
7
7.1 Introduction

7.2 Performance Analysis

7.3 Single-Cycle Processor

7.4 Multicycle Processor

7.5 Pipelined Processor

7.6 HDL Representation*

7.7 Exceptions*

7.8 Advanced

Microarchitecture*

7.9 Real-World Perspective:

IA-32 Microarchitecture*

7.10 Summary

Exercises

Interview Questions

Microarchitecture

7.1 INTRODUCTION

In this chapter, you will learn how to piece together a MIPS micro-
processor. Indeed, you will puzzle out three different versions, each with
different trade-offs between performance, cost, and complexity.

To the uninitiated, building a microprocessor may seem like black
magic. But it is actually relatively straightforward, and by this point you
have learned everything you need to know. Specifically, you have learned
to design combinational and sequential logic given functional and timing
specifications. You are familiar with circuits for arithmetic and memory.
And you have learned about the MIPS architecture, which specifies the
programmer’s view of the MIPS processor in terms of registers, instruc-
tions, and memory.

This chapter covers microarchitecture, which is the connection
between logic and architecture. Microarchitecture is the specific arrange-
ment of registers, ALUs, finite state machines (FSMs), memories, and
other logic building blocks needed to implement an architecture. A par-
ticular architecture, such as MIPS, may have many different microarchi-
tectures, each with different trade-offs of performance, cost, and
complexity. They all run the same programs, but their internal designs
vary widely. We will design three different microarchitectures in this
chapter to illustrate the trade-offs.

This chapter draws heavily on David Patterson and John Hennessy’s
classic MIPS designs in their text Computer Organization and Design.
They have generously shared their elegant designs, which have the virtue
of illustrating a real commercial architecture while being relatively sim-
ple and easy to understand.

7.1 .1 Architectural State and Instruction Set

Recall that a computer architecture is defined by its instruction set and
architectural state. The architectural state for the MIPS processor consists

363

Chapter 07.qxd 2/1/07 9:33 PM Page 363

of the program counter and the 32 registers. Any MIPS microarchitecture
must contain all of this state. Based on the current architectural state, the
processor executes a particular instruction with a particular set of data to
produce a new architectural state. Some microarchitectures contain
additional nonarchitectural state to either simplify the logic or improve
performance; we will point this out as it arises.

To keep the microarchitectures easy to understand, we consider only
a subset of the MIPS instruction set. Specifically, we handle the following
instructions:

� R-type arithmetic/logic instructions: add, sub, and, or, slt

� Memory instructions: lw, sw

� Branches: beq

After building the microarchitectures with these instructions, we extend
them to handle addi and j. These particular instructions were chosen
because they are sufficient to write many interesting programs. Once you
understand how to implement these instructions, you can expand the
hardware to handle others.

7.1 . 2 Design Process

We will divide our microarchitectures into two interacting parts: the
datapath and the control. The datapath operates on words of data. It
contains structures such as memories, registers, ALUs, and multiplexers.
MIPS is a 32-bit architecture, so we will use a 32-bit datapath. The con-
trol unit receives the current instruction from the datapath and tells the
datapath how to execute that instruction. Specifically, the control unit
produces multiplexer select, register enable, and memory write signals to
control the operation of the datapath.

A good way to design a complex system is to start with hardware
containing the state elements. These elements include the memories and
the architectural state (the program counter and registers). Then, add
blocks of combinational logic between the state elements to compute the
new state based on the current state. The instruction is read from part of
memory; load and store instructions then read or write data from
another part of memory. Hence, it is often convenient to partition the
overall memory into two smaller memories, one containing instructions
and the other containing data. Figure 7.1 shows a block diagram with
the four state elements: the program counter, register file, and instruction
and data memories.

In Figure 7.1, heavy lines are used to indicate 32-bit data busses.
Medium lines are used to indicate narrower busses, such as the 5-bit
address busses on the register file. Narrow blue lines are used to indicate

364 CHAPTER SEVEN Microarchitecture

David Patterson was the first
in his family to graduate from
college (UCLA, 1969). He has
been a professor of computer
science at UC Berkeley since
1977, where he coinvented
RISC, the Reduced Instruction
Set Computer. In 1984, he
developed the SPARC archi-
tecture used by Sun Micro-
systems. He is also the father
of RAID (Redundant Array of
Inexpensive Disks) and NOW
(Network of Workstations).

John Hennessy is president
of Stanford University and
has been a professor of elec-
trical engineering and com-
puter science there since
1977. He coinvented RISC.
He developed the MIPS archi-
tecture at Stanford in 1984
and cofounded MIPS Compu-
ter Systems. As of 2004, more
than 300 million MIPS micro-
processors have been sold.

In their copious free time,
these two modern paragons
write textbooks for recreation
and relaxation.

Chapter 07.qxd 2/1/07 9:33 PM Page 364

control signals, such as the register file write enable. We will use this
convention throughout the chapter to avoid cluttering diagrams with bus
widths. Also, state elements usually have a reset input to put them into a
known state at start-up. Again, to save clutter, this reset is not shown.

The program counter is an ordinary 32-bit register. Its output, PC,
points to the current instruction. Its input, PC�, indicates the address of
the next instruction.

The instruction memory has a single read port.1 It takes a 32-bit
instruction address input, A, and reads the 32-bit data (i.e., instruction)
from that address onto the read data output, RD.

The 32-element � 32-bit register file has two read ports and one write
port. The read ports take 5-bit address inputs, A1 and A2, each specifying
one of 25 � 32 registers as source operands. They read the 32-bit register
values onto read data outputs RD1 and RD2, respectively. The write port
takes a 5-bit address input, A3; a 32-bit write data input, WD; a write
enable input, WE3; and a clock. If the write enable is 1, the register file
writes the data into the specified register on the rising edge of the clock.

The data memory has a single read/write port. If the write enable,
WE, is 1, it writes data WD into address A on the rising edge of the
clock. If the write enable is 0, it reads address A onto RD.

The instruction memory, register file, and data memory are all read
combinationally. In other words, if the address changes, the new data
appears at RD after some propagation delay; no clock is involved. They
are written only on the rising edge of the clock. In this fashion, the state
of the system is changed only at the clock edge. The address, data, and
write enable must setup sometime before the clock edge and must
remain stable until a hold time after the clock edge.

Because the state elements change their state only on the rising edge of
the clock, they are synchronous sequential circuits. The microprocessor is

7.1 Introduction 365

Resetting the PC

At the very least, the program
counter must have a reset
signal to initialize its value
when the processor turns on.
MIPS processors initialize the
PC to 0xBFC00000 on reset and
begin executing code to start
up the operating system (OS).
The OS then loads an applica-
tion program at 0x00400000
and begins executing it.
For simplicity in this chapter,
we will reset the PC to
0x00000000 and place our
programs there instead.

1 This is an oversimplification used to treat the instruction memory as a ROM; in most
real processors, the instruction memory must be writable so that the OS can load a new
program into memory. The multicycle microarchitecture described in Section 7.4 is more
realistic in that it uses a combined memory for instructions and data that can be both read
and written.

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

A RD

Data
Memory
WD

WEPCPC'

CLK

32 32
32 32

32

32

32 32

32

32

5

5

5

Figure 7.1 State elements of MIPS processor

Chapter 07.qxd 2/1/07 9:33 PM Page 365

built of clocked state elements and combinational logic, so it too is a
synchronous sequential circuit. Indeed, the processor can be viewed as a
giant finite state machine, or as a collection of simpler interacting state
machines.

7.1 . 3 MIPS Microarchitectures

In this chapter, we develop three microarchitectures for the MIPS proces-
sor architecture: single-cycle, multicycle, and pipelined. They differ in
the way that the state elements are connected together and in the
amount of nonarchitectural state.

The single-cycle microarchitecture executes an entire instruction
in one cycle. It is easy to explain and has a simple control unit.
Because it completes the operation in one cycle, it does not require
any nonarchitectural state. However, the cycle time is limited by the
slowest instruction.

The multicycle microarchitecture executes instructions in a series of
shorter cycles. Simpler instructions execute in fewer cycles than compli-
cated ones. Moreover, the multicycle microarchitecture reduces the hard-
ware cost by reusing expensive hardware blocks such as adders and
memories. For example, the adder may be used on several different
cycles for several purposes while carrying out a single instruction. The
multicycle microprocessor accomplishes this by adding several nonarchi-
tectural registers to hold intermediate results. The multicycle processor
executes only one instruction at a time, but each instruction takes multi-
ple clock cycles.

The pipelined microarchitecture applies pipelining to the single-cycle
microarchitecture. It therefore can execute several instructions simulta-
neously, improving the throughput significantly. Pipelining must add
logic to handle dependencies between simultaneously executing instruc-
tions. It also requires nonarchitectural pipeline registers. The added logic
and registers are worthwhile; all commercial high-performance proces-
sors use pipelining today.

We explore the details and trade-offs of these three microarchitec-
tures in the subsequent sections. At the end of the chapter, we briefly
mention additional techniques that are used to get even more speed in
modern high-performance microprocessors.

7. 2 PERFORMANCE ANALYSIS

As we mentioned, a particular processor architecture can have many
microarchitectures with different cost and performance trade-offs. The
cost depends on the amount of hardware required and the implementa-
tion technology. Each year, CMOS processes can pack more transistors
on a chip for the same amount of money, and processors take advantage

366 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 366

of these additional transistors to deliver more performance. Precise cost
calculations require detailed knowledge of the implementation technol-
ogy, but in general, more gates and more memory mean more dollars.
This section lays the foundation for analyzing performance.

There are many ways to measure the performance of a computer
system, and marketing departments are infamous for choosing the
method that makes their computer look fastest, regardless of whether
the measurement has any correlation to real world performance. For
example, Intel and Advanced Micro Devices (AMD) both sell compati-
ble microprocessors conforming to the IA-32 architecture. Intel
Pentium III and Pentium 4 microprocessors were largely advertised
according to clock frequency in the late 1990s and early 2000s,
because Intel offered higher clock frequencies than its competitors.
However, Intel’s main competitor, AMD, sold Athlon microprocessors
that executed programs faster than Intel’s chips at the same clock
frequency. What is a consumer to do?

The only gimmick-free way to measure performance is by measuring
the execution time of a program of interest to you. The computer that exe-
cutes your program fastest has the highest performance. The next best
choice is to measure the total execution time of a collection of programs
that are similar to those you plan to run; this may be necessary if you
haven’t written your program yet or if somebody else who doesn’t have
your program is making the measurements. Such collections of programs
are called benchmarks, and the execution times of these programs are com-
monly published to give some indication of how a processor performs.

The execution time of a program, measured in seconds, is given by
Equation 7.1.

(7.1)

The number of instructions in a program depends on the processor archi-
tecture. Some architectures have complicated instructions that do more
work per instruction, thus reducing the number of instructions in a pro-
gram. However, these complicated instructions are often slower to execute
in hardware. The number of instructions also depends enormously on the
cleverness of the programmer. For the purposes of this chapter, we will
assume that we are executing known programs on a MIPS processor, so
the number of instructions for each program is constant, independent of
the microarchitecture.

The number of cycles per instruction, often called CPI, is the num-
ber of clock cycles required to execute an average instruction. It is the
reciprocal of the throughput (instructions per cycle, or IPC). Different
microarchitectures have different CPIs. In this chapter, we will assume

Execution Time � �# instructions�� cycles
instruction��

seconds
cycle �

7.2 Performance Analysis 367

Chapter 07.qxd 2/1/07 9:33 PM Page 367

we have an ideal memory system that does not affect the CPI. In
Chapter 8, we examine how the processor sometimes has to wait for the
memory, which increases the CPI.

The number of seconds per cycle is the clock period, Tc. The clock
period is determined by the critical path through the logic on the proces-
sor. Different microarchitectures have different clock periods. Logic and
circuit designs also significantly affect the clock period. For example, a
carry-lookahead adder is faster than a ripple-carry adder. Manufacturing
advances have historically doubled transistor speeds every 4–6 years, so
a microprocessor built today will be much faster than one from last
decade, even if the microarchitecture and logic are unchanged.

The challenge of the microarchitect is to choose the design that
minimizes the execution time while satisfying constraints on cost and/or
power consumption. Because microarchitectural decisions affect both
CPI and Tc and are influenced by logic and circuit designs, determining
the best choice requires careful analysis.

There are many other factors that affect overall computer perform-
ance. For example, the hard disk, the memory, the graphics system, and
the network connection may be limiting factors that make processor
performance irrelevant. The fastest microprocessor in the world doesn’t
help surfing the Internet on a dial-up connection. But these other factors
are beyond the scope of this book.

7. 3 SINGLE-CYCLE PROCESSOR

We first design a MIPS microarchitecture that executes instructions in a
single cycle. We begin constructing the datapath by connecting the state
elements from Figure 7.1 with combinational logic that can execute the
various instructions. Control signals determine which specific instruction
is carried out by the datapath at any given time. The controller contains
combinational logic that generates the appropriate control signals based
on the current instruction. We conclude by analyzing the performance of
the single-cycle processor.

7. 3 .1 Single-Cycle Datapath

This section gradually develops the single-cycle datapath, adding one
piece at a time to the state elements from Figure 7.1. The new connec-
tions are emphasized in black (or blue, for new control signals), while
the hardware that has already been studied is shown in gray.

The program counter (PC) register contains the address of the
instruction to execute. The first step is to read this instruction from
instruction memory. Figure 7.2 shows that the PC is simply connected to
the address input of the instruction memory. The instruction memory
reads out, or fetches, the 32-bit instruction, labeled Instr.

368 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 368

The processor’s actions depend on the specific instruction that was
fetched. First we will work out the datapath connections for the lw
instruction. Then we will consider how to generalize the datapath to
handle the other instructions.

For a lw instruction, the next step is to read the source register
containing the base address. This register is specified in the rs field of
the instruction, Instr25:21. These bits of the instruction are connected
to the address input of one of the register file read ports, A1, as shown in
Figure 7.3. The register file reads the register value onto RD1.

The lw instruction also requires an offset. The offset is stored in the
immediate field of the instruction, Instr15:0. Because the 16-bit immedi-
ate might be either positive or negative, it must be sign-extended to
32 bits, as shown in Figure 7.4. The 32-bit sign-extended value is
called SignImm. Recall from Section 1.4.6 that sign extension simply
copies the sign bit (most significant bit) of a short input into all of the
upper bits of the longer output. Specifically, SignImm15:0 � Instr15:0
and SignImm31:16 � Instr15.

7.3 Single-Cycle Processor 369

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

PCPC' Instr

A RD

Data
Memory
WD

WE

CLK

Figure 7.2 Fetch instruction

from memory

Instr

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

PCPC'

25:21

A RD

Data
Memory
WD

WE

CLK

Figure 7.3 Read source operand

from register file

SignImm

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

PCPC' Instr
25:21

15:0

A RD

Data
Memory
WD

WE

CLK

Figure 7.4 Sign-extend the

immediate

Chapter 07.qxd 2/1/07 9:33 PM Page 369

The processor must add the base address to the offset to find the
address to read from memory. Figure 7.5 introduces an ALU to perform
this addition. The ALU receives two operands, SrcA and SrcB. SrcA
comes from the register file, and SrcB comes from the sign-extended
immediate. The ALU can perform many operations, as was described in
Section 5.2.4. The 3-bit ALUControl signal specifies the operation. The
ALU generates a 32-bit ALUResult and a Zero flag, that indicates
whether ALUResult �� 0. For a lw instruction, the ALUControl signal
should be set to 010 to add the base address and offset. ALUResult is
sent to the data memory as the address for the load instruction, as
shown in Figure 7.5.

The data is read from the data memory onto the ReadData bus,
then written back to the destination register in the register file at the
end of the cycle, as shown in Figure 7.6. Port 3 of the register file is the

370 CHAPTER SEVEN Microarchitecture

SignImm

CLK

A RD

Instruction
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD

Data
Memory
WD

WE
PCPC' Instr

25:21

15:0

SrcB

ALUResult

SrcA Zero

CLK

ALUControl2:0

010

A
LU

Figure 7.5 Compute memory address

A1

A3

WD3

RD2

RD1
WE3

A2

SignImm

CLK

A RD

Instruction
Memory

CLK

Sign Extend

Register
File

A RD

Data
Memory
WD

WE
PCPC' Instr

25:21

15:0

SrcB20:16

ALUResult ReadData

SrcA

RegWrite

Zero

CLK

ALUControl2:0

0101

A
LU

Figure 7.6 Write data back to register file

Chapter 07.qxd 2/1/07 9:33 PM Page 370

write port. The destination register for the lw instruction is specified in
the rt field, Instr20:16, which is connected to the port 3 address input,
A3, of the register file. The ReadData bus is connected to the port 3
write data input, WD3, of the register file. A control signal called
RegWrite is connected to the port 3 write enable input, WE3, and is
asserted during a lw instruction so that the data value is written into the
register file. The write takes place on the rising edge of the clock at the
end of the cycle.

While the instruction is being executed, the processor must
compute the address of the next instruction, PC�. Because instructions
are 32 bits � 4 bytes, the next instruction is at PC � 4. Figure 7.7 uses
another adder to increment the PC by 4. The new address is written into
the program counter on the next rising edge of the clock. This completes
the datapath for the lw instruction.

Next, let us extend the datapath to also handle the sw instruction.
Like the lw instruction, the sw instruction reads a base address from port
1 of the register and sign-extends an immediate. The ALU adds the base
address to the immediate to find the memory address. All of these func-
tions are already supported by the datapath.

The sw instruction also reads a second register from the register file
and writes it to the data memory. Figure 7.8 shows the new connections for
this function. The register is specified in the rt field, Instr20:16. These bits
of the instruction are connected to the second register file read port, A2.
The register value is read onto the RD2 port. It is connected to the write
data port of the data memory. The write enable port of the data memory,
WE, is controlled by MemWrite. For a sw instruction, MemWrite � 1, to
write the data to memory; ALUControl � 010, to add the base address

7.3 Single-Cycle Processor 371

CLK

SignImm

A RD

Instruction
Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD

Data
Memory
WD

WE
PCPC' Instr

25:21

15:0

SrcB
20:16

ALUResult ReadData

SrcA

PCPlus4

Result

RegWrite

Zero

CLK

ALUControl2:0

0101

A
LU

+

Figure 7.7 Determine address of next instruction for PC

Chapter 07.qxd 2/1/07 9:33 PM Page 371

and offset; and RegWrite � 0, because nothing should be written to the
register file. Note that data is still read from the address given to the data
memory, but that this ReadData is ignored because RegWrite � 0.

Next, consider extending the datapath to handle the R-type instruc-
tions add, sub, and, or, and slt. All of these instructions read two regis-
ters from the register file, perform some ALU operation on them, and
write the result back to a third register file. They differ only in the spe-
cific ALU operation. Hence, they can all be handled with the same hard-
ware, using different ALUControl signals.

Figure 7.9 shows the enhanced datapath handling R-type instruc-
tions. The register file reads two registers. The ALU performs an opera-
tion on these two registers. In Figure 7.8, the ALU always received its
SrcB operand from the sign-extended immediate (SignImm). Now, we
add a multiplexer to choose SrcB from either the register file RD2 port
or SignImm.

The multiplexer is controlled by a new signal, ALUSrc. ALUSrc is 0
for R-type instructions to choose SrcB from the register file; it is 1 for lw
and sw to choose SignImm. This principle of enhancing the datapath’s
capabilities by adding a multiplexer to choose inputs from several possi-
bilities is extremely useful. Indeed, we will apply it twice more to com-
plete the handling of R-type instructions.

In Figure 7.8, the register file always got its write data from
the data memory. However, R-type instructions write the ALUResult to
the register file. Therefore, we add another multiplexer to choose
between ReadData and ALUResult. We call its output Result. This multi-
plexer is controlled by another new signal, MemtoReg. MemtoReg is 0

372 CHAPTER SEVEN Microarchitecture

SignImm

CLK

A RD

Instruction
Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

A RD
Data

Memory
WD

WE
PCPC' Instr

25:21

20:16

15:0

SrcB
20:16

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

MemWriteRegWrite

Zero

CLK

ALUControl2:0

10100

A
LU

+

Figure 7.8 Write data to memory for sw instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 372

for R-type instructions to choose Result from the ALUResult; it is 1 for
lw to choose ReadData. We don’t care about the value of MemtoReg for
sw, because sw does not write to the register file.

Similarly, in Figure 7.8, the register to write was specified by the rt
field of the instruction, Instr20:16. However, for R-type instructions, the
register is specified by the rd field, Instr15:11. Thus, we add a third mul-
tiplexer to choose WriteReg from the appropriate field of the instruc-
tion. The multiplexer is controlled by RegDst. RegDst is 1 for R-type
instructions to choose WriteReg from the rd field, Instr15:11; it is 0 for
lw to choose the rt field, Instr20:16. We don’t care about the value of
RegDst for sw, because sw does not write to the register file.

Finally, let us extend the datapath to handle beq. beq compares
two registers. If they are equal, it takes the branch by adding the branch
offset to the program counter. Recall that the offset is a positive or nega-
tive number, stored in the imm field of the instruction, Instr31:26. The off-
set indicates the number of instructions to branch past. Hence, the
immediate must be sign-extended and multiplied by 4 to get the new
program counter value: PC� � PC � 4 � SignImm � 4.

Figure 7.10 shows the datapath modifications. The next PC value
for a taken branch, PCBranch, is computed by shifting SignImm left by
2 bits, then adding it to PCPlus4. The left shift by 2 is an easy way to
multiply by 4, because a shift by a constant amount involves just wires.
The two registers are compared by computing SrcA � SrcB using the
ALU. If ALUResult is 0, as indicated by the Zero flag from the ALU, the
registers are equal. We add a multiplexer to choose PC� from either
PCPlus4 or PCBranch. PCBranch is selected if the instruction is

7.3 Single-Cycle Processor 373

SignImm

CLK

A RD

Instruction
Memory

4

+

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PCPC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

ALUResult ReadData

WriteData

SrcA

PCPlus4
WriteReg4:0

Result

RegDst MemWrite MemtoRegALUSrcRegWrite

Zero

CLK

ALUControl2:0

0
varies1 001

A
LU

Figure 7.9 Datapath enhancements for R-type instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 373

a branch and the Zero flag is asserted. Hence, Branch is 1 for beq and
0 for other instructions. For beq, ALUControl � 110, so the ALU
performs a subtraction. ALUSrc � 0 to choose SrcB from the register
file. RegWrite and MemWrite are 0, because a branch does not write to
the register file or memory. We don’t care about the values of RegDst
and MemtoReg, because the register file is not written.

