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    Preface
This edition of Elementary Linear Algebra gives an introductory treatment of linear algebra that is suitable for
a first undergraduate course. Its aim is to present the fundamentals of linear algebra in the clearest possible
way—sound pedagogy is the main consideration. Although calculus is not a prerequisite, there is some
optional material that is clearly marked for students with a calculus background. If desired, that material can
be omitted without loss of continuity.

Technology is not required to use this text, but for instructors who would like to use MATLAB, Mathematica,
Maple, or calculators with linear algebra capabilities, we have posted some supporting material that can be
accessed at either of the following Web sites:
www.howardanton.com
www.wiley.com/college/anton

Summary of Changes in this Edition
This edition is a major revision of its predecessor. In addition to including some new material, some of the old
material has been streamlined to ensure that the major topics can all be covered in a standard course. These
are the most significant changes:
•  Vectors in 2-space, 3-space, and n-space  Chapters 3 and 4 of the previous edition have been combined

into a single chapter. This has enabled us to eliminate some duplicate exposition and to juxtapose concepts
in n-space with those in 2-space and 3-space, thereby conveying more clearly how n-space ideas generalize
those already familiar to the student.

•  New Pedagogical Elements  Each section now ends with a Concept Review and a Skills mastery that
provide the student a convenient reference to the main ideas in that section.

•  New Exercises  Many new exercises have been added, including a set of True/False exercises at the end of
most sections.

•  Earlier Coverage of Eigenvalues and Eigenvectors  The chapter on eigenvalues and eigenvectors, which
was Chapter 7 in the previous edition, is Chapter 5 in this edition.

•  Complex Vector Spaces  The chapter entitled Complex Vector Spaces in the previous edition has been
completely revised. The most important ideas are now covered in Section 5.3 and Section 7.5 in the context
of matrix diagonalization. A brief review of complex numbers is included in the Appendix.

•  Quadratic Forms  This material has been extensively rewritten to focus more precisely on the most
important ideas.

•  New Chapter on Numerical Methods  In the previous edition an assortment of topics appeared in the last
chapter. That chapter has been replaced by a new chapter that focuses exclusively on numerical methods of
linear algebra. We achieved this by moving those topics not concerned with numerical methods elsewhere
in the text.

•  Singular-Value Decomposition  In recognition of its growing importance, a new section on Singular-Value
Decomposition has been added to the chapter on numerical methods.



•  Internet Search and the Power Method  A new section on the Power Method and its application to
Internet search engines has been added to the chapter on numerical methods.

•  Applications  There is an expanded version of this text by Howard Anton and Chris Rorres entitled
Elementary Linear Algebra: Applications Version, 10th (ISBN 9780470432051), whose purpose is to
supplement this version with an extensive body of applications. However, to accommodate instructors who
asked us to include some applications in this version of the text, we have done so. These are generally less
detailed than those appearing in the Anton/Rorres text and can be omitted without loss of continuity.

Hallmark Features
•  Relationships Among Concepts  One of our main pedagogical goals is to convey to the student that linear

algebra is a cohesive subject and not simply a collection of isolated definitions and techniques. One way in
which we do this is by using a crescendo of Equivalent Statements theorems that continually revisit
relationships among systems of equations, matrices, determinants, vectors, linear transformations, and
eigenvalues. To get a general sense of how we use this technique see Theorems 1.5.3, 1.6.4, 2.3.8, 4.8.10,
4.10.4 and then Theorem 5.1.6, for example.

•  Smooth Transition to Abstraction  Because the transition from Rn to general vector spaces is difficult for
many students, considerable effort is devoted to explaining the purpose of abstraction and helping the
student to “visualize” abstract ideas by drawing analogies to familiar geometric ideas.

•  Mathematical Precision  When reasonable, we try to be mathematically precise. In keeping with the level
of student audience, proofs are presented in a patient style that is tailored for beginners. There is a brief
section in the Appendix on how to read proof statements, and there are various exercises in which students
are guided through the steps of a proof and asked for justification.

•  Suitability for a Diverse Audience  This text is designed to serve the needs of students in engineering,
computer science, biology, physics, business, and economics as well as those majoring in mathematics.

•  Historical Notes  To give the students a sense of mathematical history and to convey that real people
created the mathematical theorems and equations they are studying, we have included numerous Historical
Notes that put the topic being studied in historical perspective.

About the Exercises
•  Graded Exercise Sets  Each exercise set begins with routine drill problems and progresses to problems

with more substance.
•  True/False Exercises  Most exercise sets end with a set of True/False exercises that are designed to check

conceptual understanding and logical reasoning. To avoid pure guessing, the students are required to justify
their responses in some way.

•  Supplementary Exercise Sets  Most chapters end with a set of supplementary exercises that tend to be
more challenging and force the student to draw on ideas from the entire chapter rather than a specific
section.



Supplementary Materials for Students
•  Student Solutions Manual  This supplement provides detailed solutions to most theoretical exercises and

to at least one nonroutine exercise of every type (ISBN 9780470458228).
•  Technology Exercises and Data Files  The technology exercises that appeared in the previous edition have

been moved to the Web site that accompanies this text. Those exercises are designed to be solved using
MATLAB, Mathematica, or Maple and are accompanied by data files in all three formats. The exercises and
data can be downloaded from either of the following Web sites.

www.howardanton.com
www.wiley.com/college/anton

Supplementary Materials for Instructors
•  Instructor's Solutions Manual  This supplement provides worked-out solutions to most exercises in the

text (ISBN 9780470458235).
•  WileyPLUS™  This is Wiley's proprietary online teaching and learning environment that integrates a

digital version of this textbook with instructor and student resources to fit a variety of teaching and learning
styles. WileyPLUS will help your students master concepts in a rich and structured environment that is
available to them 24/7. It will also help you to personalize and manage your course more effectively with
student assessments, assignments, grade tracking, and other useful tools.

•  Your students will receive timely access to resources that address their individual needs and will
receive immediate feedback and remediation resources when needed.

•  There are also self-assessment tools that are linked to the relevant portions of the text that will enable
your students to take control of their own learning and practice.

•  WileyPLUS will help you to identify those students who are falling behind and to intervene in a
timely manner without waiting for scheduled office hours.

More information about WileyPLUS can be obtained from your Wiley representative.

A Guide for the Instructor
Although linear algebra courses vary widely in content and philosophy, most courses fall into two categories
—those with about 35–40 lectures and those with about 25–30 lectures. Accordingly, we have created long
and short templates as possible starting points for constructing a course outline. Of course, these are just
guides, and you will certainly want to customize them to fit your local interests and requirements. Neither of
these sample templates includes applications. Those can be added, if desired, as time permits.

 Long Template Short Template

Chapter 1: Systems of Linear Equations and Matrices 7 lectures 6 lectures

Chapter 2: Determinants 3 lectures 2 lectures



 Long Template Short Template

Chapter 3: Euclidean Vector Spaces 4 lectures 3 lectures

Chapter 4: General Vector Spaces 10 lectures 10 lectures

Chapter 5: Eigenvalues and Eigenvectors 3 lectures 3 lectures

Chapter 6: Inner Product Spaces 3 lectures 1 lecture

Chapter 7: Diagonalization and Quadratic Forms 4 lectures 3 lectures

Chapter 8: Linear Transformations 3 lectures 2 lectures

Total: 37 lectures 30 lectures

Acknowledgements
I would like to express my appreciation to the following people whose helpful guidance has greatly improved
the text.

Reviewers and Contributors
Don Allen, Texas A&M University
John Alongi, Northwestern University
John Beachy, Northern Illinois University
Przemslaw Bogacki, Old Dominion University
Robert Buchanan, Millersville University of Pennsylvania
Ralph Byers, University of Kansas
Evangelos A. Coutsias, University of New Mexico
Joshua Du, Kennesaw State University
Fatemeh Emdad, Michigan Technological University
Vincent Ervin, Clemson University
Anda Gadidov, Kennesaw State University
Guillermo Goldsztein, Georgia Institute of Technology
Tracy Hamilton, California State University, Sacramento
Amanda Hattway, Wentworth Institute of Technology
Heather Hulett, University of Wisconsin—La Crosse
David Hyeon, Northern Illinois University
Matt Insall, Missouri University of Science and Technology
Mic Jackson, Earlham College
Anton Kaul, California Polytechnic Institute, San Luis Obispo



Harihar Khanal, Embry-Riddle University
Hendrik Kuiper, Arizona State University
Kouok Law, Georgia Perimeter College
James McKinney, California State University, Pomona
Eric Schmutz, Drexel University
Qin Sheng, Baylor University
Adam Sikora, State University of New York at Buffalo
Allan Silberger, Cleveland State University
Dana Williams, Dartmouth College

