Variance

女 Variance is defined as the average of the square deviations:

$$
\sigma^{2}=\frac{\sum(X-\mu)^{2}}{N}
$$

What Does the Variance Formula Mean?

好 First, it says to subtract the mean from each of the scores
${ }^{\mathrm{m}}$ This difference is called a deviate or a deviation score

女 The deviate tells us how far a given score is from the typical, or average, score
m_{m} Thus, the deviate is a measure of dispersion for a given score

What Does the Variance Formula Mean?

女 Why can't we simply take the average of the deviates? That is, why isn't variance defined as:

What Does the Variance Formula Mean？

女 One of the definitions of the mean was that it always made the sum of the scores minus the mean equal to 0
女 Thus，the average of the deviates must be 0 since the sum of the deviates must equal 0
女 To avoid this problem，statisticians square the deviate score prior to averaging them
${ }_{4}^{+}$Squaring the deviate score makes all the squared scores positive

What Does the Variance Formula Mean?

m_{4} Variance is the mean of the squared deviation scores
姆 The larger the variance is, the more the scores deviate, on average, away from the mean
姆 The smaller the variance is, the less the scores deviate, on average, from the mean

Standard Deviation

好 When the deviate scores are squared in variance， their unit of measure is squared as well
${ }^{\mathrm{m}}$ E．g．If people＇s weights are measured in pounds， then the variance of the weights would be expressed in pounds ${ }^{2}$（or squared pounds）
女 Since squared units of measure are often awkward to deal with，the square root of variance is often used instead
好 The standard deviation is the square root of variance

Standard Deviation

${ }^{4}$ Standard deviation $=\sqrt{ }$ variance
姆 Variance $=$ standard deviation ${ }^{2}$

Computational Formula

好 When calculating variance, it is often easier to use a computational formula which is algebraically equivalent to the definitional formula:

$$
\sigma^{2}=\frac{\sum \mathbf{X}^{2}-\frac{\left(\sum \mathbf{X}\right)^{2}}{N}}{\mathrm{~N}}=\frac{\sum(X-\mu)^{2}}{\mathrm{~N}}
$$

女 σ^{2} is the population variance, X is a score, μ is the population mean, and N is the number of scores

Computational Formula Example

X	X^{2}	$X-\mu$	$(X-\mu)^{2}$
9	81	2	4
8	64	1	1
6	36	-1	1
5	25	-2	4
8	64	1	1
6	36	-1	1
$\Sigma=42$	$\Sigma=306$	$\Sigma=0$	$\Sigma=12$

Computational Formula Example

$$
\begin{array}{ll}
\sigma^{2}=\frac{\sum X^{2}-\frac{\left(\sum X\right)^{2}}{N}}{N} & \sigma^{2}=\frac{\sum(X-\mu)^{2}}{N} \\
=\frac{306-\frac{42^{2}}{6}}{6} & =\frac{12}{6} \\
=\frac{306-294}{6} & =2 \\
=\frac{12}{6} & \\
=2 &
\end{array}
$$

Variance

Month	Citations (\boldsymbol{X})	$\boldsymbol{X}-\boldsymbol{\mu}$	$(\boldsymbol{X}-\boldsymbol{\mu})^{\mathbf{2}}$
January	19	-10	100
February	17	-12	144
March	22	-7	49
April	18	-11	121
May	28	-1	1
June	34	5	25
July	45	16	256
August	39	10	100
September	38	9	81
October	44	15	225
November	34	5	25
December	10	-19	361
\quad Total	348	0	1,488

1. We begin by determining the arithmetic mean of the population. The total number of citations issued for the year is 348 , so the mean number issued per month is 29 .

Variance of a Sample

好 Because the sample mean is not a perfect estimate of the population mean, the formula for the variance of a sample is slightly different from the formula for the variance of a population:

$$
\mathrm{S}^{2}=\frac{\sum(\mathbf{X}-\overline{\mathbf{X}})^{2}}{\mathrm{~N}-1}
$$

$\mathrm{m}^{2} \mathrm{~s}^{2}$ is the sample variance, X is a score, $\overline{\mathrm{X}}$ is the sample mean, and N is the number of scores

Properties of variance

女 Variance of constant is zero
女 Variance is always positive or greater than zero．

女 Variance is not affected by change of origin
好 Variance is affected by change of scale．

Properties of standard deviation

女 The positive square root of variance properties is known as standard deviation properties.

Coefficient of Variation

女 Measure of Relative Variation
女Always a \％
女Shows Variation Relative to Mean
好Used to Compare 2 or More Groups
女 Formula（ for Sample）：

$$
C V=\left(\frac{S}{\bar{X}}\right) \cdot 100 \%
$$