This completes the design of the single-cycle MIPS processor data-
path. We have illustrated not only the design itself, but also the design
process in which the state elements are identified and the combinational
logic connecting the state elements is systematically added. In the next
section, we consider how to compute the control signals that direct the
operation of our datapath.

7. 3 . 2 Single-Cycle Control

The control unit computes the control signals based on the opcode and
funct fields of the instruction, Instr31:26 and Instr5:0. Figure 7.11 shows
the entire single-cycle MIPS processor with the control unit attached to
the datapath.

Most of the control information comes from the opcode, but R-type
instructions also use the funct field to determine the ALU operation.
Thus, we will simplify our design by factoring the control unit into two
blocks of combinational logic, as shown in Figure 7.12. The main
decoder computes most of the outputs from the opcode. It also deter-
mines a 2-bit ALUOp signal. The ALU decoder uses this ALUOp signal
in conjunction with the funct field to compute ALUControl. The mean-
ing of the ALUOp signal is given in Table 7.1.

374 CHAPTER SEVEN Microarchitecture

SignImm

CLK

A RD

Instruction
Memory

4

+

+

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PC0

1

PC' Instr
25:21

20:16

15:0

SrcB

20:16

15:11

<<2

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

RegDst Branch MemWrite MemtoRegALUSrcRegWrite

Zero

PCSrc

CLK

ALUControl2:0

0
1100 x0x 1

A
LU

Figure 7.10 Datapath enhancements for beq instruction

RegDst

Branch

MemWrite

MemtoReg

ALUSrc
Opcode5:0

Control
Unit

ALUControl2:0Funct5:0

Main
Decoder

ALUOp1:0

ALU
Decoder

RegWrite

Figure 7.12 Control unit

internal structure

Chapter 07.qxd 2/1/07 9:33 PM Page 374

7.3 Single-Cycle Processor 375

SignImm

CLK

A RD

Instruction
Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch
+

+

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

A
LU

Figure 7.11 Complete single-cycle MIPS processor

Table 7.1 ALUOp encoding

ALUOp Meaning

00 add

01 subtract

10 look at funct field

11 n/a

Table 7.2 is a truth table for the ALU decoder. Recall that the mean-
ings of the three ALUControl signals were given in Table 5.1. Because
ALUOp is never 11, the truth table can use don’t care’s X1 and 1X
instead of 01 and 10 to simplify the logic. When ALUOp is 00 or 01, the
ALU should add or subtract, respectively. When ALUOp is 10, the
decoder examines the funct field to determine the ALUControl. Note
that, for the R-type instructions we implement, the first two bits of the
funct field are always 10, so we may ignore them to simplify the decoder.

The control signals for each instruction were described as we built
the datapath. Table 7.3 is a truth table for the main decoder that sum-
marizes the control signals as a function of the opcode. All R-type
instructions use the same main decoder values; they differ only in the

Chapter 07.qxd 2/1/07 9:33 PM Page 375

ALU decoder output. Recall that, for instructions that do not write to
the register file (e.g., sw and beq), the RegDst and MemtoReg control
signals are don’t cares (X); the address and data to the register write
port do not matter because RegWrite is not asserted. The logic for the
decoder can be designed using your favorite techniques for combina-
tional logic design.

Example 7.1 SINGLE-CYCLE PROCESSOR OPERATION

Determine the values of the control signals and the portions of the datapath that
are used when executing an or instruction.

Solution: Figure 7.13 illustrates the control signals and flow of data during
execution of the or instruction. The PC points to the memory location holding
the instruction, and the instruction memory fetches this instruction.

The main flow of data through the register file and ALU is represented with a
dashed blue line. The register file reads the two source operands specified by
Instr25:21 and Instr20:16. SrcB should come from the second port of the register

376 CHAPTER SEVEN Microarchitecture

Table 7.2 ALU decoder truth table

ALUOp Funct ALUControl

00 X 010 (add)

X1 X 110 (subtract)

1X 100000 (add) 010 (add)

1X 100010 (sub) 110 (subtract)

1X 100100 (and) 000 (and)

1X 100101 (or) 001 (or)

1X 101010 (slt) 111 (set less than)

Table 7.3 Main decoder truth table

Instruction Opcode RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

Chapter 07.qxd 2/1/07 9:33 PM Page 376

file (not SignImm), so ALUSrc must be 0. or is an R-type instruction, so ALUOp
is 10, indicating that ALUControl should be determined from the funct field
to be 001. Result is taken from the ALU, so MemtoReg is 0. The result is written
to the register file, so RegWrite is 1. The instruction does not write memory, so
MemWrite � 0.

The selection of the destination register is also shown with a dashed blue
line. The destination register is specified in the rd field, Instr15:11, so RegDst � 1.

The updating of the PC is shown with the dashed gray line. The instruction is
not a branch, so Branch � 0 and, hence, PCSrc is also 0. The PC gets its next
value from PCPlus4.

Note that data certainly does flow through the nonhighlighted paths, but that
the value of that data is unimportant for this instruction. For example, the
immediate is sign-extended and data is read from memory, but these values do
not influence the next state of the system.

7. 3 . 3 More Instructions

We have considered a limited subset of the full MIPS instruction set.
Adding support for the addi and j instructions illustrates the principle
of how to handle new instructions and also gives us a sufficiently rich
instruction set to write many interesting programs. We will see that

7.3 Single-Cycle Processor 377

SignImm

CLK

A RD

Instruction
Memory

4

+

+

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PC
1

Instr
25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

001 0
0

1
0

0

1

0

A
LU

0 PC'

Figure 7.13 Control signals and data flow while executing or instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 377

supporting some instructions simply requires enhancing the main
decoder, whereas supporting others also requires more hardware in the
datapath.

Example 7.2 addi INSTRUCTION

The add immediate instruction, addi, adds the value in a register to the immedi-
ate and writes the result to another register. The datapath already is capable of
this task. Determine the necessary changes to the controller to support addi.

Solution: All we need to do is add a new row to the main decoder truth table
showing the control signal values for addi, as given in Table 7.4. The result
should be written to the register file, so RegWrite � 1. The destination register is
specified in the rt field of the instruction, so RegDst � 0. SrcB comes from the
immediate, so ALUSrc � 1. The instruction is not a branch, nor does it write
memory, so Branch � MemWrite � 0. The result comes from the ALU, not
memory, so MemtoReg � 0. Finally, the ALU should add, so ALUOp � 00.

378 CHAPTER SEVEN Microarchitecture

Table 7.4 Main decoder truth table enhanced to support addi

Instruction Opcode RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

addi 001000 1 0 1 0 0 0 00

Example 7.3 j INSTRUCTION

The jump instruction, j, writes a new value into the PC. The two least signifi-
cant bits of the PC are always 0, because the PC is word aligned (i.e., always a
multiple of 4). The next 26 bits are taken from the jump address field in
Instr25:0. The upper four bits are taken from the old value of the PC.

The existing datapath lacks hardware to compute PC� in this fashion. Determine
the necessary changes to both the datapath and controller to handle j.

Solution: First, we must add hardware to compute the next PC value, PC�, in the
case of a j instruction and a multiplexer to select this next PC, as shown in
Figure 7.14. The new multiplexer uses the new Jump control signal.

Chapter 07.qxd 2/1/07 9:33 PM Page 378

Now we must add a row to the main decoder truth table for the j instruction
and a column for the Jump signal, as shown in Table 7.5. The Jump control
signal is 1 for the j instruction and 0 for all others. j does not write the register
file or memory, so RegWrite � MemWrite � 0. Hence, we don’t care about
the computation done in the datapath, and RegDst � ALUSrc � Branch �

MemtoReg � ALUOp � X.

7.3 Single-Cycle Processor 379

SignImm

CLK

A RD

Instruction
Memory

4

+

+

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PC
0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

0

1

25:0
<<2

27:0 31:28

PCJump

Jump

A
LU

Figure 7.14 Single-cycle MIPS datapath enhanced to support the j instruction

Table 7.5 Main decoder truth table enhanced to support j

Instruction Opcode RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

Chapter 07.qxd 2/1/07 9:33 PM Page 379

7. 3 . 4 Performance Analysis

Each instruction in the single-cycle processor takes one clock cycle, so the
CPI is 1. The critical path for the lw instruction is shown in Figure 7.15
with a heavy dashed blue line. It starts with the PC loading a new address
on the rising edge of the clock. The instruction memory reads the next
instruction. The register file reads SrcA. While the register file is reading,
the immediate field is sign-extended and selected at the ALUSrc multi-
plexer to determine SrcB. The ALU adds SrcA and SrcB to find the effec-
tive address. The data memory reads from this address. The MemtoReg
multiplexer selects ReadData. Finally, Result must setup at the register file
before the next rising clock edge, so that it can be properly written. Hence,
the cycle time is

(7.2)

In most implementation technologies, the ALU, memory, and register file
accesses are substantially slower than other operations. Therefore, the
cycle time simplifies to

(7.3)

The numerical values of these times will depend on the specific implemen-
tation technology.

Tc � tpcq�PC �2tmem � tRFread �2tmux � tALU � tRFsetup

� tALU � tmem � tmux � tRFsetup

Tc � tpcq�PC � tmem � max[tRFread, tsext] � tmux

380 CHAPTER SEVEN Microarchitecture

SignImm

CLK

A RD

Instruction
Memory

4

A1

A3

WD3

RD1
WE3

CLK

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch
+

+

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

1

010 0
1

0

1

0 0

A
LU

RD2A2

Sign Extend

Figure 7.15 Critical path for lw instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 380

Other instructions have shorter critical paths. For example, R-type
instructions do not need to access data memory. However, we are
disciplining ourselves to synchronous sequential design, so the clock
period is constant and must be long enough to accommodate the
slowest instruction.

Example 7.4 SINGLE-CYCLE PROCESSOR PERFORMANCE

Ben Bitdiddle is contemplating building the single-cycle MIPS processor in a 65 nm
CMOS manufacturing process. He has determined that the logic elements have the
delays given in Table 7.6. Help him compare the execution time for a program
with 100 billion instructions.

Solution: According to Equation 7.3, the cycle time of the single-cycle processor is
Tc1 � 30 � 2(250) � 150 � 2(25) � 200 � 20 � 950 ps. We use the subscript
“1” to distinguish it from subsequent processor designs. According to Equation
7.1, the total execution time is T1 � (100 � 109 instructions)(1 cycle/instruction)
(950 � 10�12 s/cycle) � 95 seconds.

7.4 Multicycle Processor 381

Table 7.6 Delays of circuit elements

Element Parameter Delay (ps)

register clk-to-Q tpcq 30

register setup tsetup 20

multiplexer tmux 25

ALU tALU 200

memory read tmem 250

register file read tRFread 150

register file setup tRFsetup 20

7. 4 MULTICYCLE PROCESSOR

The single-cycle processor has three primary weaknesses. First, it
requires a clock cycle long enough to support the slowest instruction
(lw), even though most instructions are faster. Second, it requires three
adders (one in the ALU and two for the PC logic); adders are relatively
expensive circuits, especially if they must be fast. And third, it has sepa-
rate instruction and data memories, which may not be realistic. Most
computers have a single large memory that holds both instructions and
data and that can be read and written.

Chapter 07.qxd 2/1/07 9:33 PM Page 381

The multicycle processor addresses these weaknesses by breaking an
instruction into multiple shorter steps. In each short step, the processor
can read or write the memory or register file or use the ALU. Different
instructions use different numbers of steps, so simpler instructions can
complete faster than more complex ones. The processor needs only one
adder; this adder is reused for different purposes on various steps. And
the processor uses a combined memory for instructions and data. The
instruction is fetched from memory on the first step, and data may be
read or written on later steps.

We design a multicycle processor following the same procedure we
used for the single-cycle processor. First, we construct a datapath by con-
necting the architectural state elements and memories with combinational
logic. But, this time, we also add nonarchitectural state elements to hold
intermediate results between the steps. Then we design the controller. The
controller produces different signals on different steps during execution
of a single instruction, so it is now a finite state machine rather than com-
binational logic. We again examine how to add new instructions to the
processor. Finally, we analyze the performance of the multicycle processor
and compare it to the single-cycle processor.

7. 4 .1 Multicycle Datapath

Again, we begin our design with the memory and architectural state of the
MIPS processor, shown in Figure 7.16. In the single-cycle design, we used
separate instruction and data memories because we needed to read the
instruction memory and read or write the data memory all in one cycle.
Now, we choose to use a combined memory for both instructions and data.
This is more realistic, and it is feasible because we can read the instruction
in one cycle, then read or write the data in a separate cycle. The PC and
register file remain unchanged. We gradually build the datapath by adding
components to handle each step of each instruction. The new connections
are emphasized in black (or blue, for new control signals), whereas the
hardware that has already been studied is shown in gray.

The PC contains the address of the instruction to execute. The first
step is to read this instruction from instruction memory. Figure 7.17
shows that the PC is simply connected to the address input of the instruc-
tion memory. The instruction is read and stored in a new nonarchitectural

382 CHAPTER SEVEN Microarchitecture

CLK

A
RD

Instr/Data
Memory

PCPC'

WD

WE

CLK

EN

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

Figure 7.16 State elements with

unified instruction/data memory

Chapter 07.qxd 2/1/07 9:33 PM Page 382

Instruction Register so that it is available for future cycles. The Instruction
Register receives an enable signal, called IRWrite, that is asserted when it
should be updated with a new instruction.

As we did with the single-cycle processor, we will work out the data-
path connections for the lw instruction. Then we will enhance the data-
path to handle the other instructions. For a lw instruction, the next step
is to read the source register containing the base address. This register is
specified in the rs field of the instruction, Instr25:21. These bits of the
instruction are connected to one of the address inputs, A1, of the register
file, as shown in Figure 7.18. The register file reads the register onto
RD1. This value is stored in another nonarchitectural register, A.

The lw instruction also requires an offset. The offset is stored in
the immediate field of the instruction, Instr15:0 and must be sign-
extended to 32 bits, as shown in Figure 7.19. The 32-bit sign-extended
value is called SignImm. To be consistent, we might store SignImm in
another nonarchitectural register. However, SignImm is a combina-
tional function of Instr and will not change while the current instruc-
tion is being processed, so there is no need to dedicate a register to
hold the constant value.

The address of the load is the sum of the base address and offset. We
use an ALU to compute this sum, as shown in Figure 7.20. ALUControl
should be set to 010 to perform an addition. ALUResult is stored in a
nonarchitectural register called ALUOut.

The next step is to load the data from the calculated address in the
memory. We add a multiplexer in front of the memory to choose the

7.4 Multicycle Processor 383

PC Instr

CLK

EN

IRWrite

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

PC'

WD

WE

CLK

Figure 7.17 Fetch instruction

from memory

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

PCPC' Instr
25:21

CLK

WD

WE

CLK CLK

A

EN

IRWrite

Figure 7.18 Read source operand

from register file

Chapter 07.qxd 2/1/07 9:33 PM Page 383

384 CHAPTER SEVEN Microarchitecture

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

PCPC' Instr
25:21

15:0

CLK

WD

WE

CLK CLK

A

EN

IRWrite

Figure 7.19 Sign-extend the immediate

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

PCPC' Instr
25:21

15:0

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl2:0

WD

WE

CLK CLK

A CLK

EN

IRWrite

A
LU

Figure 7.20 Add base address to offset

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

PCPC' Instr
25:21

15:0

SrcB

ALUResult

SrcA

ALUOut

CLK

ALUControl2:0

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

EN

IRWriteIorD

0

1 A
LU

Figure 7.21 Load data from memory

Chapter 07.qxd 2/1/07 9:33 PM Page 384

memory address, Adr, from either the PC or ALUOut, as shown in
Figure 7.21. The multiplexer select signal is called IorD, to indicate
either an instruction or data address. The data read from the memory is
stored in another nonarchitectural register, called Data. Notice that the
address multiplexer permits us to reuse the memory during the lw
instruction. On the first step, the address is taken from the PC to fetch
the instruction. On a later step, the address is taken from ALUOut to
load the data. Hence, IorD must have different values on different steps.
In Section 7.4.2, we develop the FSM controller that generates these
sequences of control signals.

Finally, the data is written back to the register file, as shown in
Figure 7.22. The destination register is specified by the rt field of the
instruction, Instr20:16.

While all this is happening, the processor must update the program
counter by adding 4 to the old PC. In the single-cycle processor, a sepa-
rate adder was needed. In the multicycle processor, we can use the exist-
ing ALU on one of the steps when it is not busy. To do so, we must
insert source multiplexers to choose the PC and the constant 4 as ALU
inputs, as shown in Figure 7.23. A two-input multiplexer controlled by
ALUSrcA chooses either the PC or register A as SrcA. A four-input mul-
tiplexer controlled by ALUSrcB chooses either 4 or SignImm as SrcB.
We use the other two multiplexer inputs later when we extend the data-
path to handle other instructions. (The numbering of inputs to the mul-
tiplexer is arbitrary.) To update the PC, the ALU adds SrcA (PC) to
SrcB (4), and the result is written into the program counter register. The
PCWrite control signal enables the PC register to be written only on
certain cycles.

7.4 Multicycle Processor 385

SignImm

b

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2
RD1

WE3

A2

CLK

Sign Extend

Register
File

PCPC' Instr
25:21

15:0

SrcB
20:16

ALUResult

SrcA

ALUOut

RegWrite

CLK

ALUControl2:0

WD

WE

CLK

Adr

Data

CLK

CLK

A CLK

EN

IRWriteIorD

0
1 A

LU

Figure 7.22 Write data back to register file

Chapter 07.qxd 2/1/07 9:33 PM Page 385

This completes the datapath for the lw instruction. Next, let us
extend the datapath to also handle the sw instruction. Like the lw
instruction, the sw instruction reads a base address from port 1 of the
register file and sign-extends the immediate. The ALU adds the base
address to the immediate to find the memory address. All of these func-
tions are already supported by existing hardware in the datapath.

The only new feature of sw is that we must read a second register
from the register file and write it into the memory, as shown in
Figure 7.24. The register is specified in the rt field of the instruction,
Instr20:16, which is connected to the second port of the register file. When
the register is read, it is stored in a nonarchitectural register, B. On the
next step, it is sent to the write data port (WD) of the data memory to be
written. The memory receives an additional MemWrite control signal to
indicate that the write should occur.

386 CHAPTER SEVEN Microarchitecture

PCWrite

SignImm

b

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1PCPC' Instr
25:21

15:0

SrcB
20:16

ALUResult

SrcA

ALUOut

ALUSrcARegWrite

CLK

ALUControl2:0

WD

WE

CLK

Adr

Data

CLK

CLK

A

00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD

0

1 A
LU

Figure 7.23 Increment PC by 4

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1PC 0

1

PC' Instr
25:21

20:16

15:0

SrcB
20:16

ALUResult

SrcA

ALUOut

MemWrite ALUSrcARegWrite

CLK

ALUControl2:0

WD

WE

CLK

Adr

Data

CLK

CLK

A

00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorDPCWrite

B

A
LU

Figure 7.24 Enhanced datapath for sw instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 386

7.4 Multicycle Processor 387

0

1

SignImm

b

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1PC 0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

ALUResult

SrcA

ALUOut

RegDstMemWrite MemtoReg ALUSrcARegWrite

CLK

ALUControl2:0

WD

WE

CLK

Adr

Data

CLK

CLK

A

B 00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorDPCWrite

A
LU

Figure 7.25 Enhanced datapath for R-type instructions

For R-type instructions, the instruction is again fetched, and the
two source registers are read from the register file. Another input of the
SrcB multiplexer is used to choose register B as the second source regis-
ter for the ALU, as shown in Figure 7.25. The ALU performs the appro-
priate operation and stores the result in ALUOut. On the next step,
ALUOut is written back to the register specified by the rd field of the
instruction, Instr15:11. This requires two new multiplexers. The
MemtoReg multiplexer selects whether WD3 comes from ALUOut (for
R-type instructions) or from Data (for lw). The RegDst instruction
selects whether the destination register is specified in the rt or rd field
of the instruction.

For the beq instruction, the instruction is again fetched, and the two
source registers are read from the register file. To determine whether the
registers are equal, the ALU subtracts the registers and examines the Zero
flag. Meanwhile, the datapath must compute the next value of the PC if
the branch is taken: PC� � PC � 4 � SignImm � 4. In the single-cycle
processor, yet another adder was needed to compute the branch address.
In the multicycle processor, the ALU can be reused again to save hard-
ware. On one step, the ALU computes PC � 4 and writes it back to the
program counter, as was done for other instructions. On another step, the
ALU uses this updated PC value to compute PC � SignImm � 4.
SignImm is left-shifted by 2 to multiply it by 4, as shown in Figure 7.26.
The SrcB multiplexer chooses this value and adds it to the PC. This sum
represents the destination of the branch and is stored in ALUOut. A new
multiplexer, controlled by PCSrc, chooses what signal should be sent to
PC�. The program counter should be written either when PCWrite is
asserted or when a branch is taken. A new control signal, Branch, indi-
cates that the beq instruction is being executed. The branch is taken if
Zero is also asserted. Hence, the datapath computes a new PC write

Chapter 07.qxd 2/1/07 9:33 PM Page 387

enable, called PCEn, which is TRUE either when PCWrite is asserted or
when both Branch and Zero are asserted.

This completes the design of the multicycle MIPS processor data-
path. The design process is much like that of the single-cycle processor in
that hardware is systematically connected between the state elements to
handle each instruction. The main difference is that the instruction is
executed in several steps. Nonarchitectural registers are inserted to hold
the results of each step. In this way, the ALU can be reused several times,
saving the cost of extra adders. Similarly, the instructions and data can
be stored in one shared memory. In the next section, we develop an FSM
controller to deliver the appropriate sequence of control signals to the
datapath on each step of each instruction.

7. 4 . 2 Multicycle Control

As in the single-cycle processor, the control unit computes the control
signals based on the opcode and funct fields of the instruction,
Instr31:26 and Instr5:0. Figure 7.27 shows the entire multicycle MIPS
processor with the control unit attached to the datapath. The datapath is
shown in black, and the control unit is shown in blue.