Mathematical Advisors
Special thanks are due to a number of talented teachers and mathematicians who provided pedagogical
guidance, provided help with answers and exercises, or provided detailed checking or proofreading:
John Alongi, Northwestern University
Scott Annin, California State University, Fullerton
Anton Kaul, California Polytechnic State University
Sarah Streett
Cindy Trimble, C Trimble and Associates
Brad Davis, C Trimble and Associates

The Wiley Support Team
David Dietz, Senior Acquisitions Editor
Jeff Benson, Assistant Editor
Pamela Lashbrook, Senior Editorial Assistant
Janet Foxman, Production Editor
Maddy Lesure, Senior Designer
Laurie Rosatone, Vice President and Publisher
Sarah Davis, Senior Marketing Manager
Diana Smith, Marketing Assistant
Melissa Edwards, Media Editor
Lisa Sabatini, Media Project Manager
Sheena Goldstein, Photo Editor
Carol Sawyer, Production Manager
Lilian Brady, Copyeditor



Special Contributions
The talents and dedication of many individuals are required to produce a book such as this, and I am fortunate
to have benefited from the expertise of the following people:
David Dietz — my editor, for his attention to detail, his sound judgment, and his unwavering faith in me.
Jeff Benson — my assistant editor, who did an unbelievable job in organizing and coordinating the many
threads required to make this edition a reality.
Carol Sawyer — of The Perfect Proof, who coordinated the myriad of details in the production process. It
will be a pleasure to finally delete from my computer the hundreds of emails we exchanged in the course of
working together on this book.
Scott Annin — California State University at Fullerton, who critiqued the previous edition and provided
valuable ideas on how to improve the text. I feel fortunate to have had the benefit of Prof. Annin's teaching
expertise and insights.
Dan Kirschenbaum — of The Art of Arlene and Dan Kirschenbaum, whose artistic and technical expertise
resolved some difficult and critical illustration issues.
Bill Tuohy — who read parts of the manuscript and whose critical eye for detail had an important influence
on the evolution of the text.
Pat Anton — who proofread manuscript, when needed, and shouldered the burden of household chores to
free up time for me to work on this edition.
Maddy Lesure — our text and cover designer whose unerring sense of elegant design is apparent in the
pages of this book.
Rena Lam — of Techsetters, Inc., who did an absolutely amazing job of wading through a nightmare of
author edits, scribbles, and last-minute changes to produce a beautiful book.
John Rogosich — of Techsetters, Inc., who skillfully programmed the design elements of the book and
resolved numerous thorny typesetting issues.
Lilian Brady — my copyeditor of many years, whose eye for typography and whose knowledge of language
never ceases to amaze me.
The Wiley Team — There are many other people at Wiley who worked behind the scenes and to whom I owe
a debt of gratitude: Laurie Rosatone, Ann Berlin, Dorothy Sinclair, Janet Foxman, Sarah Davis, Harry Nolan,
Sheena Goldstein, Melissa Edwards, and Norm Christiansen. Thanks to you all.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



CHAPTER

   1 Systems of Linear
Equations and Matrices

CHAPTER CONTENTS

1.1.  Introduction to Systems of Linear Equations
1.2.  Gaussian Elimination
1.3.  Matrices and Matrix Operations
1.4.  Inverses; Algebraic Properties of Matrices
1.5.  Elementary Matrices and a Method for Finding 

1.6.  More on Linear Systems and Invertible Matrices
1.7.  Diagonal, Triangular, and Symmetric Matrices
1.8.  Applications of Linear Systems

•  Network Analysis (Traffic Flow)
•  Electrical Circuits
•  Balancing Chemical Equations
•  Polynomial Interpolation

1.9.  Leontief Input-Output Models

INTRODUCTION

Information in science, business, and mathematics is often organized into rows and
columns to form rectangular arrays called “matrices” (plural of “matrix”). Matrices often
appear as tables of numerical data that arise from physical observations, but they occur in
various mathematical contexts as well. For example, we will see in this chapter that all of
the information required to solve a system of equations such as

is embodied in the matrix



and that the solution of the system can be obtained by performing appropriate operations
on this matrix. This is particularly important in developing computer programs for solving
systems of equations because computers are well suited for manipulating arrays of
numerical information. However, matrices are not simply a notational tool for solving
systems of equations; they can be viewed as mathematical objects in their own right, and
there is a rich and important theory associated with them that has a multitude of practical
applications. It is the study of matrices and related topics that forms the mathematical field
that we call “linear algebra.” In this chapter we will begin our study of matrices.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.1  Introduction to Systems of Linear Equations
Systems of linear equations and their solutions constitute one of the major topics that we will study in this
course. In this first section we will introduce some basic terminology and discuss a method for solving such
systems.

Linear Equations

Recall that in two dimensions a line in a rectangular xy-coordinate system can be represented by an equation of
the form

and in three dimensions a plane in a rectangular xyz-coordinate system can be represented by an equation of the
form

These are examples of “linear equations,” the first being a linear equation in the variables x and y and the second
a linear equation in the variables x, y, and z. More generally, we define a linear equation in the n variables

 to be one that can be expressed in the form

  (1)

where  and b are constants, and the a's are not all zero. In the special cases where  or ,
we will often use variables without subscripts and write linear equations as

  (2)

  (3)

In the special case where , Equation 1 has the form

  (4)

which is called a homogeneous linear equation in the variables .

 EXAMPLE 1    Linear Equations

Observe that a linear equation does not involve any products or roots of variables. All variables
occur only to the first power and do not appear, for example, as arguments of trigonometric,
logarithmic, or exponential functions. The following are linear equations:

The following are not linear equations:



A finite set of linear equations is called a system of linear equations or, more briefly, a linear system. The
variables are called unknowns. For example, system 5 that follows has unknowns x and y, and system 6 has
unknowns , , and .

  (5)

  (6)

The double subscripting on the coefficients 
of the unknowns gives their location in the
system—the first subscript indicates the equation
in which the coefficient occurs, and the second
indicates which unknown it multplies. Thus, 
is in the first equation and multiplies .

A general linear system of m equations in the n unknowns  can be written as

  (7)

A solution of a linear system in n unknowns  is a sequence of n numbers  for which
the substitution

makes each equation a true statement. For example, the system in 5 has the solution

and the system in 6 has the solution

These solutions can be written more succinctly as

in which the names of the variables are omitted. This notation allows us to interpret these solutions geometrically
as points in two-dimensional and three-dimensional space. More generally, a solution

of a linear system in n unknowns can be written as

which is called an ordered n-tuple. With this notation it is understood that all variables appear in the same order



in each equation. If , then the n-tuple is called an ordered pair, and if , then it is called an ordered
triple.

Linear Systems with Two and Three Unknowns

Linear systems in two unknowns arise in connection with intersections of lines. For example, consider the linear
system

in which the graphs of the equations are lines in the xy-plane. Each solution (x, y) of this system corresponds to a
point of intersection of the lines, so there are three possibilities (Figure 1.1.1):
1.  The lines may be parallel and distinct, in which case there is no intersection and consequently no solution.
2.  The lines may intersect at only one point, in which case the system has exactly one solution.
3.  The lines may coincide, in which case there are infinitely many points of intersection (the points on the

common line) and consequently infinitely many solutions.

Figure 1.1.1   

In general, we say that a linear system is consistent if it has at least one solution and inconsistent if it has no
solutions. Thus, a consistent linear system of two equations in two unknowns has either one solution or infinitely
many solutions—there are no other possibilities. The same is true for a linear system of three equations in three
unknowns

in which the graphs of the equations are planes. The solutions of the system, if any, correspond to points where
all three planes intersect, so again we see that there are only three possibilities—no solutions, one solution, or
infinitely many solutions (Figure 1.1.2).



Figure 1.1.2   

We will prove later that our observations about the number of solutions of linear systems of two equations in two
unknowns and linear systems of three equations in three unknowns actually hold for all linear systems. That is:

Every system of linear equations has zero, one, or infinitely many solutions. There are no other
possibilities.

 EXAMPLE 2    A Linear System with One Solution

Solve the linear system

Solution   We can eliminate x from the second equation by adding −2 times the first equation to
the second. This yields the simplified system

From the second equation we obtain , and on substituting this value in the first equation we

obtain . Thus, the system has the unique solution



Geometrically, this means that the lines represented by the equations in the system intersect at the
single point . We leave it for you to check this by graphing the lines.

 EXAMPLE 3    A Linear System with No Solutions

Solve the linear system

Solution   We can eliminate x from the second equation by adding −3 times the first equation to
the second equation. This yields the simplified system

The second equation is contradictory, so the given system has no solution. Geometrically, this
means that the lines corresponding to the equations in the original system are parallel and distinct.
We leave it for you to check this by graphing the lines or by showing that they have the same slope
but different y-intercepts.

