
8
8.1 Introduction

8.2 Memory System

Performance Analysis

8.3 Caches

8.4 Virtual Memory

8.5 Memory-Mapped I/O*

8.6 Real-World Perspective:

IA-32 Memory and I/O

Systems*

8.7 Summary

Exercises

Interview Questions

Memory Systems

8 .1 INTRODUCTION

Computer system performance depends on the memory system as well
as the processor microarchitecture. Chapter 7 assumed an ideal mem-
ory system that could be accessed in a single clock cycle. However, this
would be true only for a very small memory—or a very slow processor!
Early processors were relatively slow, so memory was able to keep up.
But processor speed has increased at a faster rate than memory speeds.
DRAM memories are currently 10 to 100 times slower than proces-
sors. The increasing gap between processor and DRAM memory
speeds demands increasingly ingenious memory systems to try to
approximate a memory that is as fast as the processor. This chapter
investigates practical memory systems and considers trade-offs of
speed, capacity, and cost.

The processor communicates with the memory system over a mem-
ory interface. Figure 8.1 shows the simple memory interface used in our
multicycle MIPS processor. The processor sends an address over the
Address bus to the memory system. For a read, MemWrite is 0 and the
memory returns the data on the ReadData bus. For a write, MemWrite
is 1 and the processor sends data to memory on the WriteData bus.

The major issues in memory system design can be broadly explained
using a metaphor of books in a library. A library contains many books
on the shelves. If you were writing a term paper on the meaning of
dreams, you might go to the library1 and pull Freud’s The Interpretation
of Dreams off the shelf and bring it to your cubicle. After skimming it,
you might put it back and pull out Jung’s The Psychology of the

463

1 We realize that library usage is plummeting among college students because of the Internet.
But we also believe that libraries contain vast troves of hard-won human knowledge that are
not electronically available. We hope that Web searching does not completely displace the art
of library research.

Chapter 08.qxd 1/30/07 9:53 AM Page 463

Unconscious. You might then go back for another quote from
Interpretation of Dreams, followed by yet another trip to the stacks for
Freud’s The Ego and the Id. Pretty soon you would get tired of walking
from your cubicle to the stacks. If you are clever, you would save time by
keeping the books in your cubicle rather than schlepping them back and
forth. Furthermore, when you pull a book by Freud, you could also pull
several of his other books from the same shelf.

This metaphor emphasizes the principle, introduced in Section 6.2.1,
of making the common case fast. By keeping books that you have
recently used or might likely use in the future at your cubicle, you reduce
the number of time-consuming trips to the stacks. In particular, you use
the principles of temporal and spatial locality. Temporal locality means
that if you have used a book recently, you are likely to use it again soon.
Spatial locality means that when you use one particular book, you are
likely to be interested in other books on the same shelf.

The library itself makes the common case fast by using these princi-
ples of locality. The library has neither the shelf space nor the budget to
accommodate all of the books in the world. Instead, it keeps some of the
lesser-used books in deep storage in the basement. Also, it may have an
interlibrary loan agreement with nearby libraries so that it can offer
more books than it physically carries.

In summary, you obtain the benefits of both a large collection and
quick access to the most commonly used books through a hierarchy of
storage. The most commonly used books are in your cubicle. A larger
collection is on the shelves. And an even larger collection is available,
with advanced notice, from the basement and other libraries. Similarly,
memory systems use a hierarchy of storage to quickly access the most
commonly used data while still having the capacity to store large
amounts of data.

Memory subsystems used to build this hierarchy were introduced in
Section 5.5. Computer memories are primarily built from dynamic RAM
(DRAM) and static RAM (SRAM). Ideally, the computer memory sys-
tem is fast, large, and cheap. In practice, a single memory only has two
of these three attributes; it is either slow, small, or expensive. But com-
puter systems can approximate the ideal by combining a fast small cheap
memory and a slow large cheap memory. The fast memory stores the
most commonly used data and instructions, so on average the memory

464 CHAPTER EIGHT Memory Systems

Processor MemoryAddress

MemWrite

WriteData

ReadData
WE

CLK

Figure 8.1 The memory

interface

Chapter 08.qxd 1/30/07 9:53 AM Page 464

system appears fast. The large memory stores the remainder of the data
and instructions, so the overall capacity is large. The combination of two
cheap memories is much less expensive than a single large fast memory.
These principles extend to using an entire hierarchy of memories of
increasing capacity and decreasing speed.

Computer memory is generally built from DRAM chips. In 2006, a
typical PC had a main memory consisting of 256 MB to 1 GB of
DRAM, and DRAM cost about $100 per gigabyte (GB). DRAM prices
have declined at about 30% per year for the last three decades, and
memory capacity has grown at the same rate, so the total cost of the
memory in a PC has remained roughly constant. Unfortunately, DRAM
speed has improved by only about 7% per year, whereas processor
performance has improved at a rate of 30 to 50% per year, as shown in
Figure 8.2. The plot shows memory and processor speeds with the 1980
speeds as a baseline. In about 1980, processor and memory speeds were
the same. But performance has diverged since then, with memories
badly lagging.

DRAM could keep up with processors in the 1970s and early
1980’s, but it is now woefully too slow. The DRAM access time is one to
two orders of magnitude longer than the processor cycle time (tens of
nanoseconds, compared to less than one nanosecond).

To counteract this trend, computers store the most commonly used
instructions and data in a faster but smaller memory, called a cache. The
cache is usually built out of SRAM on the same chip as the processor.
The cache speed is comparable to the processor speed, because SRAM is
inherently faster than DRAM, and because the on-chip memory elimi-
nates lengthy delays caused by traveling to and from a separate chip. In
2006, on-chip SRAM costs were on the order of $10,000/GB, but the
cache is relatively small (kilobytes to a few megabytes), so the overall

8.1 Introduction 465

Year

CPU

100,000

10,000

100

1000

P
er

fo
rm

an
ce

10

1

19
80

19
81

19
82

19
83

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

19
84

Memory

Figure 8.2 Diverging processor

and memory performance

Adapted with permission from

Hennessy and Patterson, Computer

Architecture: A Quantitative Approach,

3rd ed., Morgan Kaufmann, 2003.

Chapter 08.qxd 1/30/07 9:53 AM Page 465

cost is low. Caches can store both instructions and data, but we will
refer to their contents generically as “data.”

If the processor requests data that is available in the cache, it is
returned quickly. This is called a cache hit. Otherwise, the processor
retrieves the data from main memory (DRAM). This is called a cache
miss. If the cache hits most of the time, then the processor seldom has to
wait for the slow main memory, and the average access time is low.

The third level in the memory hierarchy is the hard disk, or hard
drive. In the same way that a library uses the basement to store books
that do not fit in the stacks, computer systems use the hard disk to store
data that does not fit in main memory. In 2006, a hard disk cost less than
$1/GB and had an access time of about 10 ms. Hard disk costs have
decreased at 60%/year but access times scarcely improved. The hard disk
provides an illusion of more capacity than actually exists in the main
memory. It is thus called virtual memory. Like books in the basement,
data in virtual memory takes a long time to access. Main memory, also
called physical memory, holds a subset of the virtual memory. Hence, the
main memory can be viewed as a cache for the most commonly used data
from the hard disk.

Figure 8.3 summarizes the memory hierarchy of the computer sys-
tem discussed in the rest of this chapter. The processor first seeks data in
a small but fast cache that is usually located on the same chip. If the data
is not available in the cache, the processor then looks in main memory. If
the data is not there either, the processor fetches the data from virtual
memory on the large but slow hard disk. Figure 8.4 illustrates this
capacity and speed trade-off in the memory hierarchy and lists typical
costs and access times in 2006 technology. As access time decreases,
speed increases.

Section 8.2 introduces memory system performance analysis.
Section 8.3 explores several cache organizations, and Section 8.4 delves
into virtual memory systems. To conclude, this chapter explores how
processors can access input and output devices, such as keyboards and
monitors, in much the same way as they access memory. Section 8.5
investigates such memory-mapped I/O.

466 CHAPTER EIGHT Memory Systems

CPU Cache
Main

Memory

Processor ChipCLK

Hard
Disk

Figure 8.3 A typical memory

hierarchy

Chapter 08.qxd 1/30/07 9:53 AM Page 466

8 . 2 MEMORY SYSTEM PERFORMANCE ANALYSIS

Designers (and computer buyers) need quantitative ways to measure the
performance of memory systems to evaluate the cost-benefit trade-offs
of various alternatives. Memory system performance metrics are miss
rate or hit rate and average memory access time. Miss and hit rates are
calculated as:

Number of misses
Miss Rate � ---� 1 � Hit Rate

(8.1)
Number of total memory accesses

Number of hits
Hit Rate � ---� 1 � Miss Rate

Number of total memory accesses

Example 8.1 CALCULATING CACHE PERFORMANCE

Suppose a program has 2000 data access instructions (loads or stores), and 1250
of these requested data values are found in the cache. The other 750 data values
are supplied to the processor by main memory or disk memory. What are the
miss and hit rates for the cache?

Solution: The miss rate is 750/2000 � 0.375 � 37.5%. The hit rate is
1250/2000 � 0.625 � 1 � 0.375 � 62.5%.

Average memory access time (AMAT) is the average time a processor
must wait for memory per load or store instruction. In the typical
computer system from Figure 8.3, the processor first looks for the data
in the cache. If the cache misses, the processor then looks in main
memory. If the main memory misses, the processor accesses virtual
memory on the hard disk. Thus, AMAT is calculated as:

AMAT � tcache � MRcache(tMM � MRMMtVM) (8.2)

8.2 Memory System Performance Analysis 467

Cache

Main Memory

S
pe

ed

Virtual Memory

Capacity

Technology Cost/GB Access Time

SRAM ~ $10,000 ~ 1 ns

DRAM ~ $100 ~ 100 ns

Hard Disk ~ $1 ~ 10,000,000 ns

Figure 8.4 Memory hierarchy

components, with typical

characteristics in 2006

Chapter 08.qxd 1/30/07 9:53 AM Page 467

where tcache, tMM, and tVM are the access times of the cache, main
memory, and virtual memory, and MRcache and MRMM are the cache and
main memory miss rates, respectively.

Example 8.2 CALCULATING AVERAGE MEMORY ACCESS TIME

Suppose a computer system has a memory organization with only two levels of
hierarchy, a cache and main memory. What is the average memory access time
given the access times and miss rates given in Table 8.1?

Solution: The average memory access time is 1 � 0.1(100) � 11 cycles.

468 CHAPTER EIGHT Memory Systems

Table 8.1 Access times and miss rates

Memory Access Time Miss
Level (Cycles) Rate

Cache 1 10%

Main Memory 100 0%

Gene Amdahl, 1922–. Most
famous for Amdahl’s Law, an
observation he made in 1965.
While in graduate school, he
began designing computers in
his free time. This side work
earned him his Ph.D. in theo-
retical physics in 1952. He
joined IBM immediately after
graduation, and later went on
to found three companies,
including one called Amdahl
Corporation in 1970.

Example 8.3 IMPROVING ACCESS TIME

An 11-cycle average memory access time means that the processor spends ten
cycles waiting for data for every one cycle actually using that data. What cache
miss rate is needed to reduce the average memory access time to 1.5 cycles given
the access times in Table 8.1?

Solution: If the miss rate is m, the average access time is 1 � 100m. Setting this
time to 1.5 and solving for m requires a cache miss rate of 0.5%.

