
6
6.1 Introduction

6.2 Assembly Language

6.3 Machine Language

6.4 Programming

6.5 Addressing Modes

6.6 Lights, Camera, Action:

Compiling, Assembling,

and Loading

6.7 Odds and Ends*

6.8 Real World Perspective:

IA-32 Architecture*

6.9 Summary

Exercises

Interview Questions

Architecture

6 .1 INTRODUCTION

The previous chapters introduced digital design principles and building
blocks. In this chapter, we jump up a few levels of abstraction to define
the architecture of a computer (see Figure 1.1). The architecture is the
programmer’s view of a computer. It is defined by the instruction set
(language), and operand locations (registers and memory). Many differ-
ent architectures exist, such as IA-32, MIPS, SPARC, and PowerPC.

The first step in understanding any computer architecture is to
learn its language. The words in a computer’s language are called
instructions. The computer’s vocabulary is called the instruction set. All
programs running on a computer use the same instruction set. Even
complex software applications, such as word processing and spread-
sheet applications, are eventually compiled into a series of simple
instructions such as add, subtract, and jump. Computer instructions
indicate both the operation to perform and the operands to use.
The operands may come from memory, from registers, or from the
instruction itself.

Computer hardware understands only 1’s and 0’s, so instructions
are encoded as binary numbers in a format called machine language.
Just as we use letters to encode human language, computers use binary
numbers to encode machine language. Microprocessors are digital sys-
tems that read and execute machine language instructions. However,
humans consider reading machine language to be tedious, so we prefer
to represent the instructions in a symbolic format, called assembly
language.

The instruction sets of different architectures are more like different
dialects than different languages. Almost all architectures define basic
instructions, such as add, subtract, and jump, that operate on memory
or registers. Once you have learned one instruction set, understanding
others is fairly straightforward.

289

Chapter 06.qxd 1/31/07 8:21 PM Page 289

A computer architecture does not define the underlying hardware
implementation. Often, many different hardware implementations of a
single architecture exist. For example, Intel and Advanced Micro Devices
(AMD) sell various microprocessors belonging to the same IA-32 archi-
tecture. They all can run the same programs, but they use different
underlying hardware and therefore offer trade-offs in performance, price,
and power. Some microprocessors are optimized for high-performance
servers, whereas others are optimized for long battery life in laptop com-
puters. The specific arrangement of registers, memories, ALUs, and other
building blocks to form a microprocessor is called the microarchitecture
and will be the subject of Chapter 7. Often, many different microarchi-
tectures exist for a single architecture.

In this text, we introduce the MIPS architecture that was first devel-
oped by John Hennessy and his colleagues at Stanford in the 1980s. MIPS
processors are used by, among others, Silicon Graphics, Nintendo, and
Cisco. We start by introducing the basic instructions, operand locations,
and machine language formats. We then introduce more instructions used
in common programming constructs, such as branches, loops, array
manipulations, and procedure calls.

Throughout the chapter, we motivate the design of the MIPS architec-
ture using four principles articulated by Patterson and Hennessy: (1) sim-
plicity favors regularity; (2) make the common case fast; (3) smaller is
faster; and (4) good design demands good compromises.

6 . 2 ASSEMBLY LANGUAGE

Assembly language is the human-readable representation of the com-
puter’s native language. Each assembly language instruction specifies
both the operation to perform and the operands on which to operate. We
introduce simple arithmetic instructions and show how these operations
are written in assembly language. We then define the MIPS instruction
operands: registers, memory, and constants.

We assume that you already have some familiarity with a high-level
programming language such as C, C��, or Java. (These languages are
practically identical for most of the examples in this chapter, but where
they differ, we will use C.)

6 . 2 .1 Instructions

The most common operation computers perform is addition. Code
Example 6.1 shows code for adding variables b and c and writing the
result to a. The program is shown on the left in a high-level language
(using the syntax of C, C��, and Java), and then rewritten on the right
in MIPS assembly language. Note that statements in a C program end
with a semicolon.

290 CHAPTER SIX Architecture

What is the best architecture
to study when first learning
the subject?

Commercially successful
architectures such as IA-32
are satisfying to study because
you can use them to write
programs on real computers.
Unfortunately, many of these
architectures are full of warts
and idiosyncrasies accumu-
lated over years of haphazard
development by different
engineering teams, making
the architectures difficult to
understand and implement.

Many textbooks teach
imaginary architectures that
are simplified to illustrate the
key concepts.

We follow the lead of David
Patterson and John Hennessy
in their text, Computer
Organization and Design, by
focusing on the MIPS architec-
ture. Hundreds of millions of
MIPS microprocessors have
shipped, so the architecture is
commercially very important.
Yet it is a clean architecture
with little odd behavior. At the
end of this chapter, we briefly
visit the IA-32 architecture to
compare and contrast it with
MIPS.

Chapter 06.qxd 1/31/07 8:21 PM Page 290

6.2 Assembly Language 291

High-Level Code

a � b � c;

MIPS Assembly Code

add a, b, c

Code Example 6.1 ADDITION

High-Level Code

a � b � c;

MIPS Assembly Code

sub a, b, c

Code Example 6.2 SUBTRACTION

High-Level Code

a � b � c � d; // single-line comment
/* multiple-line

comment */

MIPS Assembly Code

sub t, c, d # t � c � d
add a, b, t # a � b � t

Code Example 6.3 MORE COMPLEX CODE

The first part of the assembly instruction, add, is called the
mnemonic and indicates what operation to perform. The operation is
performed on b and c, the source operands, and the result is written to
a, the destination operand.

Code Example 6.2 shows that subtraction is similar to addition. The
instruction format is the same as the add instruction except for the oper-
ation specification, sub. This consistent instruction format is an example
of the first design principle:

Design Principle 1: Simplicity favors regularity.

Instructions with a consistent number of operands—in this case, two
sources and one destination—are easier to encode and handle in hard-
ware. More complex high-level code translates into multiple MIPS
instructions, as shown in Code Example 6.3.

In the high-level language examples, single-line comments begin with
// and continue until the end of the line. Multiline comments begin with
/* and end with */. In assembly language, only single-line comments are
used. They begin with # and continue until the end of the line. The
assembly language program in Code Example 6.3 requires a temporary
variable, t, to store the intermediate result. Using multiple assembly

mnemonic (pronounced
ni-mon-ik) comes from the
Greek word ����E�	
����,
to remember. The assembly
language mnemonic is easier
to remember than a machine
language pattern of 0’s and
1’s representing the same
operation.

Chapter 06.qxd 1/31/07 8:21 PM Page 291

language instructions to perform more complex operations is an example
of the second design principle of computer architecture:

Design Principle 2: Make the common case fast.

The MIPS instruction set makes the common case fast by including
only simple, commonly used instructions. The number of instructions is
kept small so that the hardware required to decode the instruction and
its operands can be simple, small, and fast. More elaborate operations
that are less common are performed using sequences of multiple simple
instructions. Thus, MIPS is a reduced instruction set computer (RISC)
architecture. Architectures with many complex instructions, such as
Intel’s IA-32 architecture, are complex instruction set computers (CISC).
For example, IA-32 defines a “string move” instruction that copies a
string (a series of characters) from one part of memory to another. Such
an operation requires many, possibly even hundreds, of simple instruc-
tions in a RISC machine. However, the cost of implementing complex
instructions in a CISC architecture is added hardware and overhead that
slows down the simple instructions.

A RISC architecture minimizes the hardware complexity and the nec-
essary instruction encoding by keeping the set of distinct instructions small.
For example, an instruction set with 64 simple instructions would need
log264 � 6 bits to encode the operation. An instruction set with 256 com-
plex instructions would need log2256 � 8 bits of encoding per instruction.
In a CISC machine, even though the complex instructions may be used
only rarely, they add overhead to all instructions, even the simple ones.

6 . 2 . 2 Operands: Registers, Memory, and Constants

An instruction operates on operands. In Code Example 6.1 the vari-
ables a, b, and c are all operands. But computers operate on 1’s and 0’s,
not variable names. The instructions need a physical location from
which to retrieve the binary data. Operands can be stored in registers or
memory, or they may be constants stored in the instruction itself.
Computers use various locations to hold operands, to optimize for
speed and data capacity. Operands stored as constants or in registers
are accessed quickly, but they hold only a small amount of data.
Additional data must be accessed from memory, which is large but slow.
MIPS is called a 32-bit architecture because it operates on 32-bit data.
(The MIPS architecture has been extended to 64 bits in commercial
products, but we will consider only the 32-bit form in this book.)

Registers

Instructions need to access operands quickly so that they can run fast.
But operands stored in memory take a long time to retrieve. Therefore,

292 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 292

most architectures specify a small number of registers that hold com-
monly used operands. The MIPS architecture uses 32 registers, called the
register set or register file. The fewer the registers, the faster they can be
accessed. This leads to the third design principle:

Design Principle 3: Smaller is faster.

Looking up information from a small number of relevant books on
your desk is a lot faster than searching for the information in the stacks at a
library. Likewise, reading data from a small set of registers (for example,
32) is faster than reading it from 1000 registers or a large memory. A small
register file is typically built from a small SRAM array (see Section 5.5.3).
The SRAM array uses a small decoder and bitlines connected to relatively
few memory cells, so it has a shorter critical path than a large memory does.

Code Example 6.4 shows the add instruction with register operands.
MIPS register names are preceded by the $ sign. The variables a, b, and c
are arbitrarily placed in $s0, $s1, and $s2. The name $s1 is pronounced
“register s1” or “dollar s1”. The instruction adds the 32-bit values con-
tained in $s1 (b) and $s2 (c) and writes the 32-bit result to $s0 (a).

MIPS generally stores variables in 18 of the 32 registers: $s0 – $s7,
and $t0 – $t9. Register names beginning with $s are called saved regis-
ters. Following MIPS convention, these registers store variables such as
a, b, and c. Saved registers have special connotations when they are
used with procedure calls (see Section 6.4.6). Register names beginning
with $t are called temporary registers. They are used for storing tempo-
rary variables. Code Example 6.5 shows MIPS assembly code using a
temporary register, $t0, to store the intermediate calculation of c�d.

6.2 Assembly Language 293

High-Level Code

a � b � c;

MIPS Assembly Code

$s0 � a, $s1 � b, $s2 = c
add $s0, $s1, $s2 # a = b + c

Code Example 6.4 REGISTER OPERANDS

High-Level Code

a � b � c � d;

MIPS Assembly Code

$s0 � a, $s1 � b, $s2 � c, $s3 � d

sub $t0, $s2, $s3 # t � c � d
add $s0, $s1, $t0 # a � b � t

Code Example 6.5 TEMPORARY REGISTERS

Chapter 06.qxd 1/31/07 8:21 PM Page 293

Example 6.1 TRANSLATING HIGH-LEVEL CODE TO ASSEMBLY
LANGUAGE

Translate the following high-level code into assembly language. Assume variables
a–c are held in registers $s0–$s2 and f–j are in $s3–$s7.

a � b � c;
f � (g � h) � (i � j);

Solution: The program uses four assembly language instructions.

MIPS assembly code
$s0 � a, $s1 � b, $s2 � c, $s3 � f, $s4 � g, $s5 � h,
$s6 � i, $s7 � j
sub $s0, $s1, $s2 # a � b � c
add $t0, $s4, $s5 # $t0 � g � h
add $t1, $s6, $s7 # $t1 � i � j
sub $s3, $t0, $t1 # f � (g � h) � (i � j)

The Register Set

The MIPS architecture defines 32 registers. Each register has a name and a
number ranging from 0 to 31. Table 6.1 lists the name, number, and use for
each register. $0 always contains the value 0 because this constant is so fre-
quently used in computer programs. We have also discussed the $s and $t
registers. The remaining registers will be described throughout this chapter.

294 CHAPTER SIX Architecture

Table 6.1 MIPS register set

Name Number Use

$0 0 the constant value 0

$at 1 assembler temporary

$v0–$v1 2–3 procedure return values

$a0–$a3 4–7 procedure arguments

$t0–$t7 8–15 temporary variables

$s0–$s7 16–23 saved variables

$t8–$t9 24–25 temporary variables

$k0–$k1 26–27 operating system (OS) temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 procedure return address

Chapter 06.qxd 1/31/07 8:21 PM Page 294

Memory

If registers were the only storage space for operands, we would be con-
fined to simple programs with no more than 32 variables. However, data
can also be stored in memory. When compared to the register file, mem-
ory has many data locations, but accessing it takes a longer amount of
time. Whereas the register file is small and fast, memory is large and
slow. For this reason, commonly used variables are kept in registers. By
using a combination of memory and registers, a program can access a
large amount of data fairly quickly. As described in Section 5.5, memo-
ries are organized as an array of data words. The MIPS architecture uses
32-bit memory addresses and 32-bit data words.

MIPS uses a byte-addressable memory. That is, each byte in memory
has a unique address. However, for explanation purposes only, we first
introduce a word-addressable memory, and afterward describe the MIPS
byte-addressable memory.

Figure 6.1 shows a memory array that is word-addressable. That is,
each 32-bit data word has a unique 32-bit address. Both the 32-bit word
address and the 32-bit data value are written in hexadecimal in Figure 6.1.
For example, data 0xF2F1AC07 is stored at memory address 1.
Hexadecimal constants are written with the prefix 0x. By convention,
memory is drawn with low memory addresses toward the bottom and
high memory addresses toward the top.

MIPS uses the load word instruction, lw, to read a data word from
memory into a register. Code Example 6.6 loads memory word 1 into $s3.

The lw instruction specifies the effective address in memory as
the sum of a base address and an offset. The base address (written in
parentheses in the instruction) is a register. The offset is a constant
(written before the parentheses). In Code Example 6.6, the base address

6.2 Assembly Language 295

Data

00000003 4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

00000002

00000001

00000000

Word
Address

Word 3

Word 2

Word 1

Word 0

Figure 6.1 Word-addressable

memory

Assembly Code

This assembly code (unlike MIPS) assumes word-addressable memory
lw $s3, 1($0) # read memory word 1 into $s3

Code Example 6.6 READING WORD-ADDRESSABLE MEMORY

Chapter 06.qxd 1/31/07 8:21 PM Page 295

is $0, which holds the value 0, and the offset is 1, so the lw instruction
reads from memory address ($0 + 1) � 1. After the load word instruction
(lw) is executed, $s3 holds the value 0xF2F1AC07, which is the data
value stored at memory address 1 in Figure 6.1.

Similarly, MIPS uses the store word instruction, sw, to write a data
word from a register into memory. Code Example 6.7 writes the con-
tents of register $s7 into memory word 5. These examples have used $0
as the base address for simplicity, but remember that any register can be
used to supply the base address.

The previous two code examples have shown a computer architec-
ture with a word-addressable memory. The MIPS memory model,
however, is byte-addressable, not word-addressable. Each data byte
has a unique address. A 32-bit word consists of four 8-bit bytes.
So each word address is a multiple of 4, as shown in Figure 6.2.
Again, both the 32-bit word address and the data value are given in
hexadecimal.

Code Example 6.8 shows how to read and write words in the
MIPS byte-addressable memory. The word address is four times
the word number. The MIPS assembly code reads words 0, 2, and 3
and writes words 1, 8, and 100. The offset can be written in decimal
or hexadecimal.

The MIPS architecture also provides the lb and sb instructions that
load and store single bytes in memory rather than words. They are similar
to lw and sw and will be discussed further in Section 6.4.5.

Byte-addressable memories are organized in a big-endian or little-
endian fashion, as shown in Figure 6.3. In both formats, the most
significant byte (MSB) is on the left and the least significant byte (LSB) is
on the right. In big-endian machines, bytes are numbered starting with 0

296 CHAPTER SIX Architecture

Assembly Code

This assembly code (unlike MIPS) assumes word-addressable memory
sw $s7, 5($0) # write $s7 to memory word 5

Code Example 6.7 WRITING WORD-ADDRESSABLE MEMORY

Word
Address Data

0000000C

00000008

00000004

00000000

width = 4 bytes

4 0 F 3 0 7 8 8

0 1 E E 2 8 4 2

F 2 F 1 A C 0 7

A B C D E F 7 8

Word 3

Word 2

Word 1

Word 0

Figure 6.2 Byte-addressable

memory

0 1 2 3

MSB LSB

4 5 6 7

8 9 A B

C D E F

Byte
Address

3 2 1 00

7 6 5 44

B A 9 88

F E D CC

Byte
Address

Word
Address

Big-Endian Little-Endian

MSB LSB

Figure 6.3 Big- and little-

endian memory addressing

Chapter 06.qxd 1/31/07 8:21 PM Page 296

at the big (most significant) end. In little-endian machines, bytes are
numbered starting with 0 at the little (least significant) end. Word
addresses are the same in both formats and refer to the same four bytes.
Only the addresses of bytes within a word differ.

Example 6.2 BIG- AND LITTLE-ENDIAN MEMORY

Suppose that $s0 initially contains 0x23456789. After the following program is
run on a big-endian system, what value does $s0 contain? In a little-endian
system? lb $s0, 1($0) loads the data at byte address (1 � $0) � 1 into the least
significant byte of $s0. lb is discussed in detail in Section 6.4.5.

sw $s0, 0($0)
lb $s0, 1($0)

Solution: Figure 6.4 shows how big- and little-endian machines store the value
0x23456789 in memory word 0. After the load byte instruction, lb $s0, 1($0),
$s0 would contain 0x00000045 on a big-endian system and 0x00000067 on a
little-endian system.

6.2 Assembly Language 297

MIPS Assembly Code

1w $s0, 0($0) # read data word 0 (0xABCDEF78) into $s0
1w $s1, 8($0) # read data word 2 (0x01EE2842) into $s1
1w $s2, 0xC($0) # read data word 3 (0x40F30788) into $s2
sw $s3, 4($0) # write $s3 to data word 1
sw $s4, 0x20($0) # write $s4 to data word 8
sw $s5, 400($0) # write $s5 to data word 100

Code Example 6.8 ACCESSING BYTE-ADDRESSABLE MEMORY

The terms big-endian and little-
endian come from Jonathan
Swift’s Gulliver’s Travels, first
published in 1726 under the
pseudonym of Isaac Bickerstaff.
In his stories the Lilliputian king
required his citizens (the Little-
Endians) to break their eggs on
the little end. The Big-Endians
were rebels who broke their
eggs on the big end.

The terms were first
applied to computer architec-
tures by Danny Cohen in his
paper “On Holy Wars and a
Plea for Peace” published on
April Fools Day, 1980
(USC/ISI IEN 137). (Photo
courtesy The Brotherton
Collection, IEEDS University
Library.)

1 SPIM, the MIPS simulator that comes with this text, uses the endianness of the machine
it is run on. For example, when using SPIM on an Intel IA-32 machine, the memory is
little-endian. With an older Macintosh or Sun SPARC machine, memory is big-endian.