 EXAMPLE 4    A Linear System with Infinitely Many Solutions

Solve the linear system

In Example 4 we could have also obtained
parametric equations for the solutions by
solving 8 for y in terms of x, and letting

 be the parameter. The resulting
parametric equations would look different
but would define the same solution set.

Solution   We can eliminate x from the second equation by adding −4 times the first equation to
the second. This yields the simplified system

The second equation does not impose any restrictions on x and y and hence can be omitted. Thus,
the solutions of the system are those values of x and y that satisfy the single equation



  (8)

Geometrically, this means the lines corresponding to the two equations in the original system
coincide. One way to describe the solution set is to solve this equation for x in terms of y to obtain

 and then assign an arbitrary value t (called a parameter) to y. This allows us to

express the solution by the pair of equations (called parametric equations)

We can obtain specific numerical solutions from these equations by substituting numerical values
for the parameter. For example,  yields the solution  yields the solution ,

and  yields the solution . You can confirm that these are solutions by

substituting the coordinates into the given equations.

 EXAMPLE 5    A Linear System with Infinitely Many Solutions

Solve the linear system

Solution   This system can be solved by inspection, since the second and third equations are
multiples of the first. Geometrically, this means that the three planes coincide and that those values
of x, y, and z that satisfy the equation

  (9)

automatically satisfy all three equations. Thus, it suffices to find the solutions of 9. We can do this
by first solving 9 for x in terms of y and z, then assigning arbitrary values r and s (parameters) to
these two variables, and then expressing the solution by the three parametric equations

Specific solutions can be obtained by choosing numerical values for the parameters r and s. For
example, taking  and  yields the solution (6, 1,0).

Augmented Matrices and Elementary Row Operations

As the number of equations and unknowns in a linear system increases, so does the complexity of the algebra
involved in finding solutions. The required computations can be made more manageable by simplifying notation
and standardizing procedures. For example, by mentally keeping track of the location of the +'s, the x's, and the
='s in the linear system



we can abbreviate the system by writing only the rectangular array of numbers

As noted in the introduction to this chapter, the
term “matrix” is used in mathematics to denote a
rectangular array of numbers. In a later section
we will study matrices in detail, but for now we
will only be concerned with augmented matrices
for linear systems.

This is called the augmented matrix for the system. For example, the augmented matrix for the system of
equations

The basic method for solving a linear system is to perform appropriate algebraic operations on the system that do
not alter the solution set and that produce a succession of increasingly simpler systems, until a point is reached
where it can be ascertained whether the system is consistent, and if so, what its solutions are. Typically, the
algebraic operations are as follows:
1.  Multiply an equation through by a nonzero constant.
2.  Interchange two equations.
3.  Add a constant times one equation to another.
Since the rows (horizontal lines) of an augmented matrix correspond to the equations in the associated system,
these three operations correspond to the following operations on the rows of the augmented matrix:
1.  Multiply a row through by a nonzero constant.
2.  Interchange two rows.
3.  Add a constant times one row to another.
These are called elementary row operations on a matrix.

In the following example we will illustrate how to use elementary row operations and an augmented matrix to
solve a linear system in three unknowns. Since a systematic procedure for solving linear systems will be
developed in the next section, do not worry about how the steps in the example were chosen. Your objective here
should be simply to understand the computations.



 EXAMPLE 6    Using Elementary Row Operations

In the left column we solve a system of linear equations by operating on the equations in the
system, and in the right column we solve the same system by operating on the rows of the
augmented matrix.

Add −2 times the first equation to the second
to obtain

Add −2 times the first row to the second
to obtain

Add −3 times the first equation to the third to
obtain

Add −3 times the first row to the third to
obtain

Multiply the second equation by  to obtain Multiply the second row by  to obtain

Add −3 times the second equation to the third
to obtain

Add −3 times the second row to the third
to obtain

Multiply the third equation by −2 to obtain Multiply the third row by −2 to obtain

Add −1 times the second equation to the first
to obtain

Add −1 times the second row to the first
to obtain



Add  times the third equation to the first

and  times the third equation to the second to

obtain

Add  times the third row to the first

and  times the third row to the second

to obtain

The solution  is now evident.

Maxime Bôcher (1867–1918)

Historical Note    The first known use of augmented matrices appeared between 200 B.C.
and 100 B.C. in a Chinese manuscript entitled Nine Chapters of Mathematical Art. The
coefficients were arranged in columns rather than in rows, as today, but remarkably the
system was solved by performing a succession of operations on the columns. The actual
use of the term augmented matrix appears to have been introduced by the American
mathematician Maxime Bôcher in his book Introduction to Higher Algebra, published in
1907. In addition to being an outstanding research mathematician and an expert in Latin,
chemistry, philosophy, zoology, geography, meteorology, art, and music, Bôcher was an
outstanding expositor of mathematics whose elementary textbooks were greatly
appreciated by students and are still in demand today.
[Image: Courtesy of the American Mathematical Society]



Concept Review
•  Linear equation
•  Homogeneous linear equation
•  System of linear equations
•  Solution of a linear system
•  Ordered n-tuple
•  Consistent linear system
•  Inconsistent linear system
•  Parameter
•  Parametric equations
•  Augmented matrix
•  Elemenetary row operations

Skills
•  Determine whether a given equation is linear.
•  Determine whether a given n-tuple is a solution of a linear system.
•  Find the augmented matrix of a linear system.
•  Find the linear system corresponding to a given augmented matrix.
•  Perform elementary row operations on a linear system and on its corresponding augmented matrix.
•  Determine whether a linear system is consistent or inconsistent.
•  Find the set of solutions to a consistent linear system.

Exercise Set 1.1
1. In each part, determine whether the equation is linear in , , and .

(a)  

(b)  
(c)  
(d)  

(e)  

(f)  

Answer:

(a), (c), and (f) are linear equations; (b), (d) and (e) are not linear equations

2. In each part, determine whether the equations form a linear system.



(a)  

(b)  

(c)  

(d)  

3. In each part, determine whether the equations form a linear system.
(a)  

(b)  

(c)  

(d)  

Answer:

(a) and (d) are linear systems; (b) and (c) are not linear systems

4. For each system in Exercise 2 that is linear, determine whether it is consistent.

5. For each system in Exercise 3 that is linear, determine whether it is consistent.

Answer:

(a) and (d) are both consistent

6. Write a system of linear equations consisting of three equations in three unknowns with
(a)  no solutions.
(b)  exactly one solution.
(c)  infinitely many solutions.

7. In each part, determine whether the given vector is a solution of the linear system

(a)  (3, 1, 1)
(b)  (3, −1, 1)



(c)  (13, 5, 2)
(d)  

(e)  (17, 7, 5)

Answer:

(a), (d), and (e) are solutions; (b) and (c) are not solutions

8. In each part, determine whether the given vector is a solution of the linear system

(a)  

(b)  

(c)  (5, 8, 1)
(d)  

(e)  

9. In each part, find the solution set of the linear equation by using parameters as necessary.
(a)  

(b)  

Answer:

(a)  

(b)  

10. In each part, find the solution set of the linear equation by using parameters as necessary.
(a)  
(b)  

11. In each part, find a system of linear equations corresponding to the given augmented matrix
(a)  



(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

12. In each part, find a system of linear equations corresponding to the given augmented matrix.
(a)  

(b)  

(c)  

(d)  

13. In each part, find the augmented matrix for the given system of linear equations.



(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

14. In each part, find the augmented matrix for the given system of linear equations.
(a)  

(b)  

(c)  

(d)  

15. The curve  shown in the accompanying figure passes through the points
. Show that the coefficients a, b, and c are a solution of the system of

linear equations whose augmented matrix is



Figure Ex-15   

16. Explain why each of the three elementary row operations does not affect the solution set of a linear system.

17. Show that if the linear equations

have the same solution set, then the two equations are identical (i.e.,  and ).

True-False Exercises

In parts (a)–(h) determine whether the statement is true or false, and justify your answer.

(a) A linear system whose equations are all homogeneous must be consistent.

Answer:

True

(b) Multiplying a linear equation through by zero is an acceptable elementary row operation.

Answer:

False

(c) The linear system

cannot have a unique solution, regardless of the value of k.

Answer:

True

(d) A single linear equation with two or more unknowns must always have infinitely many solutions.

Answer:

True

(e) If the number of equations in a linear system exceeds the number of unknowns, then the system must be
inconsistent.

Answer:

False



(f) If each equation in a consistent linear system is multiplied through by a constant c, then all solutions to the
new system can be obtained by multiplying solutions from the original system by c.

Answer:

False

(g) Elementary row operations permit one equation in a linear system to be subtracted from another.

Answer:

True

(h) The linear system with corresponding augmented matrix

is consistent.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.2  Gaussian Elimination
In this section we will develop a systematic procedure for solving systems of linear equations. The procedure is based on
the idea of performing certain operations on the rows of the augmented matrix for the system that simplifies it to a form
from which the solution of the system can be ascertained by inspection.

