¢ = 1 to t = 3.
Now, let the time interval be only 1 second long (that is, At = 1). Then, for the
shorter interval fromr = 1tot = 14+ At = 2, we have f(2) = 2> = 4, so
As  f(2) f(l) 4 -1

A At [ = 3ms

Vave =

M. Eswaran and A. Kotwal, “A Theory of Two-Tier Labor Markets in Agrarian Economies,”
The American Economic Review, 75, no. 1 (1985), 162-77.
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~ Lengthof ' o
 TimeTInterval = = Tlme Interval - _ Average Velocity
At t~—1tot—1+At . | éf%w
A : Ar o At
r=1ltor=11 - 2.1 mis
t=ltor=107 2.07 mis
t=1ltor=105 205 mis
t=1ltor=103 203 mfs
t=Teor=101 201 mks
t=1tor=1001 ‘ 2.001 m/s

More generally, over the time interval from t = 1 to t = 1 + At, the object moves
from position f(1) to position f(1 + Ar). Thus, its displacement is

As = f(1 + A —f(1)
Since the time interval has length Az, the object’s average velocity is given by
As  f(14+An—f(1)

At At

If At were to become smaller and smaller, the average velocity over the interval from
t=1tot =1 Ar would be close to what we might call the instantaneous velociry
at time 1 = 1; that is, the velocity at a point in time (+ = 1) as opposed to the velocity
over an interval of time. For some typical values of Az between 0.1 and 0.001, we get
the average velocities in Table 11.2, which the reader can verify.

The table suggests that as the length of the time interval approaches zero, the
average velocity approaches the value 2 m/s. In other words, as At approaches 0,
As/ At approaches 2 m/s. We define the limit of the average velocity as At — 0 to be
the instantaneous velocity (or simply the velocity), v, at time 7 = 1. This limit is also
called the instantaneous rate of change of s with respecttoratr = 1:

As . f(0+An—f(1)
Vo= hm Vave = lim — = lim —4™W———=
—0 Ar=0 At A0 At
If we think of Ar as /i, then the limit on the right is simply the derivative of s with
respect to f at = 1. Thus, the instantaneous velocity of the object at r = 1 is just ds/dt
att = 1. Because s = t* and

Vave =

d
=
dt
the velocity atf = 1 is
ds
e = 2(1) = 2 m/
7| =2 S

which confirms our previous conclusion.
In summary, if s = f(¢) is the position function of an object moving in a straight
line, then the average velocity of the object over the time interval [z, t + At] is given by

As _fe+An—f@

Ao i
and the velocity at time ¢ is given by '

g fet A —f@) _ds
":_At-—>0 LU At i dt

Vave =

Selectively combmmc equations for v, we have
ds
= lim
dt ~ a0 At
which provides motivation for the otherwise bizarre Leibniz notation. (After all, A is
the [uppercase] Greek letter corresponding to d.)




510

Chapier 11

Differentiation

Finding Average Velocity and Velocity

Suppose the position function of an object moving along a number line is given by
s = f(f) = 31> + 5, where t is in seconds and s is in meters.

a. Find the average velocity over the interval [10, 10.1].
b. Find the velocity when ¢ = 10.

Solution:
a. Heret = 10 and At = 10.1 — 10 = 0.1. So we have

As _fa+An—f®)

Vave = E AL
_ f(a0+0.1) = (10)
- 0.1
:f(IO.l) —f(10)
0.1
311.03 - 305 6.03
= = = 60.3 m/
0.1 0.1 S
b. The velocity at time ¢ is given by
ds
= — == Of
dt
When ¢ = 10, the velocity is
d
Sl = 6(10) = 60 mis
dt |10

Notice that the average velocity over the interval {10, 10.1] is close to the velocity
at ¢ = 10. This is to be expected because the length of the interval is small.

Now Work Problem 1 <

Our discussion of the rate of change of s with respect to ¢ applies equally well to
any function y = f(x). This means that we have the following:

~Ify = f(x), then e
. [faveragerate of change
Ay  flx+Ax)—f&)  ]ofy with respect to x

S Ax Ax over the interval from -
: xtox-+Ax

dy i Ay [instantaneous rate of change t”)

dx  Av0 Ax  |of y with respect to x 5

Because the instantaneous rate of change of y = f(x) at a point is a derivative, it is also
the slope of the tangent line to the graph of y = f(x) at that point. For convenience,
we usually refer to the instantaneous rate of change simply as the rate of change. The
interpretation of a derivative as a rate of change is extremely important.

Let us now consider the significance of the rate of change of y with respect to x.
From Equation (2), if Ax (a change in x) is close to 0, then Ay/Ax is close to dy/dx.
That is,

Ay -dy
Ax  dx




APPLY IT »

_ 3. Suppose that the profit P made by sell-
ing a certain product at a price of p per
unit is given by P = f(p) and the rate
of change of that profit with respect to

. dapP
“change in price is == 5atp = 25:

Estimate the change in the profit P if the
price changes from 25 to 25.5.

APPLY IT »

4. The position of an object thrown
upward at a speed of 16 feet/s from
a height of 0 feet is giver by y(r) =
16¢.— 16¢>. Find the rate of change of
y with respect to t, and evaluate it when

t = 0.5. Use your graphing calculator
to graph y(¢). Use the graph to interpret
“the behavior of the objectwhen = 0.5.
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Therefore,
o
Ay =~ -——XAx 3
dx

That is, if x changes by Ax, then the change in y, Ay, is approximately dy/dx times the
change in x. In particular,

J : - o : . Lody
if x changes by 1, an estimate of the change in y is Ei-

MPLE 2 Estimating Ay by Using dy/dx

dy
Suppose that y = f(x) and —) = § when x = 3. Estimate the change in y if x changes
from 3 to 3.5. *

Solution: We have dy/dx = 8 and Ax = 3.5 — 3 = 0.5. The change in y is given by
Ay, and, from Equation (3),
dv
Ay~ A =8(05) =4
dx

We remark that, since Ay = f(3.5) — f(3), we have (3.5) = f(3) + Ay. For example,
if f(3) = 5, then f(3.5) can be estimated by 5 + 4 = 9.

