
199

CHAPTER

“Every program has at least one bug and can be shortened by at least

one instruction—from which, by induction, one can deduce that every

program can be reduced to one instruction which doesn’t work.”

—Anonymous

5
A Closer Look at
Instruction Set
Architectures

5.1 INTRODUCTION

W
e saw in Chapter 4 that machine instructions consist of opcodes and
operands. The opcodes specify the operations to be executed; the operands

specify register or memory locations of data. Why, when we have languages such
as C++, Java, and Ada available, should we be concerned with machine instruc-
tions? When programming in a high-level language, we frequently have little
awareness of the topics discussed in Chapter 4 (or in this chapter) because high-
level languages hide the details of the architecture from the programmer.
Employers frequently prefer to hire people with assembly language backgrounds
not because they need an assembly language programmer, but because they need
someone who can understand computer architecture to write more efficient and
more effective programs.

In this chapter, we expand on the topics presented in the last chapter, the
objective being to provide you with a more detailed look at machine instruction
sets. We look at different instruction types and operand types, and how instruc-
tions access data in memory. You will see that the variations in instruction sets are
integral in distinguishing different computer architectures. Understanding how
instruction sets are designed and how they function can help you understand the
more intricate details of the architecture of the machine itself.

5.2 INSTRUCTION FORMATS

We know that a machine instruction has an opcode and zero or more operands. In
Chapter 4 we saw that MARIE had an instruction length of 16 bits and could have,

200 Chapter 5 / A Closer Look at Instruction Set Architectures

at most, 1 operand. Encoding an instruction set can be done in a variety of ways.
Architectures are differentiated from one another by the number of bits allowed
per instruction (16, 32, and 64 are the most common), by the number of operands
allowed per instruction, and by the types of instructions and data each can process.
More specifically, instruction sets are differentiated by the following features:

• Operand storage in the CPU (data can be stored in a stack structure or in registers)
• Number of explicit operands per instruction (zero, one, two, and three being

the most common)
• Operand location (instructions can be classified as register-to-register, register-

to-memory or memory-to-memory, which simply refer to the combinations of
operands allowed per instruction)

• Operations (including not only types of operations but also which instructions
can access memory and which cannot)

• Type and size of operands (operands can be addresses, numbers, or even
characters)

5.2.1 Design Decisions for Instruction Sets

When a computer architecture is in the design phase, the instruction set format
must be determined before many other decisions can be made. Selecting this for-
mat is often quite difficult because the instruction set must match the architecture,
and the architecture, if well designed, could last for decades. Decisions made dur-
ing the design phase have long-lasting ramifications.

Instruction set architectures (ISAs) are measured by several different factors,
including: (1) the amount of space a program requires; (2) the complexity of the
instruction set, in terms of the amount of decoding necessary to execute an
instruction, and the complexity of the tasks performed by the instructions; (3) the
length of the instructions; and (4) the total number of instructions. Things to con-
sider when designing an instruction set include:

• Short instructions are typically better because they take up less space in mem-
ory and can be fetched quickly. However, this limits the number of instruc-
tions, because there must be enough bits in the instruction to specify the
number of instructions we need. Shorter instructions also have tighter limits on
the size and number of operands.

• Instructions of a fixed length are easier to decode but waste space.
• Memory organization affects instruction format. If memory has, for example,

16- or 32-bit words and is not byte-addressable, it is difficult to access a single
character. For this reason, even machines that have 16-, 32-, or 64-bit words
are often byte-addressable, meaning every byte has a unique address even
though words are longer than 1 byte.

• A fixed length instruction does not necessarily imply a fixed number of
operands. We could design an ISA with fixed overall instruction length, but
allow the number of bits in the operand field to vary as necessary. (This is
called an expanding opcode and is covered in more detail in Section 5.2.5.)

5.2 / Instruction Formats 201

• There are many different types of addressing modes. In Chapter 4, MARIE
used two addressing modes: direct and indirect; however, we see in this chap-
ter that a large variety of addressing modes exist.

• If words consist of multiple bytes, in what order should these bytes be stored
on a byte-addressable machine? Should the least significant byte be stored at
the highest or lowest byte address? This little versus big endian debate is dis-
cussed in the following section.

• How many registers should the architecture contain and how should these reg-
isters be organized? How should operands be stored in the CPU?

The little versus big endian debate, expanding opcodes, and CPU register organi-
zation are examined further in the following sections. In the process of discussing
these topics, we also touch on the other design issues listed.

5.2.2 Little versus Big Endian

The term endian refers to a computer architecture’s “byte order,” or the way the
computer stores the bytes of a multiple-byte data element. Virtually all computer
architectures today are byte-addressable and must, therefore, have a standard for
storing information requiring more than a single byte. Some machines store a
two-byte integer, for example, with the least significant byte first (at the lower
address) followed by the most significant byte. Therefore, a byte at a lower
address has lower significance. These machines are called little endian machines.
Other machines store this same two-byte integer with its most significant byte
first, followed by its least significant byte. These are called big endian machines
because they store the most significant bytes at the lower addresses. Most UNIX
machines are big endian, whereas most PCs are little endian machines. Most
newer RISC architectures are also big endian.

These two terms, little and big endian, are from the book Gulliver’s Travels.
You may remember the story in which the Lilliputians (the tiny people) were
divided into two camps: those who ate their eggs by opening the “big” end (big
endians) and those who ate their eggs by opening the “little” end (little endians).
CPU manufacturers are also divided into two factions. For example, Intel has
always done things the “little endian” way whereas Motorola has always done
things the “big endian” way. (It is also worth noting that some CPUs can handle
both little and big endian.)

For example, consider an integer requiring 4 bytes:

On a little endian machine, this is arranged in memory as follows:

Base Address + 0 = Byte0

Base Address + 1 = Byte1

Base Address + 2 = Byte2

Base Address + 3 = Byte3

Byte 3 Byte 2 Byte 1 Byte 0

202 Chapter 5 / A Closer Look at Instruction Set Architectures

Big Endian

Little Endian

78

1234

56

56

34

78

12

11100100Address

FIGURE 5.1 The Hex Value 12345678 Stored in Both Big and Little

Endian Format

On a big endian machine, this long integer would then be stored as:

Base Address + 0 = Byte3

Base Address + 1 = Byte2

Base Address + 2 = Byte1

Base Address + 3 = Byte0

Let’s assume that on a byte-addressable machine, the 32-bit hex value 12345678
is stored at address 0. Each digit requires a nibble, so one byte holds two digits.
This hex value is stored in memory as shown in Figure 5.1, where the shaded
cells represent the actual contents of memory.

There are advantages and disadvantages to each method, although one
method is not necessarily better than the other. Big endian is more natural to most
people and thus makes it easier to read hex dumps. By having the high-order byte
come first, you can always test whether the number is positive or negative by
looking at the byte at offset zero. (Compare this to little endian where you must
know how long the number is and then must skip over bytes to find the one con-
taining the sign information.) Big endian machines store integers and strings in
the same order and are faster in certain string operations. Most bitmapped graph-
ics are mapped with a “most significant bit on the left” scheme, which means
working with graphical elements larger than one byte can be handled by the
architecture itself. This is a performance limitation for little endian computers
because they must continually reverse the byte order when working with large
graphical objects. When decoding compressed data encoded with such schemes
as Huffman and LZW (discussed in Chapter 7), the actual codeword can be used
as an index into a lookup table if it is stored in big endian (this is also true for
encoding).

