Electrodynamics-II

By Muhammad Amer Mustafa UOS, Sub Campus Bhakkar

Lecture Contents

Problem 4.5, 4.6

Prob. 4.7, Prob. 4.8

Problem 4.5

Problem 4.5 In Fig. 4.6, \mathbf{p}_1 and \mathbf{p}_2 are (perfect) dipoles a distance *r* apart. What is the torque on \mathbf{p}_1 due to \mathbf{p}_2 ? What is the torque on \mathbf{p}_2 due to \mathbf{p}_1 ? [In each case I want the torque on the dipole *about its own center*. If it bothers you that the answers are not equal and opposite, see Prob. 4.29.]

Formulas Used

$$\mathbf{E}_{dip}(r,\theta) = \frac{p}{4\pi\epsilon_0 r^3} (2\cos\theta \,\hat{\mathbf{r}} + \sin\theta \,\hat{\boldsymbol{\theta}}).$$

$$\mathbf{N} = \mathbf{p} \times \mathbf{E}.$$

$$\mathbf{P}_1$$

Solution:

What is the torque on **P**Idue to **P**2?

 $(\theta = \pi \text{ in Eq. 3.103})$

 \mathbf{P}_2

At the first we calculate the electric field of \mathbb{P}_2 at the position of \mathbb{P}_1

In this case $(\theta = \pi \text{ in Eq. 3.103})$

Problem 4.5

$$E_{dip}(r,\theta) = \frac{p}{4\pi\epsilon_0 r^3} (2\cos\theta \hat{\mathbf{r}} + \sin\theta \hat{\theta}).$$

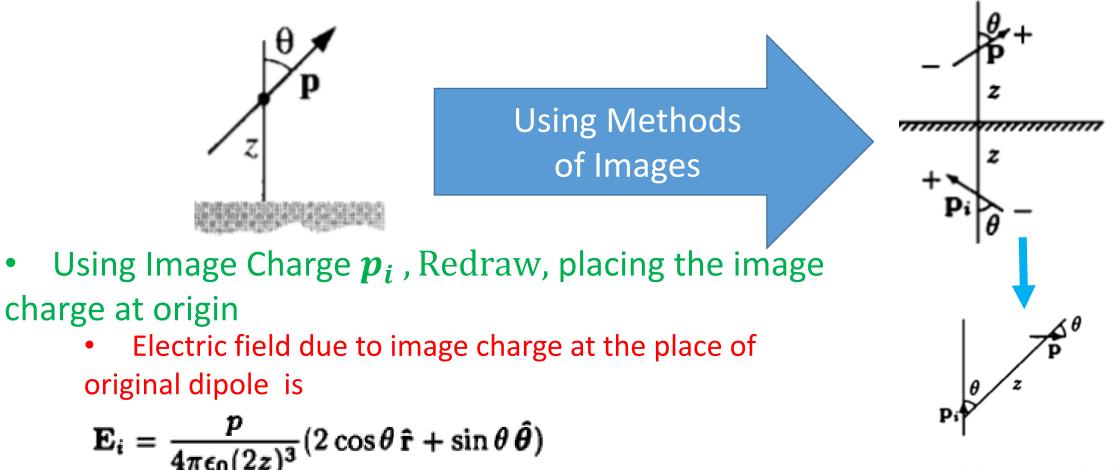
$$\longrightarrow E_2(r,\theta) = \frac{p_2}{4\pi\epsilon_0 r^3} (2\cos(\pi)\hat{r} + \sin(\pi)\hat{\theta})^{E_2}$$

$$\longrightarrow E_2 = \frac{p_2}{4\pi\epsilon_0 r^3} (-2\hat{\mathbf{r}}) \text{ (points to the right)}.$$
Torque on \mathbf{p}_1 : $\mathbf{N}_1 = \mathbf{p}_1 \times \mathbf{E}_2 = \frac{2p_1 p_2}{4\pi\epsilon_0 r^3}$ (points into the page).
($\theta = \pi/2 \text{ in Eq. 3.103}$)

$$(\theta = \pi/2 \text{ in Eq. 3.103})$$

In this case $E_1(r,\theta) = \frac{p_1}{4\pi\epsilon_0 r^3} (2\cos\left(\frac{\pi}{2}\right)\hat{r} + \sin\left(\frac{\pi}{2}\right)\hat{\theta})$

b


Problem 4.5

$$\mathbf{E}_1 = \frac{p_1}{4\pi\epsilon_0 r^3} \,\hat{\boldsymbol{\theta}} \text{ (points } down\text{)}.$$

Torque on \mathbf{p}_2 : $\mathbf{N}_2 = \mathbf{p}_2 \times \mathbf{E}_1 = p_2 E_1 \sin 90^\circ = p_2 E_1$

$$= \boxed{\frac{p_1 p_2}{4\pi\epsilon_0 r^3}} \text{ (points into the page).}$$

Problem 4.6 A (perfect) dipole **p** is situated a distance z above an infinite grounded conducting plane (Fig. 4.7). The dipole makes an angle θ with the perpendicular to the plane. Find the torque on **p**. If the dipole is free to rotate, in what orientation will it come to rest?

Pi is at origin

Problem:4.6

$$\mathbf{E}_{i} = \frac{p}{4\pi\epsilon_{0}(2z)^{3}}(2\cos\theta\,\hat{\mathbf{r}} + \sin\theta\,\hat{\boldsymbol{\theta}})$$

Components of original dipole is

 $\mathbf{p} = p\cos\theta\,\hat{\mathbf{r}} + p\sin\theta\,\hat{\boldsymbol{\theta}}.$

Torque acting on the dipole **p** due to infinite grounded plane is

$$\begin{split} \mathbf{N} &= \mathbf{p} \times \mathbf{E}_{i} = \frac{p^{2}}{4\pi\epsilon_{0}(2z)^{3}} \left[(\cos\theta\,\hat{\mathbf{r}} + \sin\theta\,\hat{\boldsymbol{\theta}}) \times (2\cos\theta\,\hat{\mathbf{r}} + \sin\theta\,\hat{\boldsymbol{\theta}}) \right] \\ &= \frac{p^{2}}{4\pi\epsilon_{0}(2z)^{3}} \left[\cos\theta\sin\theta\,\hat{\phi} + 2\sin\theta\cos\theta(-\,\hat{\phi}) \right] \\ &= \frac{p^{2}\sin\theta\cos\theta}{4\pi\epsilon_{0}(2z)^{3}} (-\hat{\phi}) \quad (\text{out of the page}). \end{split}$$