6.1 Introduction

Many problems in Newtonian mechanics are more easily analyzed by means of
alternative statements of the laws, including Lagrange’s equation and Hamilton’s
principle.* As a prelude to these techniques, we consider in this chapter some
general principles of the techniques of the calculus of variations.

Emphasis will be placed on those aspects of the theory of variations that
have a direct bearing on classical systems, omitting some existence proofs. Our
primary interest here is in determining the path that gives extremum solutions,
for example, the shortest distance (or time) between two points. A well-known
example of the use of the theory of variations is Fermat’s principle: Light travels
by the path that takes the least amount of time (see Problem 6-7).

6.2 Statement of the Problem

The basic problem of the calculus of variations is to determine the function y(x)
such that the integral

J= J Fy), v (x0); «} dux (6.1)
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FIGURE 6-1 The function y(x} is the path that makes the functional fan extremum.
The neighboring functions y(x) + an(x) vanish at the endpoints and
may be close to y(x), but are not the extremum.

If functions of the type given by Equation 6.2 are considered, the integral J
>ecomes a functional of the parameter a:
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is an extremum (i.e., either a maximum or a minimum). In Equation 6.1,
y'(x) = dy/dx, and the semicolon in f separates the independent variable x from
the dependent variable y(x) and its derivative y'(x). The functional* Jdepends
on the function y(x), and the limits of integration are fixed.! The function y(x) is
then to be varied until an extreme value of Jis found. By this we mean that if a
function y = y(x) gives the integral Ja minimum value, then any neighboring func-
tion, no matter how close to y(x), must make J increase. The definition of a
neighboring function may be made as follows. We give all possible functions ya
parametric representation y = y(a, x) such that, for a = 0, y = y(0, x} = y(x) is
the function that yields an extremum for ] We can then write

ya, x) = y(0, x) + an(x) (6.2)

where 7{x) is some function of x that has a continuous first derivative and that
vanishes at x, and x,, because the varied function y(e, x) must be identical with
y(x) at the endpoints of the path: n(x;) = n(xy) = 0. The situation is depicted
schematically in Figure 6-1.
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The condition that the integral have a stationary value (i.e., that an extremum re-
sults) is that /be independent of « in first order along the path giving the ex-
tremum (a = 0), or, equivalently, that

3

ol =0 (6.4)
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for all functions n(x). This is only a necessary condition; it is not sufficient.

EXAMPLE 6.1

Consider the function f= (dy/dx)?, where y(x) = x. Add to y(x) the function
N(x) = sinx, and find J(a) between the limits of x = 0 and x = 27r. Show that
the stationary value of J(a) occurs for a = 0.

Solution. 'We may construct neighboring varied paths by adding to y(x),
yox) = x (6.5)
the sinusoidal variation a sin x, '
yla, x) = x + asinx (6.6)

These paths are illustrated in Figure 6-2 for @ = 0 and for two different nonvan-
ishing values of a. Clearly, the function 7(x) = sin x obeys the endpoint condi-
tions, thatis, 3(0) = 0 = n(27). To determine f(y, y; x) we first determine
dy(a, x)
dx

=1+ acosx (6.7)
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FIGURE 6-2 Example 6.1. The various paths y(a, x) = x + o« sin x. The extremum
path occurs for e = 0.
then
dy(a, x) \?
f= (T— =1+ 2xcosx+ a?cos’x (6.8)
x

Equation 6.3 now becomes

1
Jea) = J (1 + 2a cos x + a? cos® x)dx (6.9)
0
=27 + a’w (6.10)

Thus we see the value of J(a) is always greater than f(0), no matter what value
(positive or negative) we choose for &, The condition of Equation 6.4 is also
satisfied.