Considerations in Solving Linear Systems

When considering methods for solving systems of linear equations, it is important to distinguish between large systems
that must be solved by computer and small systems that can be solved by hand. For example, there are many applications
that lead to linear systems in thousands or even millions of unknowns. Large systems require special techniques to deal
with issues of memory size, roundoff errors, solution time, and so forth. Such techniques are studied in the field of
numerical analysis and will only be touched on in this text. However, almost all of the methods that are used for large
systems are based on the ideas that we will develop in this section.

Echelon Forms

In Example 6 of the last section, we solved a linear system in the unknowns x, y, and z by reducing the augmented matrix
to the form

from which the solution , ,  became evident. This is an example of a matrix that is in reduced row
echelon form. To be of this form, a matrix must have the following properties:
1.  If a row does not consist entirely of zeros, then the first nonzero number in the row is a 1. We call this a leading 1.
2.  If there are any rows that consist entirely of zeros, then they are grouped together at the bottom of the matrix.
3.  In any two successive rows that do not consist entirely of zeros, the leading 1 in the lower row occurs farther to the

right than the leading 1 in the higher row.
4.  Each column that contains a leading 1 has zeros everywhere else in that column.
A matrix that has the first three properties is said to be in row echelon form. (Thus, a matrix in reduced row echelon
form is of necessity in row echelon form, but not conversely.)

 EXAMPLE 1    Row Echelon and Reduced Row Echelon Form

The following matrices are in reduced row echelon form.

The following matrices are in row echelon form but not reduced row echelon form.



 EXAMPLE 2    More on Row Echelon and Reduced Row Echelon Form

As Example 1 illustrates, a matrix in row echelon form has zeros below each leading 1, whereas a matrix in
reduced row echelon form has zeros below and above each leading 1. Thus, with any real numbers substituted for
the *'s, all matrices of the following types are in row echelon form:

All matrices of the following types are in reduced row echelon form:

If, by a sequence of elementary row operations, the augmented matrix for a system of linear equations is put in reduced
row echelon form, then the solution set can be obtained either by inspection or by converting certain linear equations to
parametric form. Here are some examples.

In Example 3 we could, if desired, express the
solution more succinctly as the 4-tuple (3, −1, 0, 5).

 EXAMPLE 3    Unique Solution

Suppose that the augmented matrix for a linear system in the unknowns x1, x2, x3, and x4 has been reduced
by elementary row operations to

This matrix is in reduced row echelon form and corresponds to the equations

Thus, the system has a unique solution, namely, , , , .



 EXAMPLE 4    Linear Systems in Three Unknowns

In each part, suppose that the augmented matrix for a linear system in the unknowns x, y, and z has been
reduced by elementary row operations to the given reduced row echelon form. Solve the system.

Solution   
(a)  The equation that corresponds to the last row of the augmented matrix is

Since this equation is not satisfied by any values of x, y, and z, the system is inconsistent.
(b)  The equation that corresponds to the last row of the augmented matrix is

This equation can be omitted since it imposes no restrictions on x, y, and z; hence, the linear system
corresponding to the augmented matrix is

Since x and y correspond to the leading 1's in the augmented matrix, we call these the leading
variables. The remaining variables (in this case z) are called free variables. Solving for the leading
variables in terms of the free variables gives

From these equations we see that the free variable z can be treated as a parameter and assigned an
arbitrary value, t, which then determines values for x and y. Thus, the solution set can be represented
by the parametric equations

By substituting various values for t in these equations we can obtain various solutions of the system.
For example, setting  yields the solution

and setting  yields the solution

(c)  As explained in part (b), we can omit the equations corresponding to the zero rows, in which case the
linear system associated with the augmented matrix consists of the single equation

  (1)

from which we see that the solution set is a plane in three-dimensional space. Although 1 is a valid
form of the solution set, there are many applications in which it is preferable to express the solution
set in parametric form. We can convert 1 to parametric form by solving for the leading variable x in
terms of the free variables y and z to obtain

From this equation we see that the free variables can be assigned arbitrary values, say  and ,
which then determine the value of x. Thus, the solution set can be expressed parametrically as



  (2)

We will usually denote parameters in a
general solution by the letters r, s, t,…, but
any letters that do not conflict with the names
of the unknowns can be used. For systems
with more than three unknowns, subscripted
letters such as t1, t2, t3,… are convenient.

Formulas, such as 2, that express the solution set of a linear system parametrically have some associated terminology.

DEFINITION 1

If a linear system has infinitely many solutions, then a set of parametric equations from which all solutions can
be obtained by assigning numerial values to the parameters is called a general solution of the system.

Elimination Methods

We have just seen how easy it is to solve a system of linear equations once its augmented matrix is in reduced row
echelon form. Now we will give a step-by-step elimination procedure that can be used to reduce any matrix to reduced
row echelon form. As we state each step in the procedure, we illustrate the idea by reducing the following matrix to
reduced row echelon form.

Step 1. Locate the leftmost column that does not consist entirely of zeros.

Step 2. Interchange the top row with another row, if necessary, to bring a nonzero entry to the top of the column found in
Step 1.



Step 3. If the entry that is now at the top of the column found in Step 1 is a, multiply the first row by 1/a in order to
introduce a leading 1.

Step 4. Add suitable multiples of the top row to the rows below so that all entries below the leading 1 become zeros.

Step 5. Now cover the top row in the matrix and begin again with Step 1 applied to the submatrix that remains. Continue
in this way until the entire matrix is in row echelon form.

The entire matrix is now in row echelon form. To find the reduced row echelon form we need the following additional
step.
Step 6. Beginning with the last nonzero row and working upward, add suitable multiples of each row to the rows above
to introduce zeros above the leading 1's.



The last matrix is in reduced row echelon form.

The procedure (or algorithm) we have just described for reducing a matrix to reduced row echelon form is called Gauss-
Jordan elimination. This algorithm consists of two parts, a forward phase in which zeros are introduced below the
leading 1's and then a backward phase in which zeros are introduced above the leading 1's. If only the forward phase is
used, then the procedure produces a row echelon form only and is called Gaussian elimination. For example, in the
preceding computations a row echelon form was obtained at the end of Step 5.

Carl Friedrich Gauss (1777–1855)

Wilhelm Jordan (1842–1899)

Historical Note    Although versions of Gaussian elimination were known much earlier, the power of the method
was not recognized until the great German mathematician Carl Friedrich Gauss used it to compute the orbit of
the asteroid Ceres from limited data. What happened was this: On January 1, 1801 the Sicilian astronomer
Giuseppe Piazzi (1746–1826) noticed a dim celestial object that he believed might be a “missing planet.” He
named the object Ceres and made a limited number of positional observations but then lost the object as it neared
the Sun. Gauss undertook the problem of computing the orbit from the limited data using least squares and the
procedure that we now call Gaussian elimination. The work of Gauss caused a sensation when Ceres reappeared



a year later in the constellation Virgo at almost the precise position that Gauss predicted! The method was further
popularized by the German engineer Wilhelm Jordan in his handbook on geodesy (the science of measuring
Earth shapes) entitled Handbuch der Vermessungskunde and published in 1888.
[Images: Granger Collection (Gauss); wikipedia (Jordan)]

 EXAMPLE 5    Gauss-Jordan Elimination

Solve by Gauss-Jordan elimination.

Solution   The augmented matrix for the system is

Adding —2 times the first row to the second and fourth rows gives

Multiplying the second row by −1 and then adding −5 times the new second row to the third row and −4
times the new second row to the fourth row gives

Interchanging the third and fourth rows and then multiplying the third row of the resulting matrix by 

gives the row echelon form

Adding −3 times the third row to the second row and then adding 2 times the second row of the resulting
matrix to the first row yields the reduced row echelon form

The corresponding system of equations is



  (3)

Note that in constructing the linear system in
3 we ignored the row of zeros in the
corresponding augmented matrix. Why is this
justified?

Solving for the leading variables we obtain

Finally, we express the general solution of the system parametrically by assigning the free variables x2, x4,
and x5 arbitrary values r, s, and t, respectively. This yields

Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if the constant terms are all zero; that is, the system has the form

Every homogeneous system of linear equations is consistent because all such systems have , ,…,  as
a solution. This solution is called the trivial solution; if there are other solutions, they are called nontrivial solutions.

Because a homogeneous linear system always has the trivial solution, there are only two possibilities for its solutions:
•  The system has only the trivial solution.
•  The system has infinitely many solutions in addition to the trivial solution.
In the special case of a homogeneous linear system of two equations in two unknowns, say

the graphs of the equations are lines through the origin, and the trivial solution corresponds to the point of intersection at
the origin (Figure 1.2.1).