As in the single-cycle processor, the control unit is partitioned into a
main controller and an ALU decoder, as shown in Figure 7.28. The
ALU decoder is unchanged and follows the truth table of Table 7.2.
Now, however, the main controller is an FSM that applies the proper
control signals on the proper cycles or steps. The sequence of control
signals depends on the instruction being executed. In the remainder of
this section, we will develop the FSM state transition diagram for the
main controller.

388 CHAPTER SEVEN Microarchitecture

SignImm

b

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1 0

1

PC 0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc

CLK

ALUControl2:0

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B 00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

A
LU

Figure 7.26 Enhanced datapath for beq instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 388

The main controller produces multiplexer select and register enable
signals for the datapath. The select signals are MemtoReg, RegDst,
IorD, PCSrc, ALUSrcB, and ALUSrcA. The enable signals are IRWrite,
MemWrite, PCWrite, Branch, and RegWrite.

To keep the following state transition diagrams readable, only the
relevant control signals are listed. Select signals are listed only when
their value matters; otherwise, they are don’t cares. Enable signals are
listed only when they are asserted; otherwise, they are 0.

7.4 Multicycle Processor 389

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File0

1

0

1 0

1

PC 0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

ts
Dg

e
R

Branch

MemWrite

ge
Ro

t
me

M

ALUSrcA
RegWrite

Op

Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

UL
A

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00
01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

Figure 7.27 Complete multicycle MIPS processor

ALUSrcA

PCSrc

Branch

ALUSrcB1:0

Opcode5:0

Control
Unit

ALUControl2:0Funct5:0

Main
Controller

(FSM)

ALUOp1:0

ALU
Decoder

RegWrite

PCWrite

IorD

MemWrite

IRWrite

RegDst

MemtoReg

Register
Enables

Multiplexer
Selects

Figure 7.28 Control unit internal

structure

Chapter 07.qxd 2/1/07 9:33 PM Page 389

The first step for any instruction is to fetch the instruction from
memory at the address held in the PC. The FSM enters this state on
reset. To read memory, IorD � 0, so the address is taken from the PC.
IRWrite is asserted to write the instruction into the instruction register,
IR. Meanwhile, the PC should be incremented by 4 to point to the next
instruction. Because the ALU is not being used for anything else, the
processor can use it to compute PC � 4 at the same time that it fetches
the instruction. ALUSrcA � 0, so SrcA comes from the PC. ALUSrcB �
01, so SrcB is the constant 4. ALUOp � 00, so the ALU decoder
produces ALUControl � 010 to make the ALU add. To update the
PC with this new value, PCSrc � 0, and PCWrite is asserted. These
control signals are shown in Figure 7.29. The data flow on this step is
shown in Figure 7.30, with the instruction fetch shown using the dashed
blue line and the PC increment shown using the dashed gray line.

The next step is to read the register file and decode the instruction.
The register file always reads the two sources specified by the rs and rt
fields of the instruction. Meanwhile, the immediate is sign-extended.
Decoding involves examining the opcode of the instruction to determine
what to do next. No control signals are necessary to decode the instruc-
tion, but the FSM must wait 1 cycle for the reading and decoding to
complete, as shown in Figure 7.31. The new state is highlighted in blue.
The data flow is shown in Figure 7.32.

390 CHAPTER SEVEN Microarchitecture

Reset

S0: Fetch

PCWrite

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite

Figure 7.29 Fetch

A
LU

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1 0

1

PC 0

1

PC' Instr
25:21

R
egD

st

M
em

toR
eg

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

Branch

MemWrite

ALUSrcA

RegWrite
Op

Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B 00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

0

1 1

0

X

X

0
0

01

010
0

1

0

Figure 7.30 Data flow during the fetch step

Chapter 07.qxd 2/1/07 9:33 PM Page 390

Now the FSM proceeds to one of several possible states, depending
on the opcode. If the instruction is a memory load or store (lw or sw),
the multicycle processor computes the address by adding the base
address to the sign-extended immediate. This requires ALUSrcA � 1 to
select register A and ALUSrcB � 10 to select SignImm. ALUOp � 00,
so the ALU adds. The effective address is stored in the ALUOut register
for use on the next step. This FSM step is shown in Figure 7.33, and the
data flow is shown in Figure 7.34.

If the instruction is lw, the multicycle processor must next read data
from memory and write it to the register file. These two steps are shown
in Figure 7.35. To read from memory, IorD � 1 to select the memory
address that was just computed and saved in ALUOut. This address in
memory is read and saved in the Data register during step S3. On the
next step, S4, Data is written to the register file. MemtoReg � 1 to select

7.4 Multicycle Processor 391

Reset

S0: Fetch S1: Decode

PCWrite

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite

Figure 7.31 Decode

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1

WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1 0

1

PC 0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

Branch

MemWrite

ALUSrcA

RegWrite

M
em

toR
eg

R
egD

st

Op

Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B 00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
X

XX

XXX
X

0

0

A
LU

Figure 7.32 Data flow during the decode step

Chapter 07.qxd 2/1/07 9:33 PM Page 391

Data, and RegDst � 0 to pull the destination register from the rt field
of the instruction. RegWrite is asserted to perform the write, completing
the lw instruction. Finally, the FSM returns to the initial state, S0, to
fetch the next instruction. For these and subsequent steps, try to visual-
ize the data flow on your own.

From state S2, if the instruction is sw, the data read from the second
port of the register file is simply written to memory. IorD � 1 to select
the address computed in S2 and saved in ALUOut. MemWrite is
asserted to write the memory. Again, the FSM returns to S0 to fetch the
next instruction. The added step is shown in Figure 7.36.

392 CHAPTER SEVEN Microarchitecture

ALUSrcA = 1

Reset

S0: Fetch

S2: MemAdr

S1: Decode

Op = LW
or

Op = SW

PCWrite

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite

ALUOp = 00
ALUSrcB = 10

Figure 7.33 Memory address

computation

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1 0

1

PC 0

1

PC' Instr
25:21

20:16

15:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

Branch

MemWrite

ALUSrcA

RegWrite

M
em

toR
eg

R
egD

st

Op

Funct

Control
Unit

Zero

PCSrc

CLK

CLK

ALUControl2:0

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B 00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWrite

IorD

PCWrite
PCEn

X

0 0

0

X

X

0
1

10

010
X

0

0

A
LU

Figure 7.34 Data flow during memory address computation

Chapter 07.qxd 2/1/07 9:33 PM Page 392

If the opcode indicates an R-type instruction, the multicycle proces-
sor must calculate the result using the ALU and write that result to the
register file. Figure 7.37 shows these two steps. In S6, the instruction is
executed by selecting the A and B registers (ALUSrcA � 1, ALUSrcB �
00) and performing the ALU operation indicated by the funct field
of the instruction. ALUOp � 10 for all R-type instructions. The
ALUResult is stored in ALUOut. In S7, ALUOut is written to the regis-
ter file, RegDst � 1, because the destination register is specified in the
rd field of the instruction. MemtoReg � 0 because the write data, WD3,
comes from ALUOut. RegWrite is asserted to write the register file.

For a beq instruction, the processor must calculate the destination
address and compare the two source registers to determine whether the
branch should be taken. This requires two uses of the ALU and hence
might seem to demand two new states. Notice, however, that the ALU was
not used during S1 when the registers were being read. The processor
might as well use the ALU at that time to compute the destination address
by adding the incremented PC, PC � 4, to SignImm � 4, as shown in

7.4 Multicycle Processor 393

IorD = 1

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead

Op = LW
or

Op = SW

Op = LW

S4: Mem
Writeback

PCWrite

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

IRWrite

ALUSrcA = 1

ALUOp = 00
ALUSrcB = 10

RegDst = 0
MemtoReg = 1

RegWrite

Figure 7.35 Memory read

Chapter 07.qxd 2/1/07 9:33 PM Page 393

Figure 7.38 (see page 396). ALUSrcA � 0 to select the incremented PC,
ALUSrcB � 11 to select SignImm � 4, and ALUOp � 00 to add. The
destination address is stored in ALUOut. If the instruction is not beq, the
computed address will not be used in subsequent cycles, but its computa-
tion was harmless. In S8, the processor compares the two registers by sub-
tracting them and checking to determine whether the result is 0. If it is, the
processor branches to the address that was just computed. ALUSrcA � 1
to select register A; ALUSrcB � 00 to select register B; ALUOp � 01 to
subtract; PCSrc � 1 to take the destination address from ALUOut, and
Branch � 1 to update the PC with this address if the ALU result is 0.2

Putting these steps together, Figure 7.39 shows the complete main
controller state transition diagram for the multicycle processor (see page
397). Converting it to hardware is a straightforward but tedious task
using the techniques of Chapter 3. Better yet, the FSM can be coded in
an HDL and synthesized using the techniques of Chapter 4.

394 CHAPTER SEVEN Microarchitecture

IorD = 1
IorD = 1

MemWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

Op = LW
or

Op = SW

Op = LW
Op = SW

S4: Mem
Writeback

IRWrite

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0

PCWrite

ALUSrcA = 1

ALUOp = 00
ALUSrcB = 10

RegDst = 0

RegWrite
MemtoReg = 1

Figure 7.36 Memory write

2 Now we see why the PCSrc multiplexer is necessary to choose PC� from either ALUResult
(in S0) or ALUOut (in S8).

Chapter 07.qxd 2/1/07 9:33 PM Page 394

7. 4 . 3 More Instructions

As we did in Section 7.3.3 for the single-cycle processor, let us now
extend the multicycle processor to support the addi and j instructions.
The next two examples illustrate the general design process to support
new instructions.

Example 7.5 addi INSTRUCTION

Modify the multicycle processor to support addi.

Solution: The datapath is already capable of adding registers to immediates, so all
we need to do is add new states to the main controller FSM for addi, as shown in
Figure 7.40 (see page 398). The states are similar to those for R-type instructions.
In S9, register A is added to SignImm (ALUSrcA � 1, ALUSrcB � 10, ALUOp �

00) and the result, ALUResult, is stored in ALUOut. In S10, ALUOut is written

7.4 Multicycle Processor 395

IorD = 1
IorD = 1

MemWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead

Op = LW
or

Op = SW

Op = LW

S4: Mem
Writeback

S5: MemWrite

S6: Execute

S7: ALU
Writeback

Op = R-type

Op = SW

PCWrite
IRWrite

IorD = 0

PCSrc = 0
ALUOp = 00

ALUSrcB = 01
AluSrcA = 0

ALUSrcA = 1

ALUOp = 00
ALUSrcB = 10

RegDst = 0

RegWrite
MemtoReg = 1

RegDst = 1

RegWrite
MemtoReg = 0

ALUSrcA = 1

ALUOp = 10
ALUSrcB = 00

Figure 7.37 Execute R-type

operation

Chapter 07.qxd 2/1/07 9:33 PM Page 395

to the register specified by the rt field of the instruction (RegDst � 0, MemtoReg
� 0, RegWrite asserted). The astute reader may notice that S2 and S9 are identical
and could be merged into a single state.

Example 7.6 j INSTRUCTION

Modify the multicycle processor to support j.

Solution: First, we must modify the datapath to compute the next PC value in
the case of a j instruction. Then we add a state to the main controller to handle
the instruction.

Figure 7.41 shows the enhanced datapath (see page 399). The jump destination
address is formed by left-shifting the 26-bit addr field of the instruction by two
bits, then prepending the four most significant bits of the already incremented
PC. The PCSrc multiplexer is extended to take this address as a third input.

396 CHAPTER SEVEN Microarchitecture

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 0
IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10

ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00

ALUOp = 01
PCSrc = 1
Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

Figure 7.38 Branch

Chapter 07.qxd 2/1/07 9:33 PM Page 396

Figure 7.42 shows the enhanced main controller (see page 400). The new state,
S11, simply selects PC� as the PCJump value (PCSrc � 10) and writes the PC.
Note that the PCSrc select signal is extended to two bits in S0 and S8 as well.

7. 4 . 4 Performance Analysis

The execution time of an instruction depends on both the number of cycles
it uses and the cycle time. Whereas the single-cycle processor performed all
instructions in one cycle, the multicycle processor uses varying numbers of
cycles for the various instructions. However, the multicycle processor does
less work in a single cycle and, thus, has a shorter cycle time.

The multicycle processor requires three cycles for beq and j instruc-
tions, four cycles for sw, addi, and R-type instructions, and five cycles
for lw instructions. The CPI depends on the relative likelihood that each
instruction is used.

7.4 Multicycle Processor 397

IorD = 0

ALUSrcA = 0

IorD = 1
IorD = 1

MemWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW
Op = R-type

Op = BEQ

Op = LW

Op = SW

S4: Mem
Writeback

PCWrite
IRWrite

PCSrc = 0
ALUOp = 00

ALUSrcB = 01
AluSrcA = 0

ALUSrcA = 1

ALUOp = 00
ALUSrcB = 10

RegDst = 0

RegWrite
MemtoReg = 1

RegDst = 1

RegWrite
MemtoReg = 0

ALUOp = 00
ALUSrcB = 11

ALUSrcA = 1

ALUOp = 10
ALUSrcB = 00

ALUSrcA = 1

Branch
PCSrc = 1

ALUOp = 01
ALUSrcB = 00

Figure 7.39 Complete multicycle

control FSM

Chapter 07.qxd 2/1/07 9:33 PM Page 397

Example 7.7 MULTICYCLE PROCESSOR CPI

The SPECINT2000 benchmark consists of approximately 25% loads, 10%
stores, 11% branches, 2% jumps, and 52% R-type instructions.3 Determine the
average CPI for this benchmark.

Solution: The average CPI is the sum over each instruction of the CPI for that
instruction multiplied by the fraction of the time that instruction is used. For this
benchmark, Average CPI � (0.11 � 0.02)(3) � (0.52 � 0.10)(4) � (0.25)(5) �

4.12. This is better than the worst-case CPI of 5, which would be required if all
instructions took the same time.

398 CHAPTER SEVEN Microarchitecture

IorD = 1 IorD = 1
MemWrite

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

S4: Mem
Writeback

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

IorD = 0

PCWrite
IRWrite

PCSrc = 0
ALUOp = 00

ALUSrcB = 01
AluSrcA = 0

ALUSrcA = 1

ALUOp = 00
ALUSrcB = 10

RegDst = 0

RegWrite
MemtoReg = 1

RegDst = 1

RegWrite
MemtoReg = 0

RegDst = 1

RegWrite
MemtoReg = 0

ALUSrcA = 1

ALUOp = 10
ALUSrcB = 00

ALUSrcA = 1

ALUOp = 00
ALUSrcB = 10

ALUSrcA = 0

ALUOp = 00
ALUSrcB = 11

ALUSrcA = 1

Branch
PCSrc = 1

ALUOp = 01
ALUSrcB = 00

Figure 7.40 Main controller states for addi

3 Data from Patterson and Hennessy, Computer Organization and Design, 3rd Edition,
Morgan Kaufmann, 2005.

Chapter 07.qxd 2/1/07 9:33 PM Page 398

Recall that we designed the multicycle processor so that each cycle
involved one ALU operation, memory access, or register file access. Let
us assume that the register file is faster than the memory and that writ-
ing memory is faster than reading memory. Examining the datapath
reveals two possible critical paths that would limit the cycle time:

(7.4)

The numerical values of these times will depend on the specific imple-
mentation technology.

Example 7.8 PROCESSOR PERFORMANCE COMPARISON

Ben Bitdiddle is wondering whether he would be better off building the multicy-
cle processor instead of the single-cycle processor. For both designs, he plans on
using a 65 nm CMOS manufacturing process with the delays given in Table 7.6.
Help him compare each processor’s execution time for 100 billion instructions
from the SPECINT2000 benchmark (see Example 7.7).

Solution: According to Equation 7.4, the cycle time of the multicycle processor is
Tc2 � 30 � 25 � 250 � 20 � 325 ps. Using the CPI of 4.12 from Example 7.7,
the total execution time is T2 � (100 � 109 instructions)(4.12 cycles/instruction)
(325 � 10�12 s/cycle) � 133.9 seconds. According to Example 7.4, the single-
cycle processor had a cycle time of Tc1 � 950 ps, a CPI of 1, and a total exe-
cution time of 95 seconds.

One of the original motivations for building a multicycle processor was to
avoid making all instructions take as long as the slowest one. Unfortunately,
this example shows that the multicycle processor is slower than the single-cycle

Tc � tpcq � tmux � max(tALU � tmux, tmem) � tsetup

7.4 Multicycle Processor 399

SignImm

CLK

A
RD

Instr/Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1PC 0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResultUL
A

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl2:0

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B 00

01

10

11

4

CLK

ENEN

ALUSrcB1:0IRWriteIorD PCWrite

PCEn

00
01

10

<<2

25:0 (addr)

31:28

27:0

PCJump

Figure 7.41 Multicycle MIPS datapath enhanced to support the j instruction

Chapter 07.qxd 2/1/07 9:33 PM Page 399

processor given the assumptions of CPI and circuit element delays. The funda-
mental problem is that even though the slowest instruction, lw, was broken into
five steps, the multicycle processor cycle time was not nearly improved five-
fold. This is partly because not all of the steps are exactly the same length, and
partly because the 50-ps sequencing overhead of the register clk-to-Q and setup
time must now be paid on every step, not just once for the entire instruction. In
general, engineers have learned that it is difficult to exploit the fact that some
computations are faster than others unless the differences are large.

Compared with the single-cycle processor, the multicycle processor is likely to be
less expensive because it eliminates two adders and combines the instruction and
data memories into a single unit. It does, however, require five nonarchitectural
registers and additional multiplexers.

400 CHAPTER SEVEN Microarchitecture

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00
IRWrite
PCWrite

ALUSrcA = 0
ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10

ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 0
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00

ALUOp = 01
PCSrc = 01
Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0
MemtoReg = 1

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10

ALUOp = 00

RegDst = 0
MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

Figure 7.42 Main controller state for j

Chapter 07.qxd 2/1/07 9:33 PM Page 400

7. 5 PIPELINED PROCESSOR

Pipelining, introduced in Section 3.6, is a powerful way to improve the
throughput of a digital system. We design a pipelined processor by sub-
dividing the single-cycle processor into five pipeline stages. Thus,
five instructions can execute simultaneously, one in each stage. Because
each stage has only one-fifth of the entire logic, the clock frequency
is almost five times faster. Hence, the latency of each instruction is
ideally unchanged, but the throughput is ideally five times better.
Microprocessors execute millions or billions of instructions per second,
so throughput is more important than latency. Pipelining introduces
some overhead, so the throughput will not be quite as high as we
might ideally desire, but pipelining nevertheless gives such great advan-
tage for so little cost that all modern high-performance microproces-
sors are pipelined.

Reading and writing the memory and register file and using the ALU
typically constitute the biggest delays in the processor. We choose five
pipeline stages so that each stage involves exactly one of these slow
steps. Specifically, we call the five stages Fetch, Decode, Execute,
Memory, and Writeback. They are similar to the five steps that the
multicycle processor used to perform lw. In the Fetch stage, the proces-
sor reads the instruction from instruction memory. In the Decode stage,
the processor reads the source operands from the register file and
decodes the instruction to produce the control signals. In the Execute
stage, the processor performs a computation with the ALU. In the
Memory stage, the processor reads or writes data memory. Finally, in the
Writeback stage, the processor writes the result to the register file, when
applicable.

Figure 7.43 shows a timing diagram comparing the single-cycle and
pipelined processors. Time is on the horizontal axis, and instructions are
on the vertical axis. The diagram assumes the logic element delays from
Table 7.6 but ignores the delays of multiplexers and registers. In the sin-
gle-cycle processor, Figure 7.43(a), the first instruction is read from
memory at time 0; next the operands are read from the register file; and
then the ALU executes the necessary computation. Finally, the data
memory may be accessed, and the result is written back to the register
file by 950 ps. The second instruction begins when the first completes.
Hence, in this diagram, the single-cycle processor has an instruction
latency of 250 � 150 � 200 � 250 � 100 � 950 ps and a throughput
of 1 instruction per 950 ps (1.05 billion instructions per second).

In the pipelined processor, Figure 7.43(b), the length of a pipeline
stage is set at 250 ps by the slowest stage, the memory access (in the
Fetch or Memory stage). At time 0, the first instruction is fetched from
memory. At 250 ps, the first instruction enters the Decode stage, and

7.5 Pipelined Processor 401

Chapter 07.qxd 2/1/07 9:33 PM Page 401

4
0

2

Time (ps)
Instr

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 19001000

(a)

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Instr

1

2

(b)

3

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Figure 7.43 Timing diagrams: (a) single-cycle processor, (b) pipelined processor

C
h
a
p
t
e
r
 0
7
.
q
x
d
 2

/
1
/
0
7
 9

:
3
3
 P
M
 P

a
g
e
 4
0
2

a second instruction is fetched. At 500 ps, the first instruction executes,
the second instruction enters the Decode stage, and a third instruction is
fetched. And so forth, until all the instructions complete. The instruc-
tion latency is 5 � 250 � 1250 ps. The throughput is 1 instruction per
250 ps (4 billion instructions per second). Because the stages are not
perfectly balanced with equal amounts of logic, the latency is slightly
longer for the pipelined than for the single-cycle processor. Similarly,
the throughput is not quite five times as great for a five-stage pipeline as
for the single-cycle processor. Nevertheless, the throughput advantage is
substantial.

Figure 7.44 shows an abstracted view of the pipeline in operation in
which each stage is represented pictorially. Each pipeline stage is repre-
sented with its major component—instruction memory (IM), register file
(RF) read, ALU execution, data memory (DM), and register file write-
back—to illustrate the flow of instructions through the pipeline. Reading
across a row shows the clock cycles in which a particular instruction is
in each stage. For example, the sub instruction is fetched in cycle 3 and
executed in cycle 5. Reading down a column shows what the various
pipeline stages are doing on a particular cycle. For example, in cycle 6,
the or instruction is being fetched from instruction memory, while $s1 is
being read from the register file, the ALU is computing $t5 AND $t6,
the data memory is idle, and the register file is writing a sum to $s3.
Stages are shaded to indicate when they are used. For example, the data
memory is used by lw in cycle 4 and by sw in cycle 8. The instruction
memory and ALU are used in every cycle. The register file is written by

7.5 Pipelined Processor 403

Time (cycles)

lw $s2, 40($0) RF 40

$0
RF

$s2
+ DM

RF $t2

$t1
RF

$s3
+ DM

RF $s5

$s1
RF

$s4
- DM

RF $t6

$t5
RF

$s5
& DM

RF 20

$s1
RF

$s6
+ DM

RF $t4

$t3
RF

$s7
| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM lw

sub

and

sw

or

Figure 7.44 Abstract view of pipeline in operation

Chapter 07.qxd 2/1/07 9:33 PM Page 403

every instruction except sw. We assume that in the pipelined processor,
the register file is written in the first part of a cycle and read in the sec-
ond part, as suggested by the shading. This way, data can be written and
read back within a single cycle.