However, big endian also has disadvantages. Conversion from a 32-bit inte-
ger address to a 16-bit integer address requires a big endian machine to perform
addition. High-precision arithmetic on little endian machines is faster and easier.
Most architectures using the big endian scheme do not allow words to be written
on non-word address boundaries (for example, if a word is 2 or 4 bytes, it must
always begin on an even-numbered byte address). This wastes space. Little
endian architectures, such as Intel, allow odd address reads and writes, which
makes programming on these machines much easier. If a programmer writes an
instruction to read a value of the wrong word size, on a big endian machine it is
always read as an incorrect value; on a little endian machine, it can sometimes
result in the correct data being read. (Note that Intel finally has added an instruc-
tion to reverse the byte order within registers.)

5.2 / Instruction Formats 203

Computer networks are big endian, which means that when little endian com-
puters are going to pass integers over the network (network device addresses, for
example), they need to convert them to network byte order. Likewise, when they
receive integer values over the network, they need to convert them back to their
own native representation.

Although you may not be familiar with this little versus big endian debate, it
is important to many current software applications. Any program that writes data
to or reads data from a file must be aware of the byte ordering on the particular
machine. For example, the Windows BMP graphics format was developed on a
little endian machine, so to view BMPs on a big endian machine, the application
used to view them must first reverse the byte order. Software designers of popular
software are well aware of these byte-ordering issues. For example, Adobe Photo-
shop uses big endian, GIF is little endian, JPEG is big endian, MacPaint is big
endian, PC Paintbrush is little endian, RTF by Microsoft is little endian, and Sun
raster files are big endian. Some applications support both formats: Microsoft
WAV and AVI files, TIFF files, and XWD (X windows Dump) support both, typi-
cally by encoding an identifier into the file.

5.2.3 Internal Storage in the CPU: Stacks versus Registers

Once byte ordering in memory is determined, the hardware designer must make
some decisions on how the CPU should store data. This is the most basic means
to differentiate ISAs. There are three choices:

1. A stack architecture
2. An accumulator architecture
3. A general purpose register (GPR) architecture

Stack architectures use a stack to execute instructions, and the operands are
(implicitly) found on top of the stack. Even though stack-based machines have
good code density and a simple model for evaluation of expressions, a stack can-
not be accessed randomly, which makes it difficult to generate efficient code.
Accumulator architectures such as MARIE, with one operand implicitly in the
accumulator, minimize the internal complexity of the machine and allow for very
short instructions. But because the accumulator is only temporary storage, mem-
ory traffic is very high. General purpose register architectures, which use sets of
general purpose registers, are the most widely accepted models for machine
architectures today. These register sets are faster than memory, easy for compilers
to deal with, and can be used very effectively and efficiently. In addition, hard-
ware prices have decreased significantly, making it possible to add a large num-
ber of registers at a minimal cost. If memory access is fast, a stack-based design
may be a good idea; if memory is slow, it is often better to use registers. These
are the reasons why most computers over the past 10 years have been general-
register based. However, because all operands must be named, using registers
results in longer instructions, causing longer fetch and decode times. (A very
important goal for ISA designers is short instructions.) Designers choosing an

204 Chapter 5 / A Closer Look at Instruction Set Architectures

ISA must decide which will work best in a particular environment and examine
the tradeoffs carefully.

The general-purpose architecture can be broken into three classifications,
depending on where the operands are located. Memory-memory architectures may
have two or three operands in memory, allowing an instruction to perform an
operation without requiring any operand to be in a register. Register-memory
architectures require a mix, where at least one operand is in a register and one is
in memory. Load-store architectures require data to be moved into registers
before any operations on that data are performed. Intel and Motorola are exam-
ples of register-memory architectures; Digital Equipment’s VAX architecture
allows memory-memory operations; and SPARC, MIPS, ALPHA, and the Pow-
erPC are all load-store machines.

Given that most architectures today are GPR-based, we now examine two
major instruction set characteristics that divide general-purpose register architec-
tures. Those two characteristics are the number of operands and how the operands
are addressed. In Section 5.2.4 we look at the instruction length and number of
operands an instruction can have. (Two or three operands are the most common
for GPR architectures, and we compare these to zero and one operand architec-
tures.) We then investigate instruction types. Finally, in Section 5.4 we investigate
the various addressing modes available.

5.2.4 Number of Operands and Instruction Length

The traditional method for describing a computer architecture is to specify the
maximum number of operands, or addresses, contained in each instruction. This
has a direct impact on the length of the instruction itself. MARIE uses a fixed-
length instruction with a 4-bit opcode and a 12-bit operand. Instructions on cur-
rent architectures can be formatted in two ways:

• Fixed length—Wastes space but is fast and results in better performance when
instruction-level pipelining is used, as we see in Section 5.5.

• Variable length—More complex to decode but saves storage space.

Typically, the real-life compromise involves using two to three instruction
lengths, which provides bit patterns that are easily distinguishable and simple to
decode. The instruction length must also be compared to the word length on the
machine. If the instruction length is exactly equal to the word length, the instruc-
tions align perfectly when stored in main memory. Instructions always need to be
word aligned for addressing reasons. Therefore, instructions that are half, quarter,
double, or triple the actual word size can waste space. Variable length instructions
are clearly not the same size and need to be word aligned, resulting in loss of
space as well.

The most common instruction formats include zero, one, two, or three
operands. We saw in Chapter 4 that some instructions for MARIE have no
operands, whereas others have one operand. Arithmetic and logic operations typi-
cally have two operands, but can be executed with one operand (as we saw in
MARIE), if the accumulator is implicit. We can extend this idea to three operands

5.2 / Instruction Formats 205

if we consider the final destination as a third operand. We can also use a stack
that allows us to have zero operand instructions. The following are some common
instruction formats:

• OPCODE only (zero addresses)
• OPCODE + 1 Address (usually a memory address)
• OPCODE + 2 Addresses (usually registers, or one register and one memory

address)
• OPCODE + 3 Addresses (usually registers, or combinations of registers and

memory)

All architectures have a limit on the maximum number of operands allowed per
instruction. For example, in MARIE, the maximum was one, although some
instructions had no operands (Halt and Skipcond). We mentioned that zero-,
one-, two-, and three-operand instructions are the most common. One-, two-, and
even three-operand instructions are reasonably easy to understand; an entire ISA
built on zero-operand instructions can, at first, be somewhat confusing.

Machine instructions that have no operands must use a stack (the last-in,
first-out data structure, introduced in Chapter 4 and described in detail in Appen-
dix A, where all insertions and deletions are made from the top) to perform those
operations that logically require one or two operands (such as an Add). Instead of
using general purpose registers, a stack-based architecture stores the operands on
the top of the stack, making the top element accessible to the CPU. (Note that one
of the most important data structures in machine architectures is the stack. Not
only does this structure provide an efficient means of storing intermediate data
values during complex calculations, but it also provides an efficient method for
passing parameters during procedure calls as well as a means to save local block
structure and define the scope of variables and subroutines.)