Figure 1.2.1   

There is one case in which a homogeneous system is assured of having nontrivial solutions—namely, whenever the
system involves more unknowns than equations. To see why, consider the following example of four equations in six
unknowns.

 EXAMPLE 6    A Homogeneous System

Use Gauss-Jordan elimination to solve the homogeneous linear system

  (4)

Solution   Observe first that the coefficients of the unknowns in this system are the same as those in
Example 5; that is, the two systems differ only in the constants on the right side. The augmented matrix for
the given homogeneous system is

  (5)

which is the same as the augmented matrix for the system in Example 5, except for zeros in the last
column. Thus, the reduced row echelon form of this matrix will be the same as that of the augmented
matrix in Example 5, except for the last column. However, a moment's reflection will make it evident that
a column of zeros is not changed by an elementary row operation, so the reduced row echelon form of 5 is

  (6)

The corresponding system of equations is

Solving for the leading variables we obtain

  (7)

If we now assign the free variables x2, x4, and x5 arbitrary values r, s, and t, respectively, then we can



express the solution set parametrically as

Note that the trivial solution results when .

Free Variable in Homogeneous Linear Systems

Example 6 illustrates two important points about solving homogeneous linear systems:
1.  Elementary row operations do not alter columns of zeros in a matrix, so the reduced row echelon form of the

augmented matrix for a homogeneous linear system has a final column of zeros. This implies that the linear system
corresponding to the reduced row echelon form is homogeneous, just like the original system.

2.  When we constructed the homogeneous linear system corresponding to augmented matrix 6, we ignored the row of
zeros because the corresponding equation

does not impose any conditions on the unknowns. Thus, depending on whether or not the reduced row echelon form
of the augmented matrix for a homogeneous linear system has any rows of zero, the linear system corresponding to
that reduced row echelon form will either have the same number of equations as the original system or it will have
fewer.

Now consider a general homogeneous linear system with n unknowns, and suppose that the reduced row echelon form of
the augmented matrix has r nonzero rows. Since each nonzero row has a leading 1, and since each leading 1 corresponds
to a leading variable, the homogeneous system corresponding to the reduced row echelon form of the augmented matrix
must have r leading variables and  free variables. Thus, this system is of the form

  (8)

where in each equation the expression  denotes a sum that involves the free variables, if any [see 7, for example]. In
summary, we have the following result.

THEOREM 1.2.1   Free Variable Theorem for Homogeneous Systems

If a homogeneous linear system has n unknowns, and if the reduced row echelon form of its augmented matrix
has r nonzero rows, then the system has n - r free variables.

Note that Theorem 1.2.2 applies only to
homogeneous systems—a nonhomogeneous system
with more unknowns than equations need not be
consistent. However, we will prove later that if a
nonhomogeneous system with more unknowns then
equations is consistent, then it has in infinitely many
solutions.



Theorem 1.2.1 has an important implication for homogeneous linear systems with more unknowns than equations.
Specifically, if a homogeneous linear system has m equations in n unknowns, and if , then it must also be true that

 (why?). This being the case, the theorem implies that there is at least one free variable, and this implies in turn that
the system has infinitely many solutions. Thus, we have the following result.

THEOREM 1.2.2

A homogeneous linear system with more unknowns than equations has infinitely many solutions.

In retrospect, we could have anticipated that the homogeneous system in Example 6 would have infinitely many
solutions since it has four equations in six unknowns.

Gaussian Elimination and Back-Substitution

For small linear systems that are solved by hand (such as most of those in this text), Gauss-Jordan elimination (reduction
to reduced row echelon form) is a good procedure to use. However, for large linear systems that require a computer
solution, it is generally more efficient to use Gaussian elimination (reduction to row echelon form) followed by a
technique known as back-substitution to complete the process of solving the system. The next example illustrates this
technique.

 EXAMPLE 7    Example 5 Solved by Back-Substitution

From the computations in Example 5, a row echelon form of the augmented matrix is

To solve the corresponding system of equations

we proceed as follows:
Step 1. Solve the equations for the leading variables.

Step 2. Beginning with the bottom equation and working upward, successively substitute each equation
into all the equations above it.

Substituting  into the second equation yields



Substituting  into the first equation yields

Step 3. Assign arbitrary values to the free variables, if any.

If we now assign x2, x4, and x5 the arbitrary values r, s, and t, respectively, the general solution is given by
the formulas

This agrees with the solution obtained in Example 5.

 EXAMPLE 8

Suppose that the matrices below are augmented matrices for linear systems in the unknowns x1, x2, x3, and
x4. These matrices are all in row echelon form but not reduced row echelon form. Discuss the existence
and uniqueness of solutions to the corresponding linear systems

Solution   
(a)  The last row corresponds to the equation

from which it is evident that the system is inconsistent.
(b)  The last row corresponds to the equation

which has no effect on the solution set. In the remaining three equations the variables x1, x2, and x3
correspond to leading 1's and hence are leading variables. The variable x4 is a free variable. With a
little algebra, the leading variables can be expressed in terms of the free variable, and the free variable
can be assigned an arbitrary value. Thus, the system must have infinitely many solutions.

(c)  The last row corresponds to the equation

which gives us a numerical value for x4. If we substitute this value into the third equation, namely,

we obtain . You should now be able to see that if we continue this process and substitute the
known values of x3 and x4 into the equation corresponding to the second row, we will obtain a unique
numerical value for x2; and if, finally, we substitute the known values of x4, x3, and x2 into the



equation corresponding to the first row, we will produce a unique numerical value for x1. Thus, the
system has a unique solution.

Some Facts About Echelon Forms

There are three facts about row echelon forms and reduced row echelon forms that are important to know but we will not
prove:
1.  Every matrix has a unique reduced row echelon form; that is, regardless of whether you use Gauss-Jordan elimination

or some other sequence of elementary row operations, the same reduced row echelon form will result in the end.*

2.  Row echelon forms are not unique; that is, different sequences of elementary row operations can result in different
row echelon forms.

3.  Although row echelon forms are not unique, all row echelon forms of a matrix A have the same number of zero rows,
and the leading 1's always occur in the same positions in the row echelon forms of A. Those are callled the pivot
positions of A. A column that contains a pivot position is called a pivot column of A.

 EXAMPLE 9    Pivot Positions and Columns

Earlier in this section (immediately after Definition 1) we found a row echelon form of

to be

The leading 1's occur in positions (row 1, column 1), (row 2, column 3), and (row 3, column 5). These are
the pivot positions. The pivot columns are columns 1,3, and 5.

Roundoff Error and Instability

There is often a gap between mathematical theory and its practical implementation—Gauss-Jordan elimination and
Gaussian elimination being good examples. The problem is that computers generally approximate numbers, thereby
introducing roundoff errors, so unless precautions are taken, successive calculations may degrade an answer to a degree
that makes it useless. Algorithms (procedures) in which this happens are called unstable. There are various techniques
for minimizing roundoff error and instability. For example, it can be shown that for large linear systems Gauss-Jordan
elimination involves roughly 50% more operations than Gaussian elimination, so most computer algorithms are based on
the latter method. Some of these matters will be considered in Chapter 9.



Concept Review
•  Reduced row echelon form
•  Row echelon form
•  Leading 1
•  Leading variables
•  Free variables
•  General solution to a linear system
•  Gaussian elimination
•  Gauss-Jordan elimination
•  Forward phase
•  Backward phase
•  Homogeneous linear system
•  Trivial solution
•  Nontrivial solution
•  Dimension Theorem for Homogeneous Systems
•  Back-substitution

Skills
•  Recognize whether a given matrix is in row echelon form, reduced row echelon form, or neither.
•  Construct solutions to linear systems whose corresponding augmented matrices that are in row echelon form or

reduced row echelon form.
•  Use Gaussian elimination to find the general solution of a linear system.
•  Use Gauss-Jordan elimination in order to find the general solution of a linear system.
•  Analyze homogeneous linear systems using the Free Variable Theorem for Homogeneous Systems.

Exercise Set 1.2
1. In each part, determine whether the matrix is in row echelon form, reduced row echelon form, both, or neither.

(a)  

(b)  

(c)  

(d)  



(e)  

(f)  

(g)  

Answer:

(a)  Both
(b)  Both
(c)  Both
(d)  Both
(e)  Both
(f)  Both
(g)  Row echelon

2. In each part, determine whether the matrix is in row echelon form, reduced row echelon form, both, or neither.
(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)  

3. In each part, suppose that the augmented matrix for a system of linear equations has been reduced by row operations
to the given reduced row echelon form. Solve the system.



(a)  

(b)  

(c)  

(d)  

Answer:

(a)  
(b)  
(c)  
(d)  Inconsistent

4. In each part, suppose that the augmented matrix for a system of linear equations has been reduced by row operations
to the given reduced row echelon form. Solve the system.
(a)  

(b)  

(c)  

(d)  

In Exercises 5–8, solve the linear system by Gauss-Jordan elimination.