A central challenge in pipelined systems is handling hazards that
occur when the results of one instruction are needed by a subsequent
instruction before the former instruction has completed. For example, if
the add in Figure 7.44 used $s2 rather than $t2, a hazard would occur
because the $s2 register has not been written by the lw by the time it is
read by the add. This section explores forwarding, stalls, and flushes as
methods to resolve hazards. Finally, this section revisits performance
analysis considering sequencing overhead and the impact of hazards.

7. 5 .1 Pipelined Datapath

The pipelined datapath is formed by chopping the single-cycle datapath
into five stages separated by pipeline registers. Figure 7.45(a) shows the
single-cycle datapath stretched out to leave room for the pipeline regis-
ters. Figure 7.45(b) shows the pipelined datapath formed by inserting
four pipeline registers to separate the datapath into five stages. The
stages and their boundaries are indicated in blue. Signals are given a suf-
fix (F, D, E, M, or W) to indicate the stage in which they reside.

The register file is peculiar because it is read in the Decode stage and
written in the Writeback stage. It is drawn in the Decode stage, but the
write address and data come from the Writeback stage. This feedback
will lead to pipeline hazards, which are discussed in Section 7.5.3.

One of the subtle but critical issues in pipelining is that all signals
associated with a particular instruction must advance through the
pipeline in unison. Figure 7.45(b) has an error related to this issue. Can
you find it?

The error is in the register file write logic, which should operate in
the Writeback stage. The data value comes from ResultW, a Writeback
stage signal. But the address comes from WriteRegE, an Execute stage
signal. In the pipeline diagram of Figure 7.44, during cycle 5, the result
of the lw instruction would be incorrectly written to register $s4 rather
than $s2.

Figure 7.46 shows a corrected datapath. The WriteReg signal is now
pipelined along through the Memory and Writeback stages, so it remains
in sync with the rest of the instruction. WriteRegW and ResultW are fed
back together to the register file in the Writeback stage.

The astute reader may notice that the PC� logic is also problem-
atic, because it might be updated with a Fetch or a Memory stage
signal (PCPlus4F or PCBranchM). This control hazard will be fixed in
Section 7.5.3.

404 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 404

7. 5 . 2 Pipelined Control

The pipelined processor takes the same control signals as the single-cycle
processor and therefore uses the same control unit. The control unit
examines the opcode and funct fields of the instruction in the Decode
stage to produce the control signals, as was described in Section 7.3.2.
These control signals must be pipelined along with the data so that they
remain synchronized with the instruction.

The entire pipelined processor with control is shown in Figure 7.47.
RegWrite must be pipelined into the Writeback stage before it feeds back
to the register file, just as WriteReg was pipelined in Figure 7.46.

7.5 Pipelined Processor 405

SignImm

CLK

A RD

Instruction
Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PC0

1
PC' Instr

25:21

20:16

15:0

SrcB

20:16

15:11

<<2

ALUResult

A
LU

ReadData

WriteData

SrcA

PCPlus4+

+ PCBranch

WriteReg4:0

Result

Zero

CLK

(a)

SignImmE

CLK

A RD

Instruction
Memory

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PCF0

1
PC' InstrD

25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegE4:0

CLK

CLK

CLK

A
LU

+

+

(b)

Fetch Decode Execute Memory Writeback

Figure 7.45 Single-cycle and pipelined datapaths

Chapter 07.qxd 2/1/07 9:33 PM Page 405

7. 5 . 3 Hazards

In a pipelined system, multiple instructions are handled concurrently.
When one instruction is dependent on the results of another that has not
yet completed, a hazard occurs.

406 CHAPTER SEVEN Microarchitecture

SignImmE

CLK

A RD

Instruction
Memory

4

+

+

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE
0

1

PCF0

1
PC' InstrD

25:21

20:16

15:0

5:0

SrcBE

20:16

15:11

RtE

RdE

<<2

ALUOutM

A
LU

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

ZeroM

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

BranchE BranchM

RegDstE

ALUSrcE

WriteRegE4:0

Figure 7.47 Pipelined processor with control

SignImmE

CLK

A RD

Instruction
Memory

4

+

+

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data
Memory

WD

WE
0

1

PCF0

1
PC' InstrD

25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

ALUOutM

A
LU

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegW4:0WriteRegE4:0

CLK

CLK

CLK

Fetch Decode Execute Memory Writeback

Figure 7.46 Corrected pipelined datapath

Chapter 07.qxd 2/1/07 9:33 PM Page 406

The register file can be read and written in the same cycle. Let us
assume that the write takes place during the first half of the cycle and the
read takes place during the second half of the cycle, so that a register can
be written and read back in the same cycle without introducing a hazard.

Figure 7.48 illustrates hazards that occur when one instruction
writes a register ($s0) and subsequent instructions read this register. This
is called a read after write (RAW) hazard. The add instruction writes a
result into $s0 in the first half of cycle 5. However, the and instruction
reads $s0 on cycle 3, obtaining the wrong value. The or instruction
reads $s0 on cycle 4, again obtaining the wrong value. The sub instruc-
tion reads $s0 in the second half of cycle 5, obtaining the correct value,
which was written in the first half of cycle 5. Subsequent instructions
also read the correct value of $s0. The diagram shows that hazards may
occur in this pipeline when an instruction writes a register and either of
the two subsequent instructions read that register. Without special treat-
ment, the pipeline will compute the wrong result.

On closer inspection, however, observe that the sum from the add
instruction is computed by the ALU in cycle 3 and is not strictly needed
by the and instruction until the ALU uses it in cycle 4. In principle, we
should be able to forward the result from one instruction to the next to
resolve the RAW hazard without slowing down the pipeline. In other
situations explored later in this section, we may have to stall the pipeline
to give time for a result to be computed before the subsequent instruc-
tion uses the result. In any event, something must be done to solve
hazards so that the program executes correctly despite the pipelining.

Hazards are classified as data hazards or control hazards. A data
hazard occurs when an instruction tries to read a register that has not
yet been written back by a previous instruction. A control hazard occurs
when the decision of what instruction to fetch next has not been made
by the time the fetch takes place. In the remainder of this section, we will

7.5 Pipelined Processor 407

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM
add

or

sub

Figure 7.48 Abstract pipeline diagram illustrating hazards

Chapter 07.qxd 2/1/07 9:33 PM Page 407

enhance the pipelined processor with a hazard unit that detects hazards
and handles them appropriately, so that the processor executes the
program correctly.

Solving Data Hazards with Forwarding

Some data hazards can be solved by forwarding (also called bypassing) a
result from the Memory or Writeback stage to a dependent instruction in
the Execute stage. This requires adding multiplexers in front of the ALU
to select the operand from either the register file or the Memory or
Writeback stage. Figure 7.49 illustrates this principle. In cycle 4, $s0 is
forwarded from the Memory stage of the add instruction to the Execute
stage of the dependent and instruction. In cycle 5, $s0 is forwarded from
the Writeback stage of the add instruction to the Execute stage of the
dependent or instruction.

Forwarding is necessary when an instruction in the Execute stage
has a source register matching the destination register of an instruction
in the Memory or Writeback stage. Figure 7.50 modifies the pipelined
processor to support forwarding. It adds a hazard detection unit and
two forwarding multiplexers. The hazard detection unit receives the two
source registers from the instruction in the Execute stage and the desti-
nation registers from the instructions in the Memory and Writeback
stages. It also receives the RegWrite signals from the Memory and
Writeback stages to know whether the destination register will actually
be written (for example, the sw and beq instructions do not write results
to the register file and hence do not need to have their results for-
warded). Note that the RegWrite signals are connected by name. In
other words, rather than cluttering up the diagram with long wires run-
ning from the control signals at the top to the hazard unit at the bottom,
the connections are indicated by a short stub of wire labeled with the
control signal name to which it is connected.

408 CHAPTER SEVEN Microarchitecture

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Figure 7.49 Abstract pipeline diagram illustrating forwarding

Chapter 07.qxd 2/1/07 9:33 PM Page 408

4
0

9

EmmIngiS

KLC

DRA

noitcurtsnI
yromeM

4

+

+

1A

3A

3DW

2DR

1DR
3EW

2A

KLC

ngiS
dnetxE

retsigeR
eliF

0

1

0

1

DRA
ataD

yromeM
DW

EW

1

0

FCP0

1
'CP DrtsnI

25:21

20:16

15:0

5:0

EBcrS

25:21

15:11

EsR

EdR

2<<

MtuOULA

WtuOULA

WataDdaeR

EataDetirW MataDetirW

EAcrS

D4sulPCP

MhcnarBCP

M4:0geRetirW

WtluseR

F4sulPCP

31:26

DtsDgeR

DhcnarB

DetirWmeM

DgeRotmeM

D2:0lortnoCULA

DcrSULA

DetirWgeR

pO

tcnuF

lortnoC
tinU

McrSCP

KLC KLC KLC

KLC KLC

W4:0geRetirW

E2:0lortnoCULA

WetirWgeRMetirWgeREetirWgeR

WgeRotmeMMgeRotmeMEgeRotmeM

MetirWmeMEetirWmeM

EtsDgeR

EcrSULA

E4:0geRetirW

00
10
01

00
10
01

DmmIngiS

20:16 EtR

DsR

DdR

DtR

tinU

F
orw

ardA
E

F
orw

ardB
E

R
egW

riteM

R
egW

riteW

 drazaH

E4sulPCP

MhcnarBEhcnarB

MoreZ

A
LU

Figure 7.50 Pipelined processor with forwarding to solve hazards

C
h
a
p
t
e
r
 0
7
.
q
x
d
 2

/
1
/
0
7
 9

:
3
3
 P
M
 P

a
g
e
 4
0
9

The hazard detection unit computes control signals for the forward-
ing multiplexers to choose operands from the register file or from the
results in the Memory or Writeback stage. It should forward from a
stage if that stage will write a destination register and the destination
register matches the source register. However, $0 is hardwired to 0 and
should never be forwarded. If both the Memory and Writeback stages
contain matching destination registers, the Memory stage should have
priority, because it contains the more recently executed instruction. In
summary, the function of the forwarding logic for SrcA is given below.
The forwarding logic for SrcB (ForwardBE) is identical except that it
checks rt rather than rs.

if ((rsE !� 0) AND (rsE �� WriteRegM) AND RegWriteM) then
ForwardAE � 10

else if ((rsE !� 0) AND (rsE �� WriteRegW) AND RegWriteW) then
ForwardAE � 01

else ForwardAE � 00

Solving Data Hazards with Stalls

Forwarding is sufficient to solve RAW data hazards when the result is
computed in the Execute stage of an instruction, because its result can
then be forwarded to the Execute stage of the next instruction.
Unfortunately, the lw instruction does not finish reading data until the
end of the Memory stage, so its result cannot be forwarded to the
Execute stage of the next instruction. We say that the lw instruction has
a two-cycle latency, because a dependent instruction cannot use its result
until two cycles later. Figure 7.51 shows this problem. The lw instruction
receives data from memory at the end of cycle 4. But the and instruction
needs that data as a source operand at the beginning of cycle 4. There is
no way to solve this hazard with forwarding.

410 CHAPTER SEVEN Microarchitecture

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

Figure 7.51 Abstract pipeline diagram illustrating trouble forwarding from lw

Chapter 07.qxd 2/1/07 9:33 PM Page 410

The alternative solution is to stall the pipeline, holding up operation
until the data is available. Figure 7.52 shows stalling the dependent
instruction (and) in the Decode stage. and enters the Decode stage in
cycle 3 and stalls there through cycle 4. The subsequent instruction (or)
must remain in the Fetch stage during both cycles as well, because the
Decode stage is full.

In cycle 5, the result can be forwarded from the Writeback stage of
lw to the Execute stage of and. In cycle 6, source $s0 of the or instruc-
tion is read directly from the register file, with no need for forwarding.

Notice that the Execute stage is unused in cycle 4. Likewise,
Memory is unused in Cycle 5 and Writeback is unused in cycle 6. This
unused stage propagating through the pipeline is called a bubble, and it
behaves like a nop instruction. The bubble is introduced by zeroing out
the Execute stage control signals during a Decode stall so that the bubble
performs no action and changes no architectural state.

In summary, stalling a stage is performed by disabling the pipeline
register, so that the contents do not change. When a stage is stalled, all
previous stages must also be stalled, so that no subsequent instructions
are lost. The pipeline register directly after the stalled stage must be
cleared to prevent bogus information from propagating forward. Stalls
degrade performance, so they should only be used when necessary.

Figure 7.53 modifies the pipelined processor to add stalls for lw
data dependencies. The hazard unit examines the instruction in the
Execute stage. If it is lw and its destination register (rtE) matches either
source operand of the instruction in the Decode stage (rsD or rtD), that
instruction must be stalled in the Decode stage until the source operand
is ready.

Stalls are supported by adding enable inputs (EN) to the Fetch and
Decode pipeline registers and a synchronous reset/clear (CLR) input to
the Execute pipeline register. When a lw stall occurs, StallD and StallF

7.5 Pipelined Processor 411

Time (cycles)

lw $s0, 40($0) RF 40

$0

RF
$s0

+ DM

RF $s1

$s0

RF
$t0

& DM

RF $s0

$s4

RF
$t1

| DM

RF $s5

$s0

RF
$t2

- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall

Figure 7.52 Abstract pipeline diagram illustrating stall to solve hazards

Chapter 07.qxd 2/1/07 9:33 PM Page 411

4
1

2

EmmIngiS

KLC

DRA

noitcurtsnI
yromeM

4

+

+

1A

3A

3DW

2DR

1DR
3EW

2A

KLC

ngiS
dnetxE

retsigeR
eliF

0

1

0

1

DRA
ataD

yromeM
DW

EW

1

0

FCP0

1
'CP DrtsnI

12:52

61:02

0:51

0:5

EBcrS

12:52

11:51

EsR

EdR

2<<

MtuOULA

WtuOULA

WataDdaeR

EataDetirW MataDetirW

EAcrS

D4sulPCP

MhcnarBCP

M4:0geRetirW

WtluseR

F4sulPCP

62:13

DtsDgeR

DhcnarB

DetirWmeM

DgeRotmeM

D2:0lortnoCULA

DcrSULA

DetirWgeR

pO

tcnuF

lortnoC
tinU

McrSCP

KLC KLC KLC

KLC KLC

W4:0geRetirW

E2:0lortnoCULA

WetirWgeRMetirWgeREetirWgeR

WgeRotmeMMgeRotmeMEgeRotmeM

MetirWmeMEetirWmeM

EtsDgeR

EcrSULA

E4:0geRetirW

00
10
01

00
10
01

DmmIngiS

61:02 EtR

DsR

DdR

DtR

tinU drazaH

E4sulPCP

MhcnarBEhcnarB

MoreZ

F
orw

ardA
E

F
orw

ardB
E

R
egW

riteM

M
em

toR
egE

F
lushE

S
tallD

E
N

E
N

A
LU

C
LR

S
tallF

R
egW

riteW

Figure 7.53 Pipelined processor with stalls to solve lw data hazard

C
h
a
p
t
e
r
 0
7
.
q
x
d
 2

/
1
/
0
7
 9

:
3
3
 P
M
 P

a
g
e
 4
1
2

are asserted to force the Decode and Fetch stage pipeline registers to
hold their old values. FlushE is also asserted to clear the contents of the
Execute stage pipeline register, introducing a bubble.4

The MemtoReg signal is asserted for the lw instruction. Hence, the
logic to compute the stalls and flushes is

lwstall � ((rsD �� rtE) OR (rtD �� rtE)) AND MemtoRegE
StallF � StallD � FlushE � lwstall

Solving Control Hazards

The beq instruction presents a control hazard: the pipelined processor
does not know what instruction to fetch next, because the branch deci-
sion has not been made by the time the next instruction is fetched.

One mechanism for dealing with the control hazard is to stall the
pipeline until the branch decision is made (i.e., PCSrc is computed).
Because the decision is made in the Memory stage, the pipeline would
have to be stalled for three cycles at every branch. This would severely
degrade the system performance.

An alternative is to predict whether the branch will be taken and
begin executing instructions based on the prediction. Once the branch
decision is available, the processor can throw out the instructions if the
prediction was wrong. In particular, suppose that we predict that
branches are not taken and simply continue executing the program in
order. If the branch should have been taken, the three instructions fol-
lowing the branch must be flushed (discarded) by clearing the pipeline
registers for those instructions. These wasted instruction cycles are called
the branch misprediction penalty.

Figure 7.54 shows such a scheme, in which a branch from address 20
to address 64 is taken. The branch decision is not made until cycle 4, by
which point the and, or, and sub instructions at addresses 24, 28, and 2C
have already been fetched. These instructions must be flushed, and the
slt instruction is fetched from address 64 in cycle 5. This is somewhat of
an improvement, but flushing so many instructions when the branch is
taken still degrades performance.

We could reduce the branch misprediction penalty if the branch
decision could be made earlier. Making the decision simply requires
comparing the values of two registers. Using a dedicated equality com-
parator is much faster than performing a subtraction and zero detection.
If the comparator is fast enough, it could be moved back into the
Decode stage, so that the operands are read from the register file and
compared to determine the next PC by the end of the Decode stage.

7.5 Pipelined Processor 413

4 Strictly speaking, only the register designations (RsE, RtE, and RdE) and the control sig-
nals that might update memory or architectural state (RegWrite, MemWrite, and Branch)
need to be cleared; as long as these signals are cleared, the bubble can contain random data
that has no effect.

Chapter 07.qxd 2/1/07 9:33 PM Page 413

Figure 7.55 shows the pipeline operation with the early branch deci-
sion being made in cycle 2. In cycle 3, the and instruction is flushed and
the slt instruction is fetched. Now the branch misprediction penalty is
reduced to only one instruction rather than three.

Figure 7.56 modifies the pipelined processor to move the branch
decision earlier and handle control hazards. An equality comparator is
added to the Decode stage and the PCSrc AND gate is moved earlier, so

414 CHAPTER SEVEN Microarchitecture

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RFDM

RF $s0

$s4

RF| DM

RF $s5

$s0

RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Flush
these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3DMIM slt

s
l
t

&

Figure 7.54 Abstract pipeline diagram illustrating flushing when a branch is taken

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1

RF- DM

RF $s1

$s0

RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2

RF
$t3DMIM slt s

l
t

Figure 7.55 Abstract pipeline diagram illustrating earlier branch decision

Chapter 07.qxd 2/1/07 9:33 PM Page 414

4
1

5

DlauqE

EmmIngiS

KLC

DRA

noitcurtsnI
yromeM

4

+

1A

3A

3DW

2DR

1DR
3EW

2A

KLC

ngiS
dnetxE

retsigeR
eliF

0

1

0

1

DRA
ataD

yromeM
DW

EW

1

0

FCP0

1
'CP DrtsnI

12:52

61:02

0:51

0:5

EBcrS

12:52

11:51

EsR

EdR

2<<

+

MtuOULA

WtuOULA

WataDdaeR

EataDetirW MataDetirW

EAcrS

D4sulPCP

DhcnarBCP

M4:0geRetirW

WtluseR

F4sulPCP

62:13

DtsDgeR

DhcnarB

DetirWmeM

DgeRotmeM

D2:0lortnoCULA

DcrSULA

DetirWgeR

pO

tcnuF

lortnoC
tinU

DcrSCP

KLC KLC KLC

KLC KLC

W4:0geRetirW

E2:0lortnoCULA

WetirWgeRMetirWgeREetirWgeR

WgeRotmeMMgeRotmeMEgeRotmeM

MetirWmeMEetirWmeM

EtsDgeR

EcrSULA

E4:0geRetirW

00
10
01

00
10
01

=

DmmIngiS

61:02 EtR

DsR

DdR

DtR

tinU drazaH

F
orw

ardA
E

F
orw

ardB
E

R
egW

riteM

M
em

toR
egE

F
lushE

S
tallD

S
tallF

R
egW

riteW

CLR
EN

EN

ALU

CLR

Figure 7.56 Pipelined processor handling branch control hazard

C
h
a
p
t
e
r
 0
7
.
q
x
d
 2

/
1
/
0
7
 9

:
3
3
 P
M
 P

a
g
e
 4
1
5

that PCSrc can be determined in the Decoder stage rather than the
Memory stage. The PCBranch adder must also be moved into the
Decode stage so that the destination address can be computed in time.
The synchronous clear input (CLR) connected to PCSrcD is added to the
Decode stage pipeline register so that the incorrectly fetched instruction
can be flushed when a branch is taken.

Unfortunately, the early branch decision hardware introduces a new
RAW data hazard. Specifically, if one of the source operands for the branch
was computed by a previous instruction and has not yet been written into
the register file, the branch will read the wrong operand value from the reg-
ister file. As before, we can solve the data hazard by forwarding the correct
value if it is available or by stalling the pipeline until the data is ready.

Figure 7.57 shows the modifications to the pipelined processor needed
to handle the Decode stage data dependency. If a result is in the Writeback
stage, it will be written in the first half of the cycle and read during
the second half, so no hazard exists. If the result of an ALU instruction is
in the Memory stage, it can be forwarded to the equality comparator
through two new multiplexers. If the result of an ALU instruction is in the
Execute stage or the result of a lw instruction is in the Memory stage, the
pipeline must be stalled at the Decode stage until the result is ready.

The function of the Decode stage forwarding logic is given below.

