6.3 Euler’s Equation

To determine the result of the condition expressed by Equation 6.4, we perform
the indicated differentiation in Equation 6.3:
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Because the limits of integration are fixed, the differential operation affects only
the integrand. Hence,
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From Equation 6.2, we have
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The second term in the integrand can be integrated by parts:
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The integrated term vanishes because n(x,) = n(x9) = 0. Therefore, Equation

6.12 becomes
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The integral in Equation 6.17 now appears to be independent of a. But the
functions y and y' with respect to which the derivatives of fare taken are still
functions of . Because (d]/ da)|, - o must vanish for the extremum value and be-

cause 17(x) is an arbitrary function (subject to the conditions already stated), the
integrand in Equation 6.17 must itself vanish for a = 0:
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where now y and y' are the original functions, independent of a. This result is
known as Euler’s equation,* which is a necessary condition for Jto have an ex-
tremum value.

EXAMPLE 6.2

We can use the calculus of variations to solve a classic problem in the history of
physics: the brachistochrone.! Consider a particle moving in a constant force field
starting at rest from some point (x;, y;) to some lower point (x,, yo). Find the

path that allows the particle to accomplish the transit in the least possible time.

Solution. The coordinate system may be chosen so that the point (x,, y,) is at
the origin. Further, let the force field be directed along the positive x-axis as
in Figure 6-3. Because the force on the particle is constant—and if we ignore
the possibility of friction—the field is conservative, and the total energy of the
particle is T+ U = const. If we measure the potential from the point x = 0
[i.e., U({x = 0) = 0], then, because the particle starts from rest, T+ U= 0.
The kinetic energyis T = %mﬂ“’, and the potential energyis U= —Fx = —mgx,
where gis the acceleration imparted by the force. Thus

v="V2gx (6.19)



The time required for the particle to make the transit from the origin to (x, y,) is
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FIGURE 6-3 Example 6.2. The brachistochrone problem is to find the path of a particle

moving from (x;, Y1) to (X9, ¥9) that occurs in the least possible time.
The force field acting on the particle is £, which is down and constant.

The time of transit is the quantity for which a minimum is desired. Because the
constant (2g) ~? does not affect the final equation, the function fmay be iden-

tified as
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And, because df/dy = 0, the Euler equation (Equation 6.18) becomes
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where ais a new constant.
Performing the differentiation 4f/8y" on Equation 6.21 and squaring the
result, we have
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This may be put in the form
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We now make the following change of variable:
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The integral in Equation 6.23 then becomes
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FIGURE 64 Example 6.2. The solution of the brachistochrone problem is a cycloid.

and
y = a(f — sin §) + constant (6.25)
The parametric equations for a cycloid* passing through the origin are

x = a(l — cos 9)}

y = a(f — sin 6) (6.26)



which is just the solution found, with the constant of integration set equal to *
zero to conform with the requirement that (0, 0) is the starting point of the
motion. The path is then as shown in Figure 6-4, and the constant @ must be
adjusted to allow the cycloid to pass through the specified point (xs, y5).
Solving the problem of the brachistochrone does indeed yield a path the parti-
cle traverses in a minimum time. But the procedures of variational calculus are
designed only to produce an extremum—either a minimum or a maximum. It
is almost always the case in dynamics that we desire (and find) a minimum for
the problem.

FXAMPLE 6.5

Consider the surface generated by revolving a line connecting two fixed points
(%1, y1) and (xy, y9) about an axis coplanar with the two points. Find the equa-
tion of the line connecting the points such that the surface area generated by
the revolution (i.e., the area of the surface of revolution) is a minimum.

Solution. We assume that the curve passing through (x,,y,) and (xs, y,) is re-
volved about the y-axis, coplanar with the two points. To calculate the total area

dA = 2mx ds = 2wx(dx? + dy*)'? (6.27)
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where y' = dy/dx. To find the extremum value we let .
J= w1+ yHle (6.29)
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FIGURE 6-5 FExample 6.3. The geometry of the problem and area dA are indicated to
minimize the surface of revolution around the y-axis.

dA = 2mx ds = 2mwx(dx® + dy*)'/? (6.27)
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where y' = dy/dx. To find the extremum value we let
f=x(1 + yH2 (6.29)
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therefore,
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From Equation 6.30, we determine
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y = J(xﬂ adx (6.32)
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The solution of this integration is

¥y = @cos h“(ﬁ) + b (6.33)

where @ and bare constants of integration determined by requiring the curve to
pass through the points (x;,y;) and (x,, ys). Equation 6.33 can also be written as

x= acosh (y—;—) (6.34)

which is more easily recognized as the equation of a catenary, the curve of a flex-
ible cord hanging freely between two points of support.