5. 

Answer:



6. 

7. 

Answer:

8. 

In Exercises 9–12, solve the linear system by Gaussian elimination.

9. Exercise 5

Answer:

10. Exercise 6

11. Exercise 7

Answer:

12. Exercise 8

In Exercises 13–16, determine whether the homogeneous system has nontrivial solutions by inspection (without pencil
and paper).

13. 

Answer:

Has nontrivial solutions

14. 

15. 

Answer:

Has nontrivial solutions

16. 



In Exercises 17–24, solve the given homogeneous linear system by any method.

17. 

Answer:

18. 

19. 

Answer:

20. 

21. 

Answer:

22. 

23. 

Answer:

24. 

In Exercises 25–28, determine the values of a for which the system has no solutions, exactly one solution, or infinitely



many solutions.

25. 

Answer:

If , there are infinitely many solutions; if , there are no solutions; if , there is exactly one
solution.

26. 

27. 

Answer:

If , there are infinitely many solutions; if , there are no solutions; if , there is exactly one
solution.

28. 

In Exercises 29–30, solve the following systems, where a, b, and c are constants.

29. 

Answer:

30. 

31. Find two different row echelon forms of

This exercise shows that a matrix can have multiple row echelon forms.

Answer:

 and  are possible answers.

32. Reduce



to reduced row echelon form without introducing fractions at any intermediate stage.

33. Show that the following nonlinear system has 18 solutions if , , and .

[Hint: Begin by making the substitutions , , and .]

34. Solve the following system of nonlinear equations for the unknown angles α, β, and γ, where ,
, and .

35. Solve the following system of nonlinear equations for x, y, and z.

[Hint: Begin by making the substitutions , , .]

Answer:

36. Solve the following system for x, y, and z.

37. Find the coefficients a, b, c, and d so that the curve shown in the accompanying figure is the graph of the equation
.

Figure Ex-37   

Answer:



38. Find the coefficients a, b, c, and d so that the curve shown in the accompanying figure is given by the equation
.

Figure Ex-38   

39. If the linear system

has only the trivial solution, what can be said about the solutions of the following system?

Answer:

The nonhomogeneous system will have exactly one solution.

40. (a)  If A is a  matrix, then what is the maximum possible number of leading 1's in its reduced row echelon form?
(b)  If B is a  matrix whose last column has all zeros, then what is the maximum possible number of parameters

in the general solution of the linear system with augmented matrix B?
(c)  If C is a  matrix, then what is the minimum possible number of rows of zeros in any row echelon form of

C?

41. (a)  Prove that if , then the reduced row echelon form of

(b)  Use the result in part (a) to prove that if , then the linear system

has exactly one solution.

42. Consider the system of equations

Discuss the relative positions of the lines , , and  when (a) the system has
only the trivial solution, and (b) the system has nontrivial solutions.



43. Describe all possible reduced row echelon forms of
(a)  

(b)  

True-False Exercises

In parts (a)–(i) determine whether the statement is true or false, and justify your answer.

(a) If a matrix is in reduced row echelon form, then it is also in row echelon form.

Answer:

True

(b) If an elementary row operation is applied to a matrix that is in row echelon form, the resulting matrix will still be in
row echelon form.

Answer:

False

(c) Every matrix has a unique row echelon form.

Answer:

False

(d) A homogeneous linear system in n unknowns whose corresponding augmented matrix has a reduced row echelon
form with r leading 1's has n − r free variables.

Answer:

True

(e) All leading 1's in a matrix in row echelon form must occur in different columns.

Answer:

True

(f) If every column of a matrix in row echelon form has a leading 1 then all entries that are not leading 1's are zero.

Answer:

False

(g) If a homogeneous linear system of n equations in n unknowns has a corresponding augmented matrix with a reduced
row echelon form containing n leading 1's, then the linear system has only the trivial solution.

Answer:

True



(h) If the reduced row echelon form of the augmented matrix for a linear system has a row of zeros, then the system must
have infinitely many solutions.

Answer:

False

(i) If a linear system has more unknowns than equations, then it must have infinitely many solutions.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.3  Matrices and Matrix Operations
Rectangular arrays of real numbers arise in contexts other than as augmented matrices for linear systems. In this
section we will begin to study matrices as objects in their own right by defining operations of addition, subtraction,
and multiplication on them.

Matrix Notation and Terminology

In Section 1.2 we used rectangular arrays of numbers, called augmented matrices, to abbreviate systems of linear
equations. However, rectangular arrays of numbers occur in other contexts as well. For example, the following
rectangular array with three rows and seven columns might describe the number of hours that a student spent studying
three subjects during a certain week:

 Mon. Tues. Wed. Thurs. Fri. Sat. Sun.

Math 2 3 2 4 1 4 2

History 0 3 1 4 3 2 2

Language 4 1 3 1 0 0 2

If we suppress the headings, then we are left with the following rectangular array of numbers with three rows and
seven columns, called a “matrix”:

More generally, we make the following definition.

DEFINITION 1

A matrix is a rectangular array of numbers. The numbers in the array are called the entries in the matrix.

A matrix with only one column is called a column
vector or a column matrix, and a matrix with only
one row is called a row vector or a row matrix. In
Example 1, the  matrix is a column vector, the

 matrix is a row vector, and the  matrix
is both a row vector and a column vector.

 EXAMPLE 1    Examples of Matrices

Some examples of matrices are



The size of a matrix is described in terms of the number of rows (horizontal lines) and columns (vertical lines) it
contains. For example, the first matrix in Example 1 has three rows and two columns, so its size is 3 by 2 (written

). In a size description, the first number always denotes the number of rows, and the second denotes the number
of columns. The remaining matrices in Example 1 have sizes , , , and , respectively.

We will use capital letters to denote matrices and lowercase letters to denote numerical quantities; thus we might write

When discussing matrices, it is common to refer to numerical quantities as scalars. Unless stated otherwise, scalars
will be real numbers; complex scalars will be considered later in the text.

Matrix brackets are often omitted from 
matrices, making it impossible to tell, for example,
whether the symbol 4 denotes the number “four” or
the matrix [4]. This rarely causes problems because
it is usually possible to tell which is meant from the
context.

The entry that occurs in row i and column j of a matrix A will be denoted by aij. Thus a general  matrix might be
written as

and a general  matrix as

  (1)

When a compact notation is desired, the preceding matrix can be written as

the first notation being used when it is important in the discussion to know the size, and the second being used when
the size need not be emphasized. Usually, we will match the letter denoting a matrix with the letter denoting its
entries; thus, for a matrix B we would generally use bij for the entry in row i and column j, and for a matrix C we
would use the notation cij.

The entry in row i and column j of a matrix A is also commonly denoted by the symbol (A)ij. Thus, for matrix 1
above, we have



and for the matrix

we have , and .

Row and column vectors are of special importance, and it is common practice to denote them by boldface lowercase
letters rather than capital letters. For such matrices, double subscripting of the entries is unnecessary. Thus a general

 row vector a and a general  column vector b would be written as

A matrix A with n rows and n columns is called a square matrix of order n, and the shaded entries 
in 2 are said to be on the main diagonal of A.

  (2)

Operations on Matrices

So far, we have used matrices to abbreviate the work in solving systems of linear equations. For other applications,
however, it is desirable to develop an “arithmetic of matrices” in which matrices can be added, subtracted, and
multiplied in a useful way. The remainder of this section will be devoted to developing this arithmetic.

DEFINITION 2

Two matrices are defined to be equal if they have the same size and their corresponding entries are equal.

The equality of two matrices

of the same size can be expressed either by writing

or by writing

where it is understood that the equalities hold for
all values of i and j.



 EXAMPLE 2    Equality of Matrices

Consider the matrices

If , then , but for all other values of x the matrices A and B are not equal, since not all of
their corresponding entries are equal. There is no value of x for which  since A and C have
different sizes.

DEFINITION 3

If A and B are matrices of the same size, then the sum  is the matrix obtained by adding the entries of B
to the corresponding entries of A, and the difference  is the matrix obtained by subtracting the entries of
B from the corresponding entries of A. Matrices of different sizes cannot be added or subtracted.

In matrix notation, if  and  have the same size, then

 EXAMPLE 3    Addition and Subtraction

Consider the matrices

Then

The expressions , and  are undefined.

DEFINITION 4

If A is any matrix and c is any scalar, then the product cA is the matrix obtained by multiplying each entry of
the matrix A by c. The matrix cA is said to be a scalar multiple of A.

In matrix notation, if , then



 EXAMPLE 4    Scalar Multiples

For the matrices

we have

It is common practice to denote (− 1)B by −B.