As a word of caution, performance improvements might not always
be as good as they sound. For example, making the memory system ten
times faster will not necessarily make a computer program run ten times
as fast. If 50% of a program’s instructions are loads and stores, a ten-
fold memory system improvement only means a 1.82-fold improvement
in program performance. This general principle is called Amdahl’s Law,
which says that the effort spent on increasing the performance of a sub-
system is worthwhile only if the subsystem affects a large percentage of
the overall performance.

8 . 3 CACHES

A cache holds commonly used memory data. The number of data
words that it can hold is called the capacity, C. Because the capacity

Chapter 08.qxd 1/30/07 9:53 AM Page 468

of the cache is smaller than that of main memory, the computer sys-
tem designer must choose what subset of the main memory is kept in
the cache.

When the processor attempts to access data, it first checks the cache
for the data. If the cache hits, the data is available immediately. If the
cache misses, the processor fetches the data from main memory and
places it in the cache for future use. To accommodate the new data, the
cache must replace old data. This section investigates these issues in
cache design by answering the following questions: (1) What data is held
in the cache? (2) How is the data found? and (3) What data is replaced
to make room for new data when the cache is full?

When reading the next sections, keep in mind that the driving force
in answering these questions is the inherent spatial and temporal locality
of data accesses in most applications. Caches use spatial and temporal
locality to predict what data will be needed next. If a program accesses
data in a random order, it would not benefit from a cache.

As we explain in the following sections, caches are specified by their
capacity (C), number of sets (S), block size (b), number of blocks (B),
and degree of associativity (N).

Although we focus on data cache loads, the same principles apply
for fetches from an instruction cache. Data cache store operations are
similar and are discussed further in Section 8.3.4.

8 . 3 .1 What Data Is Held in the Cache?

An ideal cache would anticipate all of the data needed by the processor
and fetch it from main memory ahead of time so that the cache has a
zero miss rate. Because it is impossible to predict the future with perfect
accuracy, the cache must guess what data will be needed based on the
past pattern of memory accesses. In particular, the cache exploits tempo-
ral and spatial locality to achieve a low miss rate.

Recall that temporal locality means that the processor is likely to
access a piece of data again soon if it has accessed that data recently.
Therefore, when the processor loads or stores data that is not in the
cache, the data is copied from main memory into the cache. Subsequent
requests for that data hit in the cache.

Recall that spatial locality means that, when the processor accesses a
piece of data, it is also likely to access data in nearby memory locations.
Therefore, when the cache fetches one word from memory, it may also
fetch several adjacent words. This group of words is called a cache
block. The number of words in the cache block, b, is called the block
size. A cache of capacity C contains B � C/b blocks.

The principles of temporal and spatial locality have been experimen-
tally verified in real programs. If a variable is used in a program, the

8.3 Caches 469

Cache: a hiding place
especially for concealing and
preserving provisions or
implements.

– Merriam Webster Online
Dictionary. 2006. http://
www.merriam-webster.com

Chapter 08.qxd 1/30/07 9:53 AM Page 469

same variable is likely to be used again, creating temporal locality. If an
element in an array is used, other elements in the same array are also
likely to be used, creating spatial locality.

8 . 3 . 2 How Is the Data Found?

A cache is organized into S sets, each of which holds one or more blocks
of data. The relationship between the address of data in main memory
and the location of that data in the cache is called the mapping. Each
memory address maps to exactly one set in the cache. Some of the
address bits are used to determine which cache set contains the data. If
the set contains more than one block, the data may be kept in any of the
blocks in the set.

Caches are categorized based on the number of blocks in a set. In a
direct mapped cache, each set contains exactly one block, so the cache
has S � B sets. Thus, a particular main memory address maps to a
unique block in the cache. In an N-way set associative cache, each set
contains N blocks. The address still maps to a unique set, with S � B/N
sets. But the data from that address can go in any of the N blocks in that
set. A fully associative cache has only S � 1 set. Data can go in any of
the B blocks in the set. Hence, a fully associative cache is another name
for a B-way set associative cache.

To illustrate these cache organizations, we will consider a MIPS
memory system with 32-bit addresses and 32-bit words. The memory is
byte-addressable, and each word is four bytes, so the memory consists of
230 words aligned on word boundaries. We analyze caches with an eight-
word capacity (C) for the sake of simplicity. We begin with a one-word
block size (b), then generalize later to larger blocks.

Direct Mapped Cache

A direct mapped cache has one block in each set, so it is organized into
S � B sets. To understand the mapping of memory addresses onto cache
blocks, imagine main memory as being mapped into b-word blocks, just
as the cache is. An address in block 0 of main memory maps to set 0 of
the cache. An address in block 1 of main memory maps to set 1 of the
cache, and so forth until an address in block B � 1 of main memory
maps to block B � 1 of the cache. There are no more blocks of the
cache, so the mapping wraps around, such that block B of main memory
maps to block 0 of the cache.

This mapping is illustrated in Figure 8.5 for a direct mapped cache
with a capacity of eight words and a block size of one word. The cache
has eight sets, each of which contains a one-word block. The bottom
two bits of the address are always 00, because they are word aligned.
The next log28 � 3 bits indicate the set onto which the memory address
maps. Thus, the data at addresses 0x00000004, 0x00000024, . . . ,

470 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 470

0xFFFFFFE4 all map to set 1, as shown in blue. Likewise, data at
addresses 0x00000010, . . . , 0xFFFFFFF0 all map to set 4, and so
forth. Each main memory address maps to exactly one set in the cache.

Example 8.4 CACHE FIELDS

To what cache set in Figure 8.5 does the word at address 0x00000014 map?
Name another address that maps to the same set.

Solution: The two least significant bits of the address are 00, because the address
is word aligned. The next three bits are 101, so the word maps to set 5. Words at
addresses 0x34, 0x54, 0x74, . . . , 0xFFFFFFF4 all map to this same set.

Because many addresses map to a single set, the cache must also
keep track of the address of the data actually contained in each set.
The least significant bits of the address specify which set holds the
data. The remaining most significant bits are called the tag and indi-
cate which of the many possible addresses is held in that set.

In our previous example, the two least significant bits of the 32-bit
address are called the byte offset, because they indicate the byte within
the word. The next three bits are called the set bits, because they indicate
the set to which the address maps. (In general, the number of set bits is
log2S.) The remaining 27 tag bits indicate the memory address of the
data stored in a given cache set. Figure 8.6 shows the cache fields for
address 0xFFFFFFE4. It maps to set 1 and its tag is all 1’s.

8.3 Caches 471

00...00010000

230-Word Main Memory

mem[0x00000000]

mem[0x00000004]

mem[0x00000008]

mem[0x0000000C]

mem[0x00000010]

mem[0x00000014]

mem[0x00000018]

mem[0x0000001C]

mem[0x00000020]

mem[0x00000024]

mem[0xFFFFFFE0]

mem[0xFFFFFFE4]

mem[0xFFFFFFE8]

mem[0xFFFFFFEC]

mem[0xFFFFFFF0]

mem[0xFFFFFFF4]

mem[0xFFFFFFF8]

mem[0xFFFFFFFC]

23-Word Cache

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

Set 7 (111)

Set 6 (110)

Set 5 (101)

Set 4 (100)

Set 3 (011)

Set 2 (010)

Set 1 (001)

Set 0 (000)

Data

Figure 8.5 Mapping of main

memory to a direct mapped

cache

Chapter 08.qxd 1/30/07 9:53 AM Page 471

Example 8.5 CACHE FIELDS

Find the number of set and tag bits for a direct mapped cache with 1024 (210)
sets and a one-word block size. The address size is 32 bits.

Solution: A cache with 210 sets requires log2(210) � 10 set bits. The two least sig-
nificant bits of the address are the byte offset, and the remaining 32 � 10 � 2 � 20
bits form the tag.

Sometimes, such as when the computer first starts up, the cache sets
contain no data at all. The cache uses a valid bit for each set to indicate
whether the set holds meaningful data. If the valid bit is 0, the contents
are meaningless.

Figure 8.7 shows the hardware for the direct mapped cache of
Figure 8.5. The cache is constructed as an eight-entry SRAM. Each
entry, or set, contains one line consisting of 32 bits of data, 27 bits of
tag, and 1 valid bit. The cache is accessed using the 32-bit address. The
two least significant bits, the byte offset bits, are ignored for word
accesses. The next three bits, the set bits, specify the entry or set in the
cache. A load instruction reads the specified entry from the cache and
checks the tag and valid bits. If the tag matches the most significant

472 CHAPTER EIGHT Memory Systems

00
Tag Set

Byte
OffsetMemory

Address
001111 ... 111

FFFFFF E 4

Figure 8.6 Cache fields for

address 0xFFFFFFE4 when

mapping to the cache in

Figure 8.5

DataTag

00
Tag Set

Byte
OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x
(1+27+32)-bit

SRAM

Set 7
Set 6
Set 5
Set 4
Set 3
Set 2
Set 1
Set 0

Figure 8.7 Direct mapped cache

with 8 sets

Chapter 08.qxd 1/30/07 9:53 AM Page 472

27 bits of the address and the valid bit is 1, the cache hits and the data is
returned to the processor. Otherwise, the cache misses and the memory
system must fetch the data from main memory.

Example 8.6 TEMPORAL LOCALITY WITH A DIRECT MAPPED CACHE

Loops are a common source of temporal and spatial locality in applications.
Using the eight-entry cache of Figure 8.7, show the contents of the cache after
executing the following silly loop in MIPS assembly code. Assume that the cache
is initially empty. What is the miss rate?

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0xC($0)
lw $t3, 0x8($0)
addi $t0, $t0, �1
j loop

done:

Solution: The program contains a loop that repeats for five iterations. Each
iteration involves three memory accesses (loads), resulting in 15 total memory
accesses. The first time the loop executes, the cache is empty and the data must
be fetched from main memory locations 0x4, 0xC, and 0x8 into cache sets 1,
3, and 2, respectively. However, the next four times the loop executes, the data
is found in the cache. Figure 8.8 shows the contents of the cache during the
last request to memory address 0x4. The tags are all 0 because the upper 27
bits of the addresses are 0. The miss rate is 3/15 � 20%.

8.3 Caches 473

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte
OffsetMemory

Address

V
3
00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Figure 8.8 Direct mapped cache

contents

When two recently accessed addresses map to the same cache block,
a conflict occurs, and the most recently accessed address evicts the previ-
ous one from the block. Direct mapped caches have only one block in
each set, so two addresses that map to the same set always cause a con-
flict. The example on the next page illustrates conflicts.

Chapter 08.qxd 1/30/07 9:53 AM Page 473

Example 8.7 CACHE BLOCK CONFLICT

What is the miss rate when the following loop is executed on the eight-word
direct mapped cache from Figure 8.7? Assume that the cache is initially empty.

addi $t0, $0, 5
loop: beq $t0, $0, done

lw $t1, 0x4($0)
lw $t2, 0x24($0)
addi $t0, $t0, �1
j loop

done:

Solution: Memory addresses 0x4 and 0x24 both map to set 1. During the initial
execution of the loop, data at address 0x4 is loaded into set 1 of the cache. Then
data at address 0x24 is loaded into set 1, evicting the data from address 0x4.
Upon the second execution of the loop, the pattern repeats and the cache must
refetch data at address 0x4, evicting data from address 0x24. The two addresses
conflict, and the miss rate is 100%.

Multi-way Set Associative Cache

An N-way set associative cache reduces conflicts by providing N blocks
in each set where data mapping to that set might be found. Each mem-
ory address still maps to a specific set, but it can map to any one of the
N blocks in the set. Hence, a direct mapped cache is another name for a
one-way set associative cache. N is also called the degree of associativity
of the cache.

