Fats and Lipids (Ans570)

Outlines

- Fats and Lipids Structure, nomenclature
- Phospholipids, Sterols, and Lipid Derivatives
- Lipid Oxidation
- Roles of fat in food processing and dietary fat
- Lipid and fat analysis: GC method

- Lecture: Mon and Wed
- Discussion: Friday

Fats and Lipids

Definition: water insoluble compounds Most lipids are fatty acids or ester of fatty acid (TG) They are soluble in non-polar solvents such as petroleum ether, benzene, chloroform

Classification

- Neutral lipids (fatty acid esters of glycerol)
- Phospholipids, sphingolipids, and glycolipids (complex lipids)
- Sterols (cholesterol and cholesteryl esters)
- Fatty acids and their eicosanoid derivatives

Types of Lipids

- Ester of glycerol:
 - Acyl glycerol (glycerides): Mono-, di,-tri-
 - Phosphoglycerides (PA, PC, PE, PI, PG)
 - Glycoglycerides (MGDG, DGDG)

Esters of other alcohols

- Diols
- Sugars: sugar ester
- Long-chain alcohols: wax ester (C46-C54)
- Sterols: sterol ester

Amides of

- Long-chain bases (sphingosine etc.): ceramide, cerebroside, ganglioside
- Taurine
- Serine

Lipid Subclasses

Function of major acyl-lipids

- Phospholipids membrane components
- Triacylglycerols storage fats and oils
- Waxes moisture barrier
- Eicosanoids signaling molecules (prostaglandin)
- Sphingomyelins membrane component (impt. in mylein sheaths)
- Glycospingolipids cell recognition (ABO blood group antigen)

Function of major isoprenoid lipids

- Steroids (sterols) membrane component, hormones
- Lipid Vitamins Vitamin A, E, K
- Carotenoids photosynthetic accessory pigments
- Chlorophyll major light harvesting pigment
- Plastoquinone/ubiquinone lipid soluble electron carriers
- Essential oils menthol, limonene, terpenene, myrcene, saninene, phelandrene etc.

Lipid Molecule

Structure of Triglycerides

- Mono- and diglycerols
- Symmetrical and
 unsymmestrical triglycerols

Tristearin (a simple triacylglycerol).

A mixed triacylglycerol.

Fatty Acids

8 μ m

- The fundamental building blocks of lipids
- Consist of long chains of alkyl (CH2) groups
- The major constituent of body fat
- Most fatty acids (>90%) in the body are esterified in triglyceride, phospholipid, sphingolipid, glycolipid and cholesteryl ester
- Small amounts of free (non-esterified) fatty acids can dissolve in cell water, interstitial fluid and the blood compartment

Fatty acids

- Amphipathic molecule
- Polar carboxyl group
- Non-polar hydrocarbon tail
- Diverse structures (>100 different types)
- Differ in chain length
- Differ in degree of unsaturation
- Differ in the position of double bonds
- Can contain oxygenated groups

Classification of Fatty Acids I

According to chain length:
Short chain FA: 2-4 carbon atoms
Medium chain FA: 6 –10 carbon atoms
Long chain FA: 12 – 26 carbon atoms

 Essential fatty acids vs those that can be biosynthesized in the body:
 Linoleic and linolenic are two examples of essential fatty acid

Classification of Fatty Acids 2

- Saturated: the SFA's of a lipid have no double bonds between carbons in chain
- Polyunsaturated: more than one double bond in the chain
- Most common polyunsaturated fats contain the polyunsaturated fatty acids (PUFAs) oleic, linoleic and linolenic acid
- Unsaturated fats have lower melting points
- Stearic (SFA) melts at 70°C, oleic (PUFA) at 26°C