In architectures based on stacks, most instructions consist of opcodes only; how-
ever, there are special instructions (those that add elements to and remove elements
from the stack) that have just one operand. Stack architectures need a push instruction
and a pop instruction, each of which is allowed one operand. Push X places the data
value found at memory location X onto the stack; Pop X removes the top element in
the stack and stores it at location X. Only certain instructions are allowed to access
memory; all others must use the stack for any operands required during execution.

For operations requiring two operands, the top two elements of the stack are
used. For example, if we execute an Add instruction, the CPU adds the top two
elements of the stack, popping them both and then pushing the sum onto the top
of the stack. For noncommutative operations such as subtraction, the top stack
element is subtracted from the next-to-the-top element, both are popped, and the
result is pushed onto the top of the stack.

This stack organization is very effective for evaluating long arithmetic
expressions written in reverse Polish notation (RPN). This representation places
the operator after the operands in what is known as postfix notation (as compared
to infix notation, which places the operator between operands, and prefix
notation, which places the operator before the operands). For example:

206 Chapter 5 / A Closer Look at Instruction Set Architectures

X + Y is in infix notation
+ X Y is in prefix notation
X Y + is in postfix notation

All arithmetic expressions can be written using any of these representations.
However, postfix representation combined with a stack of registers is the most
efficient means to evaluate arithmetic expressions. In fact, some electronic calcu-
lators (such as Hewlett-Packard) require the user to enter expressions in postfix
notation. With a little practice on these calculators, it is possible to rapidly evalu-
ate long expressions containing many nested parentheses without ever stopping to
think about how terms are grouped.

Consider the following expression:

(X + Y) � (W � Z) + 2

Written in RPN, this becomes:

XY + WZ � �2+

Notice that the need for parentheses to preserve precedence is eliminated when
using RPN.

To illustrate the concepts of zero, one, two, and three operands, let’s write a
simple program to evaluate an arithmetic expression, using each of these formats.

EXAMPLE 5.1 Suppose we wish to evaluate the following expression:

Z = (X � Y) + (W � U)

Typically, when three operands are allowed, at least one operand must be a regis-
ter, and the first operand is normally the destination. Using three-address instruc-
tions, the code to evaluate the expression for Z is written as follows:

Mult R1, X, Y
Mult R2, W, U
Add Z, R2, R1

When using two-address instructions, normally one address specifies a register
(two-address instructions seldom allow for both operands to be memory
addresses). The other operand could be either a register or a memory address.
Using two-address instructions, our code becomes:

Load R1, X
Mult R1, Y
Load R2, W
Mult R2, U
Add R1, R2
Store Z, R1

5.2 / Instruction Formats 207

Note that it is important to know whether the first operand is the source or the
destination. In the above instructions, we assume it is the destination. (This tends
to be a point of confusion for those programmers who must switch between Intel
assembly language and Motorola assembly language—Intel assembly specifies
the first operand as the destination, whereas in Motorola assembly, the first
operand is the source.)

Using one-address instructions (as in MARIE), we must assume a register
(normally the accumulator) is implied as the destination for the result of the
instruction. To evaluate Z, our code now becomes:

Load X
Mult Y
Store Temp
Load W
Mult U
Add Temp
Store Z

Note that as we reduce the number of operands allowed per instruction, the num-
ber of instructions required to execute the desired code increases. This is an
example of a typical space/time trade-off in architecture design—shorter instruc-
tions but longer programs.

What does this program look like on a stack-based machine with zero-
address instructions? Stack-based architectures use no operands for instructions
such as Add, Subt, Mult, or Divide. We need a stack and two operations on
that stack: Pop and Push. Operations that communicate with the stack must
have an address field to specify the operand to be popped or pushed onto the
stack (all other operations are zero-address). Push places the operand on the top
of the stack. Pop removes the stack top and places it in the operand. This archi-
tecture results in the longest program to evaluate our equation. Assuming arith-
metic operations use the two operands on the stack top, pop them, and push the
result of the operation, our code is as follows:

Push X
Push Y
Mult
Push W
Push U
Mult
Add
Store Z

208 Chapter 5 / A Closer Look at Instruction Set Architectures

Opcode Address 1 Address 2 Address 3

Opcode Address 1

FIGURE 5.2 Two Possibilities for a 16-Bit Instruction Format

The instruction length is certainly affected by the opcode length and by the num-
ber of operands allowed in the instruction. If the opcode length is fixed, decoding
is much easier. However, to provide for backward compatibility and flexibility,
opcodes can have variable length. Variable length opcodes present the same prob-
lems as variable versus constant length instructions. A compromise used by many
designers is expanding opcodes.

5.2.5 Expanding Opcodes

Expanding opcodes represent a compromise between the need for a rich set of
opcodes and the desire to have short opcodes, and thus short instructions. The
idea is to make some opcodes short, but have a means to provide longer ones
when needed. When the opcode is short, a lot of bits are left to hold operands
(which means we could have two or three operands per instruction). When you
don’t need any space for operands (for an instruction such as Halt or because
the machine uses a stack), all the bits can be used for the opcode, which allows
for many unique instructions. In between, there are longer opcodes with fewer
operands as well as shorter opcodes with more operands.

Consider a machine with 16-bit instructions and 16 registers. Because we
now have a register set instead of one simple accumulator (as in MARIE), we
need to use 4 bits to specify a unique register. We could encode 16 instructions,
each with 3 register operands (which implies any data to be operated on must first
be loaded into a register), or use 4 bits for the opcode and 12 bits for a memory
address (as in MARIE, assuming a memory of size 4K). Any memory reference
requires 12 bits, leaving only 4 bits for other purposes. However, if all data in
memory is first loaded into a register in this register set, the instruction can select
that particular data element using only 4 bits (assuming 16 registers). These two
choices are illustrated in Figure 5.2.

Suppose we wish to encode the following instructions:

• 15 instructions with 3 addresses
• 14 instructions with 2 addresses

5.2 / Instruction Formats 209

• 31 instructions with 1 address
• 16 instructions with 0 addresses

Can we encode this instruction set in 16 bits? The answer is yes, as long as we
use expanding opcodes. The encoding is as follows:

0000 R1 R2 R3
... 15 3-address codes

1110 R1 R2 R3

1111 0000 R1 R2
... 14 2-address codes

1111 1101 R1 R2

1111 1110 0000 R1
... 31 1-address codes

1111 1111 1110 R1

1111 1111 1111 0000
... 16 0-address codes

1111 1111 1111 1111

This expanding opcode scheme makes the decoding more complex. Instead of
simply looking at a bit pattern and deciding which instruction it is, we need to
decode the instruction something like this:

if (leftmost four bits != 1111) {
Execute appropriate three-address instruction}

else if (leftmost seven bits != 1111 111) {
Execute appropriate two-address instruction}

else if (leftmost twelve bits != 1111 1111 1111) {
Execute appropriate one-address instruction }

else {
Execute appropriate zero-address instruction

}

At each stage, one spare code is used to indicate that we should now look at more
bits. This is another example of the types of trade-offs hardware designers contin-
ually face: Here, we trade opcode space for operand space.