Figure 8.9 shows the hardware for a C � 8-word, N � 2-way
set associative cache. The cache now has only S � 4 sets rather than 8.

474 CHAPTER EIGHT Memory Systems

DataTag

Tag Set
Byte

OffsetMemory
Address

Data

1 0

Hit1

V

=

00

32 32

32

DataTagV

=

Hit1Hit0

Hit

28 2

28 28

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Figure 8.9 Two-way set

associative cache

Chapter 08.qxd 1/30/07 9:53 AM Page 474

Thus, only log24 � 2 set bits rather than 3 are used to select the set.
The tag increases from 27 to 28 bits. Each set contains two ways or
degrees of associativity. Each way consists of a data block and the
valid and tag bits. The cache reads blocks from both ways in the
selected set and checks the tags and valid bits for a hit. If a hit occurs
in one of the ways, a multiplexer selects data from that way.

Set associative caches generally have lower miss rates than direct
mapped caches of the same capacity, because they have fewer conflicts.
However, set associative caches are usually slower and somewhat more
expensive to build because of the output multiplexer and additional
comparators. They also raise the question of which way to replace when
both ways are full; this is addressed further in Section 8.3.3. Most
commercial systems use set associative caches.

Example 8.8 SET ASSOCIATIVE CACHE MISS RATE

Repeat Example 8.7 using the eight-word two-way set associative cache from
Figure 8.9.

Solution: Both memory accesses, to addresses 0x4 and 0x24, map to set 1.
However, the cache has two ways, so it can accommodate data from both
addresses. During the first loop iteration, the empty cache misses both
addresses and loads both words of data into the two ways of set 1, as shown in
Figure 8.10. On the next four iterations, the cache hits. Hence, the miss rate is
2/10 � 20%. Recall that the direct mapped cache of the same size from
Example 8.7 had a miss rate of 100%.

8.3 Caches 475

DataTagV DataTagV

00...001 mem[0x00...24] 00...101 mem[0x00...04]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Figure 8.10 Two-way set

associative cache contents

Fully Associative Cache

A fully associative cache contains a single set with B ways, where B is
the number of blocks. A memory address can map to a block in any of
these ways. A fully associative cache is another name for a B-way set
associative cache with one set.

Figure 8.11 shows the SRAM array of a fully associative cache with
eight blocks. Upon a data request, eight tag comparisons (not shown) must
be made, because the data could be in any block. Similarly, an 8:1 multi-
plexer chooses the proper data if a hit occurs. Fully associative caches tend

Chapter 08.qxd 1/30/07 9:53 AM Page 475

to have the fewest conflict misses for a given cache capacity, but they
require more hardware for additional tag comparisons. They are best suited
to relatively small caches because of the large number of comparators.

Block Size

The previous examples were able to take advantage only of temporal
locality, because the block size was one word. To exploit spatial locality,
a cache uses larger blocks to hold several consecutive words.

The advantage of a block size greater than one is that when a miss
occurs and the word is fetched into the cache, the adjacent words in the
block are also fetched. Therefore, subsequent accesses are more likely to
hit because of spatial locality. However, a large block size means that a
fixed-size cache will have fewer blocks. This may lead to more conflicts,
increasing the miss rate. Moreover, it takes more time to fetch the missing
cache block after a miss, because more than one data word is fetched
from main memory. The time required to load the missing block into the
cache is called the miss penalty. If the adjacent words in the block are not
accessed later, the effort of fetching them is wasted. Nevertheless, most
real programs benefit from larger block sizes.

Figure 8.12 shows the hardware for a C � 8-word direct mapped
cache with a b � 4-word block size. The cache now has only B � C/b � 2
blocks. A direct mapped cache has one block in each set, so this cache is

476 CHAPTER EIGHT Memory Systems

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Way 0Way 1Way 2Way 3Way 4Way 5Way 6Way 7

DataTag

00
Tag

Byte
OffsetMemory

Address

Data

V

Block
Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

00011011

Figure 8.11 Eight-block fully associative cache

Figure 8.12 Direct mapped cache with two sets and a four-word block size

Chapter 08.qxd 1/30/07 9:53 AM Page 476

organized as two sets. Thus, only log22 � 1 bit is used to select the set.
A multiplexer is now needed to select the word within the block. The
multiplexer is controlled by the log24 � 2 block offset bits of the address.
The most significant 27 address bits form the tag. Only one tag is needed
for the entire block, because the words in the block are at consecutive
addresses.

Figure 8.13 shows the cache fields for address 0x8000009C when
it maps to the direct mapped cache of Figure 8.12. The byte offset
bits are always 0 for word accesses. The next log2b � 2 block offset
bits indicate the word within the block. And the next bit indicates the
set. The remaining 27 bits are the tag. Therefore, word 0x8000009C
maps to set 1, word 3 in the cache. The principle of using larger
block sizes to exploit spatial locality also applies to associative
caches.

Example 8.9 SPATIAL LOCALITY WITH A DIRECT MAPPED CACHE

Repeat Example 8.6 for the eight-word direct mapped cache with a four-word
block size.

Solution: Figure 8.14 shows the contents of the cache after the first memory
access. On the first loop iteration, the cache misses on the access to memory
address 0x4. This access loads data at addresses 0x0 through 0xC into the cache
block. All subsequent accesses (as shown for address 0xC) hit in the cache.
Hence, the miss rate is 1/15 � 6.67%.

8.3 Caches 477

00
Tag

Byte
Offset

Memory
Address

11100...100

Block
Offset

1

800000 9 C

Set

Figure 8.13 Cache fields for

address 0x8000009C when

mapping to the cache of

Figure 8.12

Set 1
DataTagV

Set 000...001 mem[0x00...0C]
0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

00
Tag

Byte
OffsetMemory

Address

V

Block
OffsetSet

00...00 0 11

Figure 8.14 Cache contents with a block size (b) of four words

Putting It All Together

Caches are organized as two-dimensional arrays. The rows are called
sets, and the columns are called ways. Each entry in the array consists of

Chapter 08.qxd 1/30/07 9:53 AM Page 477

a data block and its associated valid and tag bits. Caches are
characterized by

� capacity C

� block size b (and number of blocks, B � C/b)

� number of blocks in a set (N)

Table 8.2 summarizes the various cache organizations. Each address in
memory maps to only one set but can be stored in any of the ways.

Cache capacity, associativity, set size, and block size are typically
powers of 2. This makes the cache fields (tag, set, and block offset bits)
subsets of the address bits.

Increasing the associativity, N, usually reduces the miss rate caused
by conflicts. But higher associativity requires more tag comparators.
Increasing the block size, b, takes advantage of spatial locality to reduce
the miss rate. However, it decreases the number of sets in a fixed sized
cache and therefore could lead to more conflicts. It also increases the
miss penalty.

8 . 3 . 3 What Data Is Replaced?

In a direct mapped cache, each address maps to a unique block and set.
If a set is full when new data must be loaded, the block in that set is
replaced with the new data. In set associative and fully associative
caches, the cache must choose which block to evict when a cache set is
full. The principle of temporal locality suggests that the best choice is to
evict the least recently used block, because it is least likely to be used
again soon. Hence, most associative caches have a least recently used
(LRU) replacement policy.

In a two-way set associative cache, a use bit, U, indicates which way
within a set was least recently used. Each time one of the ways is used, U
is adjusted to indicate the other way. For set associative caches with
more than two ways, tracking the least recently used way becomes com-
plicated. To simplify the problem, the ways are often divided into two
groups and U indicates which group of ways was least recently used.

478 CHAPTER EIGHT Memory Systems

Table 8.2 Cache organizations

Number of Ways Number of Sets
Organization (N) (S)

direct mapped 1 B

set associative 1 � N � B B/N

fully associative B 1

Chapter 08.qxd 1/30/07 9:53 AM Page 478

Upon replacement, the new block replaces a random block within the
least recently used group. Such a policy is called pseudo-LRU and is
good enough in practice.

Example 8.10 LRU REPLACEMENT

Show the contents of an eight-word two-way set associative cache after execut-
ing the following code. Assume LRU replacement, a block size of one word, and
an initially empty cache.

lw $t0, 0x04($0)
lw $t1, 0x24($0)
lw $t2, 0x54($0)

Solution: The first two instructions load data from memory addresses 0x4 and
0x24 into set 1 of the cache, shown in Figure 8.15(a). U � 0 indicates that data
in way 0 was the least recently used. The next memory access, to address 0x54,
also maps to set 1 and replaces the least recently used data in way 0, as shown in
Figure 8.15(b), The use bit, U, is set to 1 to indicate that data in way 1 was the
least recently used.

8.3 Caches 479

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...04]1 mem[0x00...24] 1 00...00000...010

0

0

0
0

(a)

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

DataTagV
0

DataTagV
0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0

0

0

1

(b)

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Figure 8.15 Two-way associative

cache with LRU replacement

8 . 3 . 4 Advanced Cache Design*

Modern systems use multiple levels of caches to decrease memory access
time. This section explores the performance of a two-level caching sys-
tem and examines how block size, associativity, and cache capacity
affect miss rate. The section also describes how caches handle stores, or
writes, by using a write-through or write-back policy.

Chapter 08.qxd 1/30/07 9:53 AM Page 479

Multiple-Level Caches

Large caches are beneficial because they are more likely to hold data of
interest and therefore have lower miss rates. However, large caches tend
to be slower than small ones. Modern systems often use two levels of
caches, as shown in Figure 8.16. The first-level (L1) cache is small
enough to provide a one- or two-cycle access time. The second-level
(L2) cache is also built from SRAM but is larger, and therefore slower,
than the L1 cache. The processor first looks for the data in the L1
cache. If the L1 cache misses, the processor looks in the L2 cache. If the
L2 cache misses, the processor fetches the data from main memory.
Some modern systems add even more levels of cache to the memory
hierarchy, because accessing main memory is so slow.

Example 8.11 SYSTEM WITH AN L2 CACHE

Use the system of Figure 8.16 with access times of 1, 10, and 100 cycles for the
L1 cache, L2 cache, and main memory, respectively. Assume that the L1 and L2
caches have miss rates of 5% and 20%, respectively. Specifically, of the 5% of
accesses that miss the L1 cache, 20% of those also miss the L2 cache. What is
the average memory access time (AMAT)?

Solution: Each memory access checks the L1 cache. When the L1 cache misses
(5% of the time), the processor checks the L2 cache. When the L2 cache
misses (20% of the time), the processor fetches the data from main memory.
Using Equation 8.2, we calculate the average memory access time as follows:
1 cycle � 0.05[10 cycles � 0.2(100 cycles)] � 2.5 cycles

The L2 miss rate is high because it receives only the “hard” memory accesses,
those that miss in the L1 cache. If all accesses went directly to the L2 cache, the
L2 miss rate would be about 1%.

480 CHAPTER EIGHT Memory Systems

L1
Cache

L2 Cache

Main Memory

Capacity

Virtual Memory

S
pe

ed

Figure 8.16 Memory hierarchy

with two levels of cache

Chapter 08.qxd 1/30/07 9:53 AM Page 480

Reducing Miss Rate

Cache misses can be reduced by changing capacity, block size, and/or
associativity. The first step to reducing the miss rate is to understand
the causes of the misses. The misses can be classified as compulsory,
capacity, and conflict. The first request to a cache block is called a
compulsory miss, because the block must be read from memory regard-
less of the cache design. Capacity misses occur when the cache is too
small to hold all concurrently used data. Conflict misses are caused
when several addresses map to the same set and evict blocks that are
still needed.