<

(AMPLE 3 Finding a Rate of Change

Find the rate of change of y = x* with respect to x, and evaluate it when x = 2 and
when x = —1. Interpret your results.
Solution: The rate of change is

dy
dx

When x = 2,dy/dx = 4(2)> = 32. This means that if x increases, from 2, by a
small amount, then y increases approximately 32 times as much. More simply, we

4x”

say that, when x = 2, y is increasing 32 times as fast as x does. When x = -1,
dy/dx = 4(—1)> = —4. The significance of the minus sign on —4 is that, when
x = —1, yis decreasing 4 times as fast as x increases.

Now Work Problem 11 <

MPLE 4 Rate of Change of Price with Respect to Quantity

Let p = 100 — ¢ be the demand function for a manufacturer’s product. Find the rate
of change of price p per unit with respect to quantity g. How fast is the price changing
with respect to ¢ when g = 57 Assume that p is in dollars.

Solution: The rate of change of p with respect to ¢ is

dp d ”
- =—(100—g*) = -2
dq dq( q°) q
Thus,
d
Pl = 2(5)=-10
dq q=3
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This means that when five units are demanded, an increase of one extra unit demanded
corresponds to a decrease of approximately $10 in the pnce per unit that consumers
are willing to pay.

<

Rate of Change of Volume

A spherical balloon is being filled with air. Find the rate of change of the volume of air
in the balloon with respect to its radius. Evaluate this rate of change when the radius
is 2 ft.

Solution: The formula for the volume V of a ball of radlus risV = -m . The rate of
change of V with respect to r is

dv

4
o= 71'( 1Y) = dmr?

When r = 2 ft, the rate of change is

av 3
—| = 47(2)* = 167 —

r=2

This means that when the radius is 2 ft, changing the radlus by 1 ft will change the
volume by approximately 167 ft>.

<

XAMPLE6 . Rate of Change of Enroliment

A sociologist is studying various suggested programs that can aid in the education of
preschool-age children in a certain city. The sociologist believes that x years after the
beginning of a particular program, f(x) thousand preschoolers will be enrolled, where

10 ’
fxy= —9—(12x —x7) 0<x<12
Atwhat rate would enrollment change (a) after three years from the start of this program

and (b) after nine years?

Solution: The rate of change of f(x) is

flx) = 1—99(12 — 2x)

a. After three years, the rate of change is

10 20 2
3= —(12 2(3))__9.. 6=—3——6§

Thus, enrollment would be increasing at the rate of 6% thousand preschoolers
per year.

b. After nine years, the rate is

9 12— 29)) = -6 20 62
1O = 5 2-20) = S(-6) = -3 = 62

Thus, enrollment would be decreasing at the rate of 63 thousand preschoolers
per year.

Now Work Problem 9 <
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Applications of Rate of Change to Economics

A manufacturer’s total-cost function, ¢ = f(g), gives the total cost ¢ of producing and
marketing ¢ units of a product. The rate of change of ¢ with respect to ¢ is called the
marginal cost. Thus,

S Loonde
marginal cost = —

For example, suppose ¢ = f(q) = O 14° + 3 is a cost function, where ¢ is in dollars
and q is in pounds. Then

J :
% _02g
dgq
The marginal cost when 4 1b are produced is dc/dg, evaluated when g = 4:
d
£l =024 =080
dq | yes ,

This means that if production is increased by 1 Ib, from 4 Ib to 5 1b, then the change in
cost is approximately $0.80. That is, the additional pound costs about $0.80. In general,
we interpret marginal cost as the approximate cost of one additional unit of output.
After all, the difference f(g + 1) — f(g) can be seen as a difference quotient
flg+1)—flg)
1

(the case where /1 = 1). Any difference quotient can be regarded as an approximation
of the corresponding derivative and, conversely, any derivative can be regarded as an
approximation of any of its corresponding difference quotients. Thus, for any function
f of g we can always regard f'(g) and f (g + 1) — f(¢) as approximations of each other.
In economics, the latter can usually be regarded as the exact value of the cost, or profit
depending upon the function, of the (g + 1)th item when g are produced. The derivative
is often easier to compute than the exact value. [In the case at hand, the actual cost of
producing one more pound beyond 4 1b is f(5) — f(4) = 5.5 — 4.6 = $0.90.]

If ¢ is the total cost of producing g units of a product, then the average cost per
unit, ¢, is

c
c=-— )
q

For example, if the total cost of 20 units is $100, then the average cost per unit is

¢ = 100/20 = $5. By multiplying both sides of Equation (4) by g, we have

c=qc
That is, total cost is the product of the number of units produced and the average cost
per unit.

\MPLE7  Marginal Cost

If a manufacturer’s average-cost equation is
T 5000
¢ =0.0001¢*> — 0.02g 45 + —
' q
find the marginal-cost function. What is the marginal cost when 50 units are produced?

Solution:

S‘irategy The maramal cost functlon is the derivative of the total-cost functlon c.
Thus ‘we first find cby multlplymcr ¢ by qg: We have

c=qc
: 5000
—q(OOOOlq ——002q+5+T)

¢ = 0.0001¢> — 0.02¢> + 5g + 5000
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Differentiating ¢, we have the marginal-cost function:

d
— = 0.0001(3¢%) - 0.02(29) + 5(1) + 0
q

= 0.0003¢> — 0.04g + 5
The marginal cost when 50 units are produced is

d
i = 0.0003(50)> — 0.04(50) + 5 = 3.75

dgq g=30 :

If c is in dollars and production is increased by one unit, from g = 50 to g = 51, then the
cost of the additional unit is approximately $3.75. If production is increased by % unit,

from g = 50, then the cost of the additional output is approximately (1) (3.75) = $1.25.
Now Work Problem 21 <

Suppose r = f(q) is the total-revenue function for a manufacturer. The equation
r = f(q) states that the total dollar value received for selling g units of a product is r.
The marginal revenue is defined as the rate of change of the total dollar value received
with respect to the total number of units sold. Hence, marginal revenue is merely the
derivative of r with respect to ¢:

- dr
- marginaltevenue = — -
o dq

Marginal revenue indicates the rate at which revenue changes with respect to units
sold. We interpret it as the approximate revenue received from selling one additional
unit of output.