Thus far we have defined multiplication of a matrix by a scalar but not the multiplication of two matrices. Since
matrices are added by adding corresponding entries and subtracted by subtracting corresponding entries, it would
seem natural to define multiplication of matrices by multiplying corresponding entries. However, it turns out that such
a definition would not be very useful for most problems. Experience has led mathematicians to the following more
useful definition of matrix multiplication.

DEFINITION 5

If A is an  matrix and B is an  matrix, then the product AB is the  matrix whose entries are
determined as follows: To find the entry in row i and column j of AB, single out row i from the matrix A and
column j from the matrix B. Multiply the corresponding entries from the row and column together, and then
add up the resulting products.

 EXAMPLE 5    Multiplying Matrices

Consider the matrices

Since A is a  matrix and B is a  matrix, the product AB is a  matrix. To determine, for
example, the entry in row 2 and column 3 of AB, we single out row 2 from A and column 3 from B.
Then, as illustrated below, we multiply corresponding entries together and add up these products.

The entry in row 1 and column 4 of AB is computed as follows:



The computations for the remaining entries are

The definition of matrix multiplication requires that the number of columns of the first factor A be the same as the
number of rows of the second factor B in order to form the product AB. If this condition is not satisfied, the product is
undefined. A convenient way to determine whether a product of two matrices is defined is to write down the size of
the first factor and, to the right of it, write down the size of the second factor. If, as in 3, the inside numbers are the
same, then the product is defined. The outside numbers then give the size of the product.

  (3)

Gotthold Eisenstein (1823–1852)

Historical Note    The concept of matrix multiplication is due to the German mathematician Gotthold
Eisenstein, who introduced the idea around 1844 to simplify the process of making substitutions in linear
systems. The idea was then expanded on and formalized by Cayley in his Memoir on the Theory of Matrices
that was published in 1858. Eisenstein was a pupil of Gauss, who ranked him as the equal of Isaac Newton
and Archimedes. However, Eisenstein, suffering from bad health his entire life, died at age 30, so his potential
was never realized.
[Image: wikipedia]



 EXAMPLE 6    Determining Whether a Product Is Defined

Suppose that A, B, and C are matrices with the following sizes:

Then by 3, AB is defined and is a  matrix; BC is defined and is a  matrix; and CA is defined
and is a  matrix. The products AC, CB, and BA are all undefined.

In general, if  is an  matrix and  is an  matrix, then, as illustrated by the shading in 4,

  (4)

the entry  in row i and column j of AB is given by

  (5)

Partitioned Matrices

A matrix can be subdivided or partitioned into smaller matrices by inserting horizontal and vertical rules between
selected rows and columns. For example, the following are three possible partitions of a general  matrix A—the
first is a partition of A into four submatrices A11, A12, A21, and A22; the second is a partition of A into its row vectors
r1, r2, and r3; and the third is a partition of A into its column vectors c1, c2, c3, and c4:

Matrix Multiplication by Columns and by Rows

Partitioning has many uses, one of which is for finding particular rows or columns of a matrix product AB without
computing the entire product. Specifically, the following formulas, whose proofs are left as exercises, show how
individual column vectors of AB can be obtained by partitioning B into column vectors and how individual row
vectors of AB can be obtained by partitioning A into row vectors.



  (6)

  (7)

In words, these formulas state that

  (8)

  (9)

 EXAMPLE 7    Example 5 Revisited

If A and B are the matrices in Example 5, then from 8 the second column vector of AB can be obtained
by the computation

and from 9 the first row vector of AB can be obtained by the computation

Matrix Products as Linear Combinations

We have discussed three methods for computing a matrix product AB—entry by entry, column by column, and row by
row. The following definition provides yet another way of thinking about matrix multiplication.

DEFINITION 6

If  are matrices of the same size, and if  are scalars, then an expression of the



form

is called a linear combination of  with coefficients .

To see how matrix products can be viewed as linear combinations, let A be an  matrix and x an  column
vector, say

Then

  (10)

This proves the following theorem.

THEOREM 1.3.1

If A is an  matrix, and if x is an  column vector, then the product Ax can be expressed as a linear
combination of the column vectors of A in which the coefficients are the entries of x.

 EXAMPLE 8    Matrix Products as Linear Combinations

The matrix product

can be written as the following linear combination of column vectors

 EXAMPLE 9    Columns of a Product AB as Linear Combinations

We showed in Example 5 that



It follows from Formula 6 and Theorem 1.3.1 that the j th column vector of AB can be expressed as a
linear combination of the column vectors of A in which the coefficients in the linear combination are the
entries from the j th column of B. The computations are as follows:

Matrix Form of a Linear System

Matrix multiplication has an important application to systems of linear equations. Consider a system of m linear
equations in n unknowns:

Since two matrices are equal if and only if their corresponding entries are equal, we can replace the m equations in
this system by the single matrix equation

The  matrix on the left side of this equation can be written as a product to give

If we designate these matrices by A, x, and b, respectively, then we can replace the original system of m equations in
n unknowns has been replaced by the single matrix equation

The matrix A in this equation is called the coefficient matrix of the system. The augmented matrix for the system is
obtained by adjoining b to A as the last column; thus the augmented matrix is



The vertical bar in [A|b] is a convenient way to
separate A from b visually; it has no mathematical
significance.

Transpose of a Matrix

We conclude this section by defining two matrix operations that have no analogs in the arithmetic of real numbers.

DEFINITION 7

If A is any  matrix, then the transpose of A, denoted by AT, is defined to be the  matrix that results
by interchanging the rows and columns of A; that is, the first column of AT is the first row of A, the second
column of AT is the second row of A, and so forth.

 EXAMPLE 10    Some Transposes

The following are some examples of matrices and their transposes.

Observe that not only are the columns of AT the rows of A, but the rows of AT are the columns of A. Thus the entry in
row i and column j of AT is the entry in row j and column i of A; that is,

  (11)

Note the reversal of the subscripts.

In the special case where A is a square matrix, the transpose of A can be obtained by interchanging entries that are
symmetrically positioned about the main diagonal. In 12 we see that AT can also be obtained by “reflecting” A about
its main diagonal.

  (12)



DEFINITION 8

If A is a square matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the entries on the
main diagonal of A. The trace of A is undefined if A is not a square matrix.

James Sylvester (1814–1897)

Arthur Cayley (1821–1895)

Historical Note    The term matrix was first used by the English mathematician (and lawyer) James Sylvester,
who defined the term in 1850 to be an “oblong arrangement of terms.” Sylvester communicated his work on
matrices to a fellow English mathematician and lawyer named Arthur Cayley, who then introduced some of
the basic operations on matrices in a book entitled Memoir on the Theory of Matrices that was published in
1858. As a matter of interest, Sylvester, who was Jewish, did not get his college degree because he refused to
sign a required oath to the Church of England. He was appointed to a chair at the University of Virginia in the
United States but resigned after swatting a student with a stick because he was reading a newspaper in class.



Sylvester, thinking he had killed the student, fled back to England on the first available ship. Fortunately, the
student was not dead, just in shock!
[Images: The Granger Collection, New York]

 EXAMPLE 11    Trace of a Matrix

The following are examples of matrices and their traces.

In the exercises you will have some practice working with the transpose and trace operations.

Concept Review
•  Matrix
•  Entries
•  Column vector (or column matrix)
•  Row vector (or row matrix)
•  Square matrix
•  Main diagonal
•  Equal matrices
•  Matrix operations: sum, difference, scalar multiplication
•  Linear combination of matrices
•  Product of matrices (matrix multiplication)
•  Partitioned matrices
•  Submatrices
•  Row-column method
•  Column method
•  Row method
•  Coefficient matrix of a linear system
•  Transpose
•  Trace

Skills



•  Determine the size of a given matrix.
•  Identify the row vectors and column vectors of a given matrix.
•  Perform the arithmetic operations of matrix addition, subtraction, scalar multiplication, and multiplication.
•  Determine whether the product of two given matrices is defined.
•  Compute matrix products using the row-column method, the column method, and the row method.
•  Express the product of a matrix and a column vector as a linear combination of the columns of the matrix.
•  Express a linear system as a matrix equation, and identify the coefficient matrix.
•  Compute the transpose of a matrix.
•  Compute the trace of a square matrix.