Changing cache parameters can affect one or more type of cache
miss. For example, increasing cache capacity can reduce conflict and
capacity misses, but it does not affect compulsory misses. On the other
hand, increasing block size could reduce compulsory misses (due to spa-
tial locality) but might actually increase conflict misses (because more
addresses would map to the same set and could conflict).

Memory systems are complicated enough that the best way to eval-
uate their performance is by running benchmarks while varying cache
parameters. Figure 8.17 plots miss rate versus cache size and degree of
associativity for the SPEC2000 benchmark. This benchmark has a
small number of compulsory misses, shown by the dark region near the
x-axis. As expected, when cache size increases, capacity misses
decrease. Increased associativity, especially for small caches, decreases
the number of conflict misses shown along the top of the curve.

8.3 Caches 481

0.10

1-way

2-way

4-way

8-way

Capacity
Compulsory

Cache Size (KB)

0.09

0.08

0.07

0.06

0.05Miss Rate
per Type

0.04

0.03

0.02

0.01

0.00
321684 64 128 512256 1024

Figure 8.17 Miss rate versus

cache size and associativity on

SPEC2000 benchmark

Adapted with permission from

Hennessy and Patterson, Computer

Architecture: A Quantitative Approach,

3rd ed., Morgan Kaufmann, 2003.

Chapter 08.qxd 1/30/07 9:53 AM Page 481

Increasing associativity beyond four or eight ways provides only small
decreases in miss rate.

As mentioned, miss rate can also be decreased by using larger
block sizes that take advantage of spatial locality. But as block size
increases, the number of sets in a fixed size cache decreases, increasing
the probability of conflicts. Figure 8.18 plots miss rate versus block
size (in number of bytes) for caches of varying capacity. For small
caches, such as the 4-KB cache, increasing the block size beyond
64 bytes increases the miss rate because of conflicts. For larger caches,
increasing the block size does not change the miss rate. However, large
block sizes might still increase execution time because of the larger
miss penalty, the time required to fetch the missing cache block from
main memory on a miss.

Write Policy

The previous sections focused on memory loads. Memory stores, or
writes, follow a similar procedure as loads. Upon a memory store, the
processor checks the cache. If the cache misses, the cache block is
fetched from main memory into the cache, and then the appropriate
word in the cache block is written. If the cache hits, the word is simply
written to the cache block.

Caches are classified as either write-through or write-back. In a
write-through cache, the data written to a cache block is simultaneously
written to main memory. In a write-back cache, a dirty bit (D) is associ-
ated with each cache block. D is 1 when the cache block has been writ-
ten and 0 otherwise. Dirty cache blocks are written back to main
memory only when they are evicted from the cache. A write-through

482 CHAPTER EIGHT Memory Systems

10%

Miss
Rate 5%

0%
16 32 64

Block Size

128 256
256 K

64 K

16 K

4 K

Figure 8.18 Miss rate versus block size and cache size on SPEC92 benchmark Adapted with permission from

Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 3rd ed., Morgan Kaufmann, 2003.

Chapter 08.qxd 1/30/07 9:53 AM Page 482

cache requires no dirty bit but usually requires more main memory
writes than a write-back cache. Modern caches are usually write-back,
because main memory access time is so large.

Example 8.12 WRITE-THROUGH VERSUS WRITE-BACK

Suppose a cache has a block size of four words. How many main memory
accesses are required by the following code when using each write policy: write-
through or write-back?

sw $t0, 0x0($0)
sw $t0, 0xC($0)
sw $t0, 0x8($0)
sw $t0, 0x4($0)

Solution: All four store instructions write to the same cache block. With a write-
through cache, each store instruction writes a word to main memory, requiring
four main memory writes. A write-back policy requires only one main memory
access, when the dirty cache block is evicted.

8 . 3 . 5 The Evolution of MIPS Caches*

Table 8.3 traces the evolution of cache organizations used by the MIPS
processor from 1985 to 2004. The major trends are the introduction of
multiple levels of cache, larger cache capacity, and increased associativ-
ity. These trends are driven by the growing disparity between CPU
frequency and main memory speed and the decreasing cost of transis-
tors. The growing difference between CPU and memory speeds necessi-
tates a lower miss rate to avoid the main memory bottleneck, and the
decreasing cost of transistors allows larger cache sizes.

8.3 Caches 483

Table 8.3 MIPS cache evolution*

Year CPU MHz L1 Cache L2 Cache

1985 R2000 16.7 none none

1990 R3000 33 32 KB direct mapped none

1991 R4000 100 8 KB direct mapped 1 MB direct mapped

1995 R10000 250 32 KB two-way 4 MB two-way

2001 R14000 600 32 KB two-way 16 MB two-way

2004 R16000A 800 64 KB two-way 16 MB two-way

* Adapted from D. Sweetman, See MIPS Run, Morgan Kaufmann, 1999.

Chapter 08.qxd 1/30/07 9:53 AM Page 483

8 . 4 VIRTUAL MEMORY

Most modern computer systems use a hard disk (also called a hard
drive) as the lowest level in the memory hierarchy (see Figure 8.4).
Compared with the ideal large, fast, cheap memory, a hard disk is large
and cheap but terribly slow. The disk provides a much larger capacity
than is possible with a cost-effective main memory (DRAM). However, if
a significant fraction of memory accesses involve the disk, performance
is dismal. You may have encountered this on a PC when running too
many programs at once.

Figure 8.19 shows a hard disk with the lid of its case removed. As the
name implies, the hard disk contains one or more rigid disks or platters,
each of which has a read/write head on the end of a long triangular arm.
The head moves to the correct location on the disk and reads or writes
data magnetically as the disk rotates beneath it. The head takes several
milliseconds to seek the correct location on the disk, which is fast from a
human perspective but millions of times slower than the processor.

484 CHAPTER EIGHT Memory Systems

Figure 8.19 Hard disk

Chapter 08.qxd 1/30/07 9:53 AM Page 484

The objective of adding a hard disk to the memory hierarchy is to
inexpensively give the illusion of a very large memory while still providing
the speed of faster memory for most accesses. A computer with only 128
MB of DRAM, for example, could effectively provide 2 GB of memory
using the hard disk. This larger 2-GB memory is called virtual memory,
and the smaller 128-MB main memory is called physical memory. We will
use the term physical memory to refer to main memory throughout this
section.

Programs can access data anywhere in virtual memory, so they must
use virtual addresses that specify the location in virtual memory. The
physical memory holds a subset of most recently accessed virtual mem-
ory. In this way, physical memory acts as a cache for virtual memory.
Thus, most accesses hit in physical memory at the speed of DRAM, yet
the program enjoys the capacity of the larger virtual memory.

Virtual memory systems use different terminologies for the same
caching principles discussed in Section 8.3. Table 8.4 summarizes the
analogous terms. Virtual memory is divided into virtual pages, typically
4 KB in size. Physical memory is likewise divided into physical pages of
the same size. A virtual page may be located in physical memory
(DRAM) or on the disk. For example, Figure 8.20 shows a virtual mem-
ory that is larger than physical memory. The rectangles indicate pages.
Some virtual pages are present in physical memory, and some are located
on the disk. The process of determining the physical address from
the virtual address is called address translation. If the processor attempts
to access a virtual address that is not in physical memory, a page fault
occurs, and the operating system loads the page from the hard disk into
physical memory.

To avoid page faults caused by conflicts, any virtual page can map
to any physical page. In other words, physical memory behaves as a fully
associative cache for virtual memory. In a conventional fully associative
cache, every cache block has a comparator that checks the most signifi-
cant address bits against a tag to determine whether the request hits in

8.4 Virtual Memory 485

A computer with 32-bit
addresses can access a maxi-
mum of 232 bytes � 4 GB of
memory. This is one of the
motivations for moving to
64-bit computers, which can
access far more memory.

Table 8.4 Analogous cache and virtual memory terms

Cache Virtual Memory

Block Page

Block size Page size

Block offset Page offset

Miss Page fault

Tag Virtual page number

Chapter 08.qxd 1/30/07 9:53 AM Page 485

the block. In an analogous virtual memory system, each physical page
would need a comparator to check the most significant virtual address
bits against a tag to determine whether the virtual page maps to that
physical page.

A realistic virtual memory system has so many physical pages that
providing a comparator for each page would be excessively expensive.
Instead, the virtual memory system uses a page table to perform address
translation. A page table contains an entry for each virtual page, indicat-
ing its location in physical memory or that it is on the disk. Each load or
store instruction requires a page table access followed by a physical
memory access. The page table access translates the virtual address used
by the program to a physical address. The physical address is then used
to actually read or write the data.

The page table is usually so large that it is located in physical
memory. Hence, each load or store involves two physical memory
accesses: a page table access, and a data access. To speed up address
translation, a translation lookaside buffer (TLB) caches the most com-
monly used page table entries.

The remainder of this section elaborates on address translation, page
tables, and TLBs.

8 . 4 .1 Address Translation

In a system with virtual memory, programs use virtual addresses so that
they can access a large memory. The computer must translate these vir-
tual addresses to either find the address in physical memory or take a
page fault and fetch the data from the hard disk.

Recall that virtual memory and physical memory are divided into
pages. The most significant bits of the virtual or physical address specify
the virtual or physical page number. The least significant bits specify the
word within the page and are called the page offset.

486 CHAPTER EIGHT Memory Systems

Physical Memory

Physical Addresses
Virtual Addresses

Hard Disk

Address Translation

Figure 8.20 Virtual and physical

pages

Chapter 08.qxd 1/30/07 9:53 AM Page 486

Figure 8.21 illustrates the page organization of a virtual memory
system with 2 GB of virtual memory and 128 MB of physical memory
divided into 4-KB pages. MIPS accommodates 32-bit addresses. With
a 2-GB � 231-byte virtual memory, only the least significant 31 virtual
address bits are used; the 32nd bit is always 0. Similarly, with a
128-MB � 227-byte physical memory, only the least significant
27 physical address bits are used; the upper 5 bits are always 0.

Because the page size is 4 KB � 212 bytes, there are 231/212 � 219

virtual pages and 227/212 � 215 physical pages. Thus, the virtual and
physical page numbers are 19 and 15 bits, respectively. Physical memory
can only hold up to 1/16th of the virtual pages at any given time. The
rest of the virtual pages are kept on disk.

Figure 8.21 shows virtual page 5 mapping to physical page 1, virtual
page 0x7FFFC mapping to physical page 0x7FFE, and so forth. For
example, virtual address 0x53F8 (an offset of 0x3F8 within virtual
page 5) maps to physical address 0x13F8 (an offset of 0x3F8 within
physical page 1). The least significant 12 bits of the virtual and physical
addresses are the same (0x3F8) and specify the page offset within the
virtual and physical pages. Only the page number needs to be translated
to obtain the physical address from the virtual address.

Figure 8.22 illustrates the translation of a virtual address to a physi-
cal address. The least significant 12 bits indicate the page offset and
require no translation. The upper 19 bits of the virtual address specify
the virtual page number (VPN) and are translated to a 15-bit physical
page number (PPN). The next two sections describe how page tables and
TLBs are used to perform this address translation.