23 45 67 89

0 1 2 3

23 45 67 890

3 2 1 0
Word

Address

Big-Endian Little-Endian

Byte Address

Data Value

Byte Address

Data Value

MSB LSB MSB LSB

Figure 6.4 Big-endian and little-endian data storage

IBM’s PowerPC (formerly found in Macintosh computers) uses
big-endian addressing. Intel’s IA-32 architecture (found in PCs) uses
little-endian addressing. Some MIPS processors are little-endian, and
some are big-endian.1 The choice of endianness is completely arbitrary
but leads to hassles when sharing data between big-endian and little-
endian computers. In examples in this text, we will use little-endian
format whenever byte ordering matters.

Chapter 06.qxd 1/31/07 8:21 PM Page 297

In the MIPS architecture, word addresses for lw and sw must be
word aligned. That is, the address must be divisible by 4. Thus, the
instruction lw $s0, 7($0) is an illegal instruction. Some architectures,
such as IA-32, allow non-word-aligned data reads and writes, but MIPS
requires strict alignment for simplicity. Of course, byte addresses for
load byte and store byte, lb and sb, need not be word aligned.

Constants/Immediates

Load word and store word, lw and sw, also illustrate the use of con-
stants in MIPS instructions. These constants are called immediates,
because their values are immediately available from the instruction and
do not require a register or memory access. Add immediate, addi, is
another common MIPS instruction that uses an immediate operand.
addi adds the immediate specified in the instruction to a value in a regis-
ter, as shown in Code Example 6.9.

The immediate specified in an instruction is a 16-bit two’s comple-
ment number in the range [�32768, 32767]. Subtraction is equivalent to
adding a negative number, so, in the interest of simplicity, there is no
subi instruction in the MIPS architecture.

Recall that the add and sub instructions use three register operands.
But the lw, sw, and addi instructions use two register operands and a
constant. Because the instruction formats differ, lw and sw instructions
violate design principle 1: simplicity favors regularity. However, this
issue allows us to introduce the last design principle:

298 CHAPTER SIX Architecture

High-Level Code

a � a � 4;
b � a � 12;

MIPS Assembly Code

$s0 � a, $s1 � b
addi $s0, $s0, 4 # a � a � 4
addi $s1, $s0, �12 # b � a � 12

Code Example 6.9 IMMEDIATE OPERANDS

Design Principle 4: Good design demands good compromises.

A single instruction format would be simple but not flexible. The
MIPS instruction set makes the compromise of supporting three instruc-
tion formats. One format, used for instructions such as add and sub, has
three register operands. Another, used for instructions such as lw and
addi, has two register operands and a 16-bit immediate. A third, to be
discussed later, has a 26-bit immediate and no registers. The next section
discusses the three MIPS instruction formats and shows how they are
encoded into binary.

Chapter 06.qxd 1/31/07 8:21 PM Page 298

6 . 3 MACHINE LANGUAGE

Assembly language is convenient for humans to read. However, digital
circuits understand only 1’s and 0’s. Therefore, a program written in
assembly language is translated from mnemonics to a representation
using only 1’s and 0’s, called machine language.

MIPS uses 32-bit instructions. Again, simplicity favors regularity,
and the most regular choice is to encode all instructions as words that
can be stored in memory. Even though some instructions may not
require all 32 bits of encoding, variable-length instructions would add
too much complexity. Simplicity would also encourage a single
instruction format, but, as already mentioned, that is too restrictive.
MIPS makes the compromise of defining three instruction formats:
R-type, I-type, and J-type. This small number of formats allows for
some regularity among all the types, and thus simpler hardware, while
also accommodating different instruction needs, such as the need to
encode large constants in the instruction. R-type instructions operate
on three registers. I-type instructions operate on two registers and
a 16-bit immediate. J-type (jump) instructions operate on one
26-bit immediate. We introduce all three formats in this section but
leave the discussion of J-type instructions for Section 6.4.2.

6 . 3 .1 R-type Instructions

The name R-type is short for register-type. R-type instructions use
three registers as operands: two as sources, and one as a destination.
Figure 6.5 shows the R-type machine instruction format. The 32-bit
instruction has six fields: op, rs, rt, rd, shamt, and funct. Each
field is five or six bits, as indicated.

The operation the instruction performs is encoded in the two fields
highlighted in blue: op (also called opcode or operation code) and funct
(also called the function). All R-type instructions have an opcode of 0.
The specific R-type operation is determined by the funct field.
For example, the opcode and funct fields for the add instruction are
0 (0000002) and 32 (1000002), respectively. Similarly, the sub instruc-
tion has an opcode and funct field of 0 and 34.

The operands are encoded in the three fields: rs, rt, and rd. The first
two registers, rs and rt, are the source registers; rd is the destination

6.3 Machine Language 299

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

R-type
Figure 6.5 R-type machine

instruction format

Chapter 06.qxd 1/31/07 8:21 PM Page 299

register. The fields contain the register numbers that were given in
Table 6.1. For example, $s0 is register 16.

The fifth field, shamt, is used only in shift operations. In those
instructions, the binary value stored in the 5-bit shamt field indicates the
amount to shift. For all other R-type instructions, shamt is 0.

Figure 6.6 shows the machine code for the R-type instructions add
and sub. Notice that the destination is the first register in an assembly
language instruction, but it is the third register field (rd) in the machine
language instruction. For example, the assembly instruction add $s0,
$s1, $s2 has rs � $s1 (17), rt � $s2 (18), and rd � $s0 (16).

Tables B.1 and B.2 in Appendix B define the opcode values for all
MIPS instructions and the funct field values for R-type instructions.

Example 6.3 TRANSLATING ASSEMBLY LANGUAGE TO MACHINE
LANGUAGE

Translate the following assembly language statement into machine language.

add $t0, $s4, $s5

Solution: According to Table 6.1, $t0, $s4, and $s5 are registers 8, 20, and
21. According to Tables B.1 and B.2, add has an opcode of 0 and a funct
code of 32. Thus, the fields and machine code are given in Figure 6.7. The
easiest way to write the machine language in hexadecimal is to first write it in
binary, then look at consecutive groups of four bits, which correspond to
hexadecimal digits (indicated in blue). Hence, the machine language instruc-
tion is 0x02954020.

300 CHAPTER SIX Architecture

000000 10001 10010 10000 00000 100000

000000

add $s0, $s1, $s2

sub $t0, $t3, $t5

Machine CodeAssembly Code

0 17 18 16 0 32

0 11 13 8 0 34

Field Values

(0 x 02328020)

(0 x 016D4022)

op rs rt rd shamt funct op rs rt rd shamt funct

01011 01101 01000 00000 100010

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Figure 6.6 Machine code for R-type instructions

000000 10100 10101 01000 00000 100000add $t0, $s4, $s5

Machine CodeAssembly Code

20 21 8 0 320

Field Values

(0 x 02954020)

0 4 0 22 9 5 0

opop rs rt rd shamt funct rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Figure 6.7 Machine code for the R-type instruction of Example 6.3

rs is short for “register
source.” rt comes after rs
alphabetically and usually
indicates the second register
source.

Chapter 06.qxd 1/31/07 8:21 PM Page 300

6 . 3 . 2 I-Type Instructions

The name I-type is short for immediate-type. I-type instructions
use two register operands and one immediate operand. Figure 6.8
shows the I-type machine instruction format. The 32-bit instruction
has four fields: op, rs, rt, and imm. The first three fields, op, rs, and
rt, are like those of R-type instructions. The imm field holds the 16-bit
immediate.

The operation is determined solely by the opcode, highlighted in
blue. The operands are specified in the three fields, rs, rt, and imm. rs
and imm are always used as source operands. rt is used as a destination
for some instructions (such as addi and lw) but as another source for
others (such as sw).

Figure 6.9 shows several examples of encoding I-type instructions.
Recall that negative immediate values are represented using 16-bit
two’s complement notation. rt is listed first in the assembly language
instruction when it is used as a destination, but it is the second register
field in the machine language instruction.

6.3 Machine Language 301

op rs rt imm
6 bits 5 bits 5 bits 16 bits

I-type
Figure 6.8 I-type instruction

format

(0 x 22300005)

(0 x 2268FFF4)

(0 x 8C0A0020)

(0 x AD310004)

001000 10001 10000 0000 0000 0000 0101

Machine CodeAssembly Code

 8 17 16

Field Values
op rs rt imm op rs rt imm

addi $s0, $s1, 5

addi $t0, $s3, –12

lw $t2, 32($0)

sw $s1, 4($t1)

 8 19 8 –12

35 0 10 32

43 9 17

001000 10011 01000 1111 1111 1111 0100

100011 00000 01010 0000 0000 0010 0000

101011 01001 10001 0000 0000 0000 0100

6 bits 5 bits 5 bits 16 bits 6 bits 5 bits 5 bits 16 bits

4

5

Figure 6.9 Machine code for I-type instructions

Example 6.4 TRANSLATING I-TYPE ASSEMBLY INSTRUCTIONS INTO
MACHINE CODE

Translate the following I-type instruction into machine code.

lw $s3, �24($s4)

Solution: According to Table 6.1, $s3 and $s4 are registers 19 and 20, respectively.
Table B.1 indicates that lw has an opcode of 35. rs specifies the base address, $s4,
and rt specifies the destination register, $s3. The immediate, imm, encodes the
16-bit offset, �24. Thus, the fields and machine code are given in Figure 6.10.

Chapter 06.qxd 1/31/07 8:21 PM Page 301

I-type instructions have a 16-bit immediate field, but the immediates
are used in 32-bit operations. For example, lw adds a 16-bit offset to a
32-bit base register. What should go in the upper half of the 32 bits? For
positive immediates, the upper half should be all 0’s, but for negative
immediates, the upper half should be all 1’s. Recall from Section 1.4.6
that this is called sign extension. An N-bit two’s complement number is
sign-extended to an M-bit number (M � N) by copying the sign bit
(most significant bit) of the N-bit number into all of the upper bits of the
M-bit number. Sign-extending a two’s complement number does not
change its value.

Most MIPS instructions sign-extend the immediate. For example,
addi, lw, and sw do sign extension to support both positive and nega-
tive immediates. An exception to this rule is that logical operations
(andi, ori, xori) place 0’s in the upper half; this is called zero exten-
sion rather than sign extension. Logical operations are discussed further
in Section 6.4.1.

6 . 3 . 3 J-type Instructions

The name J-type is short for jump-type. This format is used only with
jump instructions (see Section 6.4.2). This instruction format uses a sin-
gle 26-bit address operand, addr, as shown in Figure 6.11. Like other
formats, J-type instructions begin with a 6-bit opcode. The remaining
bits are used to specify an address, addr. Further discussion and
machine code examples of J-type instructions are given in Sections 6.4.2
and 6.5.

6 . 3 . 4 Interpreting Machine Language Code

To interpret machine language, one must decipher the fields of each
32-bit instruction word. Different instructions use different formats, but
all formats start with a 6-bit opcode field. Thus, the best place to begin is
to look at the opcode. If it is 0, the instruction is R-type; otherwise it is
I-type or J-type.

302 CHAPTER SIX Architecture

100011 10100 10011 1111 1111 1110 1000

op rs rt immop rs rt imm

lw $s3, –24($s4)

Machine CodeAssembly Code

 35 20 19 –24

Field Values

(0x8E93FFE8)

8 E 9 3 F F E 86 bits 16 bits5 bits 5 bits

Figure 6.10 Machine code for the I-type instruction

op addr
6 bits 26 bits

J-typeFigure 6.11 J-type instruction

format

Chapter 06.qxd 1/31/07 8:21 PM Page 302

Example 6.5 TRANSLATING MACHINE LANGUAGE TO ASSEMBLY
LANGUAGE

Translate the following machine language code into assembly language.

0x2237FFF1
0x02F34022

Solution: First, we represent each instruction in binary and look at the six most
significant bits to find the opcode for each instruction, as shown in Figure 6.12.
The opcode determines how to interpret the rest of the bits. The opcodes are
0010002 (810) and 0000002 (010), indicating an addi and R-type instruction,
respectively. The funct field of the R-type instruction is 1000102 (3410), indicat-
ing that it is a sub instruction. Figure 6.12 shows the assembly code equivalent
of the two machine instructions.

6.3 Machine Language 303

addi $s7, $s1, –15

Machine Code Assembly Code

 8 17 23 –15

Field Values

(0x2237FFF1)

op rs rt immop rs rt imm

2 2 3 7 F F F 1

sub $t0, $s7, $s3 0 23 19 8 0 34(0x02F34022)

op

0 2 F 3 4 0 2 2

001000

000000 10111 10011 01000 00000 100010

10001 10111 1111 1111 1111 0001

rs rt rd shamt functop rs rt rd shamt funct

Figure 6.12 Machine code to assembly code translation

6 . 3 . 5 The Power of the Stored Program

A program written in machine language is a series of 32-bit numbers rep-
resenting the instructions. Like other binary numbers, these instructions
can be stored in memory. This is called the stored program concept, and
it is a key reason why computers are so powerful. Running a different
program does not require large amounts of time and effort to reconfigure
or rewire hardware; it only requires writing the new program to memory.
Instead of dedicated hardware, the stored program offers general purpose
computing. In this way, a computer can execute applications ranging
from a calculator to a word processor to a video player simply by chang-
ing the stored program.

Instructions in a stored program are retrieved, or fetched, from
memory and executed by the processor. Even large, complex programs
are simplified to a series of memory reads and instruction executions.

Figure 6.13 shows how machine instructions are stored in memory.
In MIPS programs, the instructions are normally stored starting at
address 0x00400000. Remember that MIPS memory is byte addressable,
so 32-bit (4-byte) instruction addresses advance by 4 bytes, not 1.

Chapter 06.qxd 1/31/07 8:21 PM Page 303

To run or execute the stored program, the processor fetches the
instructions from memory sequentially. The fetched instructions are then
decoded and executed by the digital hardware. The address of the current
instruction is kept in a 32-bit register called the program counter (PC).
The PC is separate from the 32 registers shown previously in Table 6.1.

To execute the code in Figure 6.13, the operating system sets the PC
to address 0x00400000. The processor reads the instruction at that
memory address and executes the instruction, 0x8C0A0020. The proces-
sor then increments the PC by 4, to 0x00400004, fetches and executes
that instruction, and repeats.

The architectural state of a microprocessor holds the state of a pro-
gram. For MIPS, the architectural state consists of the register file and
PC. If the operating system saves the architectural state at some point in
the program, it can interrupt the program, do something else, then
restore the state such that the program continues properly, unaware that
it was ever interrupted. The architectural state is also of great impor-
tance when we build a microprocessor in Chapter 7.

6 . 4 PROGRAMMING

Software languages such as C or Java are called high-level programming
languages, because they are written at a more abstract level than assembly
language. Many high-level languages use common software constructs such
as arithmetic and logical operations, if/else statements, for and while
loops, array indexing, and procedure calls. In this section, we explore how
to translate these high-level constructs into MIPS assembly code.

6 . 4 .1 Arithmetic/Logical Instructions

The MIPS architecture defines a variety of arithmetic and logical
instructions. We introduce these instructions briefly here, because they
are necessary to implement higher-level constructs.

304 CHAPTER SIX Architecture

Figure 6.13 Stored program

addi $t0, $s3, –12

Machine CodeAssembly Code

lw $t2, 32($0)

add $s0, $s1, $s2

sub $t0, $t3, $t5

0x8C0A0020

0x02328020

0x2268FFF4

0x016D4022

Address Instructions

0040000C 0 1 6 D 4 0 2 2

2 2 6 8 F F F 4

0 2 3 2 8 0 2 0

8 C 0 A 0 0 2 0

00400008

00400004

00400000

Stored Program

Main Memory

PC

Ada Lovelace, 1815–1852.
Wrote the first computer pro-
gram. It calculated the Bernoulli
numbers using Charles
Babbage’s Analytical Engine.
She was the only legitimate
child of the poet Lord Byron.

Chapter 06.qxd 1/31/07 8:21 PM Page 304

Logical Instructions

MIPS logical operations include and, or, xor, and nor. These R-type
instructions operate bit-by-bit on two source registers and write the
result to the destination register. Figure 6.14 shows examples of these
operations on the two source values 0xFFFF0000 and 0x46A1F0B7.
The figure shows the values stored in the destination register, rd, after
the instruction executes.

The and instruction is useful for masking bits (i.e., forcing
unwanted bits to 0). For example, in Figure 6.14, 0xFFFF0000 AND
0x46A1F0B7 � 0x46A10000. The and instruction masks off the bot-
tom two bytes and places the unmasked top two bytes of $s2, 0x46A1,
in $s3. Any subset of register bits can be masked.

The or instruction is useful for combining bits from two registers.
For example, 0x347A0000 OR 0x000072FC � 0x347A72FC, a combi-
nation of the two values.

MIPS does not provide a NOT instruction, but A NOR $0 � NOT
A, so the NOR instruction can substitute.

Logical operations can also operate on immediates. These I-type
instructions are andi, ori, and xori. nori is not provided, because the
same functionality can be easily implemented using the other instruc-
tions, as will be explored in Exercise 6.11. Figure 6.15 shows examples
of the andi, ori, and xori instructions. The figure gives the values of

6.4 Programming 305

1111 1111 1111 1111 0000 0000 0000 0000$s1

0100 0110 1010 0001 1111 0000 1011 0111$s2

0100 0110 1010 0001 0000 0000 0000 0000$s3

1111 1111 1111 1111 1111 0000 1011 0111$s4

1011 1001 0101 1110 1111 0000 1011 0111$s5

0000 0000 0000 0000 0000 1111 0100 1000$s6

Source Registers

ResultAssembly Code

and $s3, $s1, $s2

or $s4, $s1, $s2

xor $s5, $s1, $s2

nor $s6, $s1, $s2

Figure 6.14 Logical operations

0000 0000 0000 0000 0000 0000 1111 1111$s1

Assembly Code

0000 0000 0000 0000 1111 1010 0011 0100imm

0000 0000 0000 0000 0000 0000 0011 0100$s2

0000 0000 0000 0000 1111 1010 1111 1111$s3

0000 0000 0000 0000 1111 1010 1100 1011$s4

andi $s2, $s1, 0xFA34

Source Values

Result

ori $s3, $s1, 0xFA34

xori $s4, $s1, 0xFA34

zero-extended Figure 6.15 Logical operations

with immediates

Chapter 06.qxd 1/31/07 8:21 PM Page 305

the source register and immediate, and the value of the destination regis-
ter, rt, after the instruction executes. Because these instructions operate
on a 32-bit value from a register and a 16-bit immediate, they first zero-
extend the immediate to 32 bits.

Shift Instructions

Shift instructions shift the value in a register left or right by up to
31 bits. Shift operations multiply or divide by powers of two. MIPS shift
operations are sll (shift left logical), srl (shift right logical), and sra
(shift right arithmetic).

As discussed in Section 5.2.5, left shifts always fill the least signifi-
cant bits with 0’s. However, right shifts can be either logical (0’s shift
into the most significant bits) or arithmetic (the sign bit shifts into the
most significant bits). Figure 6.16 shows the machine code for the
R-type instructions sll, srl, and sra. rt (i.e., $s1) holds the 32-bit
value to be shifted, and shamt gives the amount by which to shift (4).
The shifted result is placed in rd.

Figure 6.17 shows the register values for the shift instructions sll,
srl, and sra. Shifting a value left by N is equivalent to multiplying it by
2N. Likewise, arithmetically shifting a value right by N is equivalent to
dividing it by 2N, as discussed in Section 5.2.5.

MIPS also has variable-shift instructions: sllv (shift left logical vari-
able), srlv (shift right logical variable), and srav (shift right arithmetic
variable). Figure 6.18 shows the machine code for these instructions.

306 CHAPTER SIX Architecture

sll $t0, $s1, 4

srl $s2, $s1, 4

sra $s3, $s1, 4

000000 00000 10001 01000 00100 000000

op rs rt rd shamt functop rs rt rd shamt funct

Machine CodeAssembly Code

 0 0 17 8 4 0

Field Values

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

 0 0 17 18 4 2

 0 0 17 19 4 3

000000 00000 10001 10010 00100 000010

000000 00000 10001 10011 00100 000011

(0x00114100)

(0x00119102)

(0x00119903)

Figure 6.16 Shift instruction machine code

1111 0011 0000 0000 0000 0010 1010 1000$s1

Assembly Code

00100shamt

0011 0000 0000 0000 0010 1010 1000 0000$t0

0000 1111 0011 0000 0000 0000 0010 1010$s2

$s3

sll $t0, $s1, 4

Source Values

Result

srl $s2, $s1, 4

sra $s3, $s1, 4 1111 1111 0011 0000 0000 0000 0010 1010

Figure 6.17 Shift operations

Chapter 06.qxd 1/31/07 8:21 PM Page 306

rt (i.e., $s1) holds the value to be shifted, and the five least significant
bits of rs (i.e., $s2) give the amount to shift. The shifted result is placed
in rd, as before. The shamt field is ignored and should be all 0’s. Figure
6.19 shows register values for each type of variable-shift instruction.

Generating Constants

The addi instruction is helpful for assigning 16-bit constants, as shown
in Code Example 6.10.

6.4 Programming 307

sllv $s3, $s1, $s2

srlv $s4, $s1, $s2

srav $s5, $s1, $s2

op rs rt rd shamt funct

Machine CodeAssembly Code Field Values
op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 6 bits 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits 5 bits

(0x02519804)

(0x0251A006)

(0x0251A807)

401917180

602017180

702117180

000000 10010 10001 10011 00000 000100

000000 10010 10001 10100 00000 000110

000000 10010 10001 10101 00000 000111

Figure 6.18 Variable-shift instruction machine code

$s1

0000 0000$s3

0000 0000$s4

1111 1111$s5

Assembly Code

sllv $s3, $s1, $s2

srlv $s4, $s1, $s2

srav $s5, $s1, $s2

Source Values

Result

$s2

1111 0011 0000 0100 0000 0010 1010 1000

0000 0000 0000 0000 0000 0000 0000 1000

0000 0100 0000 00101010 1000

1111 0011 0000 0100 0000 0010

1111 0011 0000 0100 0000 0010

Figure 6.19 Variable-shift

operations

High-Level Code

int a � 0x4f3c;

MIPS Assembly code

$s0 � a
addi $s0, $0, 0x4f3c # a � 0x4f3c

Code Example 6.10 16-BIT CONSTANT

High-Level Code

int a � 0x6d5e4f3c;

MIPS Assembly Code

$s0 � a
lui $s0, 0x6d5e # a � 0x6d5e0000
ori $s0, $s0, 0x4f3c # a � 0x6d5e4f3c

Code Example 6.11 32-BIT CONSTANT

Chapter 06.qxd 1/31/07 8:21 PM Page 307

To assign 32-bit constants, use a load upper immediate instruction
(lui) followed by an or immediate (ori) instruction, as shown in Code
Example 6.11. lui loads a 16-bit immediate into the upper half of a reg-
ister and sets the lower half to 0. As mentioned earlier, ori merges a 16-
bit immediate into the lower half.

Multiplication and Division Instructions*

Multiplication and division are somewhat different from other arith-
metic operations. Multiplying two 32-bit numbers produces a 64-bit
product. Dividing two 32-bit numbers produces a 32-bit quotient and a
32-bit remainder.

The MIPS architecture has two special-purpose registers, hi and lo,
which are used to hold the results of multiplication and division. mult
$s0, $s1 multiplies the values in $s0 and $s1. The 32 most significant
bits are placed in hi and the 32 least significant bits are placed in lo.
Similarly, div $s0, $s1 computes $s0/$s1. The quotient is placed in
lo and the remainder is placed in hi.

6 . 4 . 2 Branching

An advantage of a computer over a calculator is its ability to make deci-
sions. A computer performs different tasks depending on the input. For
example, if/else statements, case statements, while loops, and for
loops all conditionally execute code depending on some test.

To sequentially execute instructions, the program counter incre-
ments by 4 after each instruction. Branch instructions modify the pro-
gram counter to skip over sections of code or to go back to repeat
previous code. Conditional branch instructions perform a test and
branch only if the test is TRUE. Unconditional branch instructions,
called jumps, always branch.

Conditional Branches

The MIPS instruction set has two conditional branch instructions: branch
if equal (beq) and branch if not equal (bne). beq branches when the val-
ues in two registers are equal, and bne branches when they are not equal.
Code Example 6.12 illustrates the use of beq. Note that branches are
written as beq $rs, $rt, imm, where $rs is the first source register. This
order is reversed from most I-type instructions.

When the program in Code Example 6.12 reaches the branch if
equal instruction (beq), the value in $s0 is equal to the value in $s1, so
the branch is taken. That is, the next instruction executed is the add
instruction just after the label called target. The two instructions
directly after the branch and before the label are not executed.

Assembly code uses labels to indicate instruction locations in the
program. When the assembly code is translated into machine code, these

308 CHAPTER SIX Architecture

The int data type in C refers
to a word of data representing
a two’s complement integer.
MIPS uses 32-bit words, so an
int represents a number in the
range [�231, 231�1].

hi and lo are not among the
usual 32 MIPS registers, so
special instructions are needed
to access them. mfhi $s2 (move
from hi) copies the value in hi
to $s2. mflo $s3 (move from
lo) copies the value in lo to
$s3. hi and lo are technically
part of the architectural state;
however, we generally ignore
these registers in this book.

Chapter 06.qxd 1/31/07 8:21 PM Page 308

6.4 Programming 309

MIPS Assembly Code

addi $s0, $0, 4 # $s0 � 0 � 4 � 4
addi $s1, $0, 1 # $s1 � 0 � 1 � 1
sll $s1, $s1, 2 # $s1 � 1 �� 2 � 4
beq $s0, $s1, target # $s0 �� $s1, so branch is taken
addi $s1, $s1, 1 # not executed
sub $s1, $s1, $s0 # not executed

target:
add $s1, $s1, $s0 # $s1 � 4 � 4 � 8

Code Example 6.12 CONDITIONAL BRANCHING USING beq

MIPS Assembly Code

addi $s0, $0, 4 # $s0 � 0 � 4 � 4
addi $s1, $0, 1 # $s1 � 0 � 1 � 1
s11 $s1, $s1, 2 # $s1 � 1 �� 2 � 4
bne $s0, $s1, target # $s0 �� $s1, so branch is not taken
addi $s1, $s1, 1 # $s1 � 4 � 1 � 5
sub $s1, $s1, $s0 # $s1 � 5 � 4 � 1

target:
add $s1, $s1, $s0 # $s1 � 1 � 4 � 5

Code Example 6.13 CONDITIONAL BRANCHING USING bne

labels are translated into instruction addresses (see Section 6.5). MIPS
assembly labels are followed by a (:) and cannot use reserved words,
such as instruction mnemonics. Most programmers indent their instruc-
tions but not the labels, to help make labels stand out.

Code Example 6.13 shows an example using the branch if not equal
instruction (bne). In this case, the branch is not taken because $s0 is
equal to $s1, and the code continues to execute directly after the bne
instruction. All instructions in this code snippet are executed.

Jump

A program can unconditionally branch, or jump, using the three types of
jump instructions: jump (j), jump and link (jal), and jump register (jr).
Jump (j) jumps directly to the instruction at the specified label. Jump
and link (jal) is similar to j but is used by procedures to save a return
address, as will be discussed in Section 6.4.6. Jump register (jr) jumps to
the address held in a register. Code Example 6.14 shows the use of the
jump instruction (j).

After the j target instruction, the program in Code Example 6.14 un-
conditionally continues executing the add instruction at the label target.
All of the instructions between the jump and the label are skipped.

j and jal are J-type instruc-
tions. jr is an R-type instruc-
tion that uses only the rs
operand.

Chapter 06.qxd 1/31/07 8:21 PM Page 309

310 CHAPTER SIX Architecture

MIPS Assembly Code

addi $s0, $0, 4 # $s0 � 4
addi $s1, $0, 1 # $s1 � 1
j target # jump to target
addi $s1, $s1, 1 # not executed
sub $s1, $s1, $s0 # not executed

target:
add $s1, $s1, $s0 # $s1 � 1 � 4 � 5

Code Example 6.14 UNCONDITIONAL BRANCHING USING j

MIPS Assembly Code

0x00002000 addi $s0, $0, 0x2010 # $s0 � 0x2010
0x00002004 jr $s0 # jump to 0x00002010
0x00002008 addi $s1, $0, 1 # not executed
0x0000200c sra $s1, $s1, 2 # not executed
0x00002010 lw $s3, 44 ($s1) # executed after jr instruction

Code Example 6.15 UNCONDITIONAL BRANCHING USING jr

Code Example 6.15 shows the use of the jump register instruction
(jr). Instruction addresses are given to the left of each instruction. jr
$s0 jumps to the address held in $s0, 0x00002010.

6 . 4 . 3 Conditional Statements

if statements, if/else statements, and case statements are conditional
statements commonly used by high-level languages. They each condi-
tionally execute a block of code consisting of one or more instructions.
This section shows how to translate these high-level constructs into
MIPS assembly language.

If Statements

An if statement executes a block of code, the if block, only when a
condition is met. Code Example 6.16 shows how to translate an if
statement into MIPS assembly code.

High-Level Code

if (i �� j)
f � g � h;

f � f � i;

MIPS Assembly Code

$s0 � f, $s1 � g, $s2 � h, $s3 � i, $s4 � j
bne $s3, $s4, L1 # if i ! � j, skip if block
add $s0, $s1, $s2 # if block: f � g � h

L1:
sub $s0, $s0, $s3 # f � f � i

Code Example 6.16 if STATEMENT

Chapter 06.qxd 1/31/07 8:21 PM Page 310

The assembly code for the if statement tests the opposite condi-
tion of the one in the high-level code. In Code Example 6.16, the
high-level code tests for i �� j, and the assembly code tests for
i !� j. The bne instruction branches (skips the if block) when i !�

j. Otherwise, i �� j, the branch is not taken, and the if block is
executed as desired.

If/Else Statements

if/else statements execute one of two blocks of code depending on a
condition. When the condition in the if statement is met, the if block is
executed. Otherwise, the else block is executed. Code Example 6.17
shows an example if/else statement.

Like if statements, if/else assembly code tests the opposite condi-
tion of the one in the high-level code. For example, in Code Example 6.17,
the high-level code tests for i �� j. The assembly code tests for the oppo-
site condition (i !� j). If that opposite condition is TRUE, bne skips the
if block and executes the else block. Otherwise, the if block executes
and finishes with a jump instruction (j) to jump past the else block.

6.4 Programming 311

High-Level Code

if (i �� j)
f � g � h;

else
f � f � i;

MIPS Assembly Code

$s0 � f, $s1 � g, $s2 � h, $s3 � i, $s4 � j
bne $s3, $s4, else # if i ! � j, branch to else
add $s0, $s1, $s2 # if block: f � g � h
j L2 # skip past the else block

else:
sub $s0, $s0, $s3 # else block: f � f � i

L2:

Code Example 6.17 if/else STATEMENT

Switch/Case Statements*

switch/case statements execute one of several blocks of code depending
on the conditions. If no conditions are met, the default block is executed.
A case statement is equivalent to a series of nested if/else statements.
Code Example 6.18 shows two high-level code snippets with the same
functionality: they calculate the fee for an ATM (automatic teller machine)
withdrawal of $20, $50, or $100, as defined by amount. The MIPS assem-
bly implementation is the same for both high-level code snippets.

6 . 4 . 4 Getting Loopy

Loops repeatedly execute a block of code depending on a condition.
for loops and while loops are common loop constructs used by high-
level languages. This section shows how to translate them into MIPS
assembly language.

Chapter 06.qxd 1/31/07 8:21 PM Page 311

312 CHAPTER SIX Architecture

High-Level Code

switch (amount) {

case 20: fee � 2; break;

case 50: fee � 3; break;

case 100: fee � 5; break;

default: fee � 0;

}

// equivalent function using if/else statements
if (amount �� 20) fee � 2;
else if (amount �� 50) fee � 3;
else if (amount �� 100) fee � 5;
else fee � 0;

MIPS Assembly Code

$s0 � amount, $s1 � fee

case20:
addi $t0, $0, 20 # $t0 � 20
bne $s0, $t0, case50 # i �� 20? if not,

skip to case50
addi $s1, $0, 2 # if so, fee � 2
j done # and break out of case

case50:
addi $t0, $0, 50 # $t0 � 50
bne $s0, $t0, case100 # i �� 50? if not,

skip to case100
addi $s1, $0, 3 # if so, fee � 3
j done # and break out of case

case100:
addi $t0, $0, 100 # $t0 � 100
bne $s0, $t0, default # i �� 100? if not,

skip to default
addi $s1, $0, 5 # if so, fee � 5
j done # and break out of case

default:
add $s1, $0, $0 # charge � 0

done:

Code Example 6.18 switch/case STATEMENT

While Loops

while loops repeatedly execute a block of code until a condition is not
met. The while loop in Code Example 6.19 determines the value of x
such that 2x � 128. It executes seven times, until pow � 128.

Like if/else statements, the assembly code for while loops tests
the opposite condition of the one given in the high-level code. If that
opposite condition is TRUE, the while loop is finished.

High-Level Code

int pow � 1;
int x � 0;

while (pow !� 128)
{
pow � pow * 2;
x � x � 1;

}

MIPS Assembly Code

$s0 � pow, $s1 � x
addi $s0, $0, 1 # pow � 1
addi $s1, $0, 0 # x � 0

addi $t0, $0, 128 # t0 � 128 for comparison
while:
beq $s0, $t0, done # if pow �� 128, exit while
sll $s0, $s0, 1 # pow � pow * 2
addi $s1, $s1, 1 # x � x � 1
j while

done:

Code Example 6.19 while LOOP

Chapter 06.qxd 1/31/07 8:21 PM Page 312

In Code Example 6.19, the while loop compares pow to 128 and
exits the loop if it is equal. Otherwise it doubles pow (using a left shift),
increments x, and jumps back to the start of the while loop.

For Loops

for loops, like while loops, repeatedly execute a block of code until a
condition is not met. However, for loops add support for a loop vari-
able, which typically keeps track of the number of loop executions.
A general format of the for loop is

for (initialization; condition; loop operation)

The initialization code executes before the for loop begins. The
condition is tested at the beginning of each loop. If the condition
is not met, the loop exits. The loop operation executes at the end of
each loop.

Code Example 6.20 adds the numbers from 0 to 9. The loop
variable, i, is initialized to 0 and is incremented at the end of each loop
iteration. At the beginning of each iteration, the for loop executes only
when i is not equal to 10. Otherwise, the loop is finished. In this case,
the for loop executes 10 times. for loops can be implemented using
a while loop, but the for loop is often convenient.

Magnitude Comparison

So far, the examples have used beq and bne to perform equality or
inequality comparisons and branches. MIPS provides the set less than
instruction, slt, for magnitude comparison. slt sets rd to 1 when rs �

rt. Otherwise, rd is 0.

6.4 Programming 313

High-Level Code

int sum � 0;

for (i � 0; i ! � 10; i � i � 1) {
sum � sum � i;

}

// equivalent to the following while loop
int sum � 0;
int i � 0;
while (i !� 10) {
sum � sum � i;
i � i � 1;

}

MIPS Assembly Code

$s0 � i, $s1 � sum
add $s1, $0, $0 # sum � 0
addi $s0, $0, 0 # i � 0
addi $t0, $0, 10 # $t0 � 10

for:
beq $s0, $t0, done # if i �� 10, branch to done
add $s1, $s1, $s0 # sum � sum � i
addi $s0, $s0, 1 # increment i
j for

done:

Code Example 6.20 for LOOP

Chapter 06.qxd 1/31/07 8:21 PM Page 313

Example 6.6 LOOPS USING slt

The following high-level code adds the powers of 2 from 1 to 100.
Translate it into assembly language.

// high-level code

int sum � 0;
for (i � 1; i � 101; i � i * 2)
sum � sum � i;

Solution: The assembly language code uses the set less than (slt) instruction to
perform the less than comparison in the for loop.

MIPS assembly code

$s0 � i, $s1 � sum
addi $s1, $0, 0 # sum � 0
addi $s0, $0, 1 # i � 1
addi $t0, $0, 101 # $t0 � 101

loop:
slt $t1, $s0, $t0 # if (i � 101) $t1 � 1, else $t1 � 0
beq $t1, $0, done # if $t1 �� 0 (i �� 101), branch to done
add $s1, $s1, $s0 # sum � sum � i
sll $s0, $s0, 1 # i � i * 2
j loop

done:

Exercise 6.12 explores how to use slt for other magnitude compar-
isons including greater than, greater than or equal, and less than or equal.

6 . 4 . 5 Arrays

Arrays are useful for accessing large amounts of similar data. An array is
organized as sequential data addresses in memory. Each array element is
identified by a number called its index. The number of elements in the
array is called the size of the array. This section shows how to access
array elements in memory.

Array Indexing

Figure 6.20 shows an array of five integers stored in memory. The index
ranges from 0 to 4. In this case, the array is stored in a processor’s main
memory starting at base address 0x10007000. The base address gives
the address of the first array element, array[0].

Code Example 6.21 multiplies the first two elements in array by 8
and stores them back in the array.

The first step in accessing an array element is to load the base address
of the array into a register. Code Example 6.21 loads the base address

314 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 314

into $s0. Recall that the load upper immediate (lui) and or immediate
(ori) instructions can be used to load a 32-bit constant into a register.

Code Example 6.21 also illustrates why lw takes a base address and an
offset. The base address points to the start of the array. The offset can be
used to access subsequent elements of the array. For example, array[1] is
stored at memory address 0x10007004 (one word or four bytes after
array[0]), so it is accessed at an offset of 4 past the base address.

You might have noticed that the code for manipulating each of the
two array elements in Code Example 6.21 is essentially the same except
for the index. Duplicating the code is not a problem when accessing two
array elements, but it would become terribly inefficient for accessing all
of the elements in a large array. Code Example 6.22 uses a for loop to
multiply by 8 all of the elements of a 1000-element array stored at a
base address of 0x23B8F000.

Figure 6.21 shows the 1000-element array in memory. The index
into the array is now a variable (i) rather than a constant, so we cannot
take advantage of the immediate offset in lw. Instead, we compute the
address of the ith element and store it in $t0. Remember that each array
element is a word but that memory is byte addressed, so the offset from

6.4 Programming 315

array[4]
array[3]
array[2]
array[1]
array[0]0x10007000

0x10007004
0x10007008
0x1000700C
0x10007010

Main Memory

Address Data

Figure 6.20 Five-entry

array with base address

of 0x10007000

High-Level Code

int array [5];

array[0] � array[0] * 8;

array[1] � array[1] * 8;

MIPS Assembly Code

$s0 � base address of array
lui $s0, 0x1000 # $s0 � 0x10000000
ori $s0, $s0, 0x7000 # $s0 � 0x10007000

lw $t1, 0($s0) # $t1 � array[0]
sll $t1, $t1, 3 # $t1 � $t1 �� 3 � $t1 * 8
sw $t1, 0($s0) # array[0] � $t1

lw $t1, 4($s0) # $t1 � array[1]
sll $t1, $t1, 3 # $t1 � $t1 �� 3 � $t1 * 8
sw $t1, 4($s0) # array[1] � $t1

Code Example 6.21 ACCESSING ARRAYS

Chapter 06.qxd 1/31/07 8:21 PM Page 315

the base address is i * 4. Shifting left by 2 is a convenient way to multi-
ply by 4 in MIPS assembly language. This example readily extends to an
array of any size.

Bytes and Characters

Numbers in the range [�128, 127] can be stored in a single byte rather
than an entire word. Because there are much fewer than 256 characters on
an English language keyboard, English characters are often represented by
bytes. The C language uses the type char to represent a byte or character.

Early computers lacked a standard mapping between bytes and
English characters, so exchanging text between computers was difficult.
In 1963, the American Standards Association published the American
Standard Code for Information Interchange (ASCII), which assigns each
text character a unique byte value. Table 6.2 shows these character
encodings for printable characters. The ASCII values are given in hexa-
decimal. Lower-case and upper-case letters differ by 0x20 (32).

316 CHAPTER SIX Architecture

High-Level Code

int i;
int array[1000];

for (i�0; i � 1000; i � i � 1) {

array[i] � array[i] * 8;

}

MIPS Assembly Code

$s0 � array base address, $s1 � i
initialization code
lui $s0, 0x23B8 # $s0 � 0x23B80000
ori $s0, $s0, 0xF000 # $s0 � 0x23B8F000
addi $s1, $0 # i � 0
addi $t2, $0, 1000 # $t2 � 1000

loop:
slt $t0, $s1, $t2 # i � 1000?
beq $t0, $0, done # if not then done
sll $t0, $s1, 2 # $t0 � i * 4 (byte offset)
add $t0, $t0, $s0 # address of array[i]
lw $t1, 0($t0) # $t1 � array[i]
sll $t1, $t1, 3 # $t1 � array[i] * 8
sw $t1, 0($t0) # array[i] � array[i] * 8
addi $s1, $s1, 1 # i � i � 1
j loop # repeat

done:

Code Example 6.22 ACCESSING ARRAYS USING A for LOOP

Figure 6.21 Memory holding

array[1000] starting at base

address 0x23B8F000

Other program languages,
such as Java, use different
character encodings, most
notably Unicode. Unicode
uses 16 bits to represent each
character, so it supports
accents, umlauts, and Asian
languages. For more informa-
tion, see www.unicode.org.

23B8FF9C array[999]

23B8FF98

23B8F004

23B8F000

array[998]

array[1]

array[0]

Main Memory

Address Data

Chapter 06.qxd 1/31/07 8:21 PM Page 316

MIPS provides load byte and store byte instructions to manipulate
bytes or characters of data: load byte unsigned (lbu), load byte (lb), and
store byte (sb). All three are illustrated in Figure 6.22.

6.4 Programming 317

ASCII codes developed from
earlier forms of character
encoding. Beginning in 1838,
telegraph machines used
Morse code, a series of dots (.)
and dashes (�), to represent
characters. For example, the
letters A, B, C, and D were
represented as .�, � . . . ,
�.�., and �.., respectively.
The number of dots and
dashes varied with each letter.
For efficiency, common letters
used shorter codes.

In 1874, Jean-Maurice-
Emile Baudot invented a 5-bit
code called the Baudot code.
For example, A, B, C, and D,
were represented as 00011,
11001, 01110, and 01001.
However, the 32 possible
encodings of this 5-bit code
were not sufficient for all the
English characters. But 8-bit
encoding was. Thus, as elec-
tronic communication became
prevalent, 8-bit ASCII encod-
ing emerged as the standard.

Table 6.2 ASCII encodings

Char # Char # Char # Char # Char # Char

20 space 30 0 40 @ 50 P 60 ′ 70 p

21 ! 31 1 41 A 51 Q 61 a 71 q

22 ″ 32 2 42 B 52 R 62 b 72 r

23 # 33 3 43 C 53 S 63 c 73 s

24 $ 34 4 44 D 54 T 64 d 74 t

25 % 35 5 45 E 55 U 65 e 75 u

26 & 36 6 46 F 56 V 66 f 76 v

27 ′ 37 7 47 G 57 W 67 g 77 w

28 (38 8 48 H 58 X 68 h 78 x

29) 39 9 49 I 59 Y 69 i 79 y

2A * 3A : 4A J 5A Z 6A j 7A z

2B � 3B ; 4B K 5B [6B k 7B {

2C , 3C � 4C L 5C \ 6C l 7C |

2D – 3D � 4D M 5D] 6D m 7D }

2E . 3E � 4E N 5E � 6E n 7E ~

2F / 3F ? 4F O 5F _ 6F o

Byte Address

03428CF7Data

3 2 1 0

$s1 00 8C lbu $s1, 2($0)

Little-Endian Memory

0000

Registers

$s2 FF 8C lb $s2, 2($0)FFFF

$s3 9B sb $s3, 3($0)XX XX XX

Figure 6.22 Instructions for

loading and storing bytes

Chapter 06.qxd 1/31/07 8:21 PM Page 317

Load byte unsigned (lbu) zero-extends the byte, and load byte (lb)
sign-extends the byte to fill the entire 32-bit register. Store byte (sb)
stores the least significant byte of the 32-bit register into the specified
byte address in memory. In Figure 6.22, lbu loads the byte at memory
address 2 into the least significant byte of $s1 and fills the remaining
register bits with 0. lb loads the sign-extended byte at memory address 2
into $s2. sb stores the least significant byte of $s3 into memory byte 3;
it replaces 0xF7 with 0x9B. The more significant bytes of $s3 are
ignored.

Example 6.7 USING lb AND sb TO ACCESS A CHARACTER ARRAY

The following high-level code converts a ten-entry array of characters from
lower-case to upper-case by subtracting 32 from each array entry. Translate it
into MIPS assembly language. Remember that the address difference between
array elements is now 1 byte, not 4 bytes. Assume that $s0 already holds the
base address of chararray.

// high-level code

char chararray[10];
int i;
for (i � 0; i !� 10; i � i � 1)
chararray[i] � chararray[i] � 32;

Solution:

MIPS assembly code
$s0 � base address of chararray, $s1 � i

addi $s1, $0, 0 # i � 0
addi $t0, $0, 10 # $t0 � 10

loop: beq $t0, $s1, done # if i �� 10, exit loop
add $t1, $s1, $s0 # $t1 � address of chararray[i]
lb $t2, 0($t1) # $t2 � array[i]
addi $t2, $t2, �32 # convert to upper case: $t1 � $t1 � 32
sb $t2, 0($t1) # store new value in array:

chararray[i] � $t1
addi $s1, $s1, 1 # i � i � 1
j loop # repeat

done:

A series of characters is called a string. Strings have a variable
length, so programming languages must provide a way to determine the
length or end of the string. In C, the null character (0x00) signifies the
end of a string. For example, Figure 6.23 shows the string “Hello!”
(0x48 65 6C 6C 6F 21 00) stored in memory. The string is seven bytes
long and extends from address 0x1522FFF0 to 0x1522FFF6. The first
character of the string (H � 0x48) is stored at the lowest byte address
(0x1522FFF0).

318 CHAPTER SIX Architecture

Figure 6.23 The string “Hello!”

stored in memory

Word
Address

1522FFF4

1522FFF0

Data

48656C6C

6F2100

Little-Endian Memory

Byte 3 Byte 0

Chapter 06.qxd 1/31/07 8:21 PM Page 318

6 . 4 . 6 Procedure Calls

High-level languages often use procedures (also called functions) to reuse
frequently accessed code and to make a program more readable.
Procedures have inputs, called arguments, and an output, called the
return value. Procedures should calculate the return value and cause no
other unintended side effects.

When one procedure calls another, the calling procedure, the caller,
and the called procedure, the callee, must agree on where to put the
arguments and the return value. In MIPS, the caller conventionally
places up to four arguments in registers $a0–$a3 before making the pro-
cedure call, and the callee places the return value in registers $v0–$v1
before finishing. By following this convention, both procedures know
where to find the arguments and return value, even if the caller and
callee were written by different people.

The callee must not interfere with the function of the caller. Briefly,
this means that the callee must know where to return to after it completes
and it must not trample on any registers or memory needed by the caller.
The caller stores the return address in $ra at the same time it jumps to the
callee using the jump and link instruction (jal). The callee must not over-
write any architectural state or memory that the caller is depending on.
Specifically, the callee must leave the saved registers, $s0–$s7, $ra, and
the stack, a portion of memory used for temporary variables, unmodified.

This section shows how to call and return from a procedure. It
shows how procedures access input arguments and the return value and
how they use the stack to store temporary variables.

Procedure Calls and Returns

MIPS uses the jump and link instruction (jal) to call a procedure and
the jump register instruction (jr) to return from a procedure. Code
Example 6.23 shows the main procedure calling the simple procedure.
main is the caller, and simple is the callee. The simple procedure is
called with no input arguments and generates no return value; it simply
returns to the caller. In Code Example 6.23, instruction addresses are
given to the left of each MIPS instruction in hexadecimal.

6.4 Programming 319

High-Level Code MIPS Assembly Code

int main() {
simple(); 0x00400200 main: jal simple # call procedure
. . . 0x00400204 . . .

}
// void means the function returns no value
void simple() {
return; 0x00401020 simple: jr $ra # return

}

Code Example 6.23 simple PROCEDURE CALL

Chapter 06.qxd 1/31/07 8:21 PM Page 319

Jump and link (jal) and jump register (jr $ra) are the two essential
instructions needed for a procedure call. jal performs two functions: it
stores the address of the next instruction (the instruction after jal) in
the return address register ($ra), and it jumps to the target instruction.

In Code Example 6.23, the main procedure calls the simple proce-
dure by executing the jump and link (jal) instruction. jal jumps to the
simple label and stores 0x00400204 in $ra. The simple procedure
returns immediately by executing the instruction jr $ra, jumping to the
instruction address held in $ra. The main procedure then continues exe-
cuting at this address, 0x00400204.

Input Arguments and Return Values

The simple procedure in Code Example 6.23 is not very useful, because
it receives no input from the calling procedure (main) and returns no out-
put. By MIPS convention, procedures use $a0–$a3 for input arguments
and $v0–$v1 for the return value. In Code Example 6.24, the procedure
diffofsums is called with four arguments and returns one result.

According to MIPS convention, the calling procedure, main, places
the procedure arguments, from left to right, into the input registers,
$a0–$a3. The called procedure, diffofsums, stores the return value in
the return register, $v0.

A procedure that returns a 64-bit value, such as a double-precision
floating point number, uses both return registers, $v0 and $v1. When a
procedure with more than four arguments is called, the additional input
arguments are placed on the stack, which we discuss next.

320 CHAPTER SIX Architecture

High-Level Code MIPS Assembly Code

$s0 � y

int main () main:
{ . . .
int y; addi $a0, $0, 2 # argument 0 � 2

addi $a1, $0, 3 # argument 1 � 3
. . . addi $a2, $0, 4 # argument 2 � 4

addi $a3, $0, 5 # argument 3 � 5
y � diffofsums (2, 3, 4, 5); jal diffofsums # call procedure

add $s0, $v0, $0 # y � returned value
.

}
$s0 � result

int diffofsums (int f, int g, int h, int i) diffofsums:
{ add $t0, $a0, $a1 # $t0 � f � g
int result; add $t1, $a2, $a3 # $t1 � h � i

sub $s0, $t0, $t1 # result � (f � g) � (h � i)
result � (f � g) � (h � i); add $v0, $s0, $0 # put return value in $v0
return result; jr $ra # return to caller

}

Code Example 6.24 PROCEDURE CALL WITH ARGUMENTS AND RETURN VALUES

Code Example 6.24 has some
subtle errors. Code Examples
6.25 and 6.26 on page 323
show improved versions of
the program.

Chapter 06.qxd 1/31/07 8:21 PM Page 320

6.4 Programming 321

The Stack

The stack is memory that is used to save local variables within a procedure.
The stack expands (uses more memory) as the processor needs more
scratch space and contracts (uses less memory) when the processor no
longer needs the variables stored there. Before explaining how procedures
use the stack to store temporary variables, we explain how the stack works.

The stack is a last-in-first-out (LIFO) queue. Like a stack of dishes, the
last item pushed onto the stack (the top dish) is the first one that can be
pulled (popped) off. Each procedure may allocate stack space to store local
variables but must deallocate it before returning. The top of the stack, is
the most recently allocated space. Whereas a stack of dishes grows up in
space, the MIPS stack grows down in memory. The stack expands to lower
memory addresses when a program needs more scratch space.

Figure 6.24 shows a picture of the stack. The stack pointer, $sp, is a
special MIPS register that points to the top of the stack. A pointer is a
fancy name for a memory address. It points to (gives the address of)
data. For example, in Figure 6.24(a) the stack pointer, $sp, holds the
address value 0x7FFFFFFC and points to the data value 0x12345678.
$sp points to the top of the stack, the lowest accessible memory address
on the stack. Thus, in Figure 6.24(a), the stack cannot access memory
below memory word 0x7FFFFFFC.

The stack pointer ($sp) starts at a high memory address and decre-
ments to expand as needed. Figure 6.24(b) shows the stack expanding to
allow two more data words of temporary storage. To do so, $sp decre-
ments by 8 to become 0x7FFFFFF4. Two additional data words,
0xAABBCCDD and 0x11223344, are temporarily stored on the stack.

One of the important uses of the stack is to save and restore registers
that are used by a procedure. Recall that a procedure should calculate a
return value but have no other unintended side effects. In particular, it
should not modify any registers besides the one containing the return
value, $v0. The diffofsums procedure in Code Example 6.24 violates
this rule because it modifies $t0, $t1, and $s0. If main had been using
$t0, $t1, or $s0 before the call to diffofsums, the contents of these
registers would have been corrupted by the procedure call.

To solve this problem, a procedure saves registers on the stack
before it modifies them, then restores them from the stack before it
returns. Specifically, it performs the following steps.

1. Makes space on the stack to store the values of one or more registers.

2. Stores the values of the registers on the stack.

3. Executes the procedure using the registers.

4. Restores the original values of the registers from the stack.

5. Deallocates space on the stack.

Data

7FFFFFFC 12345678

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address

$sp

(a)

7FFFFFFC

7FFFFFF8

7FFFFFF4

7FFFFFF0

Address

(b)

Data

12345678

$sp

AABBCCDD

11223344

Figure 6.24 The stack

Chapter 06.qxd 1/31/07 8:21 PM Page 321

Code Example 6.25 shows an improved version of diffofsums that
saves and restores $t0, $t1, and $s0. The new lines are indicated in
blue. Figure 6.25 shows the stack before, during, and after a call to the
diffofsums procedure from Code Example 6.25. diffofsums makes
room for three words on the stack by decrementing the stack pointer
($sp) by 12. It then stores the current values of $s0, $t0, and $t1 in
the newly allocated space. It executes the rest of the procedure, chang-
ing the values in these three registers. At the end of the procedure,
diffofsums restores the values of $s0, $t0, and $t1 from the stack,
deallocates its stack space, and returns. When the procedure returns,
$v0 holds the result, but there are no other side effects: $s0, $t0, $t1,
and $sp have the same values as they did before the procedure call.

The stack space that a procedure allocates for itself is called its stack
frame. diffofsums’s stack frame is three words deep. The principle of
modularity tells us that each procedure should access only its own stack
frame, not the frames belonging to other procedures.

Preserved Registers

Code Example 6.25 assumes that temporary registers $t0 and $t1 must
be saved and restored. If the calling procedure does not use those regis-
ters, the effort to save and restore them is wasted. To avoid this waste,
MIPS divides registers into preserved and nonpreserved categories. The
preserved registers include $s0–$s7 (hence their name, saved). The
nonpreserved registers include $t0–$t9 (hence their name, temporary).
A procedure must save and restore any of the preserved registers that it
wishes to use, but it can change the nonpreserved registers freely.

Code Example 6.26 shows a further improved version of diffofsums
that saves only $s0 on the stack. $t0 and $t1 are nonpreserved registers,
so they need not be saved.

Remember that when one procedure calls another, the former is the
caller and the latter is the callee. The callee must save and restore any
preserved registers that it wishes to use. The callee may change any of
the nonpreserved registers. Hence, if the caller is holding active data in a

322 CHAPTER SIX Architecture

Data

FC

F8

F4

F0

Address

$sp

(a)

?

Data

$sp

(c)

FC

F8

F4

F0

Address

?

Data

FC

F8

F4

F0

Address

$sp

(b)

$s0

$t0

?

st
ac

k
fr

am
e

$t1

Figure 6.25 The stack

(a) before, (b) during, and

(c) after diffofsums procedure

call

Chapter 06.qxd 1/31/07 8:21 PM Page 322

nonpreserved register, the caller needs to save that nonpreserved register
before making the procedure call and then needs to restore it afterward.
For these reasons, preserved registers are also called callee-save, and
nonpreserved registers are called caller-save.

Table 6.3 summarizes which registers are preserved. $s0–$s7 are
generally used to hold local variables within a procedure, so they must
be saved. $ra must also be saved, so that the procedure knows where to
return. $t0–$t9 are used to hold temporary results before they are
assigned to local variables. These calculations typically complete before
a procedure call is made, so they are not preserved, and it is rare that
the caller needs to save them. $a0–$a3 are often overwritten in the
process of calling a procedure. Hence, they must be saved by the caller
if the caller depends on any of its own arguments after a called proce-
dure returns. $v0–$v1 certainly should not be preserved, because the
callee returns its result in these registers.

6.4 Programming 323

MIPS Assembly Code

$s0 � result
diffofsums:
addi $sp, $sp, �12 # make space on stack to store three registers
sw $s0, 8($sp) # save $s0 on stack
sw $t0, 4($sp) # save $t0 on stack
sw $t1, 0($sp) # save $t1 on stack
add $t0, $a0, $a1 # $t0 � f � g
add $t1, $a2, $a3 # $t1 � h � i
sub $s0, $t0, $t1 # result � (f � g) � (h � i)
add $v0, $s0, $0 # put return value in $v0
lw $t1, 0($sp) # restore $t1 from stack
lw $t0, 4($sp) # restore $t0 from stack
lw $s0, 8($sp) # restore $s0 from stack
addi $sp, $sp, 12 # deallocate stack space
jr $ra # return to caller

Code Example 6.25 PROCEDURE SAVING REGISTERS ON THE STACK

MIPS Assembly Code

$s0 � result
diffofsums:
addi $sp, $sp, �4 # make space on stack to store one register
sw $s0, 0($sp) # save $s0 on stack
add $t0, $a0, $a1 # $t0 � f � g
add $t1, $a2, $a3 # $t1 � h � i
sub $s0, $t0, $t1 # result � (f � g) � (h � i)
add $v0, $s0, $0 # put return value in $v0
lw $s0, 0($sp) # restore $s0 from stack
addi $sp, $sp, 4 # deallocate stack space
jr $ra # return to caller

Code Example 6.26 PROCEDURE SAVING PRESERVED REGISTERS
ON THE STACK

Chapter 06.qxd 1/31/07 8:21 PM Page 323

324 CHAPTER SIX Architecture

The stack above the stack pointer is automatically preserved as long
as the callee does not write to memory addresses above $sp. In this way,
it does not modify the stack frame of any other procedures. The stack
pointer itself is preserved, because the callee deallocates its stack frame
before returning by adding back the same amount that it subtracted
from $sp at the beginning of the procedure.

Recursive Procedure Calls

A procedure that does not call others is called a leaf procedure; an
example is diffofsums. A procedure that does call others is called a
nonleaf procedure. As mentioned earlier, nonleaf procedures are some-
what more complicated because they may need to save nonpreserved
registers on the stack before they call another procedure, and then
restore those registers afterward. Specifically, the caller saves any non-
preserved registers ($t0–$t9 and $a0–$a3) that are needed after the
call. The callee saves any of the preserved registers ($s0–$s7 and $ra)
that it intends to modify.

A recursive procedure is a nonleaf procedure that calls itself. The fac-
torial function can be written as a recursive procedure call. Recall that
factorial(n) � n � (n � 1) � (n � 2) � . . . � 2 � 1. The factorial func-
tion can be rewritten recursively as factorial(n) � n � factorial(n � 1).
The factorial of 1 is simply 1. Code Example 6.27 shows the factorial
function written as a recursive procedure. To conveniently refer to pro-
gram addresses, we assume that the program starts at address 0x90.

The factorial procedure might modify $a0 and $ra, so it saves
them on the stack. It then checks whether n � 2. If so, it puts the return
value of 1 in $v0, restores the stack pointer, and returns to the caller. It
does not have to reload $ra and $a0 in this case, because they were never
modified. If n � 1, the procedure recursively calls factorial(n�1). It
then restores the value of n ($a0) and the return address ($ra) from the
stack, performs the multiplication, and returns this result. The multiply
instruction (mul $v0, $a0, $v0) multiplies $a0 and $v0 and places the
result in $v0. It is discussed further in Section 6.7.1.

Table 6.3 Preserved and nonpreserved registers

Preserved Nonpreserved

Saved registers: $s0–$s7 Temporary registers: $t0–$t9

Return address: $ra Argument registers: $a0–$a3

Stack pointer: $sp Return value registers: $v0–$v1

Stack above the stack pointer Stack below the stack pointer

Chapter 06.qxd 1/31/07 8:21 PM Page 324

6.4 Programming 325

High-Level Code

int factorial (int n) {

if (n �� 1)
return 1;

else
return (n * factorial (n�1));

}

MIPS Assembly Code

0x90 factorial: addi $sp, $sp, �8 # make room on stack
0x94 sw $a0, 4($sp) # store $a0
0x98 sw $ra, 0($sp) # store $ra
0x9C addi $t0, $0, 2 # $t0 � 2
0xA0 slt $t0, $a0, $t0 # a �� 1 ?
0xA4 beq $t0, $0, else # no: goto else
0xA8 addi $v0, $0, 1 # yes: return 1
0xAC addi $sp, $sp, 8 # restore $sp
0xB0 jr $ra # return
0xB4 else: addi $a0, $a0, �1 # n � n � 1
0xB8 jal factorial # recursive call
0xBC lw $ra, 0($sp) # restore $ra
0xC0 lw $a0, 4($sp) # restore $a0
0xC4 addi $sp, $sp, 8 # restore $sp
0xC8 mul $v0, $a0, $v0 # n * factorial (n�1)
0xCC jr $ra # return

Code Example 6.27 factorial RECURSIVE PROCEDURE CALL

Figure 6.26 shows the stack when executing factorial(3). We
assume that $sp initially points to 0xFC, as shown in Figure 6.26(a).
The procedure creates a two-word stack frame to hold $a0 and $ra. On
the first invocation, factorial saves $a0 (holding n � 3) at 0xF8 and
$ra at 0xF4, as shown in Figure 6.26(b). The procedure then changes
$a0 to n � 2 and recursively calls factorial(2), making $ra hold
0xBC. On the second invocation, it saves $a0 (holding n � 2) at 0xF0
and $ra at 0xEC. This time, we know that $ra contains 0xBC. The pro-
cedure then changes $a0 to n � 1 and recursively calls factorial(1).
On the third invocation, it saves $a0 (holding n � 1) at 0xE8 and $ra at
0xE4. This time, $ra again contains 0xBC. The third invocation of

Figure 6.26 Stack during

factorial procedure call when

n � 3: (a) before call, (b) after

last recursive call, (c) after

return

$sp

(a)

FC

F8

F4

F0

EC

E8

E4

E0

DC

DataAddress

FC

F8

F4

F0

(b)

$ra

EC

E8

E4

E0

DC

$sp

$sp

$sp

$sp

DataAddress

$a0 (0x3)

$ra (0xBC)

$a0 (0x2)

$ra (0xBC)

$a0 (0x1)

FC

F8

F4

F0

(c)

EC

E8

E4

E0

DC

$sp

$sp

$sp

$sp

$a0 = 1
$v0 = 1 x 1

$a0 = 2
$v0 = 2 x 1

$a0 = 3
$v0 = 3 x 2

$v0 = 6

DataAddress

$ra

$a0 (0x3)

$ra (0xBC)

$a0 (0x2)

$ra (0xBC)

$a0 (0x1)

Chapter 06.qxd 1/31/07 8:21 PM Page 325

factorial returns the value 1 in $v0 and deallocates the stack frame
before returning to the second invocation. The second invocation
restores n to 2, restores $ra to 0xBC (it happened to already have this
value), deallocates the stack frame, and returns $v0 � 2 � 1 � 2 to the
first invocation. The first invocation restores n to 3, restores $ra to the
return address of the caller, deallocates the stack frame, and returns
$v0 � 3 � 2 � 6. Figure 6.26(c) shows the stack as the recursively
called procedures return. When factorial returns to the caller, the
stack pointer is in its original position (0xFC), none of the contents of
the stack above the pointer have changed, and all of the preserved regis-
ters hold their original values. $v0 holds the return value, 6.

Additional Arguments and Local Variables*

Procedures may have more than four input arguments and local vari-
ables. The stack is used to store these temporary values. By MIPS con-
vention, if a procedure has more than four arguments, the first four are
passed in the argument registers as usual. Additional arguments are
passed on the stack, just above $sp. The caller must expand its stack to
make room for the additional arguments. Figure 6.27(a) shows the
caller’s stack for calling a procedure with more than four arguments.

A procedure can also declare local variables or arrays. Local vari-
ables are declared within a procedure and can be accessed only within
that procedure. Local variables are stored in $s0–$s7; if there are too
many local variables, they can also be stored in the procedure’s stack
frame. In particular, local arrays are stored on the stack.

Figure 6.27(b) shows the organization of a callee’s stack frame. The
frame holds the procedure’s own arguments (if it calls other procedures),
the return address, and any of the saved registers that the procedure will

326 CHAPTER SIX Architecture

$sp

$ra (if needed)

additional arguments

$a0–$a3
(if needed)

$s0–$s7
(if needed)

local variables or
arrays

$sp

st
ac

k
fr

am
e

additional arguments

Figure 6.27 Stack usage:

(left) before call,

(right) after call

Chapter 06.qxd 1/31/07 8:21 PM Page 326

modify. It also holds local arrays and any excess local variables. If the
callee has more than four arguments, it finds them in the caller’s stack
frame. Accessing additional input arguments is the one exception in
which a procedure can access stack data not in its own stack frame.

6 . 5 ADDRESSING MODES

MIPS uses five addressing modes: register-only, immediate, base, PC-
relative, and pseudo-direct. The first three modes (register-only, imme-
diate, and base addressing) define modes of reading and writing
operands. The last two (PC-relative and pseudo-direct addressing)
define modes of writing the program counter, PC.

Register-Only Addressing

Register-only addressing uses registers for all source and destination
operands. All R-type instructions use register-only addressing.

Immediate Addressing

Immediate addressing uses the 16-bit immediate along with registers as
operands. Some I-type instructions, such as add immediate (addi) and
load upper immediate (lui), use immediate addressing.

Base Addressing

Memory access instructions, such as load word (lw) and store word (sw),
use base addressing. The effective address of the memory operand is
found by adding the base address in register rs to the sign-extended
16-bit offset found in the immediate field.

PC-relative Addressing

Conditional branch instructions use PC-relative addressing to specify the
new value of the PC if the branch is taken. The signed offset in the imme-
diate field is added to the PC to obtain the new PC; hence, the branch
destination address is said to be relative to the current PC.

Code Example 6.28 shows part of the factorial procedure
from Code Example 6.27. Figure 6.28 shows the machine code for the
beq instruction. The branch target address (BTA) is the address of
the next instruction to execute if the branch is taken. The beq instruc-
tion in Figure 6.28 has a BTA of 0xB4, the instruction address of the
else label.

The 16-bit immediate field gives the number of instructions between
the BTA and the instruction after the branch instruction (the instruction
at PC�4). In this case, the value in the immediate field of beq is 3
because the BTA (0xB4) is 3 instructions past PC�4 (0xA8).

The processor calculates the BTA from the instruction by sign-
extending the 16-bit immediate, multiplying it by 4 (to convert words to
bytes), and adding it to PC�4.

6.5 Addressing Modes 327

Chapter 06.qxd 1/31/07 8:21 PM Page 327

Example 6.8 CALCULATING THE IMMEDIATE FIELD
FOR PC-RELATIVE ADDRESSING

Calculate the immediate field and show the machine code for the branch not
equal (bne) instruction in the following program.

MIPS assembly code
0x40 loop: add $t1, $a0, $s0
0x44 lb $t1, 0($t1)
0x48 add $t2, $a1, $s0
0x4C sb $t1, 0($t2)
0x50 addi $s0, $s0, 1
0x54 bne $t1, $0, loop
0x58 lw $s0, 0($sp)

Solution: Figure 6.29 shows the machine code for the bne instruction. Its branch
target address, 0x40, is 6 instructions behind PC�4 (0x58), so the immediate
field is �6.

328 CHAPTER SIX Architecture

op rs imm

beq $t0, $0, else

Machine CodeAssembly Code

6 bits 5 bits 5 bits 16 bits

(0x11000003)

6 bits

Field Values
op rs rt imm

4 8 0 3

5 bits 5 bits 16 bits

000100 01000 00000 0000 0000 0000 0011

rt

Figure 6.28 Machine code for beq

MIPS Assembly Code

0xA4 beq $t0, $0, else
0xA8 addi $v0, $0, 1
0xAC addi $sp, $sp, 8
0xB0 jr $ra
0xB4 else: addi $a0, $a0, �1
0xB8 jal factorial

Code Example 6.28 CALCULATING THE BRANCH TARGET ADDRESS

000101 01001 00000bne $t1, $0, loop

Machine CodeAssembly Code

5 9 0 -6

6 bits 5 bits 5 bits 16 bits

(0x1520FFFA)

6 bits 5 bits 5 bits 16 bits

op rs rt imm op rs rt imm

1111 1111 1111 1010

Field Values

Figure 6.29 bne machine code

Pseudo-Direct Addressing

In direct addressing, an address is specified in the instruction. The jump
instructions, j and jal, ideally would use direct addressing to specify a

Chapter 06.qxd 1/31/07 8:21 PM Page 328

32-bit jump target address (JTA) to indicate the instruction address to
execute next.

Unfortunately, the J-type instruction encoding does not have enough
bits to specify a full 32-bit JTA. Six bits of the instruction are used for
the opcode, so only 26 bits are left to encode the JTA. Fortunately, the
two least significant bits, JTA1:0, should always be 0, because instruc-
tions are word aligned. The next 26 bits, JTA27:2, are taken from the
addr field of the instruction. The four most significant bits, JTA31:28, are
obtained from the four most significant bits of PC�4. This addressing
mode is called pseudo-direct.

Code Example 6.29 illustrates a jal instruction using pseudo-direct
addressing. The JTA of the jal instruction is 0x004000A0. Figure 6.30
shows the machine code for this jal instruction. The top four bits and
bottom two bits of the JTA are discarded. The remaining bits are stored
in the 26-bit address field (addr).

The processor calculates the JTA from the J-type instruction by
appending two 0’s and prepending the four most significant bits of
PC�4 to the 26-bit address field (addr).

Because the four most significant bits of the JTA are taken from
PC�4, the jump range is limited. The range limits of branch and jump
instructions are explored in Exercises 6.23 to 6.26. All J-type instruc-
tions, j and jal, use pseudo-direct addressing.

Note that the jump register instruction, jr, is not a J-type instruc-
tion. It is an R-type instruction that jumps to the 32-bit value held in
register rs.

6.5 Addressing Modes 329

MIPS Assembly Code

0x0040005C jal sum
. . .
0x004000A0 sum: add $v0, $a0, $a1

Code Example 6.29 CALCULATING THE JUMP TARGET ADDRESS

op

jal sum

Machine CodeAssembly Code

3 (0x0C100028)

op

6 bits

0000 0000 0100 0000 0000 0000 1010 0000JTA

26-bit addr (0x0100028)

(0x004000A0)

0000 0000

0 0 0 2 8

addr

0x0100028

26 bits 6 bits 26 bits

000011 00 0001 0000 0000 0000 0010 1000

addr

0000 0100 0000 0000 0000 1010

1 0

Field Values

Figure 6.30 jal machine code

Chapter 06.qxd 1/31/07 8:21 PM Page 329

330 CHAPTER SIX Architecture

6 . 6 LIGHTS, CAMERA, ACTION: COMPILING,
ASSEMBLING, AND LOADING

Up until now, we have shown how to translate short high-level code
snippets into assembly and machine code. This section describes how to
compile and assemble a complete high-level program and how to load
the program into memory for execution.

We begin by introducing the MIPS memory map, which defines
where code, data, and stack memory are located. We then show the steps
of code execution for a sample program.

6 . 6 .1 The Memory Map

With 32-bit addresses, the MIPS address space spans 232 bytes � 4 giga-
bytes (GB). Word addresses are divisible by 4 and range from 0 to
0xFFFFFFFC. Figure 6.31 shows the MIPS memory map. The MIPS
architecture divides the address space into four parts or segments: the
text segment, global data segment, dynamic data segment, and reserved
segments. The following sections describes each segment.

The Text Segment

The text segment stores the machine language program. It is large
enough to accommodate almost 256 MB of code. Note that the four
most significant bits of the address in the text space are all 0, so the j
instruction can directly jump to any address in the program.

The Global Data Segment

The global data segment stores global variables that, in contrast to local
variables, can be seen by all procedures in a program. Global variables

SegmentAddress

$sp = 0x7FFFFFFC

0xFFFFFFFC

0x80000000

0x7FFFFFFC

0x10010000
0x1000FFFC
0x10000000
0x0FFFFFFC

0x00400000

0x003FFFFC

0x00000000

Reserved

Stack

Heap

Global Data

Text

Reserved

$gp = 0x10008000

PC = 0x00400000

Dynamic DataFigure 6.31 MIPS memory map

Chapter 06.qxd 1/31/07 8:21 PM Page 330

are defined at start-up, before the program begins executing. These vari-
ables are declared outside the main procedure in a C program and can
be accessed by any procedure. The global data segment is large enough
to store 64 KB of global variables.

Global variables are accessed using the global pointer ($gp), which is
initialized to 0x100080000. Unlike the stack pointer ($sp), $gp does not
change during program execution. Any global variable can be accessed
with a 16-bit positive or negative offset from $gp. The offset is known at
assembly time, so the variables can be efficiently accessed using base
addressing mode with constant offsets.

The Dynamic Data Segment

The dynamic data segment holds the stack and the heap. The data in this
segment are not known at start-up but are dynamically allocated and de-
allocated throughout the execution of the program. This is the largest
segment of memory used by a program, spanning almost 2 GB of the
address space.

As discussed in Section 6.4.6, the stack is used to save and restore
registers used by procedures and to hold local variables such as arrays.
The stack grows downward from the top of the dynamic data segment
(0x7FFFFFFC) and is accessed in last-in-first-out (LIFO) order.

The heap stores data that is allocated by the program during run-
time. In C, memory allocations are made by the malloc function; in
C�� and Java, new is used to allocate memory. Like a heap of clothes
on a dorm room floor, heap data can be used and discarded in any order.
The heap grows upward from the bottom of the dynamic data segment.

If the stack and heap ever grow into each other, the program’s data
can become corrupted. The memory allocator tries to ensure that this
never happens by returning an out-of-memory error if there is insuffi-
cient space to allocate more dynamic data.

The Reserved Segments

The reserved segments are used by the operating system and cannot
directly be used by the program. Part of the reserved memory is used for
interrupts (see Section 7.7) and for memory-mapped I/O (see Section 8.5).

6 . 6 . 2 Translating and Starting a Program

Figure 6.32 shows the steps required to translate a program from a high-
level language into machine language and to start executing that program.
First, the high-level code is compiled into assembly code. The assembly
code is assembled into machine code in an object file. The linker combines
the machine code with object code from libraries and other files to pro-
duce an entire executable program. In practice, most compilers perform all
three steps of compiling, assembling, and linking. Finally, the loader loads

6.6 Lights, Camera, Action: Compiling, Assembling, and Loading 331

Grace Hopper, 1906–1992.
Graduated from Yale
University with a Ph.D. in
mathematics. Developed the
first compiler while working
for the Remington Rand
Corporation and was instru-
mental in developing the
COBOL programming lan-
guage. As a naval officer, she
received many awards, includ-
ing a World War II Victory
Medal and the National
Defence Service Medal.

Chapter 06.qxd 1/31/07 8:21 PM Page 331

the program into memory and starts execution. The remainder of this sec-
tion walks through these steps for a simple program.

Step 1: Compilation

A compiler translates high-level code into assembly language. Code
Example 6.30 shows a simple high-level program with three global

332 CHAPTER SIX Architecture

Assembly Code

High Level Code

Compiler

Object File

Assembler

Executable

Linker

Memory

Loader

Object Files
Library Files

Figure 6.32 Steps for

translating and starting

a program

High-Level Code

int f, g, y; // global variables

int main (void)
{

f � 2;

g � 3;

y � sum (f, g);

return y;
}

int sum (int a, int b) {
return (a � b);

}

MIPS Assembly Code

.data
f:
g:
y:

.text
main:
addi $sp, $sp, �4 # make stack frame
sw $ra, 0($sp) # store $ra on stack
addi $a0, $0, 2 # $a0 � 2
sw $a0, f # f � 2
addi $a1, $0, 3 # $a1 � 3
sw $a1, g # g � 3
jal sum # call sum procedure
sw $v0, y # y � sum (f, g)
lw $ra, 0($sp) # restore $ra from stack
addi $sp, $sp, 4 # restore stack pointer
jr $ra # return to operating system

sum:
add $v0, $a0, $a1 # $v0 � a � b
jr $ra # return to caller

Code Example 6.30 COMPILING A HIGH-LEVEL PROGRAM

Chapter 06.qxd 1/31/07 8:21 PM Page 332

variables and two procedures, along with the assembly code produced by
a typical compiler. The .data and .text keywords are assembler directives
that indicate where the text and data segments begin. Labels are used for
global variables f, g, and y. Their storage location will be determined by
the assembler; for now, they are left as symbols in the code.

Step 2: Assembling

The assembler turns the assembly language code into an object file con-
taining machine language code. The assembler makes two passes
through the assembly code. On the first pass, the assembler assigns
instruction addresses and finds all the symbols, such as labels and global
variable names. The code after the first assembler pass is shown here.

0x00400000 main: addi $sp, $sp, �4
0x00400004 sw $ra, 0($sp)
0x00400008 addi $a0, $0, 2
0x0040000C sw $a0, f
0x00400010 addi $a1, $0, 3
0x00400014 sw $a1, g
0x00400018 jal sum
0x0040001C sw $v0, y
0x00400020 lw $ra, 0($sp)
0x00400024 addi $sp, $sp, 4
0x00400028 jr $ra
0x0040002C sum: add $v0, $a0, $a1
0x00400030 jr $ra

The names and addresses of the symbols are kept in a symbol table,
as shown in Table 6.4 for this code. The symbol addresses are filled
in after the first pass, when the addresses of labels are known. Global
variables are assigned storage locations in the global data segment of
memory, starting at memory address 0x10000000.

On the second pass through the code, the assembler produces the
machine language code. Addresses for the global variables and labels are
taken from the symbol table. The machine language code and symbol
table are stored in the object file.

6.6 Lights, Camera, Action: Compiling, Assembling, and Loading 333

Table 6.4 Symbol table

Symbol Address

f 0x10000000

g 0x10000004

y 0x10000008

main 0x00400000

sum 0x0040002C

Chapter 06.qxd 1/31/07 8:21 PM Page 333

Executable file header Text Size Data Size

Text segment

Data segment

Address

Address

0x00400000

0x00400004

0x00400008

0x0040000C

0x00400010

0x00400014

0x00400018

0x0040001C

0x00400020

0x00400024

0x00400028

0x0040002C

0x00400030

addi $sp, $sp, –4

sw $ra, 0 ($sp)

addi $a0, $0, 2

sw $a0, 0x8000 ($gp)

addi $a1, $0, 3

sw $a1, 0x8004 ($gp)

jal 0x0040002C

sw $v0, 0x8008 ($gp)

lw $ra, 0 ($sp)

addi $sp, $sp, –4

jr $ra

add $v0, $a0, $a1

jr $ra

0x10000000

0x10000004

0x10000008

f

g

y

0xC (12 bytes)0x34 (52 bytes)

0x23BDFFFC

0xAFBF0000

0x20040002

0xAF848000

0x20050003

0xAF858004

0x0C10000B

0xAF828008

0x8FBF0000

0x23BD0004

0x03E00008

0x00851020

0x03E0008

Instruction

Data

334 CHAPTER SIX Architecture

Step 3: Linking

Most large programs contain more than one file. If the programmer
changes only one of the files, it would be wasteful to recompile and
reassemble the other files. In particular, programs often call procedures
in library files; these library files almost never change. If a file of high-
level code is not changed, the associated object file need not be updated.

The job of the linker is to combine all of the object files into one
machine language file called the executable. The linker relocates the data
and instructions in the object files so that they are not all on top of each
other. It uses the information in the symbol tables to adjust the addresses
of global variables and of labels that are relocated.

In our example, there is only one object file, so no relocation is
necessary. Figure 6.33 shows the executable file. It has three sections: the
executable file header, the text segment, and the data segment. The exe-
cutable file header reports the text size (code size) and data size (amount
of globally declared data). Both are given in units of bytes. The text
segment gives the instructions and the addresses where they are to be
stored.

The figure shows the instructions in human-readable format next to
the machine code for ease of interpretation, but the executable file
includes only machine instructions. The data segment gives the address
of each global variable. The global variables are addressed with respect
to the base address given by the global pointer, $gp. For example, the

Figure 6.33 Executable

Chapter 06.qxd 1/31/07 8:21 PM Page 334

y

g

f

0x03E00008

0x00851020

0x03E00008

0x23BD0004

0x8FBF0000

0xAF828008

0x0C10000B

0xAF858004

0x20050003

0xAF848000

0x20040002

0xAFBF0000

0x23BDFFFC

MemoryAddress

$sp = 0x7FFFFFFC0x7FFFFFFC

0x10010000

0x00400000

Stack

Heap

$gp = 0x10008000

PC = 0x00400000

0x10000000

Reserved

Reserved

first store instruction, sw $a0, 0x8000($gp), stores the value 2 to the
global variable f, which is located at memory address 0x10000000.
Remember that the offset, 0x8000, is a 16-bit signed number that is
sign-extended and added to the base address, $gp. So, $gp � 0x8000 �
0x10008000 � 0xFFFF8000 � 0x10000000, the memory address of
variable f.

Step 4: Loading

The operating system loads a program by reading the text segment of
the executable file from a storage device (usually the hard disk) into the
text segment of memory. The operating system sets $gp to 0x10008000
(the middle of the global data segment) and $sp to 0x7FFFFFFC (the
top of the dynamic data segment), then performs a jal 0x00400000 to
jump to the beginning of the program. Figure 6.34 shows the memory
map at the beginning of program execution.

6.6 Lights, Camera, Action: Compiling, Assembling, and Loading 335

Figure 6.34 Executable loaded

in memory

Chapter 06.qxd 1/31/07 8:21 PM Page 335

6 .7 ODDS AND ENDS*

This section covers a few optional topics that do not fit naturally elsewhere
in the chapter. These topics include pseudoinstructions, exceptions, signed
and unsigned arithmetic instructions, and floating-point instructions.

6 .7.1 Pseudoinstructions

If an instruction is not available in the MIPS instruction set, it is proba-
bly because the same operation can be performed using one or more
existing MIPS instructions. Remember that MIPS is a reduced instruc-
tion set computer (RISC), so the instruction size and hardware complex-
ity are minimized by keeping the number of instructions small.

However, MIPS defines pseudoinstructions that are not actually
part of the instruction set but are commonly used by programmers and
compilers. When converted to machine code, pseudoinstructions are
translated into one or more MIPS instructions.

Table 6.5 gives examples of pseudoinstructions and the MIPS
instructions used to implement them. For example, the load immediate
pseudoinstruction (li) loads a 32-bit constant using a combination of
lui and ori instructions. The multiply pseudoinstruction (mul) pro-
vides a three-operand multiply, multiplying two registers and putting the
32 least significant bits of the result into a third register. The no opera-
tion pseudoinstruction (nop, pronounced “no op”) performs no opera-
tion. The PC is incremented by 4 upon its execution. No other registers
or memory values are altered. The machine code for the nop instruction
is 0x00000000.

Some pseudoinstructions require a temporary register for intermediate
calculations. For example, the pseudoinstruction beq $t2, imm15:0, Loop
compares $t2 to a 16-bit immediate, imm15:0. This pseudoinstruction

336 CHAPTER SIX Architecture

Table 6.5 Pseudoinstructions

Corresponding
Pseudoinstruction MIPS Instructions

li $s0, 0x1234AA77 lui $s0, 0x1234
ori $s0, 0xAA77

mul $s0, $s1, $s2 mult $s1, $s2
mflo $s0

clear $t0 add $t0, $0, $0

move $s1, $s2 add $s2, $s1, $0

nop sll $0, $0, 0

Chapter 06.qxd 1/31/07 8:21 PM Page 336

requires a temporary register in which to store the 16-bit immediate.
Assemblers use the assembler register, $at, for such purposes. Table 6.6
shows how the assembler uses $at in converting a pseudoinstruction to
real MIPS instructions. We leave it as Exercise 6.31 to implement other
pseudoinstructions such as rotate left (rol) and rotate right (ror).

6 .7. 2 Exceptions

An exception is like an unscheduled procedure call that jumps to a new
address. Exceptions may be caused by hardware or software. For example,
the processor may receive notification that the user pressed a key on a key-
board. The processor may stop what it is doing, determine which key was
pressed, save it for future reference, then resume the program that was run-
ning. Such a hardware exception triggered by an input/output (I/O) device
such as a keyboard is often called an interrupt. Alternatively, the program
may encounter an error condition such as an undefined instruction. The
program then jumps to code in the operating system (OS), which may
choose to terminate the offending program. Software exceptions are some-
times called traps. Other causes of exceptions include division by zero,
attempts to read nonexistent memory, hardware malfunctions, debugger
breakpoints, and arithmetic overflow (see Section 6.7.3).

The processor records the cause of an exception and the value of the PC
at the time the exception occurs. It then jumps to the exception handler pro-
cedure. The exception handler is code (usually in the OS) that examines the
cause of the exception and responds appropriately (by reading the keyboard
on a hardware interrupt, for example). It then returns to the program that
was executing before the exception took place. In MIPS, the exception han-
dler is always located at 0x80000180. When an exception occurs, the
processor always jumps to this instruction address, regardless of the cause.

The MIPS architecture uses a special-purpose register, called the
Cause register, to record the cause of the exception. Different codes
are used to record different exception causes, as given in Table 6.7. The
exception handler code reads the Cause register to determine how to
handle the exception. Some other architectures jump to a different excep-
tion handler for each different cause instead of using a Cause register.

MIPS uses another special-purpose register called the Exception
Program Counter (EPC) to store the value of the PC at the time an exception

6.7 Odds and Ends 337

Table 6.6 Pseudoinstruction using $at

Corresponding
Pseudoinstruction MIPS Instructions

beq $t2, imm15:0, Loop addi $at, $0, imm15:0
beq $t2, $at, Loop

Chapter 06.qxd 1/31/07 8:21 PM Page 337

takes place. The processor returns to the address in EPC after handling the
exception. This is analogous to using $ra to store the old value of the PC
during a jal instruction.

The EPC and Cause registers are not part of the MIPS register file.
The mfc0 (move from coprocessor 0) instruction copies these and other
special-purpose registers into one of the general purpose registers.
Coprocessor 0 is called the MIPS processor control; it handles interrupts
and processor diagnostics. For example, mfc0 $t0, Cause copies the
Cause register into $t0.

The syscall and break instructions cause traps to perform system
calls or debugger breakpoints. The exception handler uses the EPC to
look up the instruction and determine the nature of the system call or
breakpoint by looking at the fields of the instruction.

In summary, an exception causes the processor to jump to the
exception handler. The exception handler saves registers on the stack,
then uses mfc0 to look at the cause and respond accordingly. When the
handler is finished, it restores the registers from the stack, copies the
return address from EPC to $k0 using mfc0, and returns using jr $k0.

6 .7. 3 Signed and Unsigned Instructions

Recall that a binary number may be signed or unsigned. The MIPS archi-
tecture uses two’s complement representation of signed numbers. MIPS
has certain instructions that come in signed and unsigned flavors, includ-
ing addition and subtraction, multiplication and division, set less than,
and partial word loads.

Addition and Subtraction

Addition and subtraction are performed identically whether the number
is signed or unsigned. However, the interpretation of the results is dif-
ferent.

As mentioned in Section 1.4.6, if two large signed numbers are added
together, the result may incorrectly produce the opposite sign. For exam-
ple, adding the following two huge positive numbers gives a negative

338 CHAPTER SIX Architecture

Table 6.7 Exception cause codes

Exception Cause

hardware interrupt 0x00000000

system call 0x00000020

breakpoint/divide by 0 0x00000024

undefined instruction 0x00000028

arithmetic overflow 0x00000030

$k0 and $k1 are included in the
MIPS register set. They are
reserved by the OS for excep-
tion handling. They do not
need to be saved and restored
during exceptions.

Chapter 06.qxd 1/31/07 8:21 PM Page 338

result: 0x7FFFFFFF � 0x7FFFFFFF � 0xFFFFFFFE � �2. Similarly,
adding two huge negative numbers gives a positive result, 0x80000001 �
0x80000001 � 0x00000002. This is called arithmetic overflow.

The C language ignores arithmetic overflows, but other languages,
such as Fortran, require that the program be notified. As mentioned in
Section 6.7.2, the MIPS processor takes an exception on arithmetic over-
flow. The program can decide what to do about the overflow (for exam-
ple, it might repeat the calculation with greater precision to avoid the
overflow), then return to where it left off.

MIPS provides signed and unsigned versions of addition and sub-
traction. The signed versions are add, addi, and sub. The unsigned ver-
sions are addu, addiu, and subu. The two versions are identical except
that signed versions trigger an exception on overflow, whereas unsigned
versions do not. Because C ignores exceptions, C programs technically
use the unsigned versions of these instructions.

Multiplication and Division

Multiplication and division behave differently for signed and unsigned
numbers. For example, as an unsigned number, 0xFFFFFFFF represents
a large number, but as a signed number it represents �1. Hence,
0xFFFFFFFF � 0xFFFFFFFF would equal 0xFFFFFFFE00000001 if the
numbers were unsigned but 0x0000000000000001 if the numbers were
signed.

Therefore, multiplication and division come in both signed and
unsigned flavors. mult and div treat the operands as signed numbers.
multu and divu treat the operands as unsigned numbers.

Set Less Than

Set less than instructions can compare either two registers (slt) or a reg-
ister and an immediate (slti). Set less than also comes in signed (slt
and slti) and unsigned (sltu and sltiu) versions. In a signed compari-
son, 0x80000000 is less than any other number, because it is the most
negative two’s complement number. In an unsigned comparison,
0x80000000 is greater than 0x7FFFFFFF but less than 0x80000001,
because all numbers are positive.

Beware that sltiu sign-extends the immediate before treating it as
an unsigned number. For example, sltiu $s0, $s1, 0x8042 compares
$s1 to 0xFFFF8042, treating the immediate as a large positive number.

Loads

As described in Section 6.4.5, byte loads come in signed (lb) and
unsigned (lbu) versions. lb sign-extends the byte, and lbu zero-extends
the byte to fill the entire 32-bit register. Similarly, MIPS provides signed
and unsigned half-word loads (lh and lhu), which load two bytes into
the lower half and sign- or zero-extend the upper half of the word.

6.7 Odds and Ends 339

Chapter 06.qxd 1/31/07 8:21 PM Page 339

cop ft fs fd funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

F-type

op

6 .7. 4 Floating-Point Instructions

The MIPS architecture defines an optional floating-point coprocessor,
known as coprocessor 1. In early MIPS implementations, the floating-
point coprocessor was a separate chip that users could purchase if
they needed fast floating-point math. In most recent MIPS implemen-
tations, the floating-point coprocessor is built in alongside the main
processor.

MIPS defines 32 32-bit floating-point registers, $f0–$f31. These are
separate from the ordinary registers used so far. MIPS supports both
single- and double-precision IEEE floating point arithmetic. Double-
precision (64-bit) numbers are stored in pairs of 32-bit registers, so only
the 16 even-numbered registers ($f0, $f2, $f4, . . . , $f30) are used
to specify double-precision operations. By convention, certain registers
are reserved for certain purposes, as given in Table 6.8.

Floating-point instructions all have an opcode of 17 (100012). They
require both a funct field and a cop (coprocessor) field to indicate the
type of instruction. Hence, MIPS defines the F-type instruction format
for floating-point instructions, shown in Figure 6.35. Floating-point
instructions come in both single- and double-precision flavors. cop � 16
(100002) for single-precision instructions or 17 (100012) for double-
precision instructions. Like R-type instructions, F-type instructions have
two source operands, fs and ft, and one destination, fd.

Instruction precision is indicated by .s and .d in the mnemonic.
Floating-point arithmetic instructions include addition (add.s, add.d),
subtraction (sub.sz, sub.d), multiplication (mul.s, mul.d), and divi-
sion (div.s, div.d) as well as negation (neg.s, neg.d) and absolute
value (abs.s, abs.d).

340 CHAPTER SIX Architecture

Table 6.8 MIPS floating-point register set

Name Number Use

$fv0–$fv1 0, 2 procedure return values

$ft0–$ft3 4, 6, 8, 10 temporary variables

$fa0–$fa1 12, 14 procedure arguments

$ft4–$ft5 16, 18 temporary variables

$fs0–$fs5 20, 22, 24, 26, 28, 30 saved variables

Figure 6.35 F-type machine

instruction format

Chapter 06.qxd 1/31/07 8:21 PM Page 340

Floating-point branches have two parts. First, a compare instruction
is used to set or clear the floating-point condition flag (fpcond). Then, a
conditional branch checks the value of the flag. The compare instruc-
tions include equality (c.seq.s/c.seq.d), less than (c.lt.s/c.lt.d),
and less than or equal to (c.le.s/c.le.d). The conditional branch
instructions are bc1f and bc1t that branch if fpcond is FALSE or
TRUE, respectively. Inequality, greater than or equal to, and greater than
comparisons are performed with seq, lt, and le, followed by bc1f.

Floating-point registers are loaded and stored from memory using
lwc1 and swc1. These instructions move 32 bits, so two are necessary to
handle a double-precision number.

6 . 8 REAL-WORLD PERSPECTIVE: IA-32 ARCHITECTURE*

Almost all personal computers today use IA-32 architecture micro-
processors. IA-32 is a 32-bit architecture originally developed by Intel.
AMD also sells IA-32 compatible microprocessors.

The IA-32 architecture has a long and convoluted history dating
back to 1978, when Intel announced the 16-bit 8086 microprocessor.
IBM selected the 8086 and its cousin, the 8088, for IBM’s first personal
computers. In 1985, Intel introduced the 32-bit 80386 microprocessor,
which was backward compatible with the 8086, so it could run software
developed for earlier PCs. Processor architectures compatible with the
80386 are called IA-32 or x86 processors. The Pentium, Core, and
Athlon processors are well known IA-32 processors. Section 7.9
describes the evolution of IA-32 microprocessors in more detail.

Various groups at Intel and AMD over many years have shoehorned
more instructions and capabilities into the antiquated architecture. The
result is far less elegant than MIPS. As Patterson and Hennessy explain,
“this checkered ancestry has led to an architecture that is difficult to
explain and impossible to love.” However, software compatibility is far
more important than technical elegance, so IA-32 has been the de facto
PC standard for more than two decades. More than 100 million IA-32
processors are sold every year. This huge market justifies more than
$5 billion of research and development annually to continue improving
the processors.

IA-32 is an example of a Complex Instruction Set Computer (CISC)
architecture. In contrast to RISC architectures such as MIPS, each CISC
instruction can do more work. Programs for CISC architectures usually
require fewer instructions. The instruction encodings were selected to be
more compact, so as to save memory, when RAM was far more expen-
sive than it is today; instructions are of variable length and are often less
than 32 bits. The trade-off is that complicated instructions are more dif-
ficult to decode and tend to execute more slowly.

6.8 Real-World Perspective: IA-32 Architecture 341

Chapter 06.qxd 1/31/07 8:21 PM Page 341

This section introduces the IA-32 architecture. The goal is not to
make you into an IA-32 assembly language programmer, but rather to
illustrate some of the similarities and differences between IA-32 and MIPS.
We think it is interesting to see how IA-32 works. However, none of the
material in this section is needed to understand the rest of the book.
Major differences between IA-32 and MIPS are summarized in Table 6.9.

6 . 8 .1 IA-32 Registers

The 8086 microprocessor provided eight 16-bit registers. It could sepa-
rately access the upper and lower eight bits of some of these registers.
When the 32-bit 80386 was introduced, the registers were extended to
32 bits. These registers are called EAX, ECX, EDX, EBX, ESP, EBP,
ESI, and EDI. For backward compatibility, the bottom 16 bits and some
of the bottom 8-bit portions are also usable, as shown in Figure 6.36.

The eight registers are almost, but not quite, general purpose.
Certain instructions cannot use certain registers. Other instructions
always put their results in certain registers. Like $sp in MIPS, ESP is nor-
mally reserved for the stack pointer.

The IA-32 program counter is called EIP (the extended instruction
pointer). Like the MIPS PC, it advances from one instruction to the next
or can be changed with branch, jump, and subroutine call instructions.

6 . 8 . 2 IA-32 Operands

MIPS instructions always act on registers or immediates. Explicit load
and store instructions are needed to move data between memory and
the registers. In contrast, IA-32 instructions may operate on registers,
immediates, or memory. This partially compensates for the small set of
registers.

342 CHAPTER SIX Architecture

Table 6.9 Major differences between MIPS and IA-32

Feature MIPS IA-32

of registers 32 general purpose 8, some restrictions on purpose

of operands 3 (2 source, 1 destination) 2 (1 source, 1 source/destination)

operand location registers or immediates registers, immediates, or memory

operand size 32 bits 8, 16, or 32 bits

condition codes no yes

instruction types simple simple and complicated

instruction encoding fixed, 4 bytes variable, 1–15 bytes

Figure 6.36 IA-32 registers

EAX
0

AH
AX

ECX
1

CH
CX

EDX
2

B
yte 0

B
yte 1

B
yte 2

B
yte 3

DH
DX

EBX
3

BH
BX

ESP
SP4

EBP
BP5

ESI
SI6

EDI
DI7

AL

CL

DL

BL

Chapter 06.qxd 1/31/07 8:21 PM Page 342

MIPS instructions generally specify three operands: two sources
and one destination. IA-32 instructions specify only two operands.
The first is a source. The second is both a source and the destination.
Hence, IA-32 instructions always overwrite one of their sources
with the result. Table 6.10 lists the combinations of operand locations
in IA-32. All of the combinations are possible except memory to
memory.

Like MIPS, IA-32 has a 32-bit memory space that is byte-addressable.
However, IA-32 also supports a much wider variety of memory addressing
modes. The memory location is specified with any combination of a base
register, displacement, and a scaled index register. Table 6.11 illustrates
these combinations. The displacement can be an 8-, 16-, or 32-bit value.
The scale multiplying the index register can be 1, 2, 4, or 8. The base �
displacement mode is equivalent to the MIPS base addressing mode for
loads and stores. The scaled index provides an easy way to access arrays
or structures of 2-, 4-, or 8-byte elements without having to issue a
sequence of instructions to generate the address.

6.8 Real-World Perspective: IA-32 Architecture 343

Table 6.10 Operand locations

Source/
Destination Source Example Meaning

register register add EAX, EBX EAX �– EAX � EBX

register immediate add EAX, 42 EAX �– EAX � 42

register memory add EAX, [20] EAX �– EAX � Mem[20]

memory register add [20], EAX Mem[20] �– Mem[20] � EAX

memory immediate add [20], 42 Mem[20] �– Mem[20] � 42

Table 6.11 Memory addressing modes

Example Meaning Comment

add EAX, [20] EAX �– EAX � Mem[20] displacement

add EAX, [ESP] EAX �– EAX � Mem[ESP] base addressing

add EAX, [EDX�40] EAX �– EAX � Mem[EDX�40] base � displacement

add EAX, [60�EDI*4] EAX �– EAX � Mem[60�EDI*4] displacement � scaled index

add EAX, [EDX�80�EDI*2] EAX �– EAX � Mem[EDX�80�EDI*2] base � displacement �
scaled index

Chapter 06.qxd 1/31/07 8:21 PM Page 343

While MIPS always acts on 32-bit words, IA-32 instructions can
operate on 8-, 16-, or 32-bit data. Table 6.12 illustrates these variations.

6 . 8 . 3 Status Flags

IA-32, like many CISC architectures, uses status flags (also called condi-
tion codes) to make decisions about branches and to keep track of car-
ries and arithmetic overflow. IA-32 uses a 32-bit register, called EFLAGS,
that stores the status flags. Some of the bits of the EFLAGS register are
given in Table 6.13. Other bits are used by the operating system.

The architectural state of an IA-32 processor includes EFLAGS as
well as the eight registers and the EIP.

6 . 8 . 4 IA-32 Instructions

IA-32 has a larger set of instructions than MIPS. Table 6.14 describes some
of the general purpose instructions. IA-32 also has instructions for floating-
point arithmetic and for arithmetic on multiple short data elements packed
into a longer word. D indicates the destination (a register or memory loca-
tion), and S indicates the source (a register, memory location, or immediate).

Note that some instructions always act on specific registers. For
example, 32 � 32-bit multiplication always takes one of the sources
from EAX and always puts the 64-bit result in EDX and EAX. LOOP always

344 CHAPTER SIX Architecture

Table 6.12 Instructions acting on 8-, 16-, or 32-bit data

Example Meaning Data Size

add AH, BL AH �– AH � BL 8-bit

add AX, �1 AX �– AX � 0xFFFF 16-bit

add EAX, EDX EAX �– EAX � EDX 32-bit

Table 6.13 Selected EFLAGS

Name Meaning

CF (Carry Flag) Carry out generated by last arithmetic operation.
Indicates overflow in unsigned arithmetic.
Also used for propagating the carry between
words in multiple-precision arithmetic.

ZF (Zero Flag) Result of last operation was zero.

SF (Sign Flag) Result of last operation was negative (msb � 1).

OF (Overflow Flag) Overflow of two’s complement arithmetic.

Chapter 06.qxd 1/31/07 8:21 PM Page 344

6.8 Real World Perspective: IA-32 Architecture 345

Table 6.14 Selected IA-32 instructions

Instruction Meaning Function

ADD/SUB add/subtract D � D � S / D � D � S

ADDC add with carry D � D � S � CF

INC/DEC increment/decrement D � D � 1 / D � D � 1

CMP compare Set flags based on D � S

NEG negate D � �D

AND/OR/XOR logical AND/OR/XOR D � D op S

NOT logical NOT D � D�

IMUL/MUL signed/unsigned multiply EDX:EAX � EAX � D

IDIV/DIV signed/unsigned divide EDX:EAX/D
EAX � Quotient; EDX � Remainder

SAR/SHR arithmetic/logical shift right D � D ��� S / D � D �� S

SAL/SHL left shift D � D �� S

ROR/ROL rotate right/left Rotate D by S

RCR/RCL rotate right/left with carry Rotate CF and D by S

BT bit test CF � D[S] (the Sth bit of D)

BTR/BTS bit test and reset/set CF � D[S]; D[S] � 0 / 1

TEST set flags based on masked bits Set flags based on D AND S

MOV move D � S

PUSH push onto stack ESP � ESP � 4; Mem[ESP] � S

POP pop off stack D � MEM[ESP]; ESP � ESP � 4

CLC, STC clear/set carry flag CF � 0 / 1

JMP unconditional jump relative jump: EIP � EIP � S
absolute jump: EIP � S

Jcc conditional jump if (flag) EIP � EIP � S

LOOP loop ECX � ECX � 1
if ECX �� 0 EIP � EIP � imm

CALL procedure call ESP � ESP � 4;
MEM[ESP] � EIP; EIP � S

RET procedure return EIP � MEM[ESP]; ESP � ESP � 4

Chapter 06.qxd 1/31/07 8:21 PM Page 345

346 CHAPTER SIX Architecture

2 It is possible to construct 17-byte instructions if all the optional fields are used.
However, IA-32 places a 15-byte limit on the length of legal instructions.

Table 6.15 Selected branch conditions

Instruction Meaning Function After cmp d, s

JZ/JE jump if ZF � 1 jump if D � S

JNZ/JNE jump if ZF � 0 jump if D � S

JGE jump if SF � OF jump if D � S

JG jump if SF � OF and ZF � 0 jump if D � S

JLE jump if SF � OF or ZF � 1 jump if D � S

JL jump if SF � OF jump if D � S

JC/JB jump if CF � 1

JNC jump if CF � 0

JO jump if OF � 1

JNO jump if OF � 0

JS jump if SF � 1

JNS jump if SF � 0

stores the loop counter in ECX. PUSH, POP, CALL, and RET use the stack
pointer, ESP.

Conditional jumps check the flags and branch if the appropriate
condition is met. They come in many flavors. For example, JZ jumps if
the zero flag (ZF) is 1. JNZ jumps if the zero flag is 0. The jumps usually
follow an instruction, such as the compare instruction (CMP), that sets
the flags. Table 6.15 lists some of the conditional jumps and how they
depend on the flags set by a prior compare operation.

6 . 8 . 5 IA-32 Instruction Encoding

The IA-32 instruction encodings are truly messy, a legacy of decades of
piecemeal changes. Unlike MIPS, whose instructions are uniformly 32
bits, IA-32 instructions vary from 1 to 15 bytes, as shown in Figure
6.37.2 The opcode may be 1, 2, or 3 bytes. It is followed by four
optional fields: ModR/M, SIB, Displacement, and Immediate. ModR/M
specifies an addressing mode. SIB specifies the scale, index, and base

Chapter 06.qxd 1/31/07 8:21 PM Page 346

6.8 Real World Perspective: IA-32 Architecture 347

registers in certain addressing modes. Displacement indicates a 1-, 2-,
or 4-byte displacement in certain addressing modes. And Immediate is a
1-, 2-, or 4-byte constant for instructions using an immediate as the
source operand. Moreover, an instruction can be preceded by up to four
optional byte-long prefixes that modify its behavior.

The ModR/M byte uses the 2-bit Mod and 3-bit R/M field to specify the
addressing mode for one of the operands. The operand can come from
one of the eight registers, or from one of 24 memory addressing modes.
Due to artifacts in the encodings, the ESP and EBP registers are not avail-
able for use as the base or index register in certain addressing modes.
The Reg field specifies the register used as the other operand. For certain
instructions that do not require a second operand, the Reg field is used
to specify three more bits of the opcode.

In addressing modes using a scaled index register, the SIB byte speci-
fies the index register and the scale (1, 2, 4, or 8). If both a base and
index are used, the SIB byte also specifies the base register.

MIPS fully specifies the instruction in the opcode and funct fields
of the instruction. IA-32 uses a variable number of bits to specify dif-
ferent instructions. It uses fewer bits to specify more common instruc-
tions, decreasing the average length of the instructions. Some
instructions even have multiple opcodes. For example, add AL, imm8
performs an 8-bit add of an immediate to AL. It is represented with the
1-byte opcode, 0x04, followed by a 1-byte immediate. The A register
(AL, AX, or EAX) is called the accumulator. On the other hand, add D,
imm8 performs an 8-bit add of an immediate to an arbitrary destina-
tion, D (memory or a register). It is represented with the 1-byte opcode,
0x80, followed by one or more bytes specifying D, followed by a 1-byte
immediate. Many instructions have shortened encodings when the des-
tination is the accumulator.

In the original 8086, the opcode specified whether the instruction
acted on 8- or 16-bit operands. When the 80386 introduced 32-bit
operands, no new opcodes were available to specify the 32-bit form.

Prefixes ModR/M SIB Displacement Immediate

Up to 4 optional
prefixes

of 1 byte each

1-, 2-, or 3-byte
opcode

1 byte
(for certain
addressing

modes)

1 byte
(for certain
addressing

modes)

1, 2, or 4 bytes
for addressing

modes with
displacement

1, 2, or 4 bytes
for addressing

modes with
immediate

Scale Index BaseMod R/MReg/
Opcode

Opcode

2 bits 3 bits 3 bits2 bits 3 bits 3 bits

Figure 6.37 IA-32 instruction encodings

Chapter 06.qxd 1/31/07 8:21 PM Page 347

Instead, the same opcode was used for both 16- and 32-bit forms.
An additional bit in the code segment descriptor used by the OS specifies
which form the processor should choose. The bit is set to 0 for back-
ward compatibility with 8086 programs, defaulting the opcode to 16-bit
operands. It is set to 1 for programs to default to 32-bit operands.
Moreover, the programmer can specify prefixes to change the form for a
particular instruction. If the prefix 0x66 appears before the opcode, the
alternative size operand is used (16 bits in 32-bit mode, or 32 bits in
16-bit mode).

6 . 8 . 6 Other IA-32 Peculiarities

The 80286 introduced segmentation to divide memory into segments
of up to 64 KB in length. When the OS enables segmentation,
addresses are computed relative to the beginning of the segment. The
processor checks for addresses that go beyond the end of the segment
and indicates an error, thus preventing programs from accessing mem-
ory outside their own segment. Segmentation proved to be a hassle for
programmers and is not used in modern versions of the Windows oper-
ating system.

IA-32 contains string instructions that act on entire strings of bytes
or words. The operations include moving, comparing, or scanning for a
specific value. In modern processors, these instructions are usually
slower than performing the equivalent operation with a series of simpler
instructions, so they are best avoided.

As mentioned earlier, the 0x66 prefix is used to choose between
16- and 32-bit operand sizes. Other prefixes include ones used to lock
the bus (to control access to shared variables in a multiprocessor sys-
tem), to predict whether a branch will be taken or not, and to repeat the
instruction during a string move.

The bane of any architecture is to run out of memory capacity. With
32-bit addresses, IA-32 can access 4 GB of memory. This was far more
than the largest computers had in 1985, but by the early 2000s it had
become limiting. In 2003, AMD extended the address space and register
sizes to 64 bits, calling the enhanced architecture AMD64. AMD64 has
a compatibility mode that allows it to run 32-bit programs unmodified
while the OS takes advantage of the bigger address space. In 2004, Intel
gave in and adopted the 64-bit extensions, renaming them Extended
Memory 64 Technology (EM64T). With 64-bit addresses, computers can
access 16 exabytes (16 billion GB) of memory.

For those curious about more details of the IA-32 architecture, the
IA-32 Intel Architecture Software Developer’s Manual, is freely available
on Intel’s Web site.

348 CHAPTER SIX Architecture

Intel and Hewlett-Packard
jointly developed a new 64-bit
architecture called IA-64 in
the mid 1990’s. It was
designed from a clean slate,
bypassing the convoluted
history of IA-32, taking
advantage of 20 years of new
research in computer architec-
ture, and providing a 64-bit
address space. However,
IA-64 has yet to become a
market success. Most compu-
ters needing the large address
space now use the 64-bit
extensions of IA-32.

Chapter 06.qxd 1/31/07 8:21 PM Page 348

6 . 8 .7 The Big Picture

This section has given a taste of some of the differences between the MIPS
RISC architecture and the IA-32 CISC architecture. IA-32 tends to have
shorter programs, because a complex instruction is equivalent to a series
of simple MIPS instructions and because the instructions are encoded to
minimize memory use. However, the IA-32 architecture is a hodgepodge
of features accumulated over the years, some of which are no longer useful
but must be kept for compatibility with old programs. It has too few regis-
ters, and the instructions are difficult to decode. Merely explaining the
instruction set is difficult. Despite all these failings, IA-32 is firmly
entrenched as the dominant computer architecture for PCs, because the
value of software compatibility is so great and because the huge market
justifies the effort required to build fast IA-32 microprocessors.

6 . 9 SUMMARY

To command a computer, you must speak its language. A computer
architecture defines how to command a processor. Many different com-
puter architectures are in widespread commercial use today, but once
you understand one, learning others is much easier. The key questions to
ask when approaching a new architecture are

� What is the data word length?

� What are the registers?

� How is memory organized?

� What are the instructions?

MIPS is a 32-bit architecture because it operates on 32-bit data. The
MIPS architecture has 32 general-purpose registers. In principle, almost
any register can be used for any purpose. However, by convention, certain
registers are reserved for certain purposes, for ease of programming and so
that procedures written by different programmers can communicate easily.
For example, register 0, $0, always holds the constant 0, $ra holds
the return address after a jal instruction, and $a0–$a3 and $v0 – $v1
hold the arguments and return value of a procedure. MIPS has a byte-
addressable memory system with 32-bit addresses. The memory map was
described in Section 6.6.1. Instructions are 32 bits long and must be
word aligned. This chapter discussed the most commonly used MIPS
instructions.

The power of defining a computer architecture is that a program
written for any given architecture can run on many different implemen-
tations of that architecture. For example, programs written for the Intel

6.9 Summary 349

Chapter 06.qxd 1/31/07 8:21 PM Page 349

Pentium processor in 1993 will generally still run (and run much faster)
on the Intel Core 2 Duo or AMD Athlon processors in 2006.

In the first part of this book, we learned about the circuit and
logic levels of abstraction. In this chapter, we jumped up to the archi-
tecture level. In the next chapter, we study microarchitecture, the
arrangement of digital building blocks that implement a processor
architecture. Microarchitecture is the link between hardware and soft-
ware engineering. And, we believe it is one of the most exciting topics
in all of engineering: you will learn to build your own microprocessor!