ForwardAD � (rsD !� 0) AND (rsD �� WriteRegM) AND RegWriteM
ForwardBD � (rtD !� 0) AND (rtD �� WriteRegM) AND RegWriteM

The function of the stall detection logic for a branch is given below.
The processor must make a branch decision in the Decode stage. If either
of the sources of the branch depends on an ALU instruction in the
Execute stage or on a lw instruction in the Memory stage, the processor
must stall until the sources are ready.

branchstall �

BranchD AND RegWriteE AND (WriteRegE �� rsD OR WriteRegE �� rtD)
OR

BranchD AND MemtoRegM AND (WriteRegM �� rsD OR WriteRegM �� rtD)

Now the processor might stall due to either a load or a branch hazard:

StallF � StallD � FlushE � lwstall OR branchstall

Hazard Summary

In summary, RAW data hazards occur when an instruction depends on
the result of another instruction that has not yet been written into the
register file. The data hazards can be resolved by forwarding if the result
is computed soon enough; otherwise, they require stalling the pipeline
until the result is available. Control hazards occur when the decision of
what instruction to fetch has not been made by the time the next instruc-
tion must be fetched. Control hazards are solved by predicting which

416 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 416

4
1

7

DlauqE

EmmIngiS

KLC

DRA

noitcurtsnI
yromeM

4

+

+

1A

3A

3DW

2DR

1DR
3EW

2A

KLC

ngiS
dnetxE

retsigeR
eliF

0

1

0

1

DRA
ataD

yromeM
DW

EW

1

0

FCP0

1
'CP DrtsnI

12:52

61:02

0:51

0:5

EBcrS

12:52

11:51

EsR

EdR

2<<

MtuOULA

WtuOULA

WataDdaeR

EataDetirW MataDetirW

EAcrS

D4sulPCP

DhcnarBCP

M4:0geRetirW

WtluseR

F4sulPCP

62:13

DtsDgeR

DhcnarB

DetirWmeM

DgeRotmeM

D2:0lortnoCULA

DcrSULA

DetirWgeR

pO

tcnuF

Control
Unit

DcrSCP

KLC KLC KLC

KLC KLC

W4:0geRetirW

E2:0lortnoCULA

WetirWgeRMetirWgeREetirWgeR

WgeRotmeMMgeRotmeMEgeRotmeM

MetirWmeMEetirWmeM

EtsDgeR

EcrSULA

E4:0geRetirW

00
10
01

00
10
01

0

1

0

1

=

DmmIngiS

61:02 EtR

DsR

DdR

DtR

tinU drazaH

F
orw

ardA
E

F
orw

ardB
E

F
orw

ardA
D

B
ranchD

F
orw

ardB
D

R
egW

riteM

R
egW

riteE

M
em

toR
egE

M
em

toR
egM

F
lushE

CLR
CLR

EN

EN

ALU

S
tallD

S
tallF

R
egW

riteW

Figure 7.57 Pipelined processor handling data dependencies for branch instructions

C
h
a
p
t
e
r
 0
7
.
q
x
d
 2

/
1
/
0
7
 9

:
3
3
 P
M
 P

a
g
e
 4
1
7

instruction should be fetched and flushing the pipeline if the prediction is
later determined to be wrong. Moving the decision as early as possible
minimizes the number of instructions that are flushed on a misprediction.
You may have observed by now that one of the challenges of designing a
pipelined processor is to understand all the possible interactions between
instructions and to discover all the hazards that may exist. Figure 7.58
shows the complete pipelined processor handling all of the hazards.

7. 5 . 4 More Instructions

Supporting new instructions in the pipelined processor is much like sup-
porting them in the single-cycle processor. However, new instructions
may introduce hazards that must be detected and solved.

In particular, supporting addi and j instructions on the pipelined
processor requires enhancing the controller, exactly as was described in
Section 7.3.3, and adding a jump multiplexer to the datapath after the
branch multiplexer. Like a branch, the jump takes place in the Decode
stage, so the subsequent instruction in the Fetch stage must be flushed.
Designing this flush logic is left as Exercise 7.29.

7. 5 . 5 Performance Analysis

The pipelined processor ideally would have a CPI of 1, because a new
instruction is issued every cycle. However, a stall or a flush wastes a
cycle, so the CPI is slightly higher and depends on the specific program
being executed.

Example 7.9 PIPELINED PROCESSOR CPI

The SPECINT2000 benchmark considered in Example 7.7 consists of approxi-
mately 25% loads, 10% stores, 11% branches, 2% jumps, and 52% R-type
instructions. Assume that 40% of the loads are immediately followed by an
instruction that uses the result, requiring a stall, and that one quarter of the
branches are mispredicted, requiring a flush. Assume that jumps always flush
the subsequent instruction. Ignore other hazards. Compute the average CPI of
the pipelined processor.

Solution: The average CPI is the sum over each instruction of the CPI for that
instruction multiplied by the fraction of time that instruction is used. Loads take
one clock cycle when there is no dependency and two cycles when the processor
must stall for a dependency, so they have a CPI of (0.6)(1) � (0.4)(2) � 1.4.
Branches take one clock cycle when they are predicted properly and two when they
are not, so they have a CPI of (0.75)(1) � (0.25)(2) � 1.25. Jumps always have a
CPI of 2. All other instructions have a CPI of 1. Hence, for this benchmark, Average
CPI � (0.25)(1.4) � (0.1)(1) � (0.11)(1.25) � (0.02)(2) � (0.52)(1) � 1.15.

418 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 418

4
1

9

EqualD

SignImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0

1

0

1

A RD

Data
Memory
WD

WE

1

0

PCF0

1
PC' InstrD

25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD
2:0

ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

ALU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0

1

0

1

=

SignImmD

20:16 RtE

RsD

RdD

RtD

Hazard Unit

S
tallF

S
tallD

F
orw

ardA
E

F
orw

ardB
E

F
orw

ardA
D

F
orw

ardB
D

R
egW

riteE

R
egW

riteM

R
egW

riteW

M
em

toR
egE

B
ranchD

F
lushE

EN

CLREN
CLR

Figure 7.58 Pipelined processor with full hazard handling

C
h
a
p
t
e
r
 0
7
.
q
x
d
 2

/
1
/
0
7
 9

:
3
3
 P
M
 P

a
g
e
 4
1
9

We can determine the cycle time by considering the critical path in
each of the five pipeline stages shown in Figure 7.58. Recall that the regis-
ter file is written in the first half of the Writeback cycle and read in the sec-
ond half of the Decode cycle. Therefore, the cycle time of the Decode and
Writeback stages is twice the time necessary to do the half-cycle of work.

(7.5)

Example 7.10 PROCESSOR PERFORMANCE COMPARISON

Ben Bitdiddle needs to compare the pipelined processor performance to that of
the single-cycle and multicycle processors considered in Example 7.8. Most of
the logic delays were given in Table 7.6. The other element delays are 40 ps for
an equality comparator, 15 ps for an AND gate, 100 ps for a register file write,
and 220 ps for a memory write. Help Ben compare the execution time of 100
billion instructions from the SPECINT2000 benchmark for each processor.

Solution: According to Equation 7.5, the cycle time of the pipelined processor is
Tc3 � max[30 � 250 � 20, 2(150 � 25 � 40 � 15 � 25 � 20), 30 � 25 � 25 �

200 � 20, 30 � 220 � 20, 2(30 � 25 � 100)] � 550 ps. According to Equation
7.1, the total execution time is T3 � (100 � 109 instructions)(1.15 cycles/ instruc-
tion)(550 � 10�12 s/cycle) � 63.3 seconds. This compares to 95 seconds for the
single-cycle processor and 133.9 seconds for the multicycle processor.

The pipelined processor is substantially faster than the others. However, its advan-
tage over the single-cycle processor is nowhere near the five-fold speedup one might
hope to get from a five-stage pipeline. The pipeline hazards introduce a small CPI
penalty. More significantly, the sequencing overhead (clk-to-Q and setup times) of
the registers applies to every pipeline stage, not just once to the overall datapath.
Sequencing overhead limits the benefits one can hope to achieve from pipelining.

The careful reader might observe that the Decode stage is substantially slower than
the others, because the register file write, read, and branch comparison must all
happen in half a cycle. Perhaps moving the branch comparison to the Decode stage
was not such a good idea. If branches were resolved in the Execute stage instead,
the CPI would increase slightly, because a mispredict would flush two instructions,
but the cycle time would decrease substantially, giving an overall speedup.

The pipelined processor is similar in hardware requirements to the
single-cycle processor, but it adds a substantial number of pipeline regis-
ters, along with multiplexers and control logic to resolve hazards.

Tc � max �
tpcq � tmem � tsetup

2(tRFread� tmux � teq � tAND � tmux� tsetup)
tpcq � tmux � tmux � tALU � tsetup

tpcq � tmemwrite � tsetup

2(tpcq � tmux � tRFwrite)
�

�

420 CHAPTER SEVEN Microarchitecture

Fetch

Decode

Execute

Memory

Writeback

Chapter 07.qxd 2/1/07 9:33 PM Page 420

7. 6 HDL REPRESENTATION*

This section presents HDL code for the single-cycle MIPS processor
supporting all of the instructions discussed in this chapter, including
addi and j. The code illustrates good coding practices for a moderately
complex system. HDL code for the multicycle processor and pipelined
processor are left to Exercises 7.22 and 7.33.

In this section, the instruction and data memories are separated from
the main processor and connected by address and data busses. This is
more realistic, because most real processors have external memory. It also
illustrates how the processor can communicate with the outside world.

The processor is composed of a datapath and a controller. The
controller, in turn, is composed of the main decoder and the ALU
decoder. Figure 7.59 shows a block diagram of the single-cycle MIPS
processor interfaced to external memories.

The HDL code is partitioned into several sections. Section 7.6.1
provides HDL for the single-cycle processor datapath and controller.
Section 7.6.2 presents the generic building blocks, such as registers and
multiplexers, that are used by any microarchitecture. Section 7.6.3

7.6 HDL Representation 421

Opcode5:0
ControllerFunct5:0

Datapath

A RD

Instruction
Memory

PC Instr

A RD
Data

Memory
WD

WE

CLK

ALUOut

WriteData

ReadData

R
egD

st

B
ranch

M
em

W
rite

M
em

toR
eg

A
LU

S
rc

A
LU

C
ontrol2:0

Main
Decoder

ALUOp1:0
ALU

Decoder

R
egW

rite

31:265:0

CLK

Reset

MIPS Processor External Memory

P
C

S
rc

Z
ero

Figure 7.59 MIPS single-cycle processor interfaced to external memory

Chapter 07.qxd 2/1/07 9:33 PM Page 421

introduces the testbench and external memories. The HDL is available
in electronic form on the this book’s Web site (see the preface).

7. 6 .1 Single-Cycle Processor

The main modules of the single-cycle MIPS processor module are given
in the following HDL examples.

422 CHAPTER SEVEN Microarchitecture

Verilog

module mips (input clk, reset,
output [31:0] pc,
input [31:0] instr,
output memwrite,
output [31:0] aluout, writedata,
input [31:0] readdata);

wire memtoreg, branch,
alusrc, regdst, regwrite, jump;

wire [2:0] alucontrol;

controller c(instr[31:26], instr[5:0], zero,
memtoreg, memwrite, pcsrc,
alusrc, regdst, regwrite, jump,
alucontrol);

datapath dp(clk, reset, memtoreg, pcsrc,
alusrc, regdst, regwrite, jump,
alucontrol,
zero, pc, instr,
aluout, writedata, readdata);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mips is — — single cycle MIPS processor

port (clk, reset: in STD_LOGIC;
pc: out STD_LOGIC_VECTOR (31 downto 0);
instr: in STD_LOGIC_VECTOR (31 downto 0);
memwrite: out STD_LOGIC;
aluout, writedata: out STD_LOGIC_VECTOR (31 downto 0);
readdata: in STD_LOGIC_VECTOR (31 downto 0));

end;

architecture struct of mips is
component controller

port (op, funct: in STD_LOGIC_VECTOR (5 downto 0);
zero: in STD_LOGIC;
memtoreg, memwrite: out STD_LOGIC;
pcsrc, alusrc: out STD_LOGIC;
regdst, regwrite: out STD_LOGIC;
jump: out STD_LOGIC;
alucontrol: out STD_LOGIC_VECTOR (2 downto 0));

end component;
component datapath
port (clk, reset: in STD_LOGIC;

memtoreg, pcsrc: in STD_LOGIC;
alusrc, regdst: in STD_LOGIC;
regwrite, jump: in STD_LOGIC;
alucontrol: in STD_LOGIC_VECTOR (2 downto 0);
zero: out STD_LOGIC;
pc: buffer STD_LOGIC_VECTOR (31 downto 0);
instr: in STD_LOGIC_VECTOR (31 downto 0);
aluout, writedata: buffer STD_LOGIC_VECTOR (31 downto 0);
readdata: in STD_LOGIC_VECTOR (31 downto 0));

end component;
signal memtoreg, alusrc, regdst, regwrite, jump, pcsrc:
STD_LOGIC;

signal zero: STD_LOGIC;
signal alucontrol: STD_LOGIC_VECTOR (2 downto 0);

begin
cont: controller port map (instr (31 downto 26), instr

(5 downto 0), zero, memtoreg,
memwrite, pcsrc, alusrc, regdst,
regwrite, jump, alucontrol);

dp: datapath port map (clk, reset, memtoreg, pcsrc, alusrc,
regdst, regwrite, jump, alucontrol,
zero, pc, instr, aluout, writedata,
readdata);

end;

HDL Example 7.1 SINGLE-CYCLE MIPS PROCESSOR

Chapter 07.qxd 2/1/07 9:33 PM Page 422

7.6 HDL Representation 423

Verilog

module controller (input [5:0] op, funct,
input zero,
output memtoreg, memwrite,
output pcsrc, alusrc,
output regdst, regwrite,
output jump,
output [2:0] alucontrol);

wire [1:0] aluop;
wire branch;

maindec md (op, memtoreg, memwrite, branch,
alusrc, regdst, regwrite, jump,
aluop);

aludec ad (funct, aluop, alucontrol);

assign pcsrc � branch & zero;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity controller is — — single cycle control decoder
port (op, funct: in STD_LOGIC_VECTOR (5 downto 0);

zero: in STD_LOGIC;
memtoreg, memwrite: out STD_LOGIC;
pcsrc, alusrc: out STD_LOGIC;
regdst, regwrite: out STD_LOGIC;
jump: out STD_LOGIC;
alucontrol: out STD_LOGIC_VECTOR (2 downto 0));

end;

architecture struct of controller is
component maindec
port (op: in STD_LOGIC_VECTOR (5 downto 0);

memtoreg, memwrite: out STD_LOGIC;
branch, alusrc: out STD_LOGIC;
regdst, regwrite: out STD_LOGIC;
jump: out STD_LOGIC;
aluop: out STD_LOGIC_VECTOR (1 downto 0));

end component;
component aludec
port (funct: in STD_LOGIC_VECTOR (5 downto 0);

aluop: in STD_LOGIC_VECTOR (1 downto 0);
alucontrol: out STD_LOGIC_VECTOR (2 downto 0));

end component;
signal aluop: STD_LOGIC_VECTOR (1 downto 0);
signal branch: STD_LOGIC;

begin
md: maindec port map (op, memtoreg, memwrite, branch,

alusrc, regdst, regwrite, jump, aluop);
ad: aludec port map (funct, aluop, alucontrol);

pcsrc �� branch and zero;
end;

HDL Example 7.2 CONTROLLER

Chapter 07.qxd 2/1/07 9:33 PM Page 423

Verilog

module maindec(input [5:0] op,
output memtoreg, memwrite,
output branch, alusrc,
output regdst, regwrite,
output jump,
output [1:0] aluop);

reg [8:0] controls;

assign {regwrite, regdst, alusrc,
branch, memwrite,
memtoreg, jump, aluop} � controls;

always @ (*)
case(op)

6�b000000: controls �� 9�b110000010; //Rtyp
6�b100011: controls �� 9�b101001000; //LW
6�b101011: controls �� 9�b001010000; //SW
6�b000100: controls �� 9�b000100001; //BEQ
6�b001000: controls �� 9�b101000000; //ADDI
6�b000010: controls �� 9�b000000100; //J
default: controls �� 9�bxxxxxxxxx; //???

endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity maindec is —— main control decoder
port (op: in STD_LOGIC_VECTOR (5 downto 0);

memtoreg, memwrite: out STD_LOGIC;
branch, alusrc: out STD_LOGIC;
regdst, regwrite: out STD_LOGIC;
jump: out STD_LOGIC;
aluop: out STD_LOGIC_VECTOR (1 downto 0));

end;

architecture behave of maindec is
signal controls: STD_LOGIC_VECTOR(8 downto 0);

begin
process(op) begin
case op is

when "000000" �� controls �� "110000010"; — — Rtyp
when "100011" �� controls �� "101001000"; — — LW
when "101011" �� controls �� "001010000"; — — SW
when "000100" �� controls �� "000100001"; — — BEQ
when "001000" �� controls �� "101000000"; — — ADDI
when "000010" �� controls �� "000000100"; — — J
when others �� controls �� "---------"; — — illegal op

end case;
end process;

regwrite �� controls(8);
regdst �� controls(7);
alusrc �� controls(6);
branch �� controls(5);
memwrite �� controls(4);
memtoreg �� controls(3);
jump �� controls(2);
aluop �� controls(1 downto 0);

end;

HDL Example 7.3 MAIN DECODER

Verilog

module aludec (input [5:0] funct,
input [1:0] aluop,
output reg [2:0] alucontrol);

always @ (*)
case (aluop)
2�b00: alucontrol �� 3�b010; // add
2�b01: alucontrol �� 3�b110; // sub
default: case(funct) // RTYPE

6�b100000: alucontrol �� 3�b010; // ADD
6�b100010: alucontrol �� 3�b110; // SUB
6�b100100: alucontrol �� 3�b000; // AND
6�b100101: alucontrol �� 3�b001; // OR
6�b101010: alucontrol �� 3�b111; // SLT
default: alucontrol �� 3�bxxx; // ???

endcase
endcase

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity aludec is — — ALU control decoder

port (funct: in STD_LOGIC_VECTOR (5 downto 0);
aluop: in STD_LOGIC_VECTOR (1 downto 0);
alucontrol: out STD_LOGIC_VECTOR (2 downto 0));

end;

architecture behave of aludec is
begin
process (aluop, funct) begin
case aluop is
when "00" �� alucontrol �� "010"; — — add (for 1b/sb/addi)
when "01" �� alucontrol �� "110"; — — sub (for beq)
when others �� case funct is — — R-type instructions

when "100000" �� alucontrol ��
"010"; — — add

when "100010" �� alucontrol ��
"110"; — — sub

when "100100" �� alucontrol ��
"000"; — — and

when "100101" �� alucontrol ��
"001"; — — or

when "101010" �� alucontrol ��
"111"; — — slt

when others �� alucontrol ��
"— — —"; — — ???

end case;
end case;

end process;
end;

HDL Example 7.4 ALU DECODER

Chapter 07.qxd 2/1/07 9:33 PM Page 424

Verilog
module datapath (input clk, reset,

input memtoreg, pcsrc,
input alusrc, regdst,
input regwrite, jump,
input [2:0] alucontrol,
output zero,
output [31:0] pc,
input [31:0] instr,
output [31:0] aluout, writedata,
input [31:0] readdata);

wire [4:0] writereg;
wire [31:0] pcnext, pcnextbr, pcplus4, pcbranch;
wire [31:0] signimm, signimmsh;
wire [31:0] srca, srcb;
wire [31:0] result;

// next PC logic
flopr #(32) pcreg(clk, reset, pcnext, pc);
adder pcadd1 (pc, 32�b100, pcplus4);
sl2 immsh(signimm, signimmsh);
adder pcadd2(pcplus4, signimmsh, pcbranch);
mux2 #(32) pcbrmux(pcplus4, pcbranch, pcsrc,

pcnextbr);
mux2 #(32) pcmux(pcnextbr, {pcplus4[31:28],

instr[25:0], 2�b00},
jump, pcnext);

// register file logic
regfile rf(clk, regwrite, instr[25:21],

instr[20:16], writereg,
result, srca, writedata);

mux2 #(5) wrmux(instr[20:16], instr[15:11],
regdst, writereg);

mux2 #(32) resmux(aluout, readdata,
memtoreg, result);

signext se(instr[15:0], signimm);

// ALU logic
mux2 #(32) srcbmux(writedata, signimm, alusrc,

srcb);
alu alu(srca, srcb, alucontrol,

aluout, zero);
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all; use
IEEE.STD_LOGIC_ARITH.all;
entity datapath is — — MIPS datapath

port(clk, reset: in STD_LOGIC;
memtoreg, pcsrc: in STD_LOGIC;
alusrc, regdst: in STD_LOGIC;
regwrite, jump: in STD_LOGIC;
alucontrol: in STD_LOGIC_VECTOR (2 downto 0);
zero: out STD_LOGIC;
pc: buffer STD_LOGIC_VECTOR (31 downto 0);
instr: in STD_LOGIC_VECTOR(31 downto 0);
aluout, writedata: buffer STD_LOGIC_VECTOR (31 downto 0);
readdata: in STD_LOGIC_VECTOR(31 downto 0));

end;

architecture struct of datapath is
component alu

port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
alucontrol: in STD_LOGIC_VECTOR(2 downto 0);
result: buffer STD_LOGIC_VECTOR(31 downto 0);
zero: out STD_LOGIC);

end component;
component regfile

port(clk: in STD_LOGIC;
we3: in STD_LOGIC;
ra1, ra2, wa3: in STD_LOGIC_VECTOR (4 downto 0);
wd3: in STD_LOGIC_VECTOR (31 downto 0);
rd1, rd2: out STD_LOGIC_VECTOR (31 downto 0));

end component;
component adder

port(a, b: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));

end component;
component sl2

port(a: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));

end component;
component signext

port(a: in STD_LOGIC_VECTOR (15 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));

end component;
component flopr generic (width: integer);

port(clk, reset: in STD_LOGIC;
d: in STD_LOGIC_VECTOR (width-1 downto 0);
q: out STD_LOGIC_VECTOR (width-1 downto 0));

end component;
component mux2 generic (width: integer);

port(d0, d1: in STD_LOGIC_VECTOR (width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR (width-1 downto 0));

end component;
signal writereg: STD_LOGIC_VECTOR (4 downto 0);
signal pcjump, pcnext, pcnextbr,

pcplus4, pcbranch: STD_LOGIC_VECTOR (31 downto 0);
signal signimm, signimmsh: STD_LOGIC_VECTOR (31 downto 0);
signal srca, srcb, result: STD_LOGIC_VECTOR (31 downto 0);

begin
—— next PC logic
pcjump �� pcplus4 (31 downto 28) & instr (25 downto 0) & "00";
pcreg: flopr generic map(32) port map(clk, reset, pcnext, pc);
pcadd1: adder port map(pc, X"00000004", pcplus4);
immsh: sl2 port map(signimm, signimmsh);
pcadd2: adder port map(pcplus4, signimmsh, pcbranch);
pcbrmux: mux2 generic map(32) port map(pcplus4, pcbranch,

pcsrc, pcnextbr);
pcmux: mux2 generic map(32) port map(pcnextbr, pcjump, jump,

pcnext);

— — register file logic
rf: regfile port map(clk, regwrite, instr(25 downto 21),

instr(20 downto 16), writereg, result, srca,
writedata);

wrmux: mux2 generic map(5) port map(instr(20 downto 16),
instr(15 downto 11), regdst, writereg);
resmux: mux2 generic map(32) port map(aluout, readdata,

memtoreg, result);
se: signext port map(instr(15 downto 0), signimm);

— — ALU logic
srcbmux: mux2 generic map (32) port map(writedata, signimm,

alusrc, srcb);
mainalu: alu port map(srca, srcb, alucontrol, aluout, zero);

end;

HDL Example 7.5 DATAPATH

425

Chapter 07.qxd 2/1/07 9:33 PM Page 425

Verilog

module regfile (input clk,
input we3,
input [4:0] ra1, ra2, wa3,
input [31:0] wd3,
output [31:0] rd1, rd2);

reg [31:0] rf[31:0];

// three ported register file
// read two ports combinationally
// write third port on rising edge of clock
// register 0 hardwired to 0

always @ (posedge clk)
if (we3) rf[wa3] �� wd3;

assign rd1 � (ra1 ! � 0) ? rf[ra1] : 0;
assign rd2 � (ra2 ! � 0) ? rf[ra2] : 0;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity regfile is — — three-port register file

port(clk: in STD_LOGIC;
we3: in STD_LOGIC;
ra1, ra2, wa3:in STD_LOGIC_VECTOR(4 downto 0);
wd3: in STD_LOGIC_VECTOR(31 downto 0);
rd1, rd2: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of regfile is
type ramtype is array (31 downto 0) of STD_LOGIC_VECTOR (31

downto 0);
signal mem: ramtype;

begin
— — three-ported register file
— — read two ports combinationally
— — write third port on rising edge of clock
process(clk) begin
if clk'event and clk � '1' then
if we3 � '1' then mem(CONV_INTEGER(wa3)) �� wd3;
end if;

end if;
end process;
process (ra1, ra2) begin
if (conv_integer (ra1) � 0) then rd1 �� X"00000000";

— — register 0 holds 0
else rd1 �� mem(CONV_INTEGER (ra1));
end if;
if (conv_integer(ra2) � 0) then rd2 �� X"00000000";
else rd2 �� mem(CONV_INTEGER(ra2));
end if;

end process;
end;

HDL Example 7.6 REGISTER FILE

Verilog

module adder (input [31:0] a, b,
output [31:0] y);

assign y � a � b;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
entity adder is — adder

port (a, b: in STD_LOGIC_VECTOR(31 downto 0);
y: out STD_LOGIC_VECTOR(31 downto 0));

end;

architecture behave of adder is
begin

y �� a � b;
end;

HDL Example 7.7 ADDER

7. 6 . 2 Generic Building Blocks

This section contains generic building blocks that may be useful in any
MIPS microarchitecture, including a register file, adder, left shift unit,
sign-extension unit, resettable flip-flop, and multiplexer. The HDL for
the ALU is left to Exercise 5.9.

Chapter 07.qxd 2/1/07 9:33 PM Page 426

Verilog

module sl2 (input [31:0] a,
output [31:0] y);

// shift left by 2
assign y � {a[29:01], 2'b00};

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity sl2 is — — shift left by 2

port (a: in STD_LOGIC_VECTOR (31 downto 0);
y: out STD_LOGIC_VECTOR (31 downto 0));

end;

architecture behave of sl2 is
begin

y �� a(29 downto 0) & "00";
end;

HDL Example 7.8 LEFT SHIFT (MULTIPLY BY 4)

Verilog

module signext (input [15:0] a,
output [31:0] y);

assign y � {{16{a[15]}}, a};
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity signext is — — sign extender
port(a: in STD_LOGIC_VECTOR (15 downto 0);

y: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of signext is
begin

y �� X"0000" & a when a (15) � '0' else X"ffff" & a;
end;

HDL Example 7.9 SIGN EXTENSION

Verilog

module flopr # (parameter WIDTH � 8)
(input clk, reset,
input [WIDTH-1:0] d,
output reg [WIDTH-1:0] q);

always @ (posedge clk, posedge reset)
if (reset) q �� 0;
else q �� d;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all; use
IEEE.STD_LOGIC_ARITH.all;
entity flopr is — — flip-flop with synchronous reset

generic (width: integer);
port (clk, reset: in STD_LOGIC;

d: in STD_LOGIC_VECTOR(width-1 downto 0);
q: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture asynchronous of flopr is
begin

process (clk, reset) begin
if reset � '1' then q �� CONV_STD_LOGIC_VECTOR(0, width);
elsif clk’event and clk � '1' then

q �� d;
end if;

end process;
end;

HDL Example 7.10 RESETTABLE FLIP-FLOP

7.6 HDL Representation 427

Chapter 07.qxd 2/1/07 9:33 PM Page 427

428 CHAPTER SEVEN Microarchitecture

Verilog

module mux2 # (parameter WIDTH � 8)
(input [WIDTH-1:0] d0, d1,
input s,
output [WIDTH-1:0] y);

assign y � s ? d1 : d0;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is — — two-input multiplexer

generic (width: integer);
port (d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture behave of mux2 is
begin

y �� d0 when s � '0' else d1;
end;

HDL Example 7.11 2:1 MULTIPLEXER

mipstest.asm
David_Harris@hmc.edu 9 November 2005
#
Test the MIPS processor.
add, sub, and, or, slt, addi, lw, sw, beq, j
If successful, it should write the value 7 to address 84

Assembly Description Address Machine
main: addi $2, $0, 5 # initialize $2 � 5 0 20020005

addi $3, $0, 12 # initialize $3 � 12 4 2003000c
addi $7, $3, �9 # initialize $7 � 3 8 2067fff7
or $4, $7, $2 # $4 �� 3 or 5 � 7 c 00e22025
and $5, $3, $4 # $5 �� 12 and 7 � 4 10 00642824
add $5, $5, $4 # $5 � 4 � 7 � 11 14 00a42820
beq $5, $7, end # shouldn’t be taken 18 10a7000a
slt $4, $3, $4 # $4 � 12 � 7 � 0 1c 0064202a
beq $4, $0, around # should be taken 20 10800001
addi $5, $0, 0 # shouldn’t happen 24 20050000

around: slt $4, $7, $2 # $4 � 3 � 5 � 1 28 00e2202a
add $7, $4, $5 # $7 � 1 � 11 � 12 2c 00853820
sub $7, $7, $2 # $7 � 12 � 5 � 7 30 00e23822
sw $7, 68($3) # [80] � 7 34 ac670044
lw $2, 80($0) # $2 � [80] � 7 38 8c020050
j end # should be taken 3c 08000011
addi $2, $0, 1 # shouldn’t happen 40 20020001

end: sw $2, 84($0) # write adr 84 � 7 44 ac020054

Figure 7.60 Assembly and machine code for MIPS test program

20020005
2003000c
2067fff7
00e22025
00642824
00a42820
10a7000a
0064202a
10800001
20050000
00e2202a
00853820
00e23822
ac670044
8c020050
08000011
20020001
ac020054

Figure 7.61 Contents of

memfile.dat

7. 6 . 3 Testbench

The MIPS testbench loads a program into the memories. The program in
Figure 7.60 exercises all of the instructions by performing a computation
that should produce the correct answer only if all of the instructions are
functioning properly. Specifically, the program will write the value 7 to
address 84 if it runs correctly, and is unlikely to do so if the hardware is
buggy. This is an example of ad hoc testing.

Chapter 07.qxd 2/1/07 9:33 PM Page 428

7.6 HDL Representation 429

The machine code is stored in a hexadecimal file called memfile.dat
(see Figure 7.61), which is loaded by the testbench during simulation.
The file consists of the machine code for the instructions, one instruction
per line.

The testbench, top-level MIPS module, and external memory HDL
code are given in the following examples. The memories in this example
hold 64 words each.

Verilog

module testbench();

reg clk;
reg reset;

wire [31:0] writedata, dataadr;
wire memwrite;

// instantiate device to be tested
top dut (clk, reset, writedata, dataadr, memwrite);

// initialize test
initial

begin
reset �� 1; # 22; reset �� 0;

end

// generate clock to sequence tests
always
begin
clk �� 1; # 5; clk �� 0; # 5;

end

// check results
always @ (negedge clk)
begin
if (memwrite) begin

if (dataadr ��� 84 & writedata ��� 7) begin
$display ("Simulation succeeded");
$stop;

end else if (dataadr !�� 80) begin
$display ("Simulation failed");
$stop;

end
end

end
endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity testbench is
end;

architecture test of testbench is
component top

port(clk, reset: in STD_LOGIC;
writedata, dataadr: out STD_LOGIC_VECTOR(31 downto 0);
memwrite: out STD_LOGIC);

end component;
signal writedata, dataadr: STD_LOGIC_VECTOR(31 downto 0);
signal clk, reset, memwrite: STD_LOGIC;

begin
— — instantiate device to be tested
dut: top port map (clk, reset, writedata, dataadr, memwrite);

— — Generate clock with 10 ns period
process begin

clk �� '1';
wait for 5 ns;
clk �� '0';
wait for 5 ns;

end process;

— — Generate reset for first two clock cycles
process begin

reset �� '1';
wait for 22 ns;
reset �� '0';
wait;

end process;

— — check that 7 gets written to address 84
— — at end of program
process (clk) begin

if (clk'event and clk � '0' and memwrite � '1') then
if (conv_integer(dataadr) � 84 and conv_integer

(writedata) � 7) then
report "Simulation succeeded";

elsif (dataadr /� 80) then
report "Simulation failed";

end if;
end if;

end process;
end;

HDL Example 7.12 MIPS TESTBENCH

Chapter 07.qxd 2/1/07 9:33 PM Page 429

Verilog

module top (input clk, reset,
output [31:0] writedata, dataadr,
output memwrite);

wire [31:0] pc, instr, readdata;

// instantiate processor and memories
mips mips (clk, reset, pc, instr, memwrite, dataadr,

writedata, readdata);
imem imem (pc[7:2], instr);
dmem dmem (clk, memwrite, dataadr, writedata,

readdata);
endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity top is — — top-level design for testing

port (clk, reset: in STD_LOGIC;
writedata, dataadr: buffer STD_LOGIC_VECTOR (31 downto

0);
memwrite: buffer STD_LOGIC);

end;

architecture test of top is
component mips

port (clk, reset: in STD_LOGIC;
pc: out STD_LOGIC_VECTOR (31 downto 0);
instr: in STD_LOGIC_VECTOR (31 downto 0);
memwrite: out STD_LOGIC;
aluout, writedata: out STD_LOGIC_VECTOR (31 downto 0);
readdata: in STD_LOGIC_VECTOR (31 downto 0));

end component;
component imem

port (a: in STD_LOGIC_VECTOR (5 downto 0)
rd: out STD_LOGIC_VECTOR (31 downto 0));

end component;
component dmem

port (clk, we: in STD_LOGIC;
a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));

end component;
signal pc, instr,

readdata: STD_LOGIC_VECTOR (31 downto 0);
begin

— — instantiate processor and memories
mips1: mips port map (clk, reset, pc, instr, memwrite,

dataadr, writedata, readdata);
imem1: imem port map (pc (7 downto 2), instr);
dmem1: dmem port map (clk, memwrite, dataadr, writedata,

readdata);
end;

HDL Example 7.13 MIPS TOP-LEVEL MODULE

module dmem (input clk, we,
input [31:0] a, wd,
output [31:0] rd);

reg [31:0] RAM[63:0];

assign rd � RAM[a[31:2]]; // word aligned

always @ (posedge clk)
if (we)

RAM[a[31:2]] �� wd;
endmodule

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;
entity dmem is — — data memory
port (clk, we: in STD_LOGIC;

a, wd: in STD_LOGIC_VECTOR (31 downto 0);
rd: out STD_LOGIC_VECTOR (31 downto 0));

end;

architecture behave of dmem is
begin

process is
type ramtype is array (63 downto 0) of STD_LOGIC_VECTOR

(31 downto 0);
variable mem: ramtype;

begin
— — read or write memory
loop

if clk'event and clk � '1' then
if (we � '1') then mem (CONV_INTEGER (a(7 downto

2))): � wd;
end if;

end if;
rd �� mem (CONV_INTEGER (a (7 downto 2)));
wait on clk, a;

end loop;

end process;
end;

HDL Example 7.14 MIPS DATA MEMORY

Chapter 07.qxd 2/1/07 9:33 PM Page 430

7.7 EXCEPTIONS*

Section 6.7.2 introduced exceptions, which cause unplanned changes in
the flow of a program. In this section, we enhance the multicycle
processor to support two types of exceptions: undefined instructions

Verilog

module imem (input [5:0] a,
output [31:0] rd);

reg [31:0] RAM[63:0];

initial
begin

$readmemh ("memfile.dat",RAM);
end

assign rd � RAM[a]; // word aligned
endmodule

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;

entity imem is — — instruction memory
port (a: in STD_LOGIC_VECTOR (5 downto 0);

rd: out STD_LOGIC_VECTOR (31 downto 0));
end;

architecture behave of imem is
begin

process is
file mem_file: TEXT;
variable L: line;
variable ch: character;
variable index, result: integer;
type ramtype is array (63 downto 0) of STD_LOGIC_VECTOR

(31 downto 0);
variable mem: ramtype;

begin
— — initialize memory from file
for i in 0 to 63 loop — set all contents low

mem (conv_integer(i)) :� CONV_STD_LOGIC_VECTOR (0, 32);
end loop;
index :� 0;
FILE_OPEN (mem_file, "C:/mips/memfile.dat", READ_MODE);
while not endfile(mem_file) loop

readline (mem_file, L);
result :� 0;
for i in 1 to 8 loop

read (L, ch);
if '0' �� ch and ch �� '9' then

result :� result*16 � character'pos(ch) �

character'pos('0');
elsif 'a' �� ch and ch �� 'f' then
result :� result*16 � character'pos(ch) �

character'pos('a') � 10;
else report "Format error on line" & integer'image

(index) severity error;
end if;

end loop;
mem (index) :� CONV_STD_LOGIC_VECTOR (result, 32);
index :� index � 1;

end loop;

— — read memory
loop

rd �� mem(CONV_INTEGER(a));
wait on a;

end loop;
end process;

end;

HDL Example 7.15 MIPS INSTRUCTION MEMORY

Chapter 07.qxd 2/1/07 9:33 PM Page 431

and arithmetic overflow. Supporting exceptions in other microarchitec-
tures follows similar principles.

As described in Section 6.7.2, when an exception takes place, the
processor copies the PC to the EPC register and stores a code in the
Cause register indicating the source of the exception. Exception causes
include 0x28 for undefined instructions and 0x30 for overflow (see Table
6.7). The processor then jumps to the exception handler at memory
address 0x80000180. The exception handler is code that responds to the
exception. It is part of the operating system.

Also as discussed in Section 6.7.2, the exception registers are part of
Coprocessor 0, a portion of the MIPS processor that is used for system
functions. Coprocessor 0 defines up to 32 special-purpose registers,
including Cause and EPC. The exception handler may use the mfc0
(move from coprocessor 0) instruction to copy these special-purpose
registers into a general-purpose register in the register file; the Cause reg-
ister is Coprocessor 0 register 13, and EPC is register 14.

To handle exceptions, we must add EPC and Cause registers to the
datapath and extend the PCSrc multiplexer to accept the exception han-
dler address, as shown in Figure 7.62. The two new registers have write
enables, EPCWrite and CauseWrite, to store the PC and exception cause
when an exception takes place. The cause is generated by a multiplexer

432 CHAPTER SEVEN Microarchitecture

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl
2:0

ALU

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00
01

10
11

4

CLK

ENEN

ALUSrcB
1:0IRWriteIorD PCWrite

PCEn

<<2

25:0 (jump)

31:28

27:0

PCJump

00
01

10
11

0x80000180

Overflow

CLK

EN

EPCWrite

CLK

EN

CauseWrite

0

1

IntCause

0x30

0x28
EPC

Cause

Figure 7.62 Datapath supporting overflow and undefined instruction exceptions

Chapter 07.qxd 2/1/07 9:33 PM Page 432

7.7 Exceptions 433

that selects the appropriate code for the exception. The ALU must also
generate an overflow signal, as was discussed in Section 5.2.4.5

To support the mfc0 instruction, we also add a way to select the
Coprocessor 0 registers and write them to the register file, as shown in
Figure 7.63. The mfc0 instruction specifies the Coprocessor 0 register by
Instr15:11; in this diagram, only the Cause and EPC registers are sup-
ported. We add another input to the MemtoReg multiplexer to select the
value from Coprocessor 0.

The modified controller is shown in Figure 7.64. The controller
receives the overflow flag from the ALU. It generates three new control
signals: one to write the EPC, a second to write the Cause register, and a
third to select the Cause. It also includes two new states to support the
two exceptions and another state to handle mfc0.

If the controller receives an undefined instruction (one that it does
not know how to handle), it proceeds to S12, saves the PC in EPC,
writes 0x28 to the Cause register, and jumps to the exception handler.
Similarly, if the controller detects arithmetic overflow on an add or
sub instruction, it proceeds to S13, saves the PC in EPC, writes 0x30

5 Strictly speaking, the ALU should assert overflow only for add and sub, not for other
ALU instructions.

SignImm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

RegDst BranchMemWrite MemtoReg ALUSrcARegWrite

Zero

PCSrc1:0

CLK

ALUControl
2:0

ALU

WD

WE

CLK

Adr

00
01

Data

CLK

CLK

A

B
00
01

10

11

4

CLK

ENEN

ALUSrcB
1:0IRWriteIorD PCWrite

PCEn

<<2

25:0 (jump)

31:28

27:0

PCJump

00
01

10
11

0x8000 0180

CLK

EN

EPCWrite

CLK

EN

CauseWrite

0

1

IntCause

0x30

0x28
EPC

Cause

Overflow

...
01101

01110

...
15:11

10

C0

Figure 7.63 Datapath supporting mfc0

Chapter 07.qxd 2/1/07 9:33 PM Page 433

434 CHAPTER SEVEN Microarchitecture

IorD = 0
AluSrcA = 0

ALUSrcB = 01
ALUOp = 00
PCSrc = 00
IRWrite

ALUSrcA = 0
ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10

ALUOp = 00

IorD = 1
RegDst = 1

MemtoReg = 00
RegWrite

IorD = 1
MemWrite

ALUSrcA = 1
ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1
ALUSrcB = 00

ALUOp = 01
PCSrc = 01
Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU
Writeback

S8: Branch

Op = LW
or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0
MemtoReg = 01

RegWrite

S4: Mem
Writeback

ALUSrcA = 1
ALUSrcB = 10

ALUOp = 00

RegDst = 0
MemtoReg = 00

RegWrite

Op = ADDI

S9: ADDI
Execute

S10: ADDI
Writeback

PCSrc = 10
PCWrite

Op = J

S11: Jump

Overflow Overflow
S13:

Overflow

PCSrc = 11
PCWrite

IntCause = 0
CauseWrite
EPCWrite

Op = others

 PCSrc = 11
PCWrite

IntCause = 1
CauseWrite
EPCWrite

S12: Undefined

Memtoreg = 10
RegWrite

Op = MFC0

S14: MFC0

PCWrite

RegDst = 0

Figure 7.64 Controller supporting exceptions and mfc0

in the Cause register, and jumps to the exception handler. Note that,
when an exception occurs, the instruction is discarded and the register
file is not written. When a mfc0 instruction is decoded, the processor
goes to S14 and writes the appropriate Coprocessor 0 register to the
main register file.

Chapter 07.qxd 2/1/07 9:33 PM Page 434

7. 8 ADVANCED MICROARCHITECTURE*

High-performance microprocessors use a wide variety of techniques to
run programs faster. Recall that the time required to run a program is
proportional to the period of the clock and to the number of clock cycles
per instruction (CPI). Thus, to increase performance we would like to
speed up the clock and/or reduce the CPI. This section surveys some
existing speedup techniques. The implementation details become quite
complex, so we will focus on the concepts. Hennessy & Patterson’s
Computer Architecture text is a definitive reference if you want to fully
understand the details.

Every 2 to 3 years, advances in CMOS manufacturing reduce tran-
sistor dimensions by 30% in each direction, doubling the number of
transistors that can fit on a chip. A manufacturing process is character-
ized by its feature size, which indicates the smallest transistor that can
be reliably built. Smaller transistors are faster and generally consume
less power. Thus, even if the microarchitecture does not change, the
clock frequency can increase because all the gates are faster. Moreover,
smaller transistors enable placing more transistors on a chip.
Microarchitects use the additional transistors to build more compli-
cated processors or to put more processors on a chip. Unfortunately,
power consumption increases with the number of transistors and the
speed at which they operate (see Section 1.8). Power consumption is
now an essential concern. Microprocessor designers have a challenging
task juggling the trade-offs among speed, power, and cost for chips
with billions of transistors in some of the most complex systems that
humans have ever built.

7. 8 .1 Deep Pipelines

Aside from advances in manufacturing, the easiest way to speed up the
clock is to chop the pipeline into more stages. Each stage contains less
logic, so it can run faster. This chapter has considered a classic five-stage
pipeline, but 10 to 20 stages are now commonly used.

The maximum number of pipeline stages is limited by pipeline haz-
ards, sequencing overhead, and cost. Longer pipelines introduce more
dependencies. Some of the dependencies can be solved by forwarding,
but others require stalls, which increase the CPI. The pipeline registers
between each stage have sequencing overhead from their setup time and
clk-to-Q delay (as well as clock skew). This sequencing overhead makes
adding more pipeline stages give diminishing returns. Finally, adding
more stages increases the cost because of the extra pipeline registers and
hardware required to handle hazards.