8.4 Virtual Memory 487

Physical Memory

Physical
Page

Number Physical Addresses

Virtual Memory

Virtual
Page

Number Virtual Addresses

7FFF 0x7FFF000 - 0x7FFFFFF
0x7FFE000 - 0x7FFEFFF

0x0000000 - 0x0000FFF
0x0001000 - 0x0001FFF

7FFE

0001
0000

7FFFA
7FFF9

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

0x7FFFF000 - 0x7FFFFFFF
0x7FFFE000 - 0x7FFFEFFF
0x7FFFD000 - 0x7FFFDFFF
0x7FFFC000 - 0x7FFFCFFF
0x7FFFB000 - 0x7FFFBFFF
0x7FFFA000 - 0x7FFFAFFF

0x00005000 - 0x00005FFF

0x00003000 - 0x00003FFF

0x00001000 - 0x00001FFF

0x7FFF9000 - 0x7FFF9FFF

0x00006000 - 0x00006FFF

0x00004000 - 0x00004FFF

0x00002000 - 0x00002FFF

0x00000000 - 0x00000FFF

Figure 8.21 Physical and virtual

pages

Chapter 08.qxd 1/30/07 9:53 AM Page 487

Example 8.13 VIRTUAL ADDRESS TO PHYSICAL ADDRESS
TRANSLATION

Find the physical address of virtual address 0x247C using the virtual memory
system shown in Figure 8.21.

Solution: The 12-bit page offset (0x47C) requires no translation. The remaining
19 bits of the virtual address give the virtual page number, so virtual address
0x247C is found in virtual page 0x2. In Figure 8.21, virtual page 0x2 maps to
physical page 0x7FFF. Thus, virtual address 0x247C maps to physical address
0x7FFF47C.

8 . 4 . 2 The Page Table

The processor uses a page table to translate virtual addresses to physical
addresses. Recall that the page table contains an entry for each virtual
page. This entry contains a physical page number and a valid bit. If the
valid bit is 1, the virtual page maps to the physical page specified in the
entry. Otherwise, the virtual page is found on disk.

Because the page table is so large, it is stored in physical memory.
Let us assume for now that it is stored as a contiguous array, as shown
in Figure 8.23. This page table contains the mapping of the memory
system of Figure 8.21. The page table is indexed with the virtual page
number (VPN). For example, entry 5 specifies that virtual page 5 maps
to physical page 1. Entry 6 is invalid (V � 0), so virtual page 6 is
located on disk.

Example 8.14 USING THE PAGE TABLE TO PERFORM ADDRESS
TRANSLATION

Find the physical address of virtual address 0x247C using the page table shown
in Figure 8.23.

Solution: Figure 8.24 shows the virtual address to physical address translation
for virtual address 0x247C. The 12-bit page offset requires no translation. The
remaining 19 bits of the virtual address are the virtual page number, 0x2, and

488 CHAPTER EIGHT Memory Systems

Page OffsetPPN

11 10 9 ... 2 1 0
Page OffsetVPN

Virtual Address

Physical Address

30 29 28 ... 14 13 12

11 10 9 ... 2 1 026 25 24 ... 13 12

19

15

12Translation

Figure 8.22 Translation from

virtual address to physical

address

Page Table

Virtual
Page

Number

7FFFA

00006
00005

7FFFC
7FFFB

7FFFE
7FFFD

7FFFF

00001
00000

00003
00002

00004

V

00007

Physical
Page

Number

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001
0
0
1 0x7FFF
0
0

Figure 8.23 The page table for

Figure 8.21

Chapter 08.qxd 1/30/07 9:53 AM Page 488

The page table can be stored anywhere in physical memory, at the
discretion of the OS. The processor typically uses a dedicated register,
called the page table register, to store the base address of the page table
in physical memory.

To perform a load or store, the processor must first translate the
virtual address to a physical address and then access the data at that
physical address. The processor extracts the virtual page number from
the virtual address and adds it to the page table register to find the
physical address of the page table entry. The processor then reads this
page table entry from physical memory to obtain the physical page
number. If the entry is valid, it merges this physical page number with
the page offset to create the physical address. Finally, it reads or
writes data at this physical address. Because the page table is stored in
physical memory, each load or store involves two physical memory
accesses.

8.4 Virtual Memory 489

0
0
1 0x0000
1 0x7FFE
0
0

0
0
1 0x0001

P
ag

e
T

ab
le

0
0
1 0x7FFF
0
0

V

Virtual
Address 0x00002 47C

Hit

Physical
Page Number

1219

15 12

Virtual
Page Number

Page
Offset

Physical
Address 0x7FFF 47C

Figure 8.24 Address translation

using the page table

give the index into the page table. The page table maps virtual page 0x2 to
physical page 0x7FFF. So, virtual address 0x247C maps to physical address
0x7FFF47C. The least significant 12 bits are the same in both the physical and
the virtual address.

Chapter 08.qxd 1/30/07 9:53 AM Page 489

8 . 4 . 3 The Translation Lookaside Buffer

Virtual memory would have a severe performance impact if it required
a page table read on every load or store, doubling the delay of loads
and stores. Fortunately, page table accesses have great temporal local-
ity. The temporal and spatial locality of data accesses and the large
page size mean that many consecutive loads or stores are likely to ref-
erence the same page. Therefore, if the processor remembers the last
page table entry that it read, it can probably reuse this translation
without rereading the page table. In general, the processor can keep
the last several page table entries in a small cache called a translation
lookaside buffer (TLB). The processor “looks aside” to find the trans-
lation in the TLB before having to access the page table in physical
memory. In real programs, the vast majority of accesses hit in the
TLB, avoiding the time-consuming page table reads from physical
memory.

A TLB is organized as a fully associative cache and typically holds
16 to 512 entries. Each TLB entry holds a virtual page number and its
corresponding physical page number. The TLB is accessed using the
virtual page number. If the TLB hits, it returns the corresponding
physical page number. Otherwise, the processor must read the page
table in physical memory. The TLB is designed to be small enough
that it can be accessed in less than one cycle. Even so, TLBs typically
have a hit rate of greater than 99%. The TLB decreases the number of
memory accesses required for most load or store instructions from
two to one.

Example 8.15 USING THE TLB TO PERFORM ADDRESS TRANSLATION

Consider the virtual memory system of Figure 8.21. Use a two-entry TLB or
explain why a page table access is necessary to translate virtual addresses
0x247C and 0x5FB0 to physical addresses. Suppose the TLB currently holds
valid translations of virtual pages 0x2 and 0x7FFFD.

Solution: Figure 8.25 shows the two-entry TLB with the request for virtual
address 0x247C. The TLB receives the virtual page number of the incoming
address, 0x2, and compares it to the virtual page number of each entry. Entry
0 matches and is valid, so the request hits. The translated physical address is
the physical page number of the matching entry, 0x7FFF, concatenated with
the page offset of the virtual address. As always, the page offset requires no
translation.

The request for virtual address 0x5FB0 misses in the TLB. So, the request is for-
warded to the page table for translation.

490 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 490

8 . 4 . 4 Memory Protection

So far this section has focused on using virtual memory to provide a
fast, inexpensive, large memory. An equally important reason to use vir-
tual memory is to provide protection between concurrently running
programs.

As you probably know, modern computers typically run several pro-
grams or processes at the same time. All of the programs are simultane-
ously present in physical memory. In a well-designed computer system,
the programs should be protected from each other so that no program
can crash or hijack another program. Specifically, no program should be
able to access another program’s memory without permission. This is
called memory protection.

Virtual memory systems provide memory protection by giving each
program its own virtual address space. Each program can use as much
memory as it wants in that virtual address space, but only a portion of the
virtual address space is in physical memory at any given time. Each pro-
gram can use its entire virtual address space without having to worry
about where other programs are physically located. However, a program
can access only those physical pages that are mapped in its page table. In
this way, a program cannot accidentally or maliciously access another pro-
gram’s physical pages, because they are not mapped in its page table. In
some cases, multiple programs access common instructions or data. The
operating system adds control bits to each page table entry to determine
which programs, if any, can write to the shared physical pages.

8.4 Virtual Memory 491

Hit1

V

=

15 15

15

=

Hit

1 0
1Hit0

Hit

19 19

19

Virtual
Page Number

Physical
Page Number

Entry 1

1 0x7FFFD 0x0000 1 0x00002 0x7FFF

Virtual
Address 0x00002 47C

1219

Virtual
Page Number

Page
Offset

V
Virtual

Page Number
Physical

Page Number

Entry 0

12Physical
Address 0x7FFF 47C

TLB

Figure 8.25 Address translation

using a two-entry TLB

Chapter 08.qxd 1/30/07 9:53 AM Page 491

8 . 4 . 5 Replacement Policies*

Virtual memory systems use write-back and an approximate least recently
used (LRU) replacement policy. A write-through policy, where each write
to physical memory initiates a write to disk, would be impractical. Store
instructions would operate at the speed of the disk instead of the speed of
the processor (milliseconds instead of nanoseconds). Under the write-
back policy, the physical page is written back to disk only when it is
evicted from physical memory. Writing the physical page back to disk and
reloading it with a different virtual page is called swapping, so the disk in
a virtual memory system is sometimes called swap space. The processor
swaps out one of the least recently used physical pages when a page fault
occurs, then replaces that page with the missing virtual page. To support
these replacement policies, each page table entry contains two additional
status bits: a dirty bit, D, and a use bit, U.

The dirty bit is 1 if any store instructions have changed the physical
page since it was read from disk. When a physical page is swapped out,
it needs to be written back to disk only if its dirty bit is 1; otherwise, the
disk already holds an exact copy of the page.

The use bit is 1 if the physical page has been accessed recently. As in
a cache system, exact LRU replacement would be impractically compli-
cated. Instead, the OS approximates LRU replacement by periodically
resetting all the use bits in the page table. When a page is accessed, its
use bit is set to 1. Upon a page fault, the OS finds a page with U � 0 to
swap out of physical memory. Thus, it does not necessarily replace the
least recently used page, just one of the least recently used pages.

8 . 4 . 6 Multilevel Page Tables*

Page tables can occupy a large amount of physical memory. For exam-
ple, the page table from the previous sections for a 2 GB virtual memory
with 4 KB pages would need 219 entries. If each entry is 4 bytes, the page
table is 219 � 22 bytes � 221 bytes � 2 MB.

To conserve physical memory, page tables can be broken up into mul-
tiple (usually two) levels. The first-level page table is always kept in phys-
ical memory. It indicates where small second-level page tables are stored
in virtual memory. The second-level page tables each contain the actual
translations for a range of virtual pages. If a particular range of transla-
tions is not actively used, the corresponding second-level page table can
be swapped out to the hard disk so it does not waste physical memory.

In a two-level page table, the virtual page number is split into two
parts: the page table number and the page table offset, as shown in
Figure 8.26. The page table number indexes the first-level page table,
which must reside in physical memory. The first-level page table entry
gives the base address of the second-level page table or indicates that

492 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 492

it must be fetched from disk when V is 0. The page table offset indexes
the second-level page table. The remaining 12 bits of the virtual address
are the page offset, as before, for a page size of 212 � 4 KB.

In Figure 8.26 the 19-bit virtual page number is broken into 9 and 10
bits, to indicate the page table number and the page table offset, respec-
tively. Thus, the first-level page table has 29 � 512 entries. Each of these
512 second-level page tables has 210 � 1 K entries. If each of the first- and
second-level page table entries is 32 bits (4 bytes) and only two second-
level page tables are present in physical memory at once, the hierarchical
page table uses only (512 � 4 bytes) � 2 � (1 K � 4 bytes) � 10 KB of
physical memory. The two-level page table requires a fraction of the physi-
cal memory needed to store the entire page table (2 MB). The drawback
of a two-level page table is that it adds yet another memory access for
translation when the TLB misses.

Example 8.16 USING A MULTILEVEL PAGE TABLE FOR ADDRESS
TRANSLATION

Figure 8.27 shows the possible contents of the two-level page table from Figure
8.26. The contents of only one second-level page table are shown. Using this
two-level page table, describe what happens on an access to virtual address
0x003FEFB0.

