6.6 Euler’s Equations When Auxiliary Conditions

Are Imposed
Suppose we want to find, for example, the shortest path between two points on a
surface. Then, in addition to the conditions already discussed, there is the con-
dition that the path must satisfy the equation of the surface, say, g{y;; x} = 0,

Such an equation was implicit in the solution of Example 6.4 for the geodesic on
a sphere where the condition was

g=2x2—p2=0 (6.58)
that is,

r = p = constant (6.59)

But in the general case, we must make explicit use of the auxiliary equation or
equations. These equations are also called equations of constraint. Consider the
case in which
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The equation corresponding to Equation 6.17 for the case of two variables is
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But now there also exists an equation of constraint of the form

glysaxt =glyzual=0 (6.62)

and the variations dy/da and dz/da are no longer independent, so the expres-
sions in parentheses in Equation 6.61 do not separately vanish at & = 0.
Differentiating g from Equation 6.62, we have
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where no term in x appears since dx/da = 0. Now

ya, x) = y(x) + am(x)}

z(a, x) = z(x) + amg(x) (6.64)

Therefore, by determining 4y/da and 9dz/da from Equation 6.64 and inserting
into the term in parentheses of Equation 6.63, which, in general, must be zero,
we obtain
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Equation 6.61 becomes
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Factoring 7, (x) out of the square brackets and writing Equation 6.65 as

M2 (x) _ dg/dy
M1 (x) ag / 9z

I_ [P (Y_dIN_ (U _49)\(%%
oo L [(33‘ dxay') (3z dxaz*)(ag/azﬂ"‘(") dx (6.66)

This latter equation now contains the single arbitrary function n,(x), which is
not in any way restricted by Equation 6.64, and on requiring the condition of
Equation 6.4, the expression in the brackets must vanish. Thus we have
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The left-hand side of this equation involves only derivatives of f and g with re-
spect to yand y’, and the right-hand side involves only derivatives with respect to
zand z'. Because y and zare both functions of x, the two sides of Equation 6.67
may be set equal to a function of x, which we write as —A(x):

we have
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The complete solution to the problem now depends on finding three functions:
y(x), z(x), and A(x). But there are three relations that may be used: the two equa-
tions (Equation 6.68) and the equation of constraint (Equation 6.62). Thus,
there is a sufficient number of relations to allow a complete solution. Note that
here A(x) is considered to be undetermined* and is obtained as a part of the solu-
tion. The function A(x) is known as a Lagrange undetermined multiplier.



For the general case ot several dependent variables and several auxiliary
conditions, we have the following set of equations:
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Ifi=1,2,...,m, and j= 1,2, ..., n, Equation 6.69 represents m equations in

m + n unknowns, but there are also the n equations of constraint (Equation
6.70). Thus, there are m + n equations in m + n unknowns, and the system is
soluble.

Equation 6.70 is equivalent to the set of n differential equations

ag; i =1,2,---,
2 2dy, =0, {;=1 N (6.71)

In problems in mechanics, the constraint equations are frequently differential
equations rather than algebraic equations. Therefore, equations such as Equation
6.71 are sometimes more useful than the equations represented by Equation 6.70.
(See Section 7.5 for an amplification of this point.)
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FIGURE 6-7 Example 6.5. A disk rolls down an inclined plane without slipping.
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are the quantities associated with A, the single undetermined multiplier for this
case.

—R (6.74)



The constraint equation can also appear in an integral form. Consider the
isoperimetric problem that is stated as finding the curve y = y(x) for which the
functional

b
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has an extremum, and the curve y(x) satisfies boundary conditions y(a) = A and
y(b) = Bas well as the second functional

b
K[y] = [ gly v x}dx (6.76)

that has a fixed value for the length of the curve (€). This second functional rep-
resents an integral constraint.

Similarly to what we have done previously,* there will be a constant A such
that y(x) is the extremal solution of the functional

b
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The curve y(x) then will satisfy the differential equation

= (6.78)

subject to the constraints y(a) = A, y(b) = B, and K[y] = €. We will work an ex-
ample for this so-called Dido Problem.t

EXAMPLE 6.6

One version of the Dido Problem is to find the curve ¥{x) of length £ bounded
by the x-axis on the bottom that passes through the points (—a, 0) and (a, 0)
and encloses the largest area. The value of the endpoints a is determined by the
problem.
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FIGURE 6-8 Example 6.6. We want to find the curve y(x) that maximizes the area
above the y = 0 line consistent with a fixed perimeter length. The curve
must go through x = —a and a. The differential area dA = ydx, and the
differential length along the curve is d¥.

Solution. We can use the equations just developed to solve this problem. We
show in Figure 6-8 that the differential area dA = y dx. We want to maximize the
area, so we want to find the extremum solution for Equation 6.75, which
becomes

J= J ydx (6.79)

The constraint equations are



y(®):y(—a) = 0,9(a) =0 and K= de = {. (6.80)

The differential length along the curve df = (dx® + dy?)¥/? = (1 + y'2)/2 dx
where y' = dy/dx. The constraint functional becomes

K= J (1 + y'2]V2dx = ¢, (6.81)

We now have y(x) = yand g(x) = V1 + y’2, and we use these functions in
Equation 6.78.

g— 1 a;f =1 ig-. =0 % _ y—.‘
- ¢ Vs L) y 12y 1/2
dy dy dy ay" (1 +3"9)
Equation 6.78 becomes
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We manipulate Equation 6.82 to find
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We integrate over x to find
Ay’
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where C) is an integration constant. This can be rearranged to be
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This equation is integrated to find
y=FVAZ= (x— G)% + Gy (6.84)

where Cy is another integration constant. We can rewrite this as the equation of
a circle of radius A.

(x = C)2+ (y— Cy)% = A? (6.85)



The maximum area is a semicircle bounded by the y = 0 line. The semicircle
must go through (x, y) points of (—a, 0) and (g, 0), which means the circle
must be centered at the origin, so that C; = 0 = C,, and the radius = a = A.
The perimeter of the top half of the semicircle is what we called ¢, and the
perimeter length of a half circle is 7a. Therefore, we have wa = ¢, and a = €/