MPLE8 Marginal Revenue

Suppose a manufacturer sells a product at $2 per unit. If ¢ units are sold, the total
revenue is given by
r=24q
The marginal-revenue function is
dr
dq
which is a constant function. Thus, the marginal revenue is 2 regardless of the number

of units sold. This is what we would expect, because the manufacturer receives $2 for
each unit sold.

= d(2)—2

Now Work Problem 23

Relative and Percentage Rates of Change

For the total-revenue function in Example 8, namely, r = f(q) = 2q, we have
dr

—_—2

dq
This means that revenue is changing at the rate of $2 per unit, regardless of the number
of units sold. Although this is valuable information, it may be more significant when
compared to r itself. For example, if ¢ = 50, then r = 2(50) = 100. Thus, the rate
of change of revenue is 2/100 = 0.02 of r. On the other hand, if g = 5000, then
r = 2(5000) = $10,000, so the rate of change of r is 2/10,000 = 0.0002 of r.




cauTioN\

Percentages can be confusing!
Remember that percent means “per

hundred.” Thus 100% =} = 1,

2% = 7% = 0.02, and so on.

APPLY IT »

5. The volume V enclosed by a capsule~ !
_shaped container with a cyhndncal f
hewht of 4 feet and radlus ris owen by .

: 4
V(r) = —m + 47[1

- Determine the relatlve and percentagey'i

- rates of change of volume with respect

10 the radins when the radfus is 2 feet. ;

PROBLEMS 11.3
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Although r changes at the same rate at each level, compared to r itself, this rate is
relatively smaller when r = 10,000 than when r = 100. By considering the ratio

dr/dq
r
we have a means of comparing the rate of change of r with r itself. This ratio is called

the relative rate of change of r. We have shown that the relative rate of change when
qg=50is

d 2
r/dq = — = (.02
r 100
and when g = 5000, it is )
dr/dg 2
= ———— = (0.0002
r 10,000 00

By multiplying relative rates by 100%, we obtain the so-called percentage rates of
change. The percentage rate of change when g = 50 is (0.02)(100%) = 2%; when
g = 5000, it is (0.0002)(100%) = 0.02%. For example, if an additional unit beyond
50 is sold, then revenue increases by approximately 2%.

In general, for any function f, we have the following definition:

- Definition
The relatzve rate of change of f (x) s
e
f&
‘The percentage rate of change of fx)is:
J&)

- 100%
f( )

AMPLE9 Relative and Percentage Rates of Change

Determine the relative and percentage rates of change of
=f(x) =32 —5x+25
when x = 5.
Solution: Here
fi(x)=6x—35
Since f/(5) = 6(5) — 5 = 25 and f(5) = 3(5)> — 5(5) + 25 = 75, the relative rate of
change of y whenx = 5 is
T f& _25
fG6&) 75
Muitiplying 0.333 by 100% gives the percentage rate of change: (0.333)(100) = 33.3%.

Now Work Problem 35 <

~ 0.333

1. Suppose that the position function of an object moving At 1705102171017 0.01 [ 0.001
along a straight line is s = () = 2> + 3t, where f is in . As/At

seconds and s is in meters. Find the average velocity As/At

over the interval [1, 1 + Ar], where At is given in the following From your results, estimate the velocity when ¢ = 1. Verify your
table: estimate by using differentiation.
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2. Ify = f(x) = +/2x + 5, find the average rate of change of y
with respect to x over the mterval [3,3 4+ Ax], where Ax is given
in the following table:

Ax 17]05(102101
Ay/Ax

From your result, estimate the rate of change of y with respect to x
when x = 3.

0.01 | 0.001

In each of Problems 3-8, a position function is given, where t is in
seconds and s is in meters.

(a) Find the position at the given t-value.

(b) Find the average velocity over the given interval.

(¢) Find the velocity at the given t-value.

3. s=2 —4[1,755t =7

4, 5= %t-{—l[ L2105t =

5, s=50+3r4+24;[1,1.01];t =1
6. s=-3r*+2r+1;[1,1.25;t =1
7. s=1" =20 +1[2,21];1 =2

8. s=3r"—1%[0,11;1=0

9. Income-Education Sociologists studied the relation
between income and number of years of education for members of
a particular urban group. They found that a person with x years

of education before seeking regular employment can expect to
receive an average yearly income of y dollars per year, where

y=57+5900 4<x<16
Find the rate of change of income with respect to number of years
of education. Evaluation the expression when x = 9.

10. Find the rate of change of the volume V of a ball, with respect
to its radius r, when r = 1.5 m. The volume V of aball as a
function of its radius r is given by

4
V=V0i)= -:-];71'7‘3

11. Skin Temperature The approximate temperature T of the
skin in terms of the temperature T, of the environment is given by

T =32.8+0.27(T, — 20)
where T and T, are in degrees Celsius.3 Find the rate of change of
T with respect to T,.

12, Biology The volume V of a spherical cell is given by

V= 37[) , where r is the radius. Find the rate of change of
volume with respect to the radius when r = 6.3 x 10“4

In Problems 1318, cost functions are given, where c is the cost of
producing q units of a product. In each case, find the marginal-cost
function. What is the marginal cost at the given value(s) of q?

'13. ¢ =500+ 10g; g = 100

14. ¢ =5000+64:q = 36

15. ¢ =0.2¢*> +4g+50; g = 10

16. c=0.1> +3g+2;9=3

17. ¢ = ¢* +50g + 1000; ¢ = 15,9 = 16,9 = 17

Row. Stacy et al., Essentials of Biological and Medical Physics (New York:
McGraw-Hill Book Company, 1955).

18. ¢ = 0.04¢> = 0.5¢* + 4.4q +7500;¢ = 5,9 = 25,9 = 1000

In Problems 19-22, T represents average cost per unit, which is a
function of the number q of units produced. Find the marginal-cost
function and the marginal cost for the indicated values of q.