7.8 Advanced Microarchitecture 435

Chapter 07.qxd 2/1/07 9:33 PM Page 435

Example 7.11 DEEP PIPELINES

Consider building a pipelined processor by chopping up the single-cycle proces-
sor into N stages (N 	 5). The single-cycle processor has a propagation delay of
900 ps through the combinational logic. The sequencing overhead of a register is
50 ps. Assume that the combinational delay can be arbitrarily divided into any
number of stages and that pipeline hazard logic does not increase the delay. The
five-stage pipeline in Example 7.9 has a CPI of 1.15. Assume that each addi-
tional stage increases the CPI by 0.1 because of branch mispredictions and other
pipeline hazards. How many pipeline stages should be used to make the proces-
sor execute programs as fast as possible?

Solution: If the 900-ps combinational logic delay is divided into N stages and
each stage also pays 50 ps of sequencing overhead for its pipeline register, the
cycle time is Tc � 900/N � 50. The CPI is 1.15 � 0.1(N � 5). The time per
instruction, or instruction time, is the product of the cycle time and the CPI.
Figure 7.65 plots the cycle time and instruction time versus the number of stages.
The instruction time has a minimum of 231 ps at N � 11 stages. This minimum
is only slightly better than the 250 ps per instruction achieved with a six-stage
pipeline.

In the late 1990s and early 2000s, microprocessors were marketed largely based
on clock frequency (1/Tc). This pushed microprocessors to use very deep
pipelines (20 to 31 stages on the Pentium 4) to maximize the clock frequency,
even if the benefits for overall performance were questionable. Power is propor-
tional to clock frequency and also increases with the number of pipeline regis-
ters, so now that power consumption is so important, pipeline depths are
decreasing.

436 CHAPTER SEVEN Microarchitecture

0

50

100

150

200

250

300

5 6 7 8 9 10 11 12 13 14 15

Tc Instruction Time

Number of pipeline stages

T
im

e
(p

s)

Figure 7.65 Cycle time and

instruction time versus the

number of pipeline stages

Chapter 07.qxd 2/1/07 9:33 PM Page 436

7. 8 . 2 Branch Prediction

An ideal pipelined processor would have a CPI of 1. The branch mispre-
diction penalty is a major reason for increased CPI. As pipelines get
deeper, branches are resolved later in the pipeline. Thus, the branch mis-
prediction penalty gets larger, because all the instructions issued after the
mispredicted branch must be flushed. To address this problem, most
pipelined processors use a branch predictor to guess whether the branch
should be taken. Recall that our pipeline from Section 7.5.3 simply pre-
dicted that branches are never taken.

Some branches occur when a program reaches the end of a loop
(e.g., a for or while statement) and branches back to repeat the loop.
Loops tend to be executed many times, so these backward branches are
usually taken. The simplest form of branch prediction checks the direc-
tion of the branch and predicts that backward branches should be taken.
This is called static branch prediction, because it does not depend on the
history of the program.

Forward branches are difficult to predict without knowing more
about the specific program. Therefore, most processors use dynamic
branch predictors, which use the history of program execution to guess
whether a branch should be taken. Dynamic branch predictors maintain
a table of the last several hundred (or thousand) branch instructions that
the processor has executed. The table, sometimes called a branch target
buffer, includes the destination of the branch and a history of whether
the branch was taken.

To see the operation of dynamic branch predictors, consider the fol-
lowing loop code from Code Example 6.20. The loop repeats 10 times,
and the beq out of the loop is taken only on the last time.

add $s1, $0, $0 # sum � 0
add $s0, $0, $0 # i � 0
addi $t0, $0, 10 # $t0 � 10

for:
beq $s0, $t0, done # if i �� 10, branch to done
add $s1, $s1, $s0 # sum � sum � i
addi $s0, $s0, 1 # increment i
j for

done:

A one-bit dynamic branch predictor remembers whether the branch
was taken the last time and predicts that it will do the same thing the
next time. While the loop is repeating, it remembers that the beq was
not taken last time and predicts that it should not be taken next time.
This is a correct prediction until the last branch of the loop, when the
branch does get taken. Unfortunately, if the loop is run again, the
branch predictor remembers that the last branch was taken. Therefore,

7.8 Advanced Microarchitecture 437

Chapter 07.qxd 2/1/07 9:33 PM Page 437

it incorrectly predicts that the branch should be taken when the loop is
first run again. In summary, a 1-bit branch predictor mispredicts the
first and last branches of a loop.

A 2-bit dynamic branch predictor solves this problem by having four
states: strongly taken, weakly taken, weakly not taken, and strongly not
taken, as shown in Figure 7.66. When the loop is repeating, it enters the
“strongly not taken” state and predicts that the branch should not be
taken next time. This is correct until the last branch of the loop, which is
taken and moves the predictor to the “weakly not taken” state. When
the loop is first run again, the branch predictor correctly predicts that
the branch should not be taken and reenters the “strongly not taken”
state. In summary, a 2-bit branch predictor mispredicts only the last
branch of a loop.

As one can imagine, branch predictors may be used to track even
more history of the program to increase the accuracy of predictions.
Good branch predictors achieve better than 90% accuracy on typical
programs.

The branch predictor operates in the Fetch stage of the pipeline so
that it can determine which instruction to execute on the next cycle.
When it predicts that the branch should be taken, the processor fetches
the next instruction from the branch destination stored in the branch
target buffer. By keeping track of both branch and jump destinations in
the branch target buffer, the processor can also avoid flushing the
pipeline during jump instructions.

7. 8 . 3 Superscalar Processor

A superscalar processor contains multiple copies of the datapath hard-
ware to execute multiple instructions simultaneously. Figure 7.67 shows
a block diagram of a two-way superscalar processor that fetches and
executes two instructions per cycle. The datapath fetches two instruc-
tions at a time from the instruction memory. It has a six-ported register
file to read four source operands and write two results back in each
cycle. It also contains two ALUs and a two-ported data memory to
execute the two instructions at the same time.

438 CHAPTER SEVEN Microarchitecture

A scalar processor acts on one
piece of data at a time. A vec-
tor processor acts on several
pieces of data with a single
instruction. A superscalar
processor issues several
instructions at a time, each of
which operates on one piece
of data.

Our MIPS pipelined
processor is a scalar proces-
sor. Vector processors were
popular for supercomputers
in the 1980s and 1990s
because they efficiently han-
dled the long vectors of data
common in scientific compu-
tations. Modern high-
performance microprocessors
are superscalar, because
issuing several independent
instructions is more flexible
than processing vectors.

However, modern proces-
sors also include hardware to
handle short vectors of data
that are common in multi-
media and graphics applica-
tions. These are called single
instruction multiple data
(SIMD) units.

strongly
taken

predict
taken

weakly
taken

predict
taken

weakly
not taken

predict
not taken

strongly
not taken

predict
not taken

taken taken taken

takentakentaken

taken

taken

Figure 7.66 2-bit branch predictor state transition diagram

Chapter 07.qxd 2/1/07 9:33 PM Page 438

Figure 7.68 shows a pipeline diagram illustrating the two-way
superscalar processor executing two instructions on each cycle. For this
program, the processor has a CPI of 0.5. Designers commonly refer to
the reciprocal of the CPI as the instructions per cycle, or IPC. This
processor has an IPC of 2 on this program.

Executing many instructions simultaneously is difficult because of
dependencies. For example, Figure 7.69 shows a pipeline diagram run-
ning a program with data dependencies. The dependencies in the code
are shown in blue. The add instruction is dependent on $t0, which is
produced by the lw instruction, so it cannot be issued at the same time
as lw. Indeed, the add instruction stalls for yet another cycle so that lw
can forward $t0 to add in cycle 5. The other dependencies (between

7.8 Advanced Microarchitecture 439

CLK CLK CLK CLK

A
RD A1

A2
RD1A3

WD3
WD6

A4
A5
A6

RD4

RD2
RD5

Instruction
Memory

Register
File Data

Memory

PC

CLK

A1
A2

WD1

A
LU

s

WD2

RD1
RD2

Figure 7.67 Superscalar datapath

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lw

add

lw $t0, 40($s0)

add $t1, $s1, $s2

sub $t2, $s1, $s3

and $t3, $s3, $s4

or $t4, $s1, $s5

sw $s5, 80($s0)

$t1
$s2

$s1

+

RF
$s3

$s1

RF

$t2
-

DMIM

sub

and $t3
$s4

$s3

&

RF

+

$s5

$s1

RF

$t4
|

DMIM

or

sw
80

$s0
$s5

Figure 7.68 Abstract view of a superscalar pipeline in operation

Chapter 07.qxd 2/1/07 9:33 PM Page 439

440 CHAPTER SEVEN Microarchitecture

Stall

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

$s1

$t0
add

RF
$s1

$t0

RF

$t1
+

DM

RF
$t0

$s4

RF

$t2
&

DMIM

and

IM
or

and

sub

|$s6

$s5
$t3

RF
80

$t3

RF
+

DM

sw

IM

$s7

9

$s3

$s2

$s3

$s2
-

$t0

or $t3, $s5, $s6

IM

or

RF

sub and and based on $t0, and between or and sw based on $t3) are
handled by forwarding results produced in one cycle to be consumed in
the next. This program, also given below, requires five cycles to issue
six instructions, for an IPC of 1.17.

lw $t0, 40($s0)
add $t1, $t0, $s1
sub $t0, $s2, $s3
and $t2, $s4, $t0
or $t3, $s5, $s6
sw $s7, 80($t3)

Recall that parallelism comes in temporal and spatial forms.
Pipelining is a case of temporal parallelism. Multiple execution units is a
case of spatial parallelism. Superscalar processors exploit both forms of
parallelism to squeeze out performance far exceeding that of our single-
cycle and multicycle processors.

Commercial processors may be three-, four-, or even six-way super-
scalar. They must handle control hazards such as branches as well as
data hazards. Unfortunately, real programs have many dependencies, so
wide superscalar processors rarely fully utilize all of the execution units.
Moreover, the large number of execution units and complex forwarding
networks consume vast amounts of circuitry and power.

Figure 7.69 Program with data dependencies

Chapter 07.qxd 2/1/07 9:33 PM Page 440

7. 8 . 4 Out-of-Order Processor

To cope with the problem of dependencies, an out-of-order processor looks
ahead across many instructions to issue, or begin executing, independent
instructions as rapidly as possible. The instructions can be issued in a dif-
ferent order than that written by the programmer, as long as dependencies
are honored so that the program produces the intended result.

Consider running the same program from Figure 7.69 on a two-way
superscalar out-of-order processor. The processor can issue up to two
instructions per cycle from anywhere in the program, as long as depend-
encies are observed. Figure 7.70 shows the data dependencies and the
operation of the processor. The classifications of dependencies as RAW
and WAR will be discussed shortly. The constraints on issuing instruc-
tions are described below.

� Cycle 1

– The lw instruction issues.

– The add, sub, and and instructions are dependent on lw by way
of $t0, so they cannot issue yet. However, the or instruction is
independent, so it also issues.

7.8 Advanced Microarchitecture 441

Time (cycles)

1 2 3 4 5 6 7 8

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $t0, $s2, $s3

and $t2, $s4, $t0

sw $s7, 80($t3)

or
|$s6

$s5
$t3

RF
80

$t3

RF
+

DM

sw $s7

or $t3, $s5, $s6

IM

RF
$s1

$t0

RF

$t1
+

DMIM

add

sub
-$s3

$s2
$t0

Two-cycle latency
between lW
and use of $t0

RAW

WAR

RAW

RF
$t0

$s4

RF
&

DM

and

IM

$t2

RAW

Figure 7.70 Out-of-order execution of a program with dependencies

Chapter 07.qxd 2/1/07 9:33 PM Page 441

� Cycle 2

– Remember that there is a two-cycle latency between when a lw
instruction issues and when a dependent instruction can use its
result, so add cannot issue yet because of the $t0 dependence.
sub writes $t0, so it cannot issue before add, lest add receive the
wrong value of $t0. and is dependent on sub.

– Only the sw instruction issues.

� Cycle 3

– On cycle 3, $t0 is available, so add issues. sub issues simultane-
ously, because it will not write $t0 until after add consumes
$t0.

� Cycle 4

– The and instruction issues. $t0 is forwarded from sub to and.

The out-of-order processor issues the six instructions in four cycles, for
an IPC of 1.5.

The dependence of add on lw by way of $t0 is a read after write
(RAW) hazard. add must not read $t0 until after lw has written it. This
is the type of dependency we are accustomed to handling in the pipelined
processor. It inherently limits the speed at which the program can run,
even if infinitely many execution units are available. Similarly, the
dependence of sw on or by way of $t3 and of and on sub by way of
$t0 are RAW dependencies.

The dependence between sub and add by way of $t0 is called a write
after read (WAR) hazard or an antidependence. sub must not write $t0
before add reads $t0, so that add receives the correct value according to
the original order of the program. WAR hazards could not occur in the
simple MIPS pipeline, but they may happen in an out-of-order processor
if the dependent instruction (in this case, sub) is moved too early.

A WAR hazard is not essential to the operation of the program. It is
merely an artifact of the programmer’s choice to use the same register
for two unrelated instructions. If the sub instruction had written $t4
instead of $t0, the dependency would disappear and sub could be issued
before add. The MIPS architecture only has 32 registers, so sometimes
the programmer is forced to reuse a register and introduce a hazard just
because all the other registers are in use.

A third type of hazard, not shown in the program, is called write
after write (WAW) or an output dependence. A WAW hazard occurs if
an instruction attempts to write a register after a subsequent instruction
has already written it. The hazard would result in the wrong value being

442 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 442

written to the register. For example, in the following program, add and
sub both write $t0. The final value in $t0 should come from sub
according to the order of the program. If an out-of-order processor
attempted to execute sub first, the WAW hazard would occur.

add $t0, $s1, $s2
sub $t0, $s3, $s4

WAW hazards are not essential either; again, they are artifacts
caused by the programmer’s using the same register for two unrelated
instructions. If the sub instruction were issued first, the program could
eliminate the WAW hazard by discarding the result of the add instead of
writing it to $t0. This is called squashing the add.6

Out-of-order processors use a table to keep track of instructions
waiting to issue. The table, sometimes called a scoreboard, contains
information about the dependencies. The size of the table determines
how many instructions can be considered for issue. On each cycle, the
processor examines the table and issues as many instructions as it can,
limited by the dependencies and by the number of execution units (e.g.,
ALUs, memory ports) that are available.

The instruction level parallelism (ILP) is the number of instructions
that can be executed simultaneously for a particular program and
microarchitecture. Theoretical studies have shown that the ILP can be
quite large for out-of-order microarchitectures with perfect branch pre-
dictors and enormous numbers of execution units. However, practical
processors seldom achieve an ILP greater than 2 or 3, even with six-way
superscalar datapaths with out-of-order execution.

7. 8 . 5 Register Renaming

Out-of-order processors use a technique called register renaming to elim-
inate WAR hazards. Register renaming adds some nonarchitectural
renaming registers to the processor. For example, a MIPS processor
might add 20 renaming registers, called $r0–$r19. The programmer
cannot use these registers directly, because they are not part of the archi-
tecture. However, the processor is free to use them to eliminate hazards.

For example, in the previous section, a WAR hazard occurred
between the sub and add instructions based on reusing $t0. The out-of-
order processor could rename $t0 to $r0 for the sub instruction. Then

7.8 Advanced Microarchitecture 443

6 You might wonder why the add needs to be issued at all. The reason is that out-of-order
processors must guarantee that all of the same exceptions occur that would have occurred
if the program had been executed in its original order. The add potentially may produce an
overflow exception, so it must be issued to check for the exception, even though the result
can be discarded.

Chapter 07.qxd 2/1/07 9:33 PM Page 443

sub could be executed sooner, because $r0 has no dependency on the
add instruction. The processor keeps a table of which registers were
renamed so that it can consistently rename registers in subsequent
dependent instructions. In this example, $t0 must also be renamed to
$r0 in the and instruction, because it refers to the result of sub.

Figure 7.71 shows the same program from Figure 7.70 executing on
an out-of-order processor with register renaming. $t0 is renamed to $r0
in sub and and to eliminate the WAR hazard. The constraints on issuing
instructions are described below.

� Cycle 1

– The lw instruction issues.

– The add instruction is dependent on lw by way of $t0, so it can-
not issue yet. However, the sub instruction is independent now
that its destination has been renamed to $r0, so sub also issues.

� Cycle 2

– Remember that there is a two-cycle latency between when a lw
issues and when a dependent instruction can use its result, so
add cannot issue yet because of the $t0 dependence.

– The and instruction is dependent on sub, so it can issue. $r0 is
forwarded from sub to and.

– The or instruction is independent, so it also issues.

444 CHAPTER SEVEN Microarchitecture

Time (cycles)

1 2 3 4 5 6 7

RF
40

$s0

RF

$t0
+

DMIM

lwlw $t0, 40($s0)

add $t1, $t0, $s1

sub $r0, $s2, $s3

and $t2, $s4, $r0

sw $s7, 80($t3)

sub
-$s3

$s2
$r0

RF
$r0

$s4

RF
&

DM

and

$s7

or $t3, $s5, $s6
IM

RF
$s1

$t0

RF

$t1
+

DMIM

add

sw
+80

$t3

RAW

$s6

$s5
|

or

RAW

RAW

$t2

$t3

Figure 7.71 Out-of-order execution of a program using register renaming

Chapter 07.qxd 2/1/07 9:33 PM Page 444

� Cycle 3

– On cycle 3, $t0 is available, so add issues. $t3 is also available,
so sw issues.

The out-of-order processor with register renaming issues the six
instructions in three cycles, for an IPC of 2.

7. 8 . 6 Single Instruction Multiple Data

The term SIMD (pronounced “sim-dee”) stands for single instruction
multiple data, in which a single instruction acts on multiple pieces of
data in parallel. A common application of SIMD is to perform many
short arithmetic operations at once, especially for graphics processing.
This is also called packed arithmetic.

For example, a 32-bit microprocessor might pack four 8-bit data
elements into one 32-bit word. Packed add and subtract instructions
operate on all four data elements within the word in parallel.
Figure 7.72 shows a packed 8-bit addition summing four pairs of 8-bit
numbers to produce four results. The word could also be divided
into two 16-bit elements. Performing packed arithmetic requires
modifying the ALU to eliminate carries between the smaller data
elements. For example, a carry out of a0 � b0 should not affect the
result of a1 � b1.

Short data elements often appear in graphics processing. For exam-
ple, a pixel in a digital photo may use 8 bits to store each of the red,
green, and blue color components. Using an entire 32-bit word to
process one of these components wastes the upper 24 bits. When the
components from four adjacent pixels are packed into a 32-bit word, the
processing can be performed four times faster.

SIMD instructions are even more helpful for 64-bit architectures,
which can pack eight 8-bit elements, four 16-bit elements, or two 32-bit
elements into a single 64-bit word. SIMD instructions are also used for
floating-point computations; for example, four 32-bit single-precision
floating-point values can be packed into a single 128-bit word.

7.8 Advanced Microarchitecture 445

padd8 $s2, $s0, $s1

a0

0781516232432

$s0

Bit position

a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+

Figure 7.72 Packed arithmetic:

four simultaneous 8-bit

additions

Chapter 07.qxd 2/1/07 9:33 PM Page 445

7. 8 . 7 Multithreading

Because the ILP of real programs tends to be fairly low, adding more
execution units to a superscalar or out-of-order processor gives dimin-
ishing returns. Another problem, discussed in Chapter 8, is that memory
is much slower than the processor. Most loads and stores access a
smaller and faster memory, called a cache. However, when the instruc-
tions or data are not available in the cache, the processor may stall for
100 or more cycles while retrieving the information from the main mem-
ory. Multithreading is a technique that helps keep a processor with many
execution units busy even if the ILP of a program is low or the program
is stalled waiting for memory.

To explain multithreading, we need to define a few new terms. A pro-
gram running on a computer is called a process. Computers can run multi-
ple processes simultaneously; for example, you can play music on a PC
while surfing the web and running a virus checker. Each process consists
of one or more threads that also run simultaneously. For example, a word
processor may have one thread handling the user typing, a second thread
spell-checking the document while the user works, and a third thread
printing the document. In this way, the user does not have to wait, for
example, for a document to finish printing before being able to type again.

In a conventional processor, the threads only give the illusion of run-
ning simultaneously. The threads actually take turns being executed on the
processor under control of the OS. When one thread’s turn ends, the OS
saves its architectural state, loads the architectural state of the next thread,
and starts executing that next thread. This procedure is called context
switching. As long as the processor switches through all the threads fast
enough, the user perceives all of the threads as running at the same time.

A multithreaded processor contains more than one copy of its archi-
tectural state, so that more than one thread can be active at a time. For
example, if we extended a MIPS processor to have four program coun-
ters and 128 registers, four threads could be available at one time. If one
thread stalls while waiting for data from main memory, the processor
could context switch to another thread without any delay, because the
program counter and registers are already available. Moreover, if one
thread lacks sufficient parallelism to keep all the execution units busy,
another thread could issue instructions to the idle units.

Multithreading does not improve the performance of an individual
thread, because it does not increase the ILP. However, it does improve
the overall throughput of the processor, because multiple threads can use
processor resources that would have been idle when executing a single
thread. Multithreading is also relatively inexpensive to implement,
because it replicates only the PC and register file, not the execution units
and memories.

446 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 446

7. 8 . 8 Multiprocessors

A multiprocessor system consists of multiple processors and a method
for communication between the processors. A common form of multi-
processing in computer systems is symmetric multiprocessing (SMP), in
which two or more identical processors share a single main memory.

The multiple processors may be separate chips or multiple cores on
the same chip. Modern processors have enormous numbers of transistors
available. Using them to increase the pipeline depth or to add more exe-
cution units to a superscalar processor gives little performance benefit
and is wasteful of power. Around the year 2005, computer architects
made a major shift to build multiple copies of the processor on the same
chip; these copies are called cores.

Multiprocessors can be used to run more threads simultaneously or
to run a particular thread faster. Running more threads simultaneously
is easy; the threads are simply divided up among the processors.
Unfortunately typical PC users need to run only a small number of
threads at any given time. Running a particular thread faster is much
more challenging. The programmer must divide the thread into pieces
to perform on each processor. This becomes tricky when the processors
need to communicate with each other. One of the major challenges for
computer designers and programmers is to effectively use large numbers
of processor cores.