8.4 Virtual Memory 493

First-Level
Page Table

Page Table
Address

210
 =

 1
K

 e
nt

rie
s

29
=

 5
12

 e
nt

rie
s

Page Table
Number

Page Table
Offset

Virtual
Address

V

9

Physical Page
NumberV

10

Second-Level
Page Tables

Page
Offset

Figure 8.26 Hierarchical page

tables

Chapter 08.qxd 1/30/07 9:53 AM Page 493

8 . 5 MEMORY-MAPPED I/O*

Processors also use the memory interface to communicate with
input/output (I/O) devices such as keyboards, monitors, and printers.
A processor accesses an I/O device using the address and data busses in
the same way that it accesses memory.

A portion of the address space is dedicated to I/O devices rather
than memory. For example, suppose that addresses in the range

494 CHAPTER EIGHT Memory Systems

Page Table
Address

Page Table
Number

Page Table
Offset

Virtual
Address

V

9

Physical Page
NumberV

10

Page
Offset

0

0
0

1 0x40000

Valid1

1 0x2375000 F
irs

t-
Le

ve
l P

ag
e

T
ab

le

S
ec

on
d-

Le
ve

l P
ag

e
T

ab
le

s

0x0 3FE FB0

Valid2
15 12

Physical
Address 0x23F1 FB0

12

0
1 0x7FFE
0
0
0

0
1 0x0073
0
0
1 0x72FC
0
0
0
1 0x00C1

1 0x1003
1 0x23F1

Figure 8.27 Address translation

using a two-level page table

Solution: As always, only the virtual page number requires translation. The most
significant nine bits of the virtual address, 0x0, give the page table number, the
index into the first-level page table. The first-level page table at entry 0x0 indi-
cates that the second-level page table is resident in memory (V � 1) and its phys-
ical address is 0x2375000.

The next ten bits of the virtual address, 0x3FE, are the page table offset, which
gives the index into the second-level page table. Entry 0 is at the bottom of the
second-level page table, and entry 0x3FF is at the top. Entry 0x3FE in the second-
level page table indicates that the virtual page is resident in physical memory
(V � 1) and that the physical page number is 0x23F1. The physical page number
is concatenated with the page offset to form the physical address, 0x23F1FB0.

Chapter 08.qxd 1/30/07 9:53 AM Page 494

0xFFFF0000 to 0xFFFFFFFF are used for I/O. Recall from Section 6.6.1
that these addresses are in a reserved portion of the memory map. Each
I/O device is assigned one or more memory addresses in this range. A
store to the specified address sends data to the device. A load receives
data from the device. This method of communicating with I/O devices is
called memory-mapped I/O.

In a system with memory-mapped I/O, a load or store may access
either memory or an I/O device. Figure 8.28 shows the hardware needed to
support two memory-mapped I/O devices. An address decoder determines
which device communicates with the processor. It uses the Address and
MemWrite signals to generate control signals for the rest of the hardware.
The ReadData multiplexer selects between memory and the various I/O
devices. Write-enabled registers hold the values written to the I/O devices.

Example 8.17 COMMUNICATING WITH I/O DEVICES

Suppose I/O Device 1 in Figure 8.28 is assigned the memory address 0xFFFFFFF4.
Show the MIPS assembly code for writing the value 7 to I/O Device 1 and for
reading the output value from I/O Device 1.

Solution: The following MIPS assembly code writes the value 7 to I/O Device 1.2

addi $t0, $0, 7
sw $t0, 0xFFF4($0)

The address decoder asserts WE1 because the address is 0xFFFFFFF4 and
MemWrite is TRUE. The value on the WriteData bus, 7, is written into the regis-
ter connected to the input pins of I/O Device 1.

8.5 Memory-Mapped I/O 495

Processor MemoryAddress

MemWrite

WriteData

ReadDataI/O
Device 1

I/O
Device 2

CLK

EN

EN

Address Decoder

W
E

1

W
E

M

R
D

sel1:0

W
E

2

WE

CLK

00

01

10

CLK

Figure 8.28 Support hardware

for memory-mapped I/O

Some architectures, notably
IA-32, use specialized instruc-
tions instead of memory-
mapped I/O to communicate
with I/O devices. These
instructions are of the follow-
ing form, where devicel and
device2 are the unique ID of
the peripheral device:

lwio $t0, device1

swio $t0, device2

This type of communication
with I/O devices is called pro-
grammed I/O.

2 Recall that the 16-bit immediate 0xFFF4 is sign-extended to the 32-bit value
0xFFFFFFF4.

Chapter 08.qxd 1/30/07 9:53 AM Page 495

To read from I/O Device 1, the processor performs the following MIPS assembly
code.

lw $t1, 0xFFF4($0)

The address decoder sets RDsel1:0 to 01, because it detects the address
0xFFFFFFF4 and MemWrite is FALSE. The output of I/O Device 1 passes
through the multiplexer onto the ReadData bus and is loaded into $t1 in the
processor.

Software that communicates with an I/O device is called a device
driver. You have probably downloaded or installed device drivers for
your printer or other I/O device. Writing a device driver requires detailed
knowledge about the I/O device hardware. Other programs call func-
tions in the device driver to access the device without having to under-
stand the low-level device hardware.

To illustrate memory-mapped I/O hardware and software, the rest of
this section describes interfacing a commercial speech synthesizer chip to
a MIPS processor.

Speech Synthesizer Hardware

The Radio Shack SP0256 speech synthesizer chip generates robot-like
speech. Words are composed of one or more allophones, the fundamental
units of sound. For example, the word “hello” uses five allophones repre-
sented by the following symbols in the SP0256 speech chip: HH1 EH LL
AX OW. The speech synthesizer uses 6-bit codes to represent 64 different
allophones that appear in the English language. For example, the five
allophones for the word “hello” correspond to the hexadecimal values
0x1B, 0x07, 0x2D, 0x0F, 0x20, respectively. The processor sends a series
of allophones to the speech synthesizer, which drives a speaker to blabber
the sounds.

Figure 8.29 shows the pinout of the SP0256 speech chip. The I/O
pins highlighted in blue are used to interface with the MIPS processor to
produce speech. Pins A6:1 receive the 6-bit allophone encoding from the
processor. The allophone sound is produced on the Digital Out pin. The
Digital Out signal is first amplified and then sent to a speaker. The other
two highlighted pins, SBY and

ALD, are status and control pins. When

the SBY output is 1, the speech chip is standing by and is ready to
receive a new allophone. On the falling edge of the address load input_____
ALD, the speech chip reads the allophone specified by A6:1. Other pins,
such as power and ground (VDD and VSS) and the clock (OSC1), must
be connected as shown but are not driven by the processor.

Figure 8.30 shows the speech synthesizer interfaced to the MIPS
processor. The processor uses three memory-mapped I/O addresses to
communicate with the speech synthesizer. We arbitrarily have chosen

496 CHAPTER EIGHT Memory Systems

See www.speechchips.com

for more information about
the SP0256 and the allophone
encodings.

Chapter 08.qxd 1/30/07 9:53 AM Page 496

that the A6:1 port is mapped to address 0xFFFFFF00,

ALD to

0xFFFFFF04, and SBY to 0xFFFFFF08. Although the WriteData bus is
32 bits, only the least significant 6 bits are used for A6:1, and the least
significant bit is used for

ALD; the other bits are ignored. Similarly,

SBY is read on the least significant bit of the ReadData bus; the other
bits are 0.

8.5 Memory-Mapped I/O 497

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

OSC 2

OSC 1

ROM Clock

SBY Reset

Digital Out

VD1

Test

Ser In

ALD
SE

A1

A2

A3

A4

VSS

Reset

ROM Disable

C1

C2

C3

VDD

SBY
To

Processor From
Processor

From
Processor

From
Processor

LRQ

A8

A7

Ser Out

A6

A5

SPO256

3.12 MHz

A

Amplifier Speaker

Processor MemoryAddress

MemWrite

WriteData

ReadData

SP0256

CLK

EN

EN

Address Decoder

WE

CLKCLK

5:0

0

A6:1

ALD

SBY

0

1
31:1

W
E

1

W
E

M

R
D

sel

W
E

2

Figure 8.29 SPO256 speech synthesizer chip pinout

Figure 8.30 Hardware for

driving the SPO256 speech

synthesizer

Chapter 08.qxd 1/30/07 9:53 AM Page 497

Speech Synthesizer Device Driver

The device driver controls the speech synthesizer by sending an appropri-
ate series of allophones over the memory-mapped I/O interface. It follows
the protocol expected by the SPO256 chip, given below:

� Set

ALD to 1

� Wait until the chip asserts SBY to indicate that it is finished speaking
the previous allophone and is ready for the next

� Write a 6-bit allophone to A6:1

� Reset

ALD to 0 to initiate speech

This sequence can be repeated for any number of allophones. The
MIPS assembly in Code Example 8.1 writes five allophones to the speech
chip. The allophone encodings are stored as 32-bit values in a five-entry
array starting at memory address 0x10000000.

The assembly code in Code Example 8.1 polls, or repeatedly checks,
the SBY signal to determine when the speech chip is ready to receive a
new allophone. The code functions correctly but wastes valuable proces-
sor cycles that could be used to perform useful work. Instead of polling,
the processor could use an interrupt connected to SBY. When SBY rises,
the processor stops what it is doing and jumps to code that handles the
interrupt. In the case of the speech synthesizer, the interrupt handler

498 CHAPTER EIGHT Memory Systems

init:
addi $t1, $0, 1 # $t1 � 1 (value to write to ALD

)

addi $t2, $0, 20 # $t2 � array size * 4
lui $t3, 0x1000 # $t3 � array base address
addi $t4, $0, 0 # $t4 � 0 (array index)

start:
sw $t1, 0xFF04($0) # ALD

=1

loop:
lw $t5, 0xFF08($0) # $t5 � SBY
beq $0, $t5, loop # loop until SBY �� 1

add $t5, $t3, $t4 # $t5 � address of allophone
lw $t5, 0($t5) # $t5 � allophone
sw $t5, 0xFF00($0) # A6:1 � allophone
sw $0, 0xFF04($0) # ALD

= 0 to initiate speech

addi $t4, $t4, 4 # increment array index
beq $t4, $t2, done # last allophone in array?
j start # repeat

done:

Code Example 8.1 SPEECH CHIP DEVICE DRIVER

Chapter 08.qxd 1/30/07 9:53 AM Page 498

would send the next allophone, then let the processor resume what it was
doing before the interrupt. As described in Section 6.7.2, the processor
handles interrupts like any other exception.

8.6 REAL-WORLD PERSPECTIVE: IA-32 MEMORY
AND I/O SYSTEMS*

As processors get faster, they need ever more elaborate memory hierarchies
to keep a steady supply of data and instructions flowing. This section
describes the memory systems of IA-32 processors to illustrate the progres-
sion. Section 7.9 contained photographs of the processors, highlighting the
on-chip caches. IA-32 also has an unusual programmed I/O system that
differs from the more common memory-mapped I/O.

8 . 6 .1 IA-32 Cache Systems

The 80386, initially produced in 1985, operated at 16 MHz. It lacked a
cache, so it directly accessed main memory for all instructions and data.
Depending on the speed of the memory, the processor might get an
immediate response, or it might have to pause for one or more cycles for
the memory to react. These cycles are called wait states, and they
increase the CPI of the processor. Microprocessor clock frequencies have
increased by at least 25% per year since then, whereas memory latency
has scarcely diminished. The delay from when the processor sends an
address to main memory until the memory returns the data can now
exceed 100 processor clock cycles. Therefore, caches with a low miss
rate are essential to good performance. Table 8.5 summarizes the evolu-
tion of cache systems on Intel IA-32 processors.