210 Chapter 5 / A Closer Look at Instruction Set Architectures

5.3 INSTRUCTION TYPES

Most computer instructions operate on data; however, there are some that do not.
Computer manufacturers regularly group instructions into the following categories:

• Data movement
• Arithmetic
• Boolean
• Bit manipulation (shift and rotate)
• I/O
• Transfer of control
• Special purpose

Data movement instructions are the most frequently used instructions. Data is
moved from memory into registers, from registers to registers, and from registers
to memory, and many machines provide different instructions depending on the
source and destination. For example, there may be a MOVER instruction that
always requires two register operands, whereas a MOVE instruction allows one
register and one memory operand. Some architectures, such as RISC, limit the
instructions that can move data to and from memory in an attempt to speed up
execution. Many machines have variations of load, store, and move instructions
to handle data of different sizes. For example, there may be a LOADB instruction
for dealing with bytes and a LOADW instruction for handling words.

Arithmetic operations include those instructions that use integers and floating
point numbers. Many instruction sets provide different arithmetic instructions for
various data sizes. As with the data movement instructions, there are sometimes
different instructions for providing various combinations of register and memory
accesses in different addressing modes.

Boolean logic instructions perform Boolean operations, much in the same
way that arithmetic operations work. There are typically instructions for perform-
ing AND, NOT, and often OR and XOR operations.

Bit manipulation instructions are used for setting and resetting individual bits
(or sometimes groups of bits) within a given data word. These include both arith-
metic and logical shift instructions and rotate instructions, both to the left and to
the right. Logical shift instructions simply shift bits to either the left or the right
by a specified amount, shifting in zeros from the opposite end. Arithmetic shift
instructions, commonly used to multiply or divide by 2, do not shift the leftmost
bit, because this represents the sign of the number. On a right arithmetic shift, the
sign bit is replicated into the bit position to its right. On a left arithmetic shift,
values are shifted left, zeros are shifted in, but the sign bit is never moved. Rotate
instructions are simply shift instructions that shift in the bits that are shifted out.
For example, on a rotate left 1 bit, the leftmost bit is shifted out and rotated
around to become the rightmost bit.

5.4 / Addressing 211

I/O instructions vary greatly from architecture to architecture. The basic
schemes for handling I/O are programmed I/O, interrupt-driven I/O, and DMA
devices. These are covered in more detail in Chapter 7.

Control instructions include branches, skips, and procedure calls. Branching
can be unconditional or conditional. Skip instructions are basically branch
instructions with implied addresses. Because no operand is required, skip instruc-
tions often use bits of the address field to specify different situations (recall the
Skipcond instruction used by MARIE). Procedure calls are special branch
instructions that automatically save the return address. Different machines use dif-
ferent methods to save this address. Some store the address at a specific location
in memory, others store it in a register, while still others push the return address
on a stack. We have already seen that stacks can be used for other purposes.

Special purpose instructions include those used for string processing, high-
level language support, protection, flag control, and cache management. Most
architectures provide instructions for string processing, including string manipu-
lation and searching.

5.4 ADDRESSING

Although addressing is an instruction design issue and is technically part of the
instruction format, there are so many issues involved with addressing that it mer-
its its own section. We now present the two most important of these addressing
issues: the types of data that can be addressed and the various addressing modes.
We cover only the fundamental addressing modes; more specialized modes are
built using the basic modes in this section.

5.4.1 Data Types

Before we look at how data is addressed, we will briefly mention the various
types of data an instruction can access. There must be hardware support for a par-
ticular data type if the instruction is to reference that type. In Chapter 2 we dis-
cussed data types, including numbers and characters. Numeric data consists of
integers and floating point values. Integers can be signed or unsigned and can be
declared in various lengths. For example, in C++ integers can be short (16 bits),
int (the word size of the given architecture), or long (32 bits). Floating point num-
bers have lengths of 32, 64, or 128 bits. It is not uncommon for ISAs to have spe-
cial instructions to deal with numeric data of varying lengths, as we have seen
earlier. For example, there might be a MOVE for 16-bit integers and a different
MOVE for 32-bit integers.

Nonnumeric data types consist of strings, Booleans, and pointers. String
instructions typically include operations such as copy, move, search, or modify.
Boolean operations include AND, OR, XOR, and NOT. Pointers are actually
addresses in memory. Even though they are, in reality, numeric in nature, pointers
are treated differently than integers and floating point numbers. MARIE allows

212 Chapter 5 / A Closer Look at Instruction Set Architectures

for this data type by using the indirect addressing mode. The operands in the
instructions using this mode are actually pointers. In an instruction using a
pointer, the operand is essentially an address and must be treated as such.

5.4.2 Address Modes

We saw in Chapter 4 that the 12 bits in the operand field of a MARIE instruction
can be interpreted in two different ways: the 12 bits represent either the memory
address of the operand or a pointer to a physical memory address. These 12 bits
can be interpreted in many other ways, thus providing us with several different
addressing modes. Addressing modes allow us to specify where the instruction
operands are located. An addressing mode can specify a constant, a register, or a
location in memory. Certain modes allow shorter addresses and some allow us to
determine the location of the actual operand, often called the effective address of
the operand, dynamically. We now investigate the most basic addressing modes.

Immediate Addressing

Immediate addressing is so-named because the value to be referenced immedi-
ately follows the operation code in the instruction. That is to say, the data to be
operated on is part of the instruction. For example, if the addressing mode of the
operand is immediate and the instruction is Load 008, the numeric value 8 is
loaded into the AC. The 12 bits of the operand field do not specify an address—
they specify the actual operand the instruction requires. Immediate addressing is
very fast because the value to be loaded is included in the instruction. However,
because the value to be loaded is fixed at compile time it is not very flexible.

Direct Addressing

Direct addressing is so-named because the value to be referenced is obtained by
specifying its memory address directly in the instruction. For example, if the
addressing mode of the operand is direct and the instruction is Load 008, the data
value found at memory address 008 is loaded into the AC. Direct addressing is
typically quite fast because, although the value to be loaded is not included in the
instruction, it is quickly accessible. It is also much more flexible than immediate
addressing because the value to be loaded is whatever is found at the given
address, which may be variable.

Register Addressing

In register addressing, a register, instead of memory, is used to specify the
operand. This is very similar to direct addressing, except that instead of a mem-
ory address, the address field contains a register reference. The contents of that
register are used as the operand.

Indirect Addressing

Indirect addressing is a very powerful addressing mode that provides an excep-
tional level of flexibility. In this mode, the bits in the address field specify a mem-

5.4 / Addressing 213

ory address that is to be used as a pointer. The effective address of the operand is
found by going to this memory address. For example, if the addressing mode of
the operand is indirect and the instruction is Load 008, the data value found at
memory address 008 is actually the effective address of the desired operand. Sup-
pose we find the value 2A0 stored in location 008. 2A0 is the “real” address of
the value we want. The value found at location 2A0 is then loaded into the AC.

In a variation on this scheme, the operand bits specify a register instead of a
memory address. This mode, known as register indirect addressing, works
exactly the same way as indirect addressing mode, except it uses a register
instead of a memory address to point to the data. For example, if the instruction is
Load R1 and we are using register indirect addressing mode, we would find the
effective address of the desired operand in R1.

Indexed and Based Addressing

In indexed addressing mode, an index register (either explicitly or implicitly des-
ignated) is used to store an offset (or displacement), which is added to the
operand, resulting in the effective address of the data. For example, if the operand
X of the instruction Load X is to be addressed using indexed addressing, assuming
R1 is the index register and holds the value 1, the effective address of the operand
is actually X + 1. Based addressing mode is similar, except a base address regis-
ter, rather than an index register, is used. In theory, the difference between these
two modes is in how they are used, not how the operands are computed. An index
register holds an index that is used as an offset, relative to the address given in the
address field of the instruction. A base register holds a base address, where the
address field represents a displacement from this base. These two addressing
modes are quite useful for accessing array elements as well as characters in
strings. In fact, most assembly languages provide special index registers that are
implied in many string operations. Depending on the instruction-set design, gen-
eral-purpose registers may also be used in this mode.