500
19. ©=0.0lg+5+ —;q=50,9 = 100
q

2000
20. c=54+—;9=25,4=250
q

20,000
21. E=000002q~-001q+6+——,q_ 100, g = 500
q

- 7000
22. = o.oozq2 —0.5¢ + 60 + ~q—’;q =15,4=25

In Problems 23-26, r represents total revenue and is a function of
the number q of units sold. Find the marginal-revenue function
and the marginal revenue for the indicated values of q.

23. r=0.8¢;9 =9, =300,g =500
24. r=q (15— 359):4
25. r =240+ 409> — 2¢%, g = 10; g = 15, ¢ = 20
26. r =230 —0.1q);g = 10,g =20

27. Hosiery Mill  The total-cost function for a hosiery mill is
estimated by Dean* to be

¢ = —10,484.69 + 6.750g — 0.0003284

=5,q=15,q =150

where g is output in dozens of pairs and c is total cost in dollars.
Find the marginal-cost function and the average cost function and
evaluate each when g = 2000.

28. Light and Power Plant The total-cost function for an
electric light and power plant is estimated by Nordin® to be

¢ = 32.07 — 0.79g + 0.021424% — 0.00014> 20 < g <90

where g is the eight-hour total output (as a percentage of capacity)
and c is the total fuel cost in dollars. Find the marginal-cost
function and evaluate it when g = 70.

29. Urban Concentration Suppose the 100 largest cities in the
United States in 1920 are ranked according to magnitude (areas of
cities). From Lotka,® the following relation holds approximately:

PR%% = 5,000,000

Here, P is the population of the city having respective rank R. This
relation is called the law of urban concentration for 1920. Solve"
for P in terms of R, and then find how fast the population is
changing with respect to rank.

30. Depreciation Under the straight-line method of
depreciation, the value v of a certain machine after ¢ years have
elapsed is given by

v = 120,000 — 15,500

where 0 < t < 6. How fast is v changing with respect to t when
t =27t = 47 at any time?

4J . Dean, “Statistical Cost Functions of a Hosiery Mill,” Studies in Business
Administration, X1, no. 4 (Chicago: University of Chicago Press, 1941).

5]. A. Nordin, “Note on a Light Plant’s Cost Curves,” Econometrica, 15
(1947), 231-35.

SA. 1. Lotka, Elements of Mathematical Biology (New York: Dover
Publications, Inc., 1956).




31. Winter Moth A study of the winter moth was made in
Nova Scotia (adapted from Embree).” The prepupae of the moth
fall onto the ground from host trees. At a distance of x ft from the
base of a host tree, the prepupal density (number of prepupae per
square foot of soil) was y, where

y=593—-15r—052 1<x<9
(a) At what rate is the prepupal density changing with respect to
distance from the base of the tree when x = 67

(b) For what value of x is the prepupal density decreasing at the
rate of 6 prepupae per square foot per foot?

32. Cost Function For the cost function

c=044>+4q+5

find the rate of change of ¢ with respect to g when g = 2. Also,
what is Ac/Agq over the interval [2, 3]7

In Problems 33-36, find (a) the rate of change of y with respect to
x and (b) the relative rate of change of y. At the given value of x,
Jfind () the rate of change of y, (d) the relative rate of change of y,
and (e) the percentage rate of change of y.

B.y=fx)=x+4x=5 M. y=fx)=7-3x5;x=6
35, y=22+5;x=10 36. y=5-3xx=1

37. y=8~xlx=1 38 y=x2"4+3x—4dx=—1
39. Cost Function For the cost function

c=03q"+3.5¢+9

how fast does ¢ change with respect to g when g = 10? Determine
the percentage rate of change of ¢ with respect to g when g = 10.

40. Organic Matters/Species Diversity In a discussion of
contemporary waters of shallows seas, Odum?® claims that in such
waters the total organic matter y (in milligrams per liter) is a
function of species diversity x (in number of species per thousand
individuals). If y = 100/x, at what rate is the total organic matter
changing with respect to species diversity when x = 10?7 What is
the percentage rate of change when x = 10?

41. Revenue For a certain manufacturer, the revenue obtained
from the sale of ¢ units of a product is given by

r = 30g — 0.3

(2) How fast does r change with respect to ¢? When g = 10,
(b) find the relative rate of change of r, and (c) to the nearest
percent, find the percentage rate of change of r.

42. Revenue Repeat Problem 43 for the revenue function given

by r = 10g — 0.2¢” and g = 25.

Objective

To find derivatives by applying the
product and quotient rules, and to
develop the concepts of marginal
propensity to consume and marginal
propensity to save.

11.4 The Product Rule and the Quotient Rule

The equation F(x) = (x> + 3x)(4x + 5) expresses F(x) as a product of two functions:
x* + 3x and 4x + 5. To find F'(x) by using only our previous rules, we first multiply
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43. Weight of Limb  The weight of a limb of a tree is given by
W = 29432 where ¢ is time. Find the relative rate of change of W
with respect to 7.

44. Response to Shock A psychological experiment® was
conducted to analyze human responses to electrical shocks
(stimuli). The subjects received shocks of various intensities. The
response R to a shock of intensity / (in microamperes) was to be a
number that indicated the perceived magnitude relative to that of a
“standard” shock. The standard shock was assigned a magnitude
of 10. Two groups of subjects were tested under slightly different
conditions. The responses R, and R, of the first and second groups
to a shock of intensity J were given by

11.3
p— 800 < I < 3500
Ri= 185524 ==
and
II'3
Ry = 800 < I <3500
- 1101.29 - -

(a) For each group, determine the relative rate of change of
response with respect to intensity.

(b) How do these changes compare with each other?

(e) In general, if f(x) = Cia2" and g(x) = Cox", where C, and Cy
are constants, how do the relative rates of change of f and g
compare?

45. Cost A manufacturer of mountain bikes has found that
when 20 bikes are produced per day, the average cost is $200 and
the marginal cost is $150. Based on that information, approximate
the total cost of producing 21 bikes per day.