Exercise Set 1.3
1. Suppose that A, B, C, D, and E are matrices with the following sizes:

A B C D E

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of
the resulting matrix.
(a)  BA
(b)  
(c)  
(d)  
(e)  
(f)  E(AC)
(g)  ETA
(h)  

Answer:

(a)  Undefined
(b)  
(c)  Undefined
(d)  Undefined
(e)  
(f)  
(g)  Undefined
(h)  

2. Suppose that A, B, C, D, and E are matrices with the following sizes:



A B C D E

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of
the resulting matrix.
(a)  EA
(b)  ABT

(c)  

(d)  
(e)  

(f)  

(g)  

(h)  

3. Consider the matrices

In each part, compute the given expression (where possible).
(a)  
(b)  
(c)  5A
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  tr(D)
(j)  
(k)  4 tr(7B)
(l)  tr(A)

Answer:

(a)  

(b)  



(c)  

(d)  

(e)  Undefined
(f)  

(g)  

(h)  

(i)  5
(j)  
(k)  168
(l)  Undefined

4. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

(g)  

(h)  

(i)  (CD)E
(j)  C(BA)
(k)  tr(DET)
(l)  tr(BC)

5. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
(a)  AB
(b)  BA
(c)  (3E)D
(d)  (AB)C
(e)  A(BC)
(f)  CCT



(g)  (DA)T

(h)  

(i)  tr(DDT)
(j)  

(k)  

(l)  

Answer:

(a)  

(b)  Undefined
(c)  

(d)  

(e)  

(f)  

(g)  

(h)  

(i)  61
(j)  35
(k)  28
(l)  99

6. Using the matrices in Exercise 3, in each part compute the given expression (where possible).
(a)  

(b)  
(c)  

(d)  



(e)  

(f)  

7. Let

Use the row method or column method (as appropriate) to find
(a)  the first row of AB.
(b)  the third row of AB.
(c)  the second column of AB.
(d)  the first column of BA.
(e)  the third row of AA.
(f)  the third column of AA.

Answer:

(a)  
(b)  
(c)  

(d)  

(e)  
(f)  

8. Referring to the matrices in Exercise 7, use the row method or column method (as appropriate) to find
(a)  the first column of AB.
(b)  the third column of BB.
(c)  the second row of BB.
(d)  the first column of AA.
(e)  the third column of AB.
(f)  the first row of BA.

9. Referring to the matrices A and B in Exercise 7, and Example 9,
(a)  express each column vectorof AA as a linear combination of the column vectors of A.
(b)  express each column vector of BB as a linear combination of the column vectors of B.

Answer:



(a)  

(b)  

10. Referring to the matrices A and B in Exercise 7, and Example 9,
(a)  express each column vector of AB as a linear combination of the column vectors of A.
(b)  express each column vector of BA as a linear combination of the column vectors of B.

11. In each part, find matrices A, x, and b that express the given system of linear equations as a single matrix equation
, and write out this matrix equation.

(a)  

(b)  

Answer:

(a)  

(b)  

12. In each part, find matrices A, x, and b that express the given system of linear equations as a single matrix equation
, and write out this matrix equation.

(a)  

(b)  

13. In each part, express the matrix equation as a system of linear equations.
(a)  



(b)  

Answer:

(a)  

(b)  

14. In each part, express the matrix equation as a system of linear equations.
(a)  

(b)  

In Exercises 15–16, find all values of k, if any, that satisfy the equation.

15. 

Answer:

16. 

In Exercises 17–18, solve the matrix equation for a, b, c, and d.

17. 

Answer:

18. 

19. Let A be any  matrix and let 0 be the  matrix each of whose entries is zero. Show that if , then
 or .

20. (a)  Show that if AB and BA are both defined, then AB and BA are square matrices.
(b)  Show that if A is an  matrix and A(BA) is defined, then B is an  matrix.



21. Prove: If A and B are  matrices, then .

22. (a)  Show that if A has a row of zeros and B is any matrix for which AB is defined, then AB also has a row of
zeros.

(b)  Find a similar result involving a column of zeros.

23. In each part, find a  matrix [aij] that satisfies the stated condition. Make your answers as general as possible
by using letters rather than specific numbers for the nonzero entries.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

24. Find the  matrix  whose entries satisfy the stated condition.

(a)  
(b)  



(c)  

25. Consider the function  defined for  matrices x by , where

Plot f(x) together with x in each case below. How would you describe the action of f?
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  



26. Let I be the  matrix whose entry in row i and column j is

Show that  for every  matrix A.

27. How many  matrices A can you find such that

for all choices of x, y, and z?

Answer:

One; namely, 

28. How many  matrices A can you find such that

for all choices of x, y, and z?

29. A matrix B is said to be a square root of a matrix A if .
(a)  Find two square roots of .

(b)  How many different square roots can you find of ?

(c)  Do you think that every  matrix has at least one square root? Explain your reasoning.

Answer:

(a)  

(b)  
Four; 

30. Let 0 denote a  matrix, each of whose entries is zero.
(a)  Is there a  matrix A such that  and ? Justify your answer.
(b)  Is there a  matrix A such that  and ? Justify your answer.



True-False Exercises

In parts (a)–(o) determine whether the statement is true or false, and justify your answer.

(a) The matrix  has no main diagonal.

Answer:

True

(b) An  matrix has m column vectors and n row vectors.

Answer:

False

(c) If A and B are  matrices, then .

Answer:

False

(d) The i th row vector of a matrix product AB can be computed by multiplying A by the ith row vector of B.

Answer:

False

(e) For every matrix A, it is true that .

Answer:

True

(f) If A and B are square matrices of the same order, then .

Answer:

False

(g) If A and B are square matrices of the same order, then .

Answer:

False

(h) For every square matrix A, it is true that .

Answer:

True

(i) If A is a  matrix and B is an  matrix such that BTAT is a  matrix, then  and .

Answer:



True

(j) If A is an  matrix and c is a scalar, then .

Answer:

True

(k) If A, B, and C are matrices of the same size such that , then .

Answer:

True

(l) If A, B, and C are square matrices of the same order such that , then .

Answer:

False

(m) If  is defined, then A and B are square matrices of the same size.

Answer:

True

(n) If B has a column of zeros, then so does AB if this product is defined.

Answer:

True

(o) If B has a column of zeros, then so does BA if this product is defined.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.4  Inverses; Algebraic Properties of Matrices
In this section we will discuss some of the algebraic properties of matrix operations. We will see that many of
the basic rules of arithmetic for real numbers hold for matrices, but we will also see that some do not.

Properties of Matrix Addition and Scalar Multiplication

The following theorem lists the basic algebraic properties of the matrix operations.

THEOREM 1.4.1   Properties of Matrix Arithmetic

Assuming that the sizes of the matrices are such that the indicated operations can be performed, the
following rules of matrix arithmetic are valid.
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  
(i)  
(j)  
(k)  
(l)  
(m)  

To prove any of the equalities in this theorem we must show that the matrix on the left side has the same size
as that on the right and that the corresponding entries on the two sides are the same. Most of the proofs follow
the same pattern, so we will prove part (d) as a sample. The proof of the associative law for multiplication is
more complicated than the rest and is outlined in the exercises.

There are three basic ways to prove that two
matrices of the same size are equal—prove that
corresponding entries are the same, prove that
corresponding row vectors are the same, or
prove that corresponding column vectors are
the same.



Proof (d)   We must show that  and  have the same size and that corresponding entries
are equal. To form , the matrices B and C must have the same size, say , and the matrix A
must then have m columns, so its size must be of the form . This makes  an  matrix. It
follows that  is also an  matrix and, consequently,  and  have the same size.

Suppose that ,and . We want to show that corresponding entries of
 and  are equal; that is,

for all values of i and j. But from the definitions of matrix addition and matrix multiplication, we have

Remark   Although the operations of matrix addition and matrix multiplication were defined for pairs of
matrices, associative laws (b) and (c) enable us to denote sums and products of three matrices as 
and ABC without inserting any parentheses. This is justified by the fact that no matter how parentheses are
inserted, the associative laws guarantee that the same end result will be obtained. In general, given any sum or
any product of matrices, pairs of parentheses can be inserted or deleted anywhere within the expression
without affecting the end result.

 EXAMPLE 1    Associativity of Matrix Multiplication

As an illustration of the associative law for matrix multiplication, consider

Then

Thus

and

so , as guaranteed by Theorem 1.4.1(c).



Properties of Matrix Multiplication

Do not let Theorem 1.4.1 lull you into believing that all laws of real arithmetic carry over to matrix
arithmetic. For example, you know that in real arithmetic it is always true that , which is called the
commutative law for multiplication. In matrix arithmetic, however, the equality of AB and BA can fail for
three possible reasons:
1.  AB may be defined and BA may not (for example, if A is  and B is ).
2.  AB and BA may both be defined, but they may have different sizes (for example, if A is  and B is

).
3.  AB and BA may both be defined and have the same size, but the two matrices may be different (as

illustrated in the next example).

Do not read too much into Example 2—it does
not rule out the possibility that AB and BA may
be equal in certain cases, just that they are not
equal in all cases. If it so happens that

, then we say that AB and BA
commute.

 EXAMPLE 2    Order Matters in Matrix Multiplication

Consider the matrices

Multiplying gives

Thus, .

Zero Matrices

A matrix whose entries are all zero is called a zero matrix. Some examples are

We will denote a zero matