Electrodynamics-II

By Muhammad Amer Mustafa UOS, Sub Campus Bhakkar

Lecture Contents

Problem 4.9

Problem 4.9 A dipole \mathbf{p} is a distance r from a point charge q, and oriented so that \mathbf{p} makes an angle θ with the vector \mathbf{r} from q to \mathbf{p}.
(a) What is the force on \mathbf{p} ?
(b) What is the force on q ?

Solution:

Formulas used
(a) $\quad \mathbf{F}=(\mathbf{p} \cdot \boldsymbol{\nabla}) \mathbf{E}($ Eq. 4.5);
(b) $\mathbf{E}_{\mathrm{dip}}(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{1}{r^{3}}[3(\mathbf{p} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}-\mathbf{p}]$.

$$
\mathbf{F}=q \mathbf{E}
$$

Problem 4.9 A dipole \mathbf{p} is a distance r from a point charge q, and oriented so that \mathbf{p} makes an angle θ with the vector \mathbf{r} from q to \mathbf{p}.
(a) What is the force on \mathbf{p} ?
(b) What is the force on q ?

Solution:

$$
\text { (a) } \quad \mathbf{F}=(\mathbf{p} \cdot \boldsymbol{\nabla}) \mathbf{E}(\text { Eq. } 4.5)
$$

$$
\begin{aligned}
& \mathbf{p} \cdot \boldsymbol{\nabla}=\left(p_{z} \frac{\partial}{\partial x}+p_{y} \frac{\partial}{\partial y}+p_{z} \frac{\partial}{\partial z}\right) \\
& \mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}} \quad, \quad \hat{\mathbf{r}}=\frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{F}=(\mathbf{p} \cdot \nabla) \mathbf{E}=\left(p_{z} \frac{\partial}{\partial x}+p_{y} \frac{\partial}{\partial y}+p_{z} \frac{\partial}{\partial z}\right) \quad \frac{q}{4 \pi \epsilon_{0}} \frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
&=\frac{q}{4 \pi \epsilon_{0}}\left(p_{z} \frac{\partial}{\partial x} \frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+p_{y} \frac{\partial}{\partial y} \frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right. \\
&\left.+p_{z} \frac{\partial}{\partial z} \frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 /}}\right)
\end{aligned}
$$

At first, we take only x component

$$
\begin{aligned}
F_{x}= & \left(p_{z} \frac{\partial}{\partial x}+p_{y} \frac{\partial}{\partial y}+p_{z} \frac{\partial}{\partial z}\right) \frac{q}{4 \pi \epsilon_{0}} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
= & \frac{q}{4 \pi \epsilon_{0}}\left(p_{z} \frac{\partial}{\partial x} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+p_{y} \frac{\partial}{\partial y} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right. \\
& \left.+p_{z} \frac{\partial}{\partial z} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)
\end{aligned}
$$

At first, we take only x component

$$
\begin{aligned}
& =\frac{q}{4 \pi \epsilon_{0}}\left(p_{z} \frac{\partial}{\partial x} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+p_{y} \frac{\partial}{\partial y} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+\right. \\
& \left.p_{z} \frac{\partial}{\partial z} \frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right) \\
& =\frac{q}{4 \pi \epsilon_{0}}\left\{p_{x}\left[\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}-\frac{3}{2} x \frac{2 x}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right]+p_{y}\left[-\frac{3}{2} x \frac{2 y}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right]\right. \\
& \left.+p_{z}\left[-\frac{3}{2} x \frac{2 z}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}\right]\right\}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{p_{x}}{r^{3}}-\frac{3 x}{r^{5}}\left(p_{x} x+p_{y} y+p_{z} z\right)\right]=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{\mathbf{p}}{r^{3}}-\frac{3 \mathbf{r}(\mathbf{p} \cdot \mathbf{r})}{r^{5}}\right]_{x} \\
& \mathrm{~F}=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{\mathbf{p}}{r^{3}}-\frac{3 r \hat{r}(\mathbf{p} . \hat{r})}{r^{5}}\right]
\end{aligned}
$$

(b) What is the force on q ?