Names of saturated fatty acids

	Trivial name	IUPAC name	melting point (C°)
4:0	butyric	butanoic	-5.3
<mark>6:0</mark>	caproic	hexanoic	-3.2
<mark>8:0</mark>	caprylic	heptanoic	16.5
<mark>1</mark> 0:0	capric	decanoic	32
<mark>1</mark> 2:0	lauric	dodeconoic	44
<mark>1</mark> 4:0	myristic	tetradeconoic	52
<mark>1</mark> 6:0	palmitic	hexadeconoic	63
<mark>1</mark> 8:0	stearic	octadeconoaic	70
<mark>2</mark> 0:0	arachidic	eicosanoaic	75
<mark>2</mark> 2:0	behenic	docosanoaic	81
<mark>2</mark> 4:0	lignoceric	tetracosanaic	84

*IUPAC: International Union of Pure and Applied Chemistry

Common unsaturated fatty acids

			meint
	common name	IUPAC name	point
			(C°)
16:0	palmitate	hexadeconoate	63
16:1 ∆ ⁹	palmitoleate	cis-∆ ⁹ -hexadeconoate	-0.5
18:0	stearate	octadeconoate	70
18:1 ∆ ⁹	oleate	cis- Δ^9 - octadeconoate	13
18:2 ∆ ^{9,12}	linoleate	cis- $\Delta^{9,12}$ - octadeconoate	-9
18:3 Δ ^{9,12,15}	linolenate	cis- $\Delta^{9,12,15}$ - octadeconoate	-17
20:0	arachidate	eicosanoate	75
20:4 ∆ ^{5,8,11,14}	arachindonate	cis- $\Delta^{5,8,11,14}$ -eicosatetraenoate	-49

molting

Unsaturated fatty acids

Trienoic acids (3 double bonds)

- 18:3;6,9,12 w6 : g-linolenic acid (all cis-6,9,12octadecatrienoic acid)
- 18:3; 9,12,15 w3 : a-linolenic acid (all-cis-9,12,15-octadecatrienoic acid)
- Tetraenoic acids (4 double bonds)
 - 20:4; 5,8,11,14 w6: arachidonic acid (all-cis-5,8,11,14-eicosatetraenoic acid)

Unsaturated fatty acids

Pentaenoic acid (5 double bonds)

 20:5; 5,8,11,14,17 ω3: timnodonic acid or EPA (all-cis-5,8,11,14,17-eicosapentaenoic acid)

Hexaenoic acid (6 double bonds)

 22:6; 4,7,10,13,16,19 ω3: cervonic acid or DHA (all-cis-4,7,10,13,16,19-docosahexaenoic acid)

Fatty acid nomenclature

Short hand nomenclature describes total number of carbons, number of double bonds and the position of the double bond(s) in the hydrocarbon tail.

Fatty acid nomenclature

Most natural fatty acids have an even number of backbone carbons (from synthesis in 2-carbon units)

Nomenclature: Carbon chain length: # of double bonds (position)
 20:2(Δ9, 12) is a FA with 20 carbons and 2

double bonds, between C9-10, C12-13

With 2 or more unsaturated double bonds:
 FAs are rarely conjugated,

Double bonds are usually at 3carbon intervals, starting at C9, e.g. α-linolenic acid is 18:3 (Δ9, 12, 15)

 Double bonds are (almost) always in the cis configuration

18:0 (Stearic Acid) 18:1(Δ9) (Oleic Acid)

Stereospecific numbering

- Carbon 2 of triglycerides is frequently asymmetric since C-I and C-3 may be substituted with different acyl groups
- By convention we normally draw the hydroxyl group at C-2 to the left and use the designation of sn2 for that particular substituent
- C-I and C-3 of the glycerol molecule become snI and sn3 respectively

Less common fatty acids

	common name	Isomeric form	System name
<mark>18</mark> :1	eladic	trans	9t-octadecenoic
<mark>18</mark> :1	petroselinic	cis	6-octadecenoic
<mark>18</mark> :1	<i>cis</i> -vaccinic	cis	11-octadecenoic
<mark>18</mark> :1	<i>trans</i> -vaccenic	trans	11t-octadecenoic
<mark>20</mark> :1	godoleic	cis	9-eicosenoic
<mark>20</mark> :1	gondoic	cis	11-eicosenoic
<mark>22</mark> :1	-	cis	5-docosenoic
<mark>22</mark> :1	cetoleic	cis	11-docosenoic
2 <mark>2</mark> :1	erucic	cis	13-docosenoic
<mark>24</mark> :1	nervonic	cis	15-tetracosenoic

Omega-3 fatty acids

Canola oil contains a lot of omega-3 fatty acid; about 10% of the fatty acids in canola oil are omega-3.