Stack Addressing

If stack addressing mode is used, the operand is assumed to be on the stack. We
have already seen how this works in Section 5.2.4.

Additional Addressing Modes

Many variations on the above schemes exist. For example, some machines have
indirect indexed addressing, which uses both indirect and indexed addressing at
the same time. There is also base/offset addressing, which adds an offset to a spe-
cific base register and then adds this to the specified operand, resulting in the
effective address of the actual operand to be used in the instruction. There are
also auto-increment and auto-decrement modes. These modes automatically
increment or decrement the register used, thus reducing the code size, which can
be extremely important in applications such as embedded systems. Self-relative
addressing computes the address of the operand as an offset from the current
instruction. Additional modes exist; however, familiarity with immediate, direct,

214 Chapter 5 / A Closer Look at Instruction Set Architectures

R1
900

1000

Memory

500

600

700

800
800

900

1000

1100

1600

...

...

...

...

FIGURE 5.3 Contents of Memory When Load 800 Is Executed

Mode
Value Loaded

into AC

900

800

1000

700

Direct

Immediate

Indirect

Indexed

TABLE 5.1 Results of Using Various Addressing Modes on Memory in

Figure 5.2

register, indirect, indexed, and stack addressing modes goes a long way in under-
standing any addressing mode you may encounter.

Let’s look at an example to illustrate these various modes. Suppose we have
the instruction Load 800, and the memory and register R1 shown in Figure 5.3.

Applying the various addressing modes to the operand field containing the
800, and assuming R1 is implied in the indexed addressing mode, the value actu-
ally loaded into AC is seen in Table 5.1.

The instruction Load R1, using register addressing mode, loads an 800 into
the accumulator, and using register indirect addressing mode, loads a 900 into the
accumulator.

We summarize the addressing modes in Table 5.2.
The various addressing modes allow us to specify a much larger range of

locations than if we were limited to using one or two modes. As always, there are
trade-offs. We sacrifice simplicity in address calculation and limited memory ref-
erences for flexibility and increased address range.

5.5 INSTRUCTION-LEVEL PIPELINING

By now you should be reasonably familiar with the fetch-decode-execute cycle
presented in Chapter 4. Conceptually, each pulse of the computer’s clock is used
to control one step in the sequence, but sometimes additional pulses can be used

5.5 / Instruction-Level Pipelining 215

Immediate

Direct

Register

Indirect

Register Indirect

Indexed or Based

Stack

Operand value present in the instruction

Effective address of operand in address field

Operand value located in register

Address field points to address of the actual operand

Register contains address of actual operand

Effective address of operand generated by adding
value in address field to contents of a register

Operand located on stack

Addressing Mode To Find Operand

TABLE 5.2 A Summary of the Basic Addressing Modes

to control smaller details within one step. Some CPUs break the fetch-decode-
execute cycle down into smaller steps, where some of these smaller steps can be
performed in parallel. This overlapping speeds up execution. This method, used
by all current CPUs, is known as pipelining.

Suppose the fetch-decode-execute cycle were broken into the following
“mini-steps”:

1. Fetch instruction
2. Decode opcode
3. Calculate effective address of operands
4. Fetch operands
5. Execute instruction
6. Store result

Pipelining is analogous to an automobile assembly line. Each step in a com-
puter pipeline completes a part of an instruction. Like the automobile assembly
line, different steps are completing different parts of different instructions in par-
allel. Each of the steps is called a pipeline stage. The stages are connected to form
a pipe. Instructions enter at one end, progress through the various stages, and exit
at the other end. The goal is to balance the time taken by each pipeline stage (i.e.,
more or less the same as the time taken by any other pipeline stage). If the stages
are not balanced in time, after awhile, faster stages will be waiting on slower
ones. To see an example of this imbalance in real life, consider the stages of
doing laundry. If you have only one washer and one dryer, you usually end up
waiting on the dryer. If you consider washing as the first stage and drying as the
next, you can see that the longer drying stage causes clothes to pile up between
the two stages. If you add folding clothes as a third stage, you soon realize that
this stage would consistently be waiting on the other, slower stages.

Figure 5.4 provides an illustration of computer pipelining with overlapping
stages. We see each clock cycle and each stage for each instruction (where S1
represents the fetch, S2 represents the decode, S3 is the calculate state, S4 is the
operand fetch, S5 is the execution, and S6 is the store).

216 Chapter 5 / A Closer Look at Instruction Set Architectures

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

S1 S2 S3 S4 S5 S6

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

FIGURE 5.4 Four Instructions Going through a 6-Stage Pipeline

We see from Figure 5.4 that once instruction 1 has been fetched and is in the
process of being decoded, we can start the fetch on instruction 2. When instruc-
tion 1 is fetching operands, and instruction 2 is being decoded, we can start the
fetch on instruction 3. Notice these events can occur in parallel, very much like
an automobile assembly line.

Suppose we have a k-stage pipeline. Assume the clock cycle time is tp, that is,
it takes tp time per stage. Assume also we have n instructions (often called tasks)
to process. Task 1 (T1) requires k � tp time to complete. The remaining n � 1
tasks emerge from the pipeline one per cycle, which implies a total time for these
tasks of (n � 1)tp. Therefore, to complete n tasks using a k-stage pipeline requires:

(k � tp) + (n � 1)tp = (k + n � 1)tp
or k + (n � 1) clock cycles.

Let’s calculate the speedup we gain using a pipeline. Without a pipeline, the
time required is ntn cycles, where tn = k � tp. Therefore, the speedup (time with-
out a pipeline divided by the time using a pipeline) is:

speedup S = ntn
(k + n − 1)tp

If we take the limit of this as n approaches infinity, we see that (k + n � 1)
approaches n, which results in a theoretical speedup of:

Speedup = k × tp

tp
= k

The theoretical speedup, k, is the number of stages in the pipeline.
Let’s look at an example. Suppose we have a 4-stage pipeline, where:

• S1 = fetch instruction
• S2 = decode and calculate effective address

5.5 / Instruction-Level Pipelining 217

Time Period 1 2 3 4 5 6 7 8 9 10 11 12 13
S1

2
Instruction: 1

(branch) 3
4
5
6
8
9

10

S2 S3 S4
S1 S2 S3 S4

S1 S2 S3 S4
S1 S2 S3

S1 S2
S1

S1 S2 S3 S4
S1 S2 S3 S4

S1 S2 S3 S4

FIGURE 5.5 Example Instruction Pipeline with Conditional Branch

• S3 = fetch operand
• S4 = execute instruction and store results

We must also assume the architecture provides a means to fetch data and instruc-
tions in parallel. This can be done with separate instruction and data paths; how-
ever, most memory systems do not allow this. Instead, they provide the operand
in cache, which, in most cases, allows the instruction and operand to be fetched
simultaneously. Suppose, also, that instruction I3 is a conditional branch state-
ment that alters the execution sequence (so that instead of I4 running next, it
transfers control to I8). This results in the pipeline operation shown in Figure 5.5.

Note that I4, I5, and I6 are fetched and proceed through various stages, but
after the execution of I3 (the branch), I4, I5, and I6 are no longer needed. Only
after time period 6, when the branch has executed, can the next instruction to be
executed (I8) be fetched, after which, the pipe refills. From time periods 6
through 9, only one instruction has executed. In a perfect world, for each time
period after the pipe originally fills, one instruction should flow out of the
pipeline. However, we see in this example that this is not necessarily true.

Please note that not all instructions must go through each stage of the pipe. If
an instruction has no operand, there is no need for stage 3. To simplify pipelining
hardware and timing, all instructions proceed through all stages, whether neces-
sary or not.

From our preceding discussion of speedup, it might appear that the more
stages that exist in the pipeline, the faster everything will run. This is true to a
point. There is a fixed overhead involved in moving data from memory to regis-
ters. The amount of control logic for the pipeline also increases in size propor-
tional to the number of stages, thus slowing down total execution. In addition,
there are several conditions that result in “pipeline conflicts,” which keep us from
reaching the goal of executing one instruction per clock cycle. These include:

• Resource conflicts
• Data dependencies
• Conditional branch statements

Resource conflicts are a major concern in instruction-level parallelism. For exam-
ple, if one instruction is storing a value to memory while another is being fetched

218 Chapter 5 / A Closer Look at Instruction Set Architectures

from memory, both need access to memory. Typically this is resolved by allowing
the instruction executing to continue, while forcing the instruction fetch to wait.
Certain conflicts can also be resolved by providing two separate pathways: one
for data coming from memory and another for instructions coming from memory.

Data dependencies arise when the result of one instruction, not yet avail-
able, is to be used as an operand to a following instruction. There are several
ways to handle these types of pipeline conflicts. Special hardware can be added
to detect instructions whose source operands are destinations for instructions
further up the pipeline. This hardware can insert a brief delay (typically a no-op
instruction that does nothing) into the pipeline, allowing enough time to pass to
resolve the conflict. Specialized hardware can also be used to detect these con-
flicts and route data through special paths that exist between various stages of
the pipeline. This reduces the time necessary for the instruction to access the
required operand. Some architectures address this problem by letting the com-
piler resolve the conflict. Compilers have been designed that reorder instruc-
tions, resulting in a delay of loading any conflicting data but having no effect on
the program logic or output.

Branch instructions allow us to alter the flow of execution in a program,
which, in terms of pipelining, causes major problems. If instructions are fetched
one per clock cycle, several can be fetched and even decoded before a preceding
instruction, indicating a branch, is executed. Conditional branching is particularly
difficult to deal with. Many architectures offer branch prediction, using logic to
make the best guess as to which instructions will be needed next (essentially, they
are predicting the outcome of a conditional branch). Compilers try to resolve
branching issues by rearranging the machine code to cause a delayed branch. An
attempt is made to reorder and insert useful instructions, but if that is not possi-
ble, no-op instructions are inserted to keep the pipeline full. Another approach
used by some machines given a conditional branch is to start fetches on both
paths of the branch and save them until the branch is actually executed, at which
time the “true” execution path will be known.

In an effort to squeeze even more performance out of the chip, modern CPUs
employ superscalar design (introduced in Chapter 4), which is one step beyond
pipelining. Superscalar chips have multiple ALUs and issue more than one
instruction in each clock cycle. The clock cycles per instruction can actually go
below one. But the logic to keep track of hazards becomes even more complex;
more logic is needed to schedule operations than to do them. But even with com-
plex logic, it is hard to schedule parallel operations “on the fly.”

The limits of dynamic scheduling have led machine designers to consider a
very different architecture, explicitly parallel instruction computers (EPIC),
exemplified by the Itanium architecture discussed in Chapter 4. EPIC machines
have very large instructions (recall the instructions for the Itanium are 128 bits),
which specify several operations to be done in parallel. Because of the parallelism
inherent in the design, the EPIC instruction set is heavily compiler dependent
(which means a user needs a sophisticated compiler to take advantage of the par-
allelism to gain significant performance advantages). The burden of scheduling

5.6 / Real-World Examples of ISAs 219

operations is shifted from the processor to the compiler, and much more time can
be spent in developing a good schedule and analyzing potential pipeline conflicts.

To reduce the pipelining problems due to conditional branches, the IA-64
introduced predicated instructions. Comparison instructions set predicate bits,
much like they set condition codes on the x86 machine (except that there are 64
predicate bits). Each operation specifies a predicate bit; it is executed only if the
predicate bit equals 1. In practice, all operations are performed, but the result is
stored into the register file only if the predicate bit equals 1. The result is that
more instructions are executed, but we don’t have to stall the pipeline waiting for
a condition.

There are several levels of parallelism, varying from the simple to the more
complex. All computers exploit parallelism to some degree. Instructions use
words as operands (where words are typically 16, 32, or 64 bits in length), rather
than acting on single bits at a time. More advanced types of parallelism require
more specific and complex hardware and operating system support.

Although an in-depth study of parallelism is beyond the scope of this text, we
would like to take a brief look at what we consider the two extremes of paral-
lelism: program level parallelism (PLP) and instruction level parallelism (ILP).
PLP actually allows parts of a program to run on more than one computer. This
may sound simple, but it requires coding the algorithm correctly so that this par-
allelism is possible, in addition to providing careful synchronization between the
various modules.

ILP involves the use of techniques to allow the execution of overlapping
instructions. Essentially, we want to allow more than one instruction within a single
program to execute concurrently. There are two kinds of ILP. The first type decom-
poses an instruction into stages and overlaps these stages. This is exactly what
pipelining does. The second kind of ILP allows individual instructions to overlap
(that is, instructions can be executed at the same time by the processor itself).

In addition to pipelined architectures, superscalar, superpipelining, and very
long instruction word (VLIW) architectures exhibit ILP. Superscalar architectures
(as you may recall from Chapter 4) perform multiple operations at the same time
by employing parallel pipelines. Examples of superscalar architectures include
IBM’s PowerPC, Sun’s UltraSparc, and DEC’s Alpha. Superpipelining architec-
tures combine superscalar concepts with pipelining, by dividing the pipeline
stages into smaller pieces. The IA-64 architecture exhibits a VLIW architecture,
which means each instruction can specify multiple scalar operations (the com-
piler puts multiple operations into a single instruction). Superscalar and VLIW
machines fetch and execute more than one instruction per cycle.

5.6 REAL-WORLD EXAMPLES OF ISAs

Let’s return to the two architectures we discussed in Chapter 4, Intel and MIPS, to
see how the designers of these processors chose to deal with the issues introduced
in this chapter: instruction formats, instruction types, number of operands,

220 Chapter 5 / A Closer Look at Instruction Set Architectures

addressing, and pipelining. We’ll also introduce the Java Virtual Machine to illus-
trate how software can create an ISA abstraction that completely hides the real
ISA of the machine.

5.6.1 Intel

Intel uses a little endian, two-address architecture, with variable-length instruc-
tions. Intel processors use a register-memory architecture, which means all
instructions can operate on a memory location, but the other operand must be a
register. This ISA allows variable-length operations, operating on data with
lengths of 1, 2, or 4 bytes.