Other forms of multiprocessing include asymmetric multiprocessing
and clusters. Asymmetric multiprocessors use separate specialized micro-
processors for separate tasks. For example, a cell phone contains a digi-
tal signal processor (DSP) with specialized instructions to decipher the
wireless data in real time and a separate conventional processor to inter-
act with the user, manage the phone book, and play games. In clustered
multiprocessing, each processor has its own local memory system.
Clustering can also refer to a group of PCs connected together on the
network running software to jointly solve a large problem.

7. 9 REAL-WORLD PERSPECTIVE: IA-32 MICROARCHITECTURE*

Section 6.8 introduced the IA-32 architecture used in almost all PCs.
This section tracks the evolution of IA-32 processors through progres-
sively faster and more complicated microarchitectures. The same
principles we have applied to the MIPS microarchitectures are used in
IA-32.

Intel invented the first single-chip microprocessor, the 4-bit 4004,
in 1971 as a flexible controller for a line of calculators. It contained
2300 transistors manufactured on a 12-mm2 sliver of silicon in a
process with a 10-
m feature size and operated at 750 KHz. A photo-
graph of the chip taken under a microscope is shown in Figure 7.73.

7.9 Real-World Perspective: IA-32 Microarchitecture 447

Scientists searching for signs
of extraterrestrial intelligence
use the world’s largest clus-
tered multiprocessors to ana-
lyze radio telescope data for
patterns that might be signs of
life in other solar systems.
The cluster consists of per-
sonal computers owned by
more than 3.8 million volun-
teers around the world.

When a computer in the
cluster is idle, it fetches
a piece of the data from a
centralized server, analyzes
the data, and sends the
results back to the server.
You can volunteer your
computer’s idle time
for the cluster by visiting
setiathome.berkeley.edu.

Chapter 07.qxd 2/1/07 9:33 PM Page 447

In places, columns of four similar-looking structures are visible, as one
would expect in a 4-bit microprocessor. Around the periphery are
bond wires, which are used to connect the chip to its package and the
circuit board.

The 4004 inspired the 8-bit 8008, then the 8080, which eventually
evolved into the 16-bit 8086 in 1978 and the 80286 in 1982. In 1985,
Intel introduced the 80386, which extended the 8086 architecture to
32 bits and defined the IA-32 architecture. Table 7.7 summarizes
major Intel IA-32 microprocessors. In the 35 years since the 4004,
transistor feature size has shrunk 160-fold, the number of transistors

448 CHAPTER SEVEN Microarchitecture

Figure 7.73 4004

microprocessor chip

Table 7.7 Evolution of Intel IA-32 microprocessors

Processor Year Feature Size (
m) Transistors Frequency (MHz) Microarchitecture

80386 1985 1.5–1.0 275k 16–25 multicycle

80486 1989 1.0–0.6 1.2M 25–100 pipelined

Pentium 1993 0.8–0.35 3.2–4.5M 60–300 superscalar

Pentium II 1997 0.35–0.25 7.5M 233–450 out of order

Pentium III 1999 0.25–0.18 9.5M–28M 450–1400 out of order

Pentium 4 2001 0.18–0.09 42–178M 1400–3730 out of order

Pentium M 2003 0.13–0.09 77–140M 900–2130 out of order

Core Duo 2005 0.065 152M 1500–2160 dual core

Chapter 07.qxd 2/1/07 9:33 PM Page 448

on a chip has increased by five orders of magnitude, and the operating
frequency has increased by almost four orders of magnitude. No other
field of engineering has made such astonishing progress in such a
short time.

The 80386 is a multicycle processor. The major components are
labeled on the chip photograph in Figure 7.74. The 32-bit datapath is
clearly visible on the left. Each of the columns processes one bit of data.
Some of the control signals are generated using a microcode PLA that
steps through the various states of the control FSM. The memory man-
agement unit in the upper right controls access to the external memory.

The 80486, shown in Figure 7.75, dramatically improved perform-
ance using pipelining. The datapath is again clearly visible, along with
the control logic and microcode PLA. The 80486 added an on-chip
floating-point unit; previous Intel processors either sent floating-point
instructions to a separate coprocessor or emulated them in software. The
80486 was too fast for external memory to keep up, so it incorporated
an 8-KB cache onto the chip to hold the most commonly used instruc-
tions and data. Chapter 8 describes caches in more detail and revisits the
cache systems on Intel IA-32 processors.

7.9 Real-World Perspective: IA-32 Microarchitecture 449

Microcode
PLA

32-bit
Datapath

Memory
Management

Unit

Controller

Figure 7.74 80386

microprocessor chip

Chapter 07.qxd 2/1/07 9:33 PM Page 449

The Pentium processor, shown in Figure 7.76, is a superscalar
processor capable of executing two instructions simultaneously. Intel
switched to the name Pentium instead of 80586 because AMD was
becoming a serious competitor selling interchangeable 80486 chips, and
part numbers cannot be trademarked. The Pentium uses separate
instruction and data caches. It also uses a branch predictor to reduce the
performance penalty for branches.

The Pentium Pro, Pentium II, and Pentium III processors all share a
common out-of-order microarchitecture, code named P6. The complex
IA-32 instructions are broken down into one or more micro-ops similar

450 CHAPTER SEVEN Microarchitecture

32-b
it

D
ata p

ath

C
o

n
tro

ller

8 KB
Cache

Floating
Point
Unit

Microcode
PLA

Figure 7.75 80486

microprocessor chip

Chapter 07.qxd 2/1/07 9:33 PM Page 450

7.9 Real-World Perspective: IA-32 Microarchitecture 451

to MIPS instructions. The micro-ops are then executed on a fast out-of-
order execution core with an 11-stage pipeline. Figure 7.77 shows the
Pentium III. The 32-bit datapath is called the Integer Execution Unit
(IEU). The floating-point datapath is called the Floating Point Unit

8 KB
Data

Cache
Floating

Point
Unit

8 KB
Instruction

Cache

Multiprocessor Logic

Instruction
Fetch & Decode

Complex
Instruction

SupportBus Interface Unit

32-b
it

D
atap

ath

S
u

p
erscalar

C
o

n
tro

ller

B
ran

ch
P

red
ictio

n

Figure 7.76 Pentium

microprocessor chip

Instruction Fetch
&

16 KB Cache

16 KB
Data Cache

Data TLB

Branch
Target
Buffer

FPU

IEU

SIMD

R
eg

ister
R

en
am

in
g

M
icro

co
d

e

P
L

A

256 KB
Level 2 Cache

Out of
Order
Issue
Logic

Bus Logic

Figure 7.77 Pentium III

microprocessor chip

Chapter 07.qxd 2/1/07 9:33 PM Page 451

452 CHAPTER SEVEN Microarchitecture

IEU

8 KB
Data Cache

Trace
Cache

256 KB
Level 2
Cache

FPU
&

SIMD

Bus
Logic

Figure 7.78 Pentium 4

microprocessor chip

(FPU). The processor also has a SIMD unit to perform packed opera-
tions on short integer and floating-point data. A larger portion of the
chip is dedicated to issuing instructions out-of-order than to actually
executing the instructions. The instruction and data caches have grown
to 16 KB each. The Pentium III also has a larger but slower 256-KB
second-level cache on the same chip.

By the late 1990s, processors were marketed largely on clock speed.
The Pentium 4 is another out-of-order processor with a very deep
pipeline to achieve extremely high clock frequencies. It started with 20
stages, and later versions adopted 31 stages to achieve frequencies
greater than 3 GHz. The chip, shown in Figure 7.78, packs in 42 to 178
million transistors (depending on the cache size), so even the major exe-
cution units are difficult to see on the photograph. Decoding three IA-32
instructions per cycle is impossible at such high clock frequencies
because the instruction encodings are so complex and irregular. Instead,
the processor predecodes the instructions into simpler micro-ops, then
stores the micro-ops in a memory called a trace cache. Later versions of
the Pentium 4 also perform multithreading to increase the throughput of
multiple threads.

The Pentium 4’s reliance on deep pipelines and high clock speed
led to extremely high power consumption, sometimes more than 100 W.
This is unacceptable in laptops and makes cooling of desktops expensive.

Chapter 07.qxd 2/1/07 9:33 PM Page 452

Intel discovered that the older P6 architecture could achieve comparable
performance at much lower clock speed and power. The Pentium M uses
an enhanced version of the P6 out-of-order microarchitecture with 32-KB
instruction and data caches and a 1- to 2-MB second-level cache. The
Core Duo is a multicore processor based on two Pentium M cores con-
nected to a shared 2-MB second-level cache. The individual functional
units in Figure 7.79 are difficult to see, but the two cores and the large
cache are clearly visible.

7.1 0 SUMMARY

This chapter has described three ways to build MIPS processors, each
with different performance and cost trade-offs. We find this topic
almost magical: how can such a seemingly complicated device as a
microprocessor actually be simple enough to fit in a half-page
schematic? Moreover, the inner workings, so mysterious to the uniniti-
ated, are actually reasonably straightforward.

The MIPS microarchitectures have drawn together almost every
topic covered in the text so far. Piecing together the microarchitecture
puzzle illustrates the principles introduced in previous chapters, includ-
ing the design of combinational and sequential circuits, covered in
Chapters 2 and 3; the application of many of the building blocks
described in Chapter 5; and the implementation of the MIPS architec-
ture, introduced in Chapter 6. The MIPS microarchitectures can be
described in a few pages of HDL, using the techniques from Chapter 4.

Building the microarchitectures has also heavily used our tech-
niques for managing complexity. The microarchitectural abstraction
forms the link between the logic and architecture abstractions, forming

7.10 Summary 453

Core 1 Core 2

2 MB
Shared
Level 2
Cache

Figure 7.79 Core Duo

microprocessor chip

Chapter 07.qxd 2/1/07 9:33 PM Page 453

the crux of this book on digital design and computer architecture. We
also use the abstractions of block diagrams and HDL to succinctly
describe the arrangement of components. The microarchitectures
exploit regularity and modularity, reusing a library of common building
blocks such as ALUs, memories, multiplexers, and registers. Hierarchy
is used in numerous ways. The microarchitectures are partitioned into
the datapath and control units. Each of these units is built from logic
blocks, which can be built from gates, which in turn can be built from
transistors using the techniques developed in the first five chapters.

This chapter has compared single-cycle, multicycle, and pipelined
microarchitectures for the MIPS processor. All three microarchitectures
implement the same subset of the MIPS instruction set and have the
same architectural state. The single-cycle processor is the most straight-
forward and has a CPI of 1.

The multicycle processor uses a variable number of shorter steps to
execute instructions. It thus can reuse the ALU, rather than requiring
several adders. However, it does require several nonarchitectural regis-
ters to store results between steps. The multicycle design in principle
could be faster, because not all instructions must be equally long. In
practice, it is generally slower, because it is limited by the slowest steps
and by the sequencing overhead in each step.

The pipelined processor divides the single-cycle processor into five
relatively fast pipeline stages. It adds pipeline registers between the
stages to separate the five instructions that are simultaneously executing.
It nominally has a CPI of 1, but hazards force stalls or flushes that
increase the CPI slightly. Hazard resolution also costs some extra hard-
ware and design complexity. The clock period ideally could be five times
shorter than that of the single-cycle processor. In practice, it is not that
short, because it is limited by the slowest stage and by the sequencing
overhead in each stage. Nevertheless, pipelining provides substantial per-
formance benefits. All modern high-performance microprocessors use
pipelining today.

Although the microarchitectures in this chapter implement only a
subset of the MIPS architecture, we have seen that supporting more
instructions involves straightforward enhancements of the datapath and
controller. Supporting exceptions also requires simple modifications.

A major limitation of this chapter is that we have assumed an ideal
memory system that is fast and large enough to store the entire program
and data. In reality, large fast memories are prohibitively expensive. The
next chapter shows how to get most of the benefits of a large fast mem-
ory with a small fast memory that holds the most commonly used infor-
mation and one or more larger but slower memories that hold the rest of
the information.

454 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 454

Exercises 455

Exercises

Exercise 7.1 Suppose that one of the following control signals in the single-cycle
MIPS processor has a stuck-at-0 fault, meaning that the signal is always 0,
regardless of its intended value. What instructions would malfunction? Why?

(a) RegWrite

(b) ALUOp1

(c) MemWrite

Exercise 7.2 Repeat Exercise 7.1, assuming that the signal has a stuck-at-1 fault.

Exercise 7.3 Modify the single-cycle MIPS processor to implement one of the
following instructions. See Appendix B for a definition of the instructions. Mark
up a copy of Figure 7.11 to indicate the changes to the datapath. Name any new
control signals. Mark up a copy of Table 7.8 to show the changes to the main
decoder. Describe any other changes that are required.

(a) sll

(b) lui

(c) slti

(d) blez

(e) jal

(f) lh

Exercise 7.4 Many processor architectures have a load with postincrement
instruction, which updates the index register to point to the next memory word
after completing the load. lwinc $rt, imm($rs) is equivalent to the following
two instructions:

lw $rt, imm($rs)
addi $rs, $rs, 4

Table 7.8 Main decoder truth table to mark up with changes

Instruction Opcode RegWrite RegDst ALUSrc Branch MemWrite MemtoReg ALUOp

R-type 000000 1 1 0 0 0 0 10

lw 100011 1 0 1 0 0 1 00

sw 101011 0 X 1 0 1 X 00

beq 000100 0 X 0 1 0 X 01

Chapter 07.qxd 2/1/07 9:33 PM Page 455

Repeat Exercise 7.3 for the lwinc instruction. Is it possible to add the
instruction without modifying the register file?

Exercise 7.5 Add a single-precision floating-point unit to the single-cycle MIPS
processor to handle add.s, sub.s, and mul.s. Assume that you have single-pre-
cision floating-point adder and multiplier units available. Explain what changes
must be made to the datapath and the controller.

Exercise 7.6 Your friend is a crack circuit designer. She has offered to redesign
one of the units in the single-cycle MIPS processor to have half the delay. Using
the delays from Table 7.6, which unit should she work on to obtain the greatest
speedup of the overall processor, and what would the cycle time of the improved
machine be?

Exercise 7.7 Consider the delays given in Table 7.6. Ben Bitdiddle builds a prefix
adder that reduces the ALU delay by 20 ps. If the other element delays stay the
same, find the new cycle time of the single-cycle MIPS processor and determine
how long it takes to execute a benchmark with 100 billion instructions.

Exercise 7.8 Suppose one of the following control signals in the multicycle MIPS
processor has a stuck-at-0 fault, meaning that the signal is always 0, regardless
of its intended value. What instructions would malfunction? Why?

(a) MemtoReg
(b) ALUOp0

(c) PCSrc

Exercise 7.9 Repeat Exercise 7.8, assuming that the signal has a stuck-at-1 fault.

Exercise 7.10 Modify the HDL code for the single-cycle MIPS processor, given in
Section 7.6.1, to handle one of the new instructions from Exercise 7.3. Enhance
the testbench, given in Section 7.6.3 to test the new instruction.

Exercise 7.11 Modify the multicycle MIPS processor to implement one of the fol-
lowing instructions. See Appendix B for a definition of the instructions. Mark up
a copy of Figure 7.27 to indicate the changes to the datapath. Name any new
control signals. Mark up a copy of Figure 7.39 to show the changes to the con-
troller FSM. Describe any other changes that are required.

(a) srlv
(b) ori
(c) xori
(d) jr
(e) bne
(f) lbu

456 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 456

Exercise 7.12 Repeat Exercise 7.4 for the multicycle MIPS processor. Show the
changes to the multicycle datapath and control FSM. Is it possible to add the
instruction without modifying the register file?

Exercise 7.13 Repeat Exercise 7.5 for the multicycle MIPS processor.

Exercise 7.14 Suppose that the floating-point adder and multiplier from
Exercise 7.13 each take two cycles to operate. In other words, the inputs are
applied at the beginning of one cycle, and the output is available in the second
cycle. How does your answer to Exercise 7.13 change?

Exercise 7.15 Your friend, the crack circuit designer, has offered to redesign
one of the units in the multicycle MIPS processor to be much faster. Using the
delays from Table 7.6, which unit should she work on to obtain the greatest
speedup of the overall processor? How fast should it be? (Making it faster than
necessary is a waste of your friend’s effort.) What is the cycle time of the
improved processor?

Exercise 7.16 Repeat Exercise 7.7 for the multicycle processor.

Exercise 7.17 Suppose the multicycle MIPS processor has the component delays
given in Table 7.6. Alyssa P. Hacker designs a new register file that has 40% less
power but twice as much delay. Should she switch to the slower but lower power
register file for her multicycle processor design?

Exercise 7.18 Goliath Corp claims to have a patent on a three-ported register
file. Rather than fighting Goliath in court, Ben Bitdiddle designs a new register
file that has only a single read/write port (like the combined instruction and
data memory). Redesign the MIPS multicycle datapath and controller to use his
new register file.

Exercise 7.19 What is the CPI of the redesigned multicycle MIPS processor from
Exercise 7.18? Use the instruction mix from Example 7.7.

Exercise 7.20 How many cycles are required to run the following program on
the multicycle MIPS processor? What is the CPI of this program?

addi $s0, $0, 5 # sum � 5

while:
beq $s0, $0, done# if result � 0, execute the while block
addi $s0, $s0, �1 # while block: result � result � 1
j while

done:

Exercises 457

Chapter 07.qxd 2/1/07 9:33 PM Page 457

Exercise 7.21 Repeat Exercise 7.20 for the following program.

add $s0, $0, $0 # i � 0
add $s1, $0, $0 # sum � 0
addi $t0, $0, 10 # $t0 � 10

loop:
slt $t1, $s0, $t0 # if (i � 10), $t1 � 1, else $t1 � 0
beq $t1, $0, done # if $t1 �� 0 (i �� 10), branch to done
add $s1, $s1, $s0 # sum � sum � i
addi $s0, $s0, 1 # increment i
j loop

done:

Exercise 7.22 Write HDL code for the multicycle MIPS processor. The processor
should be compatible with the following top-level module. The mem module is
used to hold both instructions and data. Test your processor using the testbench
from Section 7.6.3.

module top(input clk, reset,
output [31:0] writedata, adr,
output memwrite);

wire [31:0] readdata;

// instantiate processor and memories
mips mips(clk, reset, adr, writedata, memwrite, readdata);
mem mem(clk, memwrite, adr, writedata, readdata);

endmodule

module mem(input clk, we,
input [31:0] a, wd,
output [31:0] rd);

reg [31:0] RAM[63:0];

initial
begin
$readmemh(“memfile.dat”,RAM);

end

assign rd � RAM[a[31:2]]; // word aligned
always @ (posedge clk)

if (we)
RAM[a[31:2]] �� wd;

endmodule

Exercise 7.23 Extend your HDL code for the multicycle MIPS processor from
Exercise 7.22 to handle one of the new instructions from Exercise 7.11. Enhance
the testbench to test the new instruction.

458 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 458

Exercise 7.24 The pipelined MIPS processor is running the following program.
Which registers are being written, and which are being read on the fifth cycle?

add $s0, $t0, $t1
sub $s1, $t2, $t3
and $s2, $s0, $s1
or $s3, $t4, $t5
slt $s4, $s2, $s3

Exercise 7.25 Using a diagram similar to Figure 7.52, show the forwarding and
stalls needed to execute the following instructions on the pipelined MIPS processor.

add $t0, $s0, $s1
sub $t0, $t0, $s2
lw $t1, 60($t0)
and $t2, $t1, $t0

Exercise 7.26 Repeat Exercise 7.25 for the following instructions.

add $t0, $s0, $s1
lw $t1, 60($s2)
sub $t2, $t0, $s3
and $t3, $t1, $t0

Exercise 7.27 How many cycles are required for the pipelined MIPS processor to
issue all of the instructions for the program in Exercise 7.21? What is the CPI of
the processor on this program?

Exercise 7.28 Explain how to extend the pipelined MIPS processor to handle the
addi instruction.

Exercise 7.29 Explain how to extend the pipelined processor to handle the j
instruction. Give particular attention to how the pipeline is flushed when a jump
takes place.

Exercise 7.30 Examples 7.9 and 7.10 point out that the pipelined MIPS proces-
sor performance might be better if branches take place during the Execute stage
rather than the Decode stage. Show how to modify the pipelined processor from
Figure 7.58 to branch in the Execute stage. How do the stall and flush signals
change? Redo Examples 7.9 and 7.10 to find the new CPI, cycle time, and
overall time to execute the program.

Exercise 7.31 Your friend, the crack circuit designer, has offered to redesign one
of the units in the pipelined MIPS processor to be much faster. Using the delays
from Table 7.6 and Example 7.10, which unit should she work on to obtain the
greatest speedup of the overall processor? How fast should it be? (Making it
faster than necessary is a waste of your friend’s effort.) What is the cycle time
of the improved processor?

Exercises 459

Chapter 07.qxd 2/1/07 9:33 PM Page 459

Exercise 7.32 Consider the delays from Table 7.6 and Example 7.10. Now
suppose that the ALU were 20% faster. Would the cycle time of the pipelined
MIPS processor change? What if the ALU were 20% slower?

Exercise 7.33 Write HDL code for the pipelined MIPS processor. The processor
should be compatible with the top-level module from HDL Example 7.13. It
should support all of the instructions described in this chapter, including addi
and j (see Exercises 7.28 and 7.29). Test your design using the testbench from
HDL Example 7.12.

Exercise 7.34 Design the hazard unit shown in Figure 7.58 for the pipelined
MIPS processor. Use an HDL to implement your design. Sketch the hardware
that a synthesis tool might generate from your HDL.

Exercise 7.35 A nonmaskable interrupt (NMI) is triggered by an input pin to the
processor. When the pin is asserted, the current instruction should finish, then
the processor should set the Cause register to 0 and take an exception. Show
how to modify the multicycle processor in Figures 7.63 and 7.64 to handle
nonmaskable interrupts.

460 CHAPTER SEVEN Microarchitecture

Chapter 07.qxd 2/1/07 9:33 PM Page 460

Interview Questions

The following exercises present questions that have been asked at
interviews for digital design jobs.

Question 7.1 Explain the advantages of pipelined microprocessors.

Question 7.2 If additional pipeline stages allow a processor to go faster, why
don’t processors have 100 pipeline stages?

Question 7.3 Describe what a hazard is in a microprocessor and explain ways in
which it can be resolved. What are the pros and cons of each way?

Question 7.4 Describe the concept of a superscalar processor and its pros
and cons.

Interview Questions 461

Chapter 07.qxd 2/1/07 9:33 PM Page 461

