Variance

Variance is defined as the average of the square deviations:

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

- First, it says to subtract the mean from each of the scores
 - This difference is called a *deviate* or a *deviation* score
 - The deviate tells us how far a given score is from the typical, or average, score
 - Thus, the deviate is a measure of dispersion for a given score

Why can't we simply take the average of the deviates? That is, why isn't variance defined as:

This is not the formula for variance!

 One of the definitions of the *mean* was that it always made the sum of the scores minus the mean equal to 0

- Thus, the average of the deviates must be 0since the sum of the deviates must equal 0
- To avoid this problem, statisticians square the deviate score prior to averaging them
 - Squaring the deviate score makes all the squared scores positive

- Variance is the mean of the squared deviation scores
- The larger the variance is, the more the scores deviate, on average, away from the mean
- The smaller the variance is, the less the scores deviate, on average, from the mean

Standard Deviation

- When the deviate scores are squared in variance, their unit of measure is squared as well
 - E.g. If people's weights are measured in pounds, then the variance of the weights would be expressed in pounds² (or squared pounds)
- Since squared units of measure are often awkward to deal with, the square root of variance is often used instead
 - The standard deviation is the square root of variance

Standard Deviation

⊕ Standard deviation = $\sqrt{variance}$ ⊕ Variance = standard deviation²

Computational Formula

 When calculating variance, it is often easier to use a computational formula which is algebraically equivalent to the definitional formula:

 $\oplus \sigma^2$ is the population variance, X is a score, μ is the population mean, and N is the number of scores ⁸

Computational Formula Example

Х	X^2	Χ-μ	$(X-\mu)^2$
9	81	2	4
8	64	1	1
6	36	-1	1
5	25	-2	4
8	64	1	1
6	36	-1	1
$\Sigma = 42$	$\Sigma = 306$	$\Sigma = 0$	$\Sigma = 12$

Computational Formula Example

= 2

Variance

Month	Citations	X — 11	$(X - u)^2$
inonan	(//)		(Λ μ/)
January	19	-10	100
February	17	-12	144
March	22	-7	49
April	18	-11	121
Мау	28	-1	1
June	34	5	25
July	45	16	256
August	39	10	100
September	38	9	81
October	44	15	225
November	34	5	25
December	10	-19	361
Total	348	0	1,488

1. We begin by determining the arithmetic mean of the population. The total number of citations issued for the year is 348, so the mean number issued per month is 29.

Variance of a Sample

Because the sample mean is not a perfect estimate of the population mean, the formula for the variance of a sample is slightly different from the formula for the variance of a population:

12

Properties of variance

Variance of constant is zero

- Variance is always positive or greater than zero.
- # Variance is not affected by change of origin
- ⊕ Variance is affected by change of scale.

Properties of standard deviation

 The positive square root of variance properties is known as standard deviation properties.

Coefficient of Variation

 Measure of Relative Variation **⊕Always a %** Shows Variation Relative to Mean **Used to Compare 2 or More Groups Formula (for Sample):**

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$