46. Marginal and Average Costs  Suppose that the cost
function for a certain product is ¢ = f(q). If the relative

1
rate of change of ¢ (with respect to g) is —, prove that the
q

marginal-cost function and the average-cost function are equal.

In Problems 47 and 48, use the numerical derivative feature of
your graphing calculator.

47. If the total-cost function for a manufacturer is given by

54°

¢ +3
where ¢ is in dollars, find the marginal cost when 10 units are
produced. Round your answer to the nearest cent.

+ 5000

C =

48. The population of a city ¢ years from now is given by

P = 250,000¢"%

Find the rate of change of population with respect to time ¢ three
years from now. Round your answer to the nearest integer.

’D. G. Embree, “The Population Dynamics of the Winter Moth in Nova Scotia, 1954-1962,”
Memoirs of the Entomological Society of Canada, no. 46 (1965).

SH.T. Odum, “Biological Circuits and the Marine Systems of Texas,” in Pollution and Marine
Biology, eds T. A. Olsen and F. J. Burgess (New York: Interscience Publishers, 1967).

9H. Babkoff, “Magnitude Estimation of Short Electrocutaneous Pulses,” Psychological
Research, 39, no. 1 (1976), 39-49.
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the functions. Then we differentiate the result, term by term:
O OF(x) = (¢ 4+ 30)@x 4+ 5) = 43 + 1722+ 15x
F'(x) =12x*434x + 15 6))

However, in many problems that involve differentiating a product of functions,
the multiplication is not as simple as it is here. At times, it is not even practical to
attempt it. Fortunately, there is a rule for differentiating a product, and the rule avoids
such multiplications. Since the derivative of a sum of functions is the sum of their
derivatives, you might expect a similar rule for products. However, the situation is
rather subtle

COMBINING RULE 3 The Product Rule
If f and g are dlfferentlable functlons then the product fg 1S dlfferentlable and

V —(f (@)g(x)) = f *)gx) +f (x)g (X) o
That is; the denvatlve of the product of two functions i is the denvatlve of the ﬁrst '1
functlon tunes the second plus the first funcnon tunes the derivative of the second.

derivative denvatlve) .

s "‘——(product) ( of first ) (second) £ (ﬁ ) (Of second

Proof. If F(x) = f(x)g(x), then, by the definition of the derivative of F,

F'(x) = 11111*% Foth—-Fx h]: —'®
— I S+ h)glx + h) — f(x)gx)
- lxl—gl}) h

Now we use a “trick.” Adding and subtracting f (x)g(x <+ I) in the numerator, we have

f (xr+Mgx +h) — fFx)gx) +f(x)glx + 1) — f(x)g(x + h)
/x—>0 h

F'(x)=

Regrouping gives
o S+ Ml + 1) — f)gle + 1) + (F)gh + 1) — fF(1)g(x))

Fe) = Jim i
— lim (Fx+ 1) = fO)glx + 1) +f(x)(glx + h) — g(x))
I1—>0 h
lim (F&+ 1) = f(x)glx + h) + lim FOXglx + h) — g(x))
h—>0 h h—0 h
e Je+n—-fx) ) oy e 8D — g(x)
= s im0 i S

Since we assumed that f and g are differentiable,

f(X+h) —f)

. .
i =/
and
g th) —g)
e

The differentiability of g implies.that g is continuous, so, from Section 10.3,
lim g(x + 1) = g(x)
h—0
Thus,
F'(x) = f'(x)g(x) +f(x)g'(x)
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cauTion\

It is worthwhile to repeat that the
derivative of the product of two functions
is somewhat subtle. Do not be tempted to
make up a simpler rule.

APPLY IT »

6. A taco stand usually sells 223 tacos~
_per day at $2 each. A business stu-
~dent’s research tells him that for every:

- $0.15 decrease in the price, the stand

_will sell 20 more tacos per day. The

revenue function for the taco”stanq;s:
R(x) = (2—0.15x)(225 + 20x), where
_x is the number of $0.15 reductions in’

: - dR :
price. Find —.
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XAMPLE 1 Applying the Product Rule -

If F(x) = (x* + 3x)(4x + 5), find F'(x).
Solution: We will consider F as a product of two functions:

F(x) = (¢ + 3x)(4x + 5)

\-_",—./ _-\/———/
VACORE €Y
Therefore, we can apply the product rule:

F'(x) *f "®)g) +f(x)g'x) -

= '—(JL -+ 3x) (41 + 5) + (A -+ 3x) —(4x + 5)

\____\,_,

S cond Fxrst
Derivative Derivative
of first of second
= (2x + 3)(dx + 5) + (* + 3x)(4)
= 12x% + 34x + 15 simplifying

This agrees with our previous result. [See Equation (1).] Although there doesn’t seem to

be much advantage to using the product rule here, there are times when it is impractical
to avoid it.

Now Work Problem 1 <

\MPLE 2 Applying the Product Rule
If y = (x*3 + 3)(x~'/3 4 5x), find dy/dx.
Solution: Applyincy the product rule gives

dy

d
— = ~( P34 3)( 3 4 5x) + (P + 3)— (3 + 5x)
dx dx

2 —
= (é-xf’ﬁ) P 4 5x) + (PP + 3) <—3—x~4/3 + 5)

— _23_5x2/3 4 %x———2/3 __x—4/3 +15

Alternatively, we could have found the derivative without the product rule by first finding
the product (x*/3 + 3)(x~!/3 + 5x) and then differentiating the result, term by term.

Now Work Problem 15 <

3 Differentiating a Product of Three Factors

If y = (x 4+ 2)(x + 3)(x +4), find y'.
Solution:

S‘irai:egy We would like to use the product rule but as given it apphes only to 'f
. two factors. By treatmc the first: two factors as a smale factor we can cons1der y to

_bea product of two funcnons

)’ =[(x * 2)(x + 3)](x + 4)

The product rule gives
= —fl—[(x +2)x + D +4) + [+ D)+ 3)]i(x +4)
dx dx

d
= -C;,;[(x +2)(x + 3)](x + 4) + [ + 2)(x + 3)(D)
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APPLY IT &

7 One hour after x milligrams of a- )
- particular drug are given to a person, ;

. the change in body temperature T (x),

- in degrees Fahrenheit, is given approxi--
mately by T(x) = x? (1 — %).Therateat

- which T changes with respect to the size
of the dosage x, T"(x),is called the sen-

sitivity of the body to the dosage. Find

 the sensitivity when the dosage is 1 mil-
~ligram. Do not use the product rule.