The 80486 introduced a unified write-through cache to hold both
instructions and data. Most high-performance computer systems also pro-
vided a larger second-level cache on the motherboard using commercially
available SRAM chips that were substantially faster than main memory.

The Pentium processor introduced separate instruction and data
caches to avoid contention during simultaneous requests for data and
instructions. The caches used a write-back policy, reducing the commu-
nication with main memory. Again, a larger second-level cache (typically
256–512 KB) was usually offered on the motherboard.

The P6 series of processors (Pentium Pro, Pentium II, and Pentium
III) were designed for much higher clock frequencies. The second-level
cache on the motherboard could not keep up, so it was moved closer to
the processor to improve its latency and throughput. The Pentium Pro
was packaged in a multichip module (MCM) containing both the proces-
sor chip and a second-level cache chip, as shown in Figure 8.31. Like the
Pentium, the processor had separate 8-KB level 1 instruction and data

8.6 Real-World Perspective: IA-32 Memory and I/O Systems 499

Chapter 08.qxd 1/30/07 9:53 AM Page 499

caches. However, these caches were nonblocking, so that the out-of-
order processor could continue executing subsequent cache accesses even
if the cache missed a particular access and had to fetch data from main
memory. The second-level cache was 256 KB, 512 KB, or 1 MB in size
and could operate at the same speed as the processor. Unfortunately, the
MCM packaging proved too expensive for high-volume manufacturing.
Therefore, the Pentium II was sold in a lower-cost cartridge containing
the processor and the second-level cache. The level 1 caches were dou-
bled in size to compensate for the fact that the second-level cache oper-
ated at half the processor’s speed. The Pentium III integrated a full-speed
second-level cache directly onto the same chip as the processor. A cache
on the same chip can operate at better latency and throughput, so it is
substantially more effective than an off-chip cache of the same size.

The Pentium 4 offered a nonblocking level 1 data cache. It switched
to a trace cache to store instructions after they had been decoded into
micro-ops, avoiding the delay of redecoding each time instructions were
fetched from the cache.

The Pentium M design was adapted from the Pentium III. It further
increased the level 1 caches to 32 KB each and featured a 1- to 2-MB level
2 cache. The Core Duo contains two modified Pentium M processors and

500 CHAPTER EIGHT Memory Systems

Table 8.5 Evolution of Intel IA-32 microprocessor memory systems

Frequency Level 1 Level 1
Processor Year (MHz) Data Cache Instruction Cache Level 2 Cache

80386 1985 16–25 none none none

80486 1989 25–100 8 KB unified none on chip

Pentium 1993 60–300 8 KB 8 KB none on chip

Pentium Pro 1995 150–200 8 KB 8 KB 256 KB–1 MB
on MCM

Pentium II 1997 233–450 16 KB 16 KB 256–512 KB
on cartridge

Pentium III 1999 450–1400 16 KB 16 KB 256–512 KB
on chip

Pentium 4 2001 1400–3730 8–16 KB 12 K op 256 KB–2 MB
trace cache on chip

Pentium M 2003 900–2130 32 KB 32 KB 1–2 MB
on chip

Core Duo 2005 1500–2160 32 KB/core 32 KB/core 2 MB shared
on chip

Chapter 08.qxd 1/30/07 9:53 AM Page 500

a shared 2-MB cache on one chip. The shared cache is used for communi-
cation between the processors: one can write data to the cache, and the
other can read it.

8 . 6 . 2 IA-32 Virtual Memory

IA-32 processors operate in either real mode or protected mode. Real
mode is backward compatible with the original 8086. It only uses
20 bits of addresses, limiting memory to 1 MB, and it does not allow
virtual memory.

Protected mode was introduced with the 80286 and extended to
32-bit addresses with the 80386. It supports virtual memory with 4-KB
pages. It also provides memory protection so that one program cannot
access the pages belonging to other programs. Hence, a buggy or mali-
cious program cannot crash or corrupt other programs. All modern
operating systems now use protected mode.

A 32-bit address permits up to 4 GB of memory. Processors since
the Pentium Pro have bumped the memory capacity to 64 GB using a

8.6 Real-World Perspective: IA-32 Memory and I/O Systems 501

Figure 8.31 Pentium Pro

multichip module with processor

(left) and 256-KB cache (right)

in a pin grid array (PGA)

package (Courtesy Intel.)

Although memory protection
became available in the hard-
ware in the early 1980s,
Microsoft Windows took
almost 15 years to take
advantage of the feature and
prevent bad programs from
crashing the entire computer.
Until the release of Windows
2000, consumer versions of
Windows were notoriously
unstable. The lag between
hardware features and soft-
ware support can be
extremely long.

Chapter 08.qxd 1/30/07 9:53 AM Page 501

technique called physical address extension. Each process uses 32-bit
addresses. The virtual memory system maps these addresses onto a
larger 36-bit virtual memory space. It uses different page tables for
each process, so that each process can have its own address space of up
to 4 GB.

8 . 6 . 3 IA-32 Programmed I/O

Most architectures use memory-mapped I/O, described in Section 8.5,
in which programs access I/O devices by reading and writing memory
locations. IA-32 uses programmed I/O, in which special IN and OUT
instructions are used to read and write I/O devices. IA-32 defines 216

I/O ports. The IN instruction reads one, two, or four bytes from the
port specified by DX into AL, AX, or EAX. OUT is similar, but writes
the port.

Connecting a peripheral device to a programmed I/O system is simi-
lar to connecting it to a memory-mapped system. When accessing an I/O
port, the processor sends the port number rather than the memory
address on the 16 least significant bits of the address bus. The device
reads or writes data from the data bus. The major difference is that the
processor also produces an M/IO

signal. When M/IO

� 1, the processor

is accessing memory. When it is 0, the process is accessing one of the I/O
devices. The address decoder must also look at M/IO

to generate the

appropriate enables for main memory and for the I/O devices. I/O
devices can also send interrupts to the processor to indicate that they are
ready to communicate.

8 .7 SUMMARY

Memory system organization is a major factor in determining computer
performance. Different memory technologies, such as DRAM, SRAM,
and hard disks, offer trade-offs in capacity, speed, and cost. This chapter
introduced cache and virtual memory organizations that use a hierarchy
of memories to approximate an ideal large, fast, inexpensive memory.
Main memory is typically built from DRAM, which is significantly
slower than the processor. A cache reduces access time by keeping com-
monly used data in fast SRAM. Virtual memory increases the memory
capacity by using a hard disk to store data that does not fit in the main
memory. Caches and virtual memory add complexity and hardware to a
computer system, but the benefits usually outweigh the costs. All mod-
ern personal computers use caches and virtual memory. Most processors
also use the memory interface to communicate with I/O devices. This is
called memory-mapped I/O. Programs use load and store operations to
access the I/O devices.

502 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 502

EPILOGUE

This chapter brings us to the end of our journey together into the realm
of digital systems. We hope this book has conveyed the beauty and thrill
of the art as well as the engineering knowledge. You have learned to
design combinational and sequential logic using schematics and hard-
ware description languages. You are familiar with larger building blocks
such as multiplexers, ALUs, and memories. Computers are one of the
most fascinating applications of digital systems. You have learned how
to program a MIPS processor in its native assembly language and how to
build the processor and memory system using digital building blocks.
Throughout, you have seen the application of abstraction, discipline,
hierarchy, modularity, and regularity. With these techniques, we have
pieced together the puzzle of a microprocessor’s inner workings. From
cell phones to digital television to Mars rovers to medical imaging sys-
tems, our world is an increasingly digital place.

Imagine what Faustian bargain Charles Babbage would have made
to take a similar journey a century and a half ago. He merely aspired
to calculate mathematical tables with mechanical precision. Today’s
digital systems are yesterday’s science fiction. Might Dick Tracy have
listened to iTunes on his cell phone? Would Jules Verne have launched
a constellation of global positioning satellites into space? Could
Hippocrates have cured illness using high-resolution digital images of
the brain? But at the same time, George Orwell’s nightmare of ubiqui-
tous government surveillance becomes closer to reality each day. And
rogue states develop nuclear weapons using laptop computers more
powerful than the room-sized supercomputers that simulated Cold War
bombs. The microprocessor revolution continues to accelerate. The
changes in the coming decades will surpass those of the past. You now
have the tools to design and build these new systems that will shape
our future. With your newfound power comes profound responsibility.
We hope that you will use it, not just for fun and riches, but also for
the benefit of humanity.

Epilogue 503

Chapter 08.qxd 1/30/07 9:53 AM Page 503

Exercises

Exercise 8.1 In less than one page, describe four everyday activities that exhibit
temporal or spatial locality. List two activities for each type of locality, and be
specific.

Exercise 8.2 In one paragraph, describe two short computer applications that
exhibit temporal and/or spatial locality. Describe how. Be specific.

Exercise 8.3 Come up with a sequence of addresses for which a direct mapped
cache with a size (capacity) of 16 words and block size of 4 words outperforms
a fully associative cache with least recently used (LRU) replacement that has the
same capacity and block size.

Exercise 8.4 Repeat Exercise 8.3 for the case when the fully associative cache
outperforms the direct mapped cache.

Exercise 8.5 Describe the trade-offs of increasing each of the following cache
parameters while keeping the others the same:

(a) block size

(b) associativity

(c) cache size

Exercise 8.6 Is the miss rate of a two-way set associative cache always, usually,
occasionally, or never better than that of a direct mapped cache of the same
capacity and block size? Explain.

Exercise 8.7 Each of the following statements pertains to the miss rate of caches.
Mark each statement as true or false. Briefly explain your reasoning; present a
counterexample if the statement is false.

(a) A two-way set associative cache always has a lower miss rate than a direct
mapped cache with the same block size and total capacity.

(b) A 16-KB direct mapped cache always has a lower miss rate than an 8-KB
direct mapped cache with the same block size.

(c) An instruction cache with a 32-byte block size usually has a lower miss rate
than an instruction cache with an 8-byte block size, given the same degree
of associativity and total capacity.

504 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 504

Exercise 8.8 A cache has the following parameters: b, block size given in
numbers of words; S, number of sets; N, number of ways; and A, number of
address bits.

(a) In terms of the parameters described, what is the cache capacity, C?

(b) In terms of the parameters described, what is the total number of bits
required to store the tags?

(c) What are S and N for a fully associative cache of capacity C words with
block size b?

(d) What is S for a direct mapped cache of size C words and block size b?

Exercise 8.9 A 16-word cache has the parameters given in Exercise 8.8. Consider
the following repeating sequence of lw addresses (given in hexadecimal):

40 44 48 4C 70 74 78 7C 80 84 88 8C 90 94 98 9C 0 4 8 C 10 14 18 1C 20

Assuming least recently used (LRU) replacement for associative caches,
determine the effective miss rate if the sequence is input to the following
caches, ignoring startup effects (i.e., compulsory misses).

(a) direct mapped cache, S � 16, b � 1 word

(b) fully associative cache, N � 16, b � 1 word

(c) two-way set associative cache, S � 8, b � 1 word

(d) direct mapped cache, S � 8, b � 2 words

Exercise 8.10 Suppose you are running a program with the following data access
pattern. The pattern is executed only once.

0x0, 0x8, 0x10, 0x18, 0x20, 0x28

(a) If you use a direct mapped cache with a cache size of 1 KB and a block size
of 8 bytes (2 words), how many sets are in the cache?