350 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 350

Exercises

Exercise 6.1 Give three examples from the MIPS architecture of each of the
architecture design principles: (1) simplicity favors regularity; (2) make the com-
mon case fast; (3) smaller is faster; and (4) good design demands good compro-
mises. Explain how each of your examples exhibits the design principle.

Exercise 6.2 The MIPS architecture has a register set that consists of 32 32-bit
registers. Is it possible to design a computer architecture without a register
set? If so, briefly describe the architecture, including the instruction set.
What are advantages and disadvantages of this architecture over the MIPS
architecture?

Exercise 6.3 Consider memory storage of a 32-bit word stored at memory word
42 in a byte addressable memory.

(a) What is the byte address of memory word 42?

(b) What are the byte addresses that memory word 42 spans?

(c) Draw the number 0xFF223344 stored at word 42 in both big-endian and
little-endian machines. Your drawing should be similar to Figure 6.4.
Clearly label the byte address corresponding to each data byte value.

Exercise 6.4 Explain how the following program can be used to determine
whether a computer is big-endian or little-endian:

li $t0, 0xABCD9876
sw $t0, 100($0)
lb $s5, 101($0)

Exercise 6.5 Write the following strings using ASCII encoding. Write your final
answers in hexadecimal.

(a) SOS

(b) Cool!

(c) (your own name)

Exercise 6.6 Show how the strings in Exercise 6.5 are stored in a byte-addressable
memory on (a) a big-endian machine and (b) a little-endian machine starting at
memory address 0x1000100C. Use a memory diagram similar to Figure 6.4.
Clearly indicate the memory address of each byte on each machine.

Exercises 351

Chapter 06.qxd 1/31/07 8:21 PM Page 351

Exercise 6.7 Convert the following MIPS assembly code into machine language.
Write the instructions in hexadecimal.

add $t0, $s0, $s1
lw $t0, 0x20($t7)
addi $s0, $0, �10

Exercise 6.8 Repeat Exercise 6.7 for the following MIPS assembly code:

addi $s0, $0, 73
sw $t1, �7($t2)
sub $t1, $s7, $s2

Exercise 6.9 Consider I-type instructions.

(a) Which instructions from Exercise 6.8 are I-type instructions?

(b) Sign-extend the 16-bit immediate of each instruction from part (a) so that it
becomes a 32-bit number.

Exercise 6.10 Convert the following program from machine language into
MIPS assembly language. The numbers on the left are the instruction address
in memory, and the numbers on the right give the instruction at that address.
Then reverse engineer a high-level program that would compile into this
assembly language routine and write it. Explain in words what the program
does. $a0 is the input, and it initially contains a positive number, n. $v0 is
the output.

0x00400000 0x20080000
0x00400004 0x20090001
0x00400008 0x0089502a
0x0040000c 0x15400003
0x00400010 0x01094020
0x00400014 0x21290002
0x00400018 0x08100002
0x0040001c 0x01001020

Exercise 6.11 The nori instruction is not part of the MIPS instruction set,
because the same functionality can be implemented using existing instructions.
Write a short assembly code snippet that has the following functionality:
$t0 � $t1 NOR 0xF234. Use as few instructions as possible.

352 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 352

Exercise 6.12 Implement the following high-level code segments using the slt
instruction. Assume the integer variables g and h are in registers $s0 and $s1,
respectively.

(a) if (g � h)
g � g � h;

else
g � g � h;

(b) if (g �� h)
g � g � 1;

else
h � h � 1;

(c) if (g �� h)
g � 0;

else
h � 0;

Exercise 6.13 Write a procedure in a high-level language for int find42(int
array[], int size). size specifies the number of elements in the array. array
specifies the base address of the array. The procedure should return the index
number of the first array entry that holds the value 42. If no array entry is 42, it
should return the value �1.

Exercise 6.14 The high-level procedure strcpy copies the character string x to
the character string y.

// high-level code
void strcpy(char x[], char y[]) {
int i � 0;

while (x[i] !� 0) {
y[i] � x[i];
i � i � 1;

}
}

(a) Implement the strcpy procedure in MIPS assembly code. Use $s0 for i.

(b) Draw a picture of the stack before, during, and after the strcpy procedure
call. Assume $sp � 0x7FFFFF00 just before strcpy is called.

Exercise 6.15 Convert the high-level procedure from Exercise 6.13 into MIPS
assembly code.

Exercises 353

This simple string copy pro-
gram has a serious flaw: it has
no way of knowing that y has
enough space to receive x. If a
malicious programmer were
able to execute strcpy with
a long string x, the program-
mer might be able to write
bytes all over memory, possi-
bly even modifying code
stored in subsequent memory
locations. With some clever-
ness, the modified code might
take over the machine. This
is called a buffer overflow
attack; it is employed by
several nasty programs,
including the infamous Blaster
worm, which caused an esti-
mated $525 million in dam-
ages in 2003.

Chapter 06.qxd 1/31/07 8:21 PM Page 353

Exercise 6.16 Each number in the Fibonacci series is the sum of the previous two
numbers. Table 6.16 lists the first few numbers in the series, fib(n).

(a) What is fib(n) for n � 0 and n � �1?

(b) Write a procedure called fib in a high-level language that returns the
Fibonacci number for any nonnegative value of n. Hint: You probably will
want to use a loop. Clearly comment your code.

(c) Convert the high-level procedure of part (b) into MIPS assembly code. Add
comments after every line of code that explain clearly what it does. Use the
SPIM simulator to test your code on fib(9).

Exercise 6.17 Consider the MIPS assembly code below. proc1, proc2, and
proc3 are non-leaf procedures. proc4 is a leaf procedure. The code is not shown
for each procedure, but the comments indicate which registers are used within
each procedure.

0x00401000 proc1: . . . # proc1 uses $s0 and $s1
0x00401020 jal proc2
. . .
0x00401100 proc2: . . . # proc2 uses $s2 – $s7
0x0040117C jal proc3
. . .
0x00401400 proc3: . . . # proc3 uses $s1 – $s3
0x00401704 jal proc4
. . .
0x00403008 proc4: . . . # proc4 uses no preserved

registers
0x00403118 jr $ra

(a) How many words are the stack frames of each procedure?

(b) Sketch the stack after proc4 is called. Clearly indicate which registers are
stored where on the stack. Give values where possible.

354 CHAPTER SIX Architecture

Table 6.16 Fibonacci series

n 1 2 3 4 5 6 7 8 9 10 11 . . .

fib(n) 1 1 2 3 5 8 13 21 34 55 89 . . .

Chapter 06.qxd 1/31/07 8:21 PM Page 354

Exercise 6.18 Ben Bitdiddle is trying to compute the function f(a, b) � 2a � 3b
for nonnegative b. He goes overboard in the use of procedure calls and recursion
and produces the following high-level code for procedures f and f2.

// high-level code for procedures f and f2
int f(int a, int b) {
int j;
j � a;
return j � a � f2(b);

}

int f2(int x)
{
int k;
k � 3;
if (x �� 0) return 0;
else return k � f2(x�1);

}
Ben then translates the two procedures into assembly language as follows.

He also writes a procedure, test, that calls the procedure f(5, 3).

MIPS assembly code
f: $a0 � a, $a1 � b, $s0 � j f2: $a0 � x, $s0 � k

0x00400000 test:addi $a0, $0, 5 # $a0 � 5 (a � 5)
0x00400004 addi $a1, $0, 3 # $a1 � 3 (b � 3)
0x00400008 jal f # call f(5,3)
0x0040000c loop:j loop # and loop forever

0x00400010 f: addi $sp, $sp, �16 # make room on the stack
for $s0, $a0, $a1, and $ra

0x00400014 sw $a1, 12($sp) # save $a1 (b)
0x00400018 sw $a0, 8($sp) # save $a0 (a)
0x0040001c sw $ra, 4($sp) # save $ra
0x00400020 sw $s0, 0($sp) # save $s0
0x00400024 add $s0, $a0, $0 # $s0 � $a0 (j � a)
0x00400028 add $a0, $a1, $0 # place b as argument for f2
0x0040002c jal f2 # call f2(b)
0x00400030 lw $a0, 8($sp) # restore $a0 (a) after call
0x00400034 lw $a1, 12($sp) # restore $a1 (b) after call
0x00400038 add $v0, $v0, $s0 # $v0 � f2(b) � j
0x0040003c add $v0, $v0, $a0 # $v0 � (f2(b) � j) � a
0x00400040 lw $s0, 0($sp) # restore $s0
0x00400044 lw $ra, 4($sp) # restore $ra
0x00400048 addi $sp, $sp, 16 # restore $sp (stack pointer)
0x0040004c jr $ra # return to point of call

0x00400050 f2: addi $sp, $sp, �12 # make room on the stack for
$s0, $a0, and $ra

0x00400054 sw $a0, 8($sp) # save $a0 (x)
0x00400058 sw $ra, 4($sp) # save return address
0x0040005c sw $s0, 0($sp) # save $s0
0x00400060 addi $s0, $0, 3 # k � 3

Exercises 355

Chapter 06.qxd 1/31/07 8:21 PM Page 355

0x00400064 bne $a0, $0, else # x � 0?
0x00400068 addi $v0, $0, 0 # yes: return value should be 0
0x0040006c j done # and clean up
0x00400070 else:addi $a0, $a0, �1 # no: $a0 � $a0 � 1 (x � x � 1)
0x00400074 jal f2 # call f2(x � 1)
0x00400078 lw $a0, 8($sp) # restore $a0 (x)
0x0040007c add $v0, $v0, $s0 # $v0 � f2(x � 1) � k
0x00400080 done:lw $s0, 0($sp) # restore $s0
0x00400084 lw $ra, 4($sp) # restore $ra
0x00400088 addi $sp, $sp, 12 # restore $sp
0x0040008c jr $ra # return to point of call

You will probably find it useful to make drawings of the stack similar to the
one in Figure 6.26 to help you answer the following questions.

(a) If the code runs starting at test, what value is in $v0 when the program
gets to loop? Does his program correctly compute 2a � 3b?

(b) Suppose Ben deletes the instructions at addresses 0x0040001C and
0x00400040 that save and restore $ra. Will the program (1) enter an infi-
nite loop but not crash; (2) crash (cause the stack to grow beyond the
dynamic data segment or the PC to jump to a location outside the program);
(3) produce an incorrect value in $v0 when the program returns to loop (if
so, what value?), or (4) run correctly despite the deleted lines?

(c) Repeat part (b) when the instructions at the following instruction addresses
are deleted:

(i) 0x00400018 and 0x00400030 (instructions that save and restore $a0)

(ii) 0x00400014 and 0x00400034 (instructions that save and restore $a1)

(iii) 0x00400020 and 0x00400040 (instructions that save and restore $s0)

(iv) 0x00400050 and 0x00400088 (instructions that save and restore $sp)

(v) 0x0040005C and 0x00400080 (instructions that save and restore $s0)

(vi) 0x00400058 and 0x00400084 (instructions that save and restore $ra)

(vii) 0x00400054 and 0x00400078 (instructions that save and restore $a0)

Exercise 6.19 Convert the following beq, j, and jal assembly instructions into
machine code. Instruction addresses are given to the left of each instruction.

(a)
0x00401000 beq $t0, $s1, Loop
0x00401004 . . .
0x00401008 . . .
0x0040100C Loop: . . .

356 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 356

(b)
0x00401000 beq $t7, $s4, done
.
0x00402040 done: . . .

(c)
0x0040310C back: . . .
.
0x00405000 beq $t9, $s7, back

(d)
0x00403000 jal proc
.
0x0041147C proc: . . .

(e)
0x00403004 back: . . .
.
0x0040400C j back

Exercise 6.20 Consider the following MIPS assembly language snippet. The
numbers to the left of each instruction indicate the instruction address.

0x00400028 add $a0, $a1, $0
0x0040002c jal f2
0x00400030 f1: jr $ra
0x00400034 f2: sw $s0, 0($s2)
0x00400038 bne $a0, $0, else
0x0040003c j f1
0x00400040 else: addi $a0, $a0, �1
0x00400044 j f2

(a) Translate the instruction sequence into machine code. Write the machine
code instructions in hexadecimal.

(b) List the addressing mode used at each line of code.

Exercise 6.21 Consider the following C code snippet.

// C code
void set_array(int num) {
int i;
int array[10];

for (i � 0; i � 10; i � i � 1) {
array[i] � compare(num, i);

}
}

int compare(int a, int b) {
if (sub(a, b) >� 0)
return 1;

else

Exercises 357

Chapter 06.qxd 1/31/07 8:21 PM Page 357

return 0;
}
int sub (int a, int b) {
return a � b;

}

(a) Implement the C code snippet in MIPS assembly language. Use $s0 to hold
the variable i. Be sure to handle the stack pointer appropriately. The array
is stored on the stack of the set_array procedure (see Section 6.4.6).

(b) Assume set_array is the first procedure called. Draw the status of the
stack before calling set_array and during each procedure call. Indicate the
names of registers and variables stored on the stack and mark the location
of $sp.

(c) How would your code function if you failed to store $ra on the stack?

Exercise 6.22 Consider the following high-level procedure.

// high-level code
int f(int n, int k) {
int b;

b � k � 2;
if (n �� 0) b � 10;
else b � b � (n * n) � f(n � 1, k � 1);
return b * k;

}

(a) Translate the high-level procedure f into MIPS assembly language. Pay partic-
ular attention to properly saving and restoring registers across procedure calls
and using the MIPS preserved register conventions. Clearly comment your
code. You can use the MIPS mult, mfhi, and mflo instructions. The proce-
dure starts at instruction address 0x00400100. Keep local variable b in $s0.

(b) Step through your program from part (a) by hand for the case of f(2, 4).
Draw a picture of the stack similar to the one in Figure 6.26(c). Write the
register name and data value stored at each location in the stack and keep
track of the stack pointer value ($sp). You might also find it useful to keep
track of the values in $a0, $a1, $v0, and $s0 throughout execution. Assume
that when f is called, $s0 � 0xABCD and $ra � 0x400004. What is the
final value of $v0?

Exercise 6.23 What is the range of instruction addresses to which conditional
branches, such as beq and bne, can branch in MIPS? Give your answer in num-
ber of instructions relative to the conditional branch instruction.

358 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 358

Exercise 6.24 The following questions examine the limitations of the jump instruc-
tion, j. Give your answer in number of instructions relative to the jump instruction.

(a) In the worst case, how far can the jump instruction (j) jump forward
(i.e., to higher addresses)? (The worst case is when the jump instruction
cannot jump far.) Explain using words and examples, as needed.

(b) In the best case, how far can the jump instruction (j) jump forward? (The
best case is when the jump instruction can jump the farthest.) Explain.

(c) In the worst case, how far can the jump instruction (j) jump backward (to
lower addresses)? Explain.

(d) In the best case, how far can the jump instruction (j) jump backward? Explain.

Exercise 6.25 Explain why it is advantageous to have a large address field,
addr, in the machine format for the jump instructions, j and jal.

Exercise 6.26 Write assembly code that jumps to the instruction 64
Minstructions from the first instruction. Recall that 1 Minstruction � 220

instructions � 1,048,576 instructions. Assume that your code begins at address
0x00400000. Use a minimum number of instructions.

Exercise 6.27 Write a procedure in high-level code that takes a ten-entry array
of 32-bit integers stored in little-endian format and converts it to big-endian for-
mat. After writing the high-level code, convert it to MIPS assembly code.
Comment all your code and use a minimum number of instructions.

Exercise 6.28 Consider two strings: string1 and string2.

(a) Write high-level code for a procedure called concat that concatenates (joins
together) the two strings: void concat(char[] string1, char[] string2,
char[] stringconcat). The procedure does not return a value. It concate-
nates string1 and string2 and places the resulting string in stringconcat.
You may assume that the character array stringconcat is large enough to
accommodate the concatenated string.

(b) Convert the procedure from part (a) into MIPS assembly language.

Exercise 6.29 Write a MIPS assembly program that adds two positive single-
precision floating point numbers held in $s0 and $s1. Do not use any of the
MIPS floating-point instructions. You need not worry about any of the encod-
ings that are reserved for special purposes (e.g., 0, NANs, INF) or numbers that
overflow or underflow. Use the SPIM simulator to test your code. You will need
to manually set the values of $s0 and $s1 to test your code. Demonstrate that
your code functions reliably.

Exercises 359

Chapter 06.qxd 1/31/07 8:21 PM Page 359

Exercise 6.30 Show how the following MIPS program would be loaded into
memory and executed.

MIPS assembly code
main:
lw $a0, x
lw $a1, y
jal diff
jr $ra

diff:
sub $v0, $a0, $a1
jr $ra

(a) First show the instruction address next to each assembly instruction.

(b) Draw the symbol table showing the labels and their addresses.

(c) Convert all instructions into machine code.

(d) How big (how many bytes) are the data and text segments?

(e) Sketch a memory map showing where data and instructions are stored.

Exercise 6.31 Show the MIPS instructions that implement the following
pseudoinstructions. You may use the assembler register, $at, but you may not
corrupt (overwrite) any other registers.

(a) beq $t1, imm31:0, L

(b) ble $t3, $t5, L

(c) bgt $t3, $t5, L

(d) bge $t3, $t5, L

(e) addi $t0, $2, imm31:0

(f) lw $t5, imm31:0($s0)

(g) rol $t0, $t1, 5 (rotate $t1 left by 5 and put the result in $t0)

(h) ror $s4, $t6, 31 (rotate $t6 right by 31 and put the result in $s4)

360 CHAPTER SIX Architecture

Chapter 06.qxd 1/31/07 8:21 PM Page 360

Interview Questions

The following exercises present questions that have been asked at
interviews for digital design jobs (but are usually open to any assembly
language).

Question 6.1 Write MIPS assembly code for swapping the contents of two
registers, $t0 and $t1. You may not use any other registers.

Question 6.2 Suppose you are given an array of both positive and negative
integers. Write MIPS assembly code that finds the subset of the array with the
largest sum. Assume that the array’s base address and the number of array
elements are in $a0 and $a1, respectively. Your code should place the resulting
subset of the array starting at base address $a2. Write code that runs as fast as
possible.

Question 6.3 You are given an array that holds a C string. The string forms a
sentence. Design an algorithm for reversing the words in the sentence and storing
the new sentence back in the array. Implement your algorithm using MIPS
assembly code.

Question 6.4 Design an algorithm for counting the number of 1’s in a 32-bit
number. Implement your algorithm using MIPS assembly code.

Question 6.5 Write MIPS assembly code to reverse the bits in a register. Use as
few instructions as possible. Assume the register of interest is $t3.

Question 6.6 Write MIPS assembly code to test whether overflow occurs when
$t2 and $t3 are added. Use a minimum number of instructions.

Question 6.7 Design an algorithm for testing whether a given string is a palin-
drome. (Recall, that a palindrome is a word that is the same forward and back-
ward. For example, the words “wow” and “racecar” are palindromes.)
Implement your algorithm using MIPS assembly code.

Interview Questions 361

Chapter 06.qxd 1/31/07 8:21 PM Page 361