Applying the product rule again, we have
d , d B
y = (Z\j(x +2Dx+3)+ (x+ 2)E(x + 3)) C+H+E+2)x+3)
=[(DE+3)+E+DIE+D+ &+ +3)
After simplifying, we obtain
y =3x>+ 18x +26

Two other ways of finding the derivative are as follows:
1. Multiply the first two factors of y to obtain

y =G 5x 4+ 6)(x +4)

and then apply the product rule.
2. Multiply all three factors to obtain

y=x>4+9x% +26x+24

and then differentiate term by term.
Now Work Problem 19 <

It is sometimes helpful to remember differentiation rules in more streamlined nota-
tion. For example,

(fg) "f g +fg
is a correct equality of functions that expresses the product rule. We can then calculate
(feh) = (fohy
= (feYh + (fo)ll
= (f'g +feHh + (f)if
=f'gh+fg'h + fgh'
It is not suggested that-you try to commit to memory denved rules like
( fgh) =f'gh + fg’h + fgh

Because f'g +fg' = gf’ +fg’, using commutativity of the product of functions, we can
express the product rule with the derivatives as second factors:

(fo) =gf +f¢
and using commutativity of addition
(fe) =fg +¢f

Some people prefer these forms.

MPLE4 Using the Product Rule to Find Slope

Find the slope of the graph of f(x) = (7x> — 5x + 2)(2x* 4+ 7) when x = 1.
Soluiion:

Strategy. We find the slope by evaluating the derivative when x = 1. Because fis.
a product of two functions, we can find the derivative by using the product rule.
We have
fl(x) = (Tx* = 5x + 2)—(%\ + 7+ @x* + 7) (7x — 5x +2)

= (7x3 — 5x + 2)(8,\-3) + 2+ D21 = 5)




The product rule (and quotient rule that
follows) should not be applied when a
more direct and efficient method is
available.

cauTion]\

The derivative of the quotient of two
functions is trickier still than the product
rule. We must remember where the minus
sign goes!
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Since we must compute f'(x) when x = 1, there is no need to simplify f'(x) before
evaluating it. Substituting into f’(x), we obtain

F/(1) =4(8) +9(16) = 176
Now Work Problem 49 <

Usually, we do not use the product rule when simpler ways are obvious. For exam-
ple, if f(x) = 2x(x + 3), then it is quicker to write f(x) = 2x? + 6x, from which
f'(x) = 4x + 6. Similarly, we do not usually use the product rule to differentiate
y = 4(x> — 3). Since the 4 is a constant factor by the constant-factor rule we have
Yy = 4(2x) = 8x.

The next rule is used for differentiating a quotient of two functions.

; ,COMBINING RULE 4 The Quotient Rule

If f and g are differentiable functlons and g(x) s 0, then the quotient f/g is also
dlfferentlable and

4 (f(x)> _ B0 ®) —f()g'()
8x) (8(x))?

With the understanding about the denominator not being zero; we can write

(Jj)' o' —r
g 2

That is, the derivative of the quotient of two functions is the denominator times
- the derivative of the numerator, minus the numerator times the derivative of the
denominator, all divided by the square of the denominator.

d
E(quoﬁent)

: ; derivative .\ derivative
- (denominator) , — (numerator) .
- - of numerator of denominator

_ (denominator)?

Proof. If F(x) = J—C—EZ, then
8(x)
F(x)g(x) = f(x)
By the product rule,

F(x)g'(x) + g()F'(x) = f'(x)
Solving for F'(x), we have

F'(x) = F(x)g'(x)

- F B
e ©= §(x)
But F(x) = f(x)/g(x). Thus,
o) — f (x)(gx )(x)
Fl(x) = g
8()

Simplifying gives'®

gX)f'(x) — f(x)g'(x)

F(x) =
® (5()?

10Tpe proof given assumes the existence of F/(x). However, the rule can be proved without this assumption.
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Applying the Quotient Rule

, find F'(x).

Solution:

: Sirate"gyf We recogniié F as a quotient, so we can apply the quotient rule.

Let f(x) = 4x* 4+ 3 and g(x) = 2x = 1. Then

' - ’
(s |
Derivative Derivative of
of numerator numerator
Denominator —————  Numerator ______
e e, d 5 —— d
2x—-1) —@x"+3)— @ +3) —2x-1
— dx dx
(2x — 1)
R p—
Square of
denominator
_(2x — 1)(8x) — (4x* +3)(2)
B (2x — 1)
87 —8—6  2Q2x+1)(2x—3)
@x—12 (2x —1)?

Now Work Problem 21 <

/ MPLEG Rewriting before Differentiating
1

1
x-+1

Differentiate y =
x+

Solu’tion'

Swa zeoy To s1rnphfy the dlfferennanon we W111 rewnte the functlon S0 that no
fractlon appears in the denominator.

We have
_ 1 _ 1 _ x-+1
Y= I x(x+D+1 7 24x+1
x+
x+1 x+1
L—ZX = O x4 D) — &+ DCx+ 1) uotient rule
dx @+x+1? d

G x4+ ) - (@7 +3x+ 1)
B &2 +x+1)2
—x? —2x x2 4 2x

- G24+x+1)2 M(x2+x+ 1)?

‘Now Work Problem 45 <

Although a function may have the form of a quotient, this does not necessarily mean

that the quotient rule must be used to find the derivative. The next example illustrates

some typical situations in which, although the quotient rule can be used, a simpler and
more efficient method is available.




cauTion]\
To differentiate f(x) =

be tempted first to rewrlte the quotient as
(x* — 2)7%. Currently it would be a
mistake to do this because we do not yet
have a rule for differentiating that form.
In short, we have no choice now but to
use the quotient rule. However, in the
next section we will develop a rule that
allows us to differentiate (x* —2)'ina
direct and efficient way.
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XAMPLE? - Differentiating Quotients without Using

the Quotient Rule
Differentiate the following functions.
2x
a. f(xX) = —
fo) =~

Solution: Rewriting, we have f(x) = %x3. By the constant-factor rule,

, 2, 6x?
)= 5(325 ).— 5
4
b. f(x) = 7—3
Solution: Rewriting, we have f(x) = 3(x~*). Thus,
b A 12
f(l)——7( 3x7) = T
5x° —3x
¢ fx)= 4

1 /5x%—3x 1
Solution: Rewriting, we have f(x) = 7 (—f———l) = Z(Sx——3) forx $ 0. Thus,
X

N P i
f@=36)=7 forx#0

Since the function f is not defined for x = 0, f* is not defined for x = 0 either.

Now Work Problem 17 <

PLE8 Marginal Revenue
If the demand equation for a manufacturer’s product is
' - 1000

q+35
where p is in dollars, find the marginal-revenue function and evaluate it when g = 45.

Solution:

Si ategy Flrst we rnust find the revenue ﬁll’lCthIl The revenue r received for
; se111n<y a units when the price per unit 1s pisgiven by

that is, r _pq'

Usmo the demand equatmn we will express rin terms of q only Then we will
d1fferent1ate to ﬁnd the maromal-revenue funcuon dr /dq

( 1000> 1000q
o= —
g+35 1 g+35

Thus, the marginal-revenue function is given by

revenue = (prlce)(quantlty),

The revenue function is

dr (g+ 5)

(1000q) — (10004)—(4 +5)

, g~ (g+5)
_ (g +5)(1000) — (1000¢)(1) _
(g+5)

5000
T (g+5)2
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and
dr _ 5000 5000 "%
dgq T (45452 2500

This means that selling one additional unit beyond 45 results in approximately $2 more

in revenue.

2

g=45

Now Work Problem 59 <
Consumption Function

A function that plays an important role in economic analysis is the consumption func-
tion. The consumption function C = f(/) expresses a relationship between the total
national income I and the total national consumption C. Usually, both I and C are
expressed in billions of dollars and / is restricted to some interval. The marginal propen-
sity to consume is defined as the rate of change of consumption with respect to income.
It is merely the derivative of C with respect to I:
5 e . dC
Marginal propensity to consume = T

If we assume that the difference between income / and consumption C is savings S, then

S=I1-C

Differentiating both sides with respect to I gives
ds d d dC
—=—0)-=C)=1-—
d dl 0) dl © dl

We define dS/dI as the marginal propensity to save. Thus, the marginal propensity to
save indicates how fast savings change with respect to income, and
. Marginal propensity 1 _ Marginal propensity
' ‘tosave to consume -

XAMPLE 9 Finding Marginal Propensities to Consume and to Save

If the consumption function is given by

_5eVP +3)
- I+10

determine the marginal propensity to consume and the marginal propensity to save
when 7 = 100.

Solution:
d d
1+ 10)— 22 +3) — VDB +3)—(
4 I+ ) @17 +3) = ( +3)7 (0 +10)
dl (I + 10)?

_ 5 (10061 — @VE +3)()
B (I + 10)?

When [ = 100, the marginal propensity to consume is
dc 1297
—| " =5——]=0.536
dl |;-100 (12,100)

The marginal propensity to save when / = 100 is 1 — 0.536 = 0.464. This means

that if a current income of $100 billion increases by $1 billion, the nation consumes
approximately 53.6% (536/1000) and saves 46.4% (464/1000) of that increase.

Now Work Problem 69 <
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PROBLEMS 11.4

In Problems 1—48, differentiate the functions.
L f) = @x 4 1D)(6x + 3) 2. f(x) = Cx— D(Tx+2)
sty = (5 =3P —21%)

a-+x .
47. f(x) = ——, where a is a constant
a—x

—1 +a—l

L) =22 - 5)

11.

12.

8. F(x) =307 -2x+2)
oy =2 +5x=T)6x2 —5x+4)
10.

H(x) = (3 — S5x + 2x*)(2 4 x — 4x?)

Fw) = W +3w =72 —4)

f@=0@x 2B —x—x%)

1

3 4. O(x) = (x* + 31-)(71-% - 5) 48. f(x) = *_l

5. f() =GBrr=H02 —5r+1) *
6. C()= QR ~3)HBPF -4+ 1)
7

9

T where a is a constant
— a—

49, Find the slope of the curve y = (2x* —x +3)(@® +x 4+ 1) at

(1,12).
3

50. Find the slope of the curve y = — I at (—1,—1).
x* -
In Problems 51--54, find an equation of the tangent line to the

curve at the given point.

30,6

X

6
51 y= ——;(3,3) 52, y=
x—1

53. y = (2x + 3)[2(x* — 522 + 4)]; (0, 24)