(b) With the same cache and block size as in part (a), what is the miss rate of
the direct mapped cache for the given memory access pattern?

(c) For the given memory access pattern, which of the following would decrease
the miss rate the most? (Cache capacity is kept constant.) Circle one.

(i) Increasing the degree of associativity to 2.

(ii) Increasing the block size to 16 bytes.

Exercises 505

Chapter 08.qxd 1/30/07 9:53 AM Page 505

(iii) Either (i) or (ii).

(iv) Neither (i) nor (ii).

Exercise 8.11 You are building an instruction cache for a MIPS processor. It has
a total capacity of 4C � 2c�2 bytes. It is N � 2n-way set associative (N ≥ 8),
with a block size of b � 2b� bytes (b ≥ 8). Give your answers to the following
questions in terms of these parameters.

(a) Which bits of the address are used to select a word within a block?

(b) Which bits of the address are used to select the set within the cache?

(c) How many bits are in each tag?

(d) How many tag bits are in the entire cache?

Exercise 8.12 Consider a cache with the following parameters:
N (associativity) � 2, b (block size) � 2 words, W (word size) � 32 bits,
C (cache size) � 32 K words, A (address size) � 32 bits. You need consider only
word addresses.

(a) Show the tag, set, block offset, and byte offset bits of the address. State how
many bits are needed for each field.

(b) What is the size of all the cache tags in bits?

(c) Suppose each cache block also has a valid bit (V) and a dirty bit (D). What
is the size of each cache set, including data, tag, and status bits?

(d) Design the cache using the building blocks in Figure 8.32 and a small
number of two-input logic gates. The cache design must include tag storage,
data storage, address comparison, data output selection, and any other parts
you feel are relevant. Note that the multiplexer and comparator blocks may
be any size (n or p bits wide, respectively), but the SRAM blocks must be
16 K � 4 bits. Be sure to include a neatly labeled block diagram.

506 CHAPTER EIGHT Memory Systems

16K × 4
SRAM

14

4

=
pp

0

1

n

n

n

Figure 8.32 Building blocks

Chapter 08.qxd 1/30/07 9:53 AM Page 506

Exercise 8.13 You’ve joined a hot new Internet startup to build wrist watches
with a built-in pager and Web browser. It uses an embedded processor with a
multilevel cache scheme depicted in Figure 8.33. The processor includes a small
on-chip cache in addition to a large off-chip second-level cache. (Yes, the watch
weighs 3 pounds, but you should see it surf!)

Assume that the processor uses 32-bit physical addresses but accesses data only
on word boundaries. The caches have the characteristics given in Table 8.6. The
DRAM has an access time of tm and a size of 512 MB.

(a) For a given word in memory, what is the total number of locations in which
it might be found in the on-chip cache and in the second-level cache?

(b) What is the size, in bits, of each tag for the on-chip cache and the second-
level cache?

(c) Give an expression for the average memory read access time. The caches are
accessed in sequence.

(d) Measurements show that, for a particular problem of interest, the on-chip
cache hit rate is 85% and the second-level cache hit rate is 90%. However,
when the on-chip cache is disabled, the second-level cache hit rate shoots up
to 98.5%. Give a brief explanation of this behavior.

Exercises 507

Figure 8.33 Computer system

CPU
Level 1
Cache

Level 2
Cache

Main
Memory

Processor Chip

Table 8.6 Memory characteristics

Characteristic On-chip Cache Off-chip Cache

organization four-way set associative direct mapped

hit rate A B

access time ta tb

block size 16 bytes 16 bytes

number of blocks 512 256K

Chapter 08.qxd 1/30/07 9:53 AM Page 507

Exercise 8.14 This chapter described the least recently used (LRU) replacement
policy for multiway associative caches. Other, less common, replacement policies
include first-in-first-out (FIFO) and random policies. FIFO replacement evicts the
block that has been there the longest, regardless of how recently it was accessed.
Random replacement randomly picks a block to evict.

(a) Discuss the advantages and disadvantages of each of these replacement
policies.

(b) Describe a data access pattern for which FIFO would perform better than
LRU.

Exercise 8.15 You are building a computer with a hierarchical memory system
that consists of separate instruction and data caches followed by main memory.
You are using the MIPS multicycle processor from Figure 7.41 running at
1 GHz.

(a) Suppose the instruction cache is perfect (i.e., always hits) but the data cache
has a 5% miss rate. On a cache miss, the processor stalls for 60 ns to access
main memory, then resumes normal operation. Taking cache misses into
account, what is the average memory access time?

(b) How many clock cycles per instruction (CPI) on average are required for
load and store word instructions considering the non-ideal memory system?

(c) Consider the benchmark application of Example 7.7 that has 25% loads,
10% stores, 11% branches, 2% jumps, and 52% R-type instructions.3

Taking the non-ideal memory system into account, what is the average CPI
for this benchmark?

(d) Now suppose that the instruction cache is also non-ideal and has a 7% miss
rate. What is the average CPI for the benchmark in part (c)? Take into
account both instruction and data cache misses.

Exercise 8.16 If a computer uses 64-bit virtual addresses, how much virtual
memory can it access? Note that 240 bytes � 1 terabyte, 250 bytes � 1 petabyte,
and 260 bytes � 1 exabyte.

Exercise 8.17 A supercomputer designer chooses to spend $1 million on DRAM
and the same amount on hard disks for virtual memory. Using the prices from
Figure 8.4, how much physical and virtual memory will the computer have?
How many bits of physical and virtual addresses are necessary to access this
memory?

508 CHAPTER EIGHT Memory Systems

3 Data from Patterson and Hennessy, Computer Organization and Design, 3rd Edition,
Morgan Kaufmann, 2005. Used with permission.

Chapter 08.qxd 1/30/07 9:53 AM Page 508

Exercise 8.18 Consider a virtual memory system that can address a total of 232

bytes. You have unlimited hard disk space, but are limited to only 8 MB of
semiconductor (physical) memory. Assume that virtual and physical pages are
each 4 KB in size.

(a) How many bits is the physical address?

(b) What is the maximum number of virtual pages in the system?

(c) How many physical pages are in the system?

(d) How many bits are the virtual and physical page numbers?

(e) Suppose that you come up with a direct mapped scheme that maps virtual
pages to physical pages. The mapping uses the least significant bits of the
virtual page number to determine the physical page number. How many
virtual pages are mapped to each physical page? Why is this “direct
mapping” a bad plan?

(f) Clearly, a more flexible and dynamic scheme for translating virtual
addresses into physical addresses is required than the one described in part
(d). Suppose you use a page table to store mappings (translations from
virtual page number to physical page number). How many page table
entries will the page table contain?

(g) Assume that, in addition to the physical page number, each page table entry
also contains some status information in the form of a valid bit (V) and a
dirty bit (D). How many bytes long is each page table entry? (Round up to
an integer number of bytes.)

(h) Sketch the layout of the page table. What is the total size of the page table
in bytes?

Exercise 8.19 You decide to speed up the virtual memory system of Exercise
8.18 by using a translation lookaside buffer (TLB). Suppose your memory
system has the characteristics shown in Table 8.7. The TLB and cache miss
rates indicate how often the requested entry is not found. The main memory
miss rate indicates how often page faults occur.

Exercises 509

Table 8.7 Memory characteristics

Memory Unit Access Time (Cycles) Miss Rate

TLB 1 0.05%

cache 1 2%

main memory 100 0.0003%

disk 1,000,000 0%

Chapter 08.qxd 1/30/07 9:53 AM Page 509

(a) What is the average memory access time of the virtual memory system
before and after adding the TLB? Assume that the page table is always
resident in physical memory and is never held in the data cache.

(b) If the TLB has 64 entries, how big (in bits) is the TLB? Give numbers for
data (physical page number), tag (virtual page number), and valid bits of
each entry. Show your work clearly.

(c) Sketch the TLB. Clearly label all fields and dimensions.

(d) What size SRAM would you need to build the TLB described in part (c)?
Give your answer in terms of depth � width.

Exercise 8.20 Suppose the MIPS multicycle processor described in Section 7.4
uses a virtual memory system.

(a) Sketch the location of the TLB in the multicycle processor schematic.

(b) Describe how adding a TLB affects processor performance.

Exercise 8.21 The virtual memory system you are designing uses a single-level
page table built from dedicated hardware (SRAM and associated logic).
It supports 25-bit virtual addresses, 22-bit physical addresses, and 216-byte
(64 KB) pages. Each page table entry contains a physical page number, a valid
bit (V) and a dirty bit (D).

(a) What is the total size of the page table, in bits?

(b) The operating system team proposes reducing the page size from 64 to
16 KB, but the hardware engineers on your team object on the grounds of
added hardware cost. Explain their objection.

(c) The page table is to be integrated on the processor chip, along with the
on-chip cache. The on-chip cache deals only with physical (not virtual)
addresses. Is it possible to access the appropriate set of the on-chip cache
concurrently with the page table access for a given memory access? Explain
briefly the relationship that is necessary for concurrent access to the cache
set and page table entry.

(d) Is it possible to perform the tag comparison in the on-chip cache
concurrently with the page table access for a given memory access?
Explain briefly.

Exercise 8.22 Describe a scenario in which the virtual memory system might
affect how an application is written. Be sure to include a discussion of how
the page size and physical memory size affect the performance of the
application.

510 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 510

Exercise 8.23 Suppose you own a personal computer (PC) that uses 32-bit
virtual addresses.

(a) What is the maximum amount of virtual memory space each program
can use?

(b) How does the size of your PC’s hard disk affect performance?

(c) How does the size of your PC’s physical memory affect performance?

Exercise 8.24 Use MIPS memory-mapped I/O to interact with a user. Each time
the user presses a button, a pattern of your choice displays on five light-emitting
diodes (LEDs). Suppose the input button is mapped to address 0xFFFFFF10 and
the LEDs are mapped to address 0xFFFFFF14. When the button is pushed, its
output is 1; otherwise it is 0.

(a) Write MIPS code to implement this functionality.

(b) Draw a schematic similar to Figure 8.30 for this memory-mapped I/O
system.

(c) Write HDL code to implement the address decoder for your memory-
mapped I/O system.

Exercise 8.25 Finite state machines (FSMs), like the ones you built in Chapter 3,
can also be implemented in software.

(a) Implement the traffic light FSM from Figure 3.25 using MIPS assembly
code. The inputs (TA and TB) are memory-mapped to bit 1 and bit 0,
respectively, of address 0xFFFFF000. The two 3-bit outputs (LA and LB)
are mapped to bits 0–2 and bits 3–5, respectively, of address 0xFFFFF004.
Assume one-hot output encodings for each light, LA and LB; red is 100,
yellow is 010, and green is 001.

(b) Draw a schematic similar to Figure 8.30 for this memory-mapped I/O
system.

(c) Write HDL code to implement the address decoder for your memory-
mapped I/O system.

Exercises 511

Chapter 08.qxd 1/30/07 9:53 AM Page 511

Interview Questions

The following exercises present questions that have been asked on
interviews.

Question 8.1 Explain the difference between direct mapped, set associative, and
fully associative caches. For each cache type, describe an application for which
that cache type will perform better than the other two.

Question 8.2 Explain how virtual memory systems work.

Question 8.3 Explain the advantages and disadvantages of using a virtual
memory system.

Question 8.4 Explain how cache performance might be affected by the virtual
page size of a memory system.

Question 8.5 Can addresses used for memory-mapped I/O be cached? Explain
why or why not.

512 CHAPTER EIGHT Memory Systems

Chapter 08.qxd 1/30/07 9:53 AM Page 512