The 8086 through the 80486 are single-stage pipeline architectures. The
architects reasoned that if one pipeline was good, two would be better. The Pen-
tium had two parallel five-stage pipelines, called the U pipe and the V pipe, to
execute instructions. Stages for these pipelines include Prefetch, Instruction
Decode, Address Generation, Execute, and Write Back. To be effective, these
pipelines must be kept filled, which requires instructions that can be issued in
parallel. It is the compiler’s responsibility to make sure this parallelism happens.
The Pentium II increased the number of stages to 12, including Prefetch, Length
Decode, Instruction Decode, Rename/Resource Allocation, UOP Scheduling/Dis-
patch, Execution, Write Back, and Retirement. Most of the new stages were
added to address Intel’s MMX technology, an extension to the architecture that
handles multimedia data. The Pentium III increased the stages to 14, and the Pen-
tium IV to 24. Additional stages (beyond those introduced in this chapter)
included stages for determining the length of the instruction, stages for creating
microoperations, and stages to “commit” the instruction (make sure it executes
and the results become permanent). The Itanium contains only a 10-stage instruc-
tion pipeline.

Intel processors allow for the basic addressing modes introduced in this chap-
ter, in addition to many combinations of those modes. The 8086 provided 17 dif-
ferent ways to access memory, most of which were variants of the basic modes.
Intel’s more current Pentium architectures include the same addressing modes as
their predecessors, but also introduce new modes, mostly to help with maintaining
backward compatibility. The IA-64 is surprisingly lacking in memory-addressing
modes. It has only one: register-indirect (with optional post-increment). This
seems unusually limiting but follows the RISC philosophy. Addresses are calcu-
lated and stored in general-purpose registers. The more complex addressing
modes require specialized hardware; by limiting the number of addressing modes,
the IA-64 architecture minimizes the need for this specialized hardware.

5.6.2 MIPS

The MIPS architecture (which originally stood for “Microprocessor without
Interlocked Pipeline Stages”) is a little endian, word-addressable, three-address,
fixed-length ISA. This is a load and store architecture, which means only the load
and store instructions can access memory. All other instructions must use regis-
ters for operands, which implies that this ISA needs a large register set. MIPS is

5.6 / Real-World Examples of ISAs 221

also limited to fixed-length operations (those that operate on data with the same
number of bytes).

Some MIPS processors (such as the R2000 and R3000) have five-stage
pipelines. The R4000 and R4400 have 8-stage superpipelines. The R10000 is
quite interesting in that the number of stages in the pipeline depends on the func-
tional unit through which the instruction must pass: there are five stages for inte-
ger instructions, six for load/store instructions, and seven for floating-point
instructions. Both the MIPS 5000 and 10000 are superscalar.

MIPS has a straightforward ISA with five basic types of instructions: simple
arithmetic (add, XOR, NAND, shift), data movement (load, store, move), control
(branch, jump), multi-cycle (multiply, divide), and miscellaneous instructions
(save PC, save register on condition). MIPS programmers can use immediate,
register, direct, indirect register, base, and indexed addressing modes. However,
the ISA itself provides for only one (base addressing). The remaining modes are
provided by the assembler. The MIPS64 has two additional addressing modes for
use in embedded systems optimizations.

The MIPS instructions in Chapter 4 had up to four fields: an opcode, two
operand addresses, and one result address. Essentially three instruction formats
are available: the I type (immediate), the R type (register), and the J type (jump).

R type instructions have a 6-bit opcode, a 5-bit source register, a 5-bit target
register, a 5-bit shift amount, and a 6-bit function. I type instructions have a 6-bit
operand, a 5-bit source register, a 5-bit target register or branch condition, and a
16-bit immediate branch displacement or address displacement. J type instruc-
tions have a 6-bit opcode and a 26-bit target address.

5.6.3 Java Virtual Machine

Java, a language that is becoming quite popular, is very interesting in that it is plat-
form independent. This means that if you compile code on one architecture (say a
Pentium) and you wish to run your program on a different architecture (say a Sun
workstation), you can do so without modifying or even recompiling your code.

The Java compiler makes no assumptions about the underlying architecture
of the machine on which the program will run, such as the number of registers,
memory size, or I/O ports, when you first compile your code. After compilation,
however, to execute your program, you will need a Java Virtual Machine (JVM)
for the architecture on which your program will run. (A virtual machine is a soft-
ware emulation of a real machine.) The JVM is essentially a “wrapper” that goes
around the hardware architecture, and is very platform dependent. The JVM for a
Pentium is different from the JVM for a Sun workstation, which is different from
the JVM for a Macintosh, and so on. But once the JVM exists on a particular
architecture, that JVM can execute any Java program compiled on any ISA plat-
form. It is the JVM’s responsibility to load, check, find, and execute bytecodes at
run time. The JVM, although virtual, is a nice example of a well-designed ISA.

The JVM for a particular architecture is written in that architecture’s native
instruction set. It acts as an interpreter, taking Java bytecodes and interpreting
them into explicit underlying machine instructions. Bytecodes are produced when

222 Chapter 5 / A Closer Look at Instruction Set Architectures

Compile-time Environment

Program Class Files
(file. class)

The Actual Bytecode

Program Source Files
(file. java)

Java Compiler

Run-time Environment

Class
Loader

JAVA
API
Files

Execution
Engine

javac

JVM

java

FIGURE 5.6 The Java Programming Environment

a Java program is compiled. These bytecodes then become input for the JVM.
The JVM can be compared to a giant switch (or case) statement, analyzing one
bytecode instruction at a time. Each bytecode instruction causes a jump to a spe-
cific block of code, which implements the given bytecode instruction.

This differs significantly from other high-level languages with which you
may be familiar. For example, when you compile a C++ program, the object code
produced is for that particular architecture. (Compiling a C++ program results in
an assembly language program that is translated to machine code.) If you want to
run your C++ program on a different platform, you must recompile it for the tar-
get architecture. Compiled languages are translated into runnable files of the
binary machine code by the compiler. Once this code has been generated, it can
be run only on the target architecture. Compiled languages typically exhibit
excellent performance and give very good access to the operating system. Exam-
ples of compiled languages include C, C++, Ada, FORTRAN, and COBOL.

Some languages, such as LISP, PhP, Perl, Python, Tcl, and most BASIC lan-
guages, are interpreted. The source must be reinterpreted each time the program
is run. The trade-off for the platform independence of interpreted languages is
slower performance—usually by a factor of 100 times. (We will have more to say
on this topic in Chapter 8.)

Languages that are a bit of both (compiled and interpreted) exist as well.
These are often called P-code languages. The source code written in these lan-
guages is compiled into an intermediate form, called P-code, and the P-code is
then interpreted. P-code languages typically execute from 5 to 10 times more
slowly than compiled languages. Python, Perl, and Java are actually P-code lan-
guages, even though they are typically referred to as interpreted languages.

Figure 5.6 presents an overview of the Java programming environment.

5.6 / Real-World Examples of ISAs 223

Perhaps more interesting than Java’s platform independence, particularly in
relationship to the topics covered in this chapter, is the fact that Java’s bytecode is
a stack-based language, partially composed of zero address instructions. Each
instruction consists of a one-byte opcode followed by zero or more operands. The
opcode itself indicates whether it is followed by operands and the form the
operands (if any) take. Many of these instructions require zero operands.