13 y=(* = D@23 —6x +5) —4(@dx> +2x + 1) -1
Y ¢ J %
14. h(x) = 5(x7 + 4) + 4(5x3 — 2)(4x* + Tx) 54. y= FEIT @. 1)
5. F(p) = 2(5/p —2)3p —
15 F(p) = 5( ﬁ_ G —1) In Problems 55 and 56, determine the relative rate of change of y
16. g(x) = (Vx + 5x — 2)(Jx — 3/%) with respect to x for the given value of x.
17. y=7-3 18. y=( - Dx—2)(x—3) _ x | —x
53-}’=7)—_——6;-\‘=1 56, y=——;x=5
19. y=(5x+3)2x —5)(x +9) X 1+x
20, v — 2x -3 2. fo) = Sx 57. Motion  The position function for an object moving in a
n Y= 4y +1 AT e straight line is
—5x —13 2
()} — 2 . X o= - IEE e
22. H(x) e 3. f(x) Y s P
3(5x2 —7) x+2 where ¢ is in seconds and s is in meters. Find the position and
24. f(x) = ———4-—— 25. y= T3 velocity of the objectat t = 1.
3245 1 6 — 2z 58. Motion The position function for an object moving in a
26, howy = 22T g7 g = 2= straight-line path is
w—3 7 —4 143
28 2452 29 A +3x 42 T P2y7
O I= 3513 s Y= 332 —2x+ 1 where ¢ is in seconds and s is in meters. Find the positive value(s)
4 P B S 2 —d4x+3 of ¢ for which the velocity of the object is 0.
30. f(x) = 241 3. y= 272 — 35+ 2 In Problems 59-62, each equation represents a demand function
4 for a certain product, where p denotes the price per unit for q
32 F(z) = Z+4 33. s = w5 units. Find the marginal-revenue function in each case. Recall thar
3z x0T revenue = pq.
- 3 -
34. y = —7—86— 35, u(v) = v —38 59. D= 80 — 002q 60. D= 500/q
x
108 q-+750
x-3 32 —x—1 61 p=—7 3 62. p= "oy
36. y:v 37_ yz_'_...T‘._..._. q+-— q-{-—
! vx 63. Consumption Function For the United States
38, v — 203 -2 39. y=1 5 2x (1922-1942), the consumption function is estimated by'!
SR T ' 245 3x+1 € =0.6721 +113.1
Sx+1 2 h Find the marginal propensity to consume.
40. g(x) = 2x° + — . .
3x—-5 i 64. Consumption Function Repeat Problem 63 for
x—5 (9x — 1)3x +2) C = 0.8367 + 127.2.
4l y= x+D(x—4) 42 y= 4 —5x In Problems 65-68, each equation represents a consumption
243 17 function. Find the marginal propensity to consume and the
43. s(t) = __ s M. f(s) = ——F—>= marginal propensity to save for the given value of I.
E=DEB+7) 5(4s3 + 55 — 23) s
- x x—1 T Xy 31 VT
g =3y - =3 =12 —= T2 66. C=6+— ——;I =25
45, y =3x P 46. y =3 —12x° + 715 +4 3

T Haavelmo, “Methods of Measuring the Marginal Propensity to Consume,”
Journal of the American Statistical Association, XLII (1947), 105-22.
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16VT+08VF—021

67. C= ;=136
T+ 4
20/ + 0.5V — 0.
& C— 0v1+05 041;1=100
VI+5

69. Consumption Function Suppose that a country’s
consumption function is given by

9T +08VP - 03]
B VI

where C and I are expressed in billions of dollars.

(a) Find the marginal propensity to save when income is

$25 billion.

(b) Determine the relative rate of change of C with respect to /
when income is $25 billion.

c

70. Marginal Propensities to Consume and to Save
that the savings function of a country is

S_1—2ﬁ~8
 JT+2

where the national income (/) and the national savings (S) are
measured in billions of dollars. Find the country’s marginal
propensity to consume and its marginal propensity to save when
the national income is $150 billion. (Hinz: It may be helpful to
first factor the numerator.)

71. Marginal Cost
is given by

Suppose

If the total-cost function for a manufacturer

2

6g”
g+2

find the marginal-cost function.

+ 6000

C =

72. Marginal and Average Costs  Given the cost function
¢ = f(q), show that if d[—(E) = 0, then the marginal-cost function
and average-cost function are equal.

73. Host—Parasite Relation  For a particular host—parasite
relationship, it is determined that when the host density (number
of hosts per unit of area) is x, the number of hosts that are
parasitized is y, where

_ 900x
T 10+45x

At what rate is the number of hosts parasitized changing with
respect to host density when x = 2?

)7

Objective
To introduce and apply the chain rule,
{o derive a special case of the chain
rule, and to develop the concept of the

marginal-revenue product as an
application of the chain rule.

74. ‘Acoustics - The persistence of sound in a room after the
source of the sound is turned off is-called reverberation. The
reverberation time RT of the room is‘the time it takes for the
intensity level of the sound to fall 60 decibels. In the acoustical
design of an auditorium, the following formula may be used to
compute the RT of the room:'?

_ 0.05v

T A+av

Here V is the room volume, A is the total room absorption, and

x is the air absorption coefficient. Assuming that A and x are
positive constants, show that the rate of change of RT with respect
to V is always positive. If the total room volume increases by one
unit, does theé'reverberation time increase or decrease?

75. Predator-Prey In a predator-prey experiment,'? it was
statistically determined that the number of prey consumed, y,
by an individual predator was a function of the prey density x
(the number of prey per unit of area), where

_ 0.7355«x
T 140.02744x
Determine the rate of change of prey consumed with respect to
prey density.
76. Social Security Benefits In a discussion of social security
benefits, Feldstein'* differentiates a function of the form
a(l+4+x)— D2+ n)x
a2 +nm +x)— b2+ n)x
where a, b, and n are constants. He determines that
—1(1 4 m)ab
(a(1 +x) — bx)2(2 + n)
Verify this. (Hint: For convenience, let 2 -+ n = c¢.) Next observe
that Feldstein’s function f is of the form

0 A+ Bx
xX) = ——,
= Y Dr
Show that g'(x) is a constant divided by a nonnegative function
of x. What does this mean?

RT

)Y

fx) =

fx)=

where A, B, C, and D are constants

77. Business The manufacturer of a product has found that
when 20 units are produced per day, the average cost is $150 and
the marginal cost is $125. What is the relative rate of change of
average cost with respect to quantity when g = 207

78. Use the result (fgh) = f'gh -+ fg'h + fgh' to find dy/dx if
y=0Gx+ D@x — D(x —4)

11.5 The Chain Rule

Our nextrule, the chain rule, is ultimately the most important rule for finding derivatives.
It involves a situation in which y is a function of the variable u, but « is a function of x,

12p L. Doelle, Envirommental Acoustics (New York: McGraw-Hill Book Company, 1972).

Bes. Holling, “Some Characteristics of Simple Types of Predation and Parasitism,” The Canadian
Entomologist, XCI, no. 7 (1959), 385-98.

14M. Feldstein, “The Optimal Level of Social Security Benefits,” The Quarterly Journal of Economics, C, no. 2

(1985), 303-20.