"Omega-3" means the first double bond is on the 3rd carbon from the end of the chain.

alpha linolenic -01 a -0

Alpha linolenic acid is very abundant in canola oil.

The Omega (ω) Designation

- The health benefits of these essential fatty acids (EFAs) is in their ability to act as a competitive inhibitor in the production of arachidonic acid (20:4(Δ5,8,11,14), a precursor of the eicosanoids
- These eicosanoids are signaling molecules promote inflammation of the tissues in which they are located.
- The diet of early man was rich in these omega-3 fatty acids
- This is no longer the case, resulting in an increase in a number of diseases called the diseases of civilization

Essential fatty acids

The human body can make most of the fatty acid types it needs. But you must have some omega-3 and omega-6 fatty acids in your diet.

The omega-3 and omega-6 FAs are precursors for a number of important molecules. For example, prostaglandins are hormones that are synthesized from omega-6 fatty acids.

Prostaglandin E1

Pathways of n-3 and n-6 Fatty Acid Synthesis

n-6 acids

n-3 acids

18:2 (9,12)a 18:3 (9,12,15)e 6-desaturase 18:3 (6,9,12)b 18:4 (6,9,12,15)f elongase 20:3 (8,11,14)c 20:4 (8, 11, 14, 17) 5-desaturase 20:4 (5,8,11,14)d 20:5 (5,8,11,14,17)g elongase 22:4 (7,10,13,16) 22:5 (7,10,13,16)h 4-desaturase 22:5 (4,7,13,16) 22:6 (4,7,10,13,16,19)i

a: linoleic, b: γ -linoleic, c: dihomom- γ -linoleic, d: arachidonic, e: α -linoleic, f: stearidonic, g: EPA, h: DPA, i: DHA

Cis & Trans-FA

cis-fatty acid

A *cis*-fatty acid has its hydrogens on the same side of the double bond; *cis* molecules fold back into a U-like formation. Most naturally occuring unsaturated fatty acids in foods are *cis*.

trans-fatty acid

A *trans*-fatty acid has its hydrogens on the opposite sides of the double bond; *trans* molecules are more linear. The *trans* form typically occurs in partially hydrogenated foods when hydrogen atoms shift around some double bonds and change the configuration from *cis* to *trans*.

Conjugated Fatty Acids

Two main CLA isomers suggested to have beneficial biological effects, which are *trans*-10, *cis*-12 CLA isomer and *cis*-9, *trans*-11 CLA isomer.

Beneficial Effects of CLA

- Reduce fat accumulation. trans-10, cis-12 CLA isomer > cis-9, trans-11 CLA isomer
- Prevents or cures cancer, atherosclerosis, and type II diabetes
- Enhances immune response
- Reduces fat in pigs and human
- Increases fat hardness in meat
- Increases storage stability of meat

Mechanisms of Action

- Trans-10, cis-12 CLA isomer: Body composition changes
 - Reduces lipoprotein lipase activity and inhibits stearyl-CoA desaturase activity
- Cis-9, trans-11 and trans-10, cis-12 CLA isomers: anti-cancer activity and anti-atherogenic effect
 - Modulate the activities of eicosanoid as well as cytokines
 - Activate peroxisome proliferator-activated receptorgamma (PPAR-gamma) and PPAR-alpha

Sources of CLA

Sources of CLA

- Modified Oil Products: chemical modification
- Animal Products: Meat (3–8mg total CLA/g fat), Milk
 (4.3 mg/g butter), Egg
- Processed Food Products

Daily CLA Consumption for Health Effects
 1.5 to 3.0 g/adult is required for Health Effects