Java uses two’s complement to represent signed integers but does not allow
for unsigned integers. Characters are coded using 16-bit Unicode. Java has four
registers, which provide access to five different main memory regions. All refer-
ences to memory are based on offsets from these registers; pointers or absolute
memory addresses are never used. Because the JVM is a stack machine, no gen-
eral registers are provided. This lack of general registers is detrimental to per-
formance, as more memory references are generated. We are trading performance
for portability.

Let’s take a look at a short Java program and its corresponding bytecode.
Example 5.2 shows a Java program that finds the maximum of two numbers.

EXAMPLE 5.2 Here is a Java program to find the maximum of two numbers.

public class Maximum {

public static void main (String[] Args)
{ int X,Y,Z;
X = Integer.parseInt(Args[0]);
Y = Integer.parseInt(Args[1]);
Z = Max(X,Y);
System.out.println(Z);

}

public static int Max (int A, int B)
{ int C;
if (A>B)C=A;
else C=B;
return C;

}
}

After we compile this program (using javac), we can disassemble it to examine
the bytecode, by issuing the following command:

javap -c Maximum

You should see the following:

Compiled from Maximum.java
public class Maximum extends java.lang.Object {

public Maximum();

224 Chapter 5 / A Closer Look at Instruction Set Architectures

public static void main(java.lang.String[]);
public static int Max(int, int);

}

Method Maximum()
0 aload_0
1 invokespecial #1 <Method java.lang.Object()>
4 return

Method void main(java.lang.String[])
0 aload_0
1 iconst_0
2 aaload
3 invokestatic #2 <Method int parseInt(java.lang.String)>
6 istore_1
7 aload_0
8 iconst_1
9 aaload
10 invokestatic #2 <Method int parseInt(java.lang.String)>
13 istore_2
14 iload_1
15 iload_2
16 invokestatic #3 <Method int Max(int, int)>
19 istore_3
20 getstatic #4 <Field java.io.PrintStream out>
23 iload_3
24 invokevirtual #5 <Method void println(int)>
27 return

Method int Max(int, int)
0 iload_0
1 iload_1
2 if_icmple 10
5 iload_0
6 istore_2
7 goto 12
10 iload_1
11 istore_2
12 iload_2
13 ireturn

Each line number represents an offset (or the number of bytes that an instruction
is from the beginning of the current method). Notice that

Z = Max (X,Y);

Chapter Summary 225

gets compiled to the following bytecode:

14 iload_1
15 iload_2
16 invokestatic #3 <Method int Max(int, int)>
19 istore_3

It should be very obvious that Java bytecode is stack-based. For example, the
iadd instruction pops two integers from the stack, adds them, and then pushes
the result back to the stack. There is no such thing as “add r0, r1, f2” or “add AC,
X”. The iload_1 (integer load) instruction also uses the stack by pushing slot 1
onto the stack (slot 1 in main contains X, so X is pushed onto the stack). Y is
pushed onto the stack by instruction 15. The invokestatic instruction actu-
ally performs the Max method call. When the method has finished, the
istore_3 instruction pops the top element of the stack and stores it in Z.

We will explore the Java language and the JVM in more detail in Chapter 8.

CHAPTER SUMMARY

The core elements of an instruction set architecture include the memory model
(word size and how the address space is split), registers, data types, instruc-

tion formats, addressing, and instruction types. Even though most computers
today have general purpose register sets and specify operands by combinations of
memory and register locations, instructions vary in size, type, format, and the
number of operands allowed. Instructions also have strict requirements for the
locations of these operands. Operands can be located on the stack, in registers, in
memory, or a combination of the three.

Many decisions must be made when ISAs are designed. Larger instruction
sets mandate longer instructions, which means a longer fetch and decode time.
Instructions having a fixed length are easier to decode but can waste space.
Expanding opcodes represent a compromise between the need for large instruc-
tion sets and the desire to have short instructions. Perhaps the most interesting
debate is that of little versus big endian byte ordering.

There are three choices for internal storage in the CPU: stacks, an accumula-
tor, or general purpose registers. Each has its advantages and disadvantages,
which must be considered in the context of the proposed architecture’s applica-
tions. The internal storage scheme has a direct impact on the instruction format,
particularly the number of operands the instruction is allowed to reference. Stack
architectures use zero operands, which fits well with RPN notation.

Instructions are classified into the following categories: data movement,
arithmetic, Boolean, bit manipulation, I/O, transfer of control, and special

226 Chapter 5 / A Closer Look at Instruction Set Architectures

purpose. Some ISAs have many instructions in each category, others have very
few in each category, and many have a mix of each.

The advances in memory technology, resulting in larger memories, have
prompted the need for alternative addressing modes. The various addressing
modes introduced included immediate, direct, indirect, register, indexed, and
stack. Having these different modes provides flexibility and convenience for the
programmer without changing the fundamental operations of the CPU.

Instruction-level pipelining is one example of instruction-level parallelism. It
is a common but complex technique that can speed up the fetch-decode-execute
cycle. With pipelining we can overlap the execution of instructions, thus execut-
ing multiple instructions in parallel. However, we also saw that the amount of par-
allelism can be limited by conflicts in the pipeline. Whereas pipelining performs
different stages of multiple instructions at the same time, superscalar architectures
allow us to perform multiple operations at the same time. Superpipelining, a com-
bination of superscalar and pipelining, in addition to VLIW, was also briefly
introduced. There are many types of parallelism, but at the computer organization
and architecture level, we are really concerned mainly with ILP.

Intel and MIPS have interesting ISAs, as we have seen in this chapter as well
as in Chapter 4. However, the Java Virtual Machine is a unique ISA, because the
ISA is built in software, thus allowing Java programs to run on any machine that
supports the JVM. Chapter 8 covers the JVM in great detail.

FURTHER READING

Instruction sets, addressing, and instruction formats are covered in detail in
almost every computer architecture book. The Patterson and Hennessy book
(1997) provides excellent coverage in these areas. Many books, such as Brey
(2003), Messmer (1993), Abel (2001) and Jones (2001) are devoted to the Intel
x86 architecture. For those interested in the Motorola 68000 series, we suggest
Wray and Greenfield (1994) or Miller (1992).

Sohi (1990) gives a very nice discussion of instruction-level pipelining. Kaeli
and Emma (1991) provide an interesting overview of how branching affects
pipeline performance. For a nice history of pipelining, see Rau and Fisher (1993).
To get a better idea of the limitations and problems with pipelining, see Wall
(1993).

We investigated specific architectures in Chapter 4, but there are many impor-
tant instruction set architectures worth mentioning. Atanasoff’s ABC computer
(Burks and Burks [1988], Von Neumann’s EDVAC and Mauchly and Eckert’s UNI-
VAC (Stern [1981] for information on both) had very simple instruction set archi-
tectures but required programming to be done in machine language. The Intel 8080
(a one-address machine) was the predecessor to the 80x86 family of chips intro-
duced in Chapter 4. See Brey (2003) for a thorough and readable introduction to the
Intel family of processors. Hauck (1968) provides good coverage of the Burroughs
zero-address machine. Struble (1975) has a nice presentation of IBM’s 360 family.
Brunner (1991) gives details about DEC’s VAX systems, which incorporated two-
address architectures with more sophisticated instruction sets. SPARC (1994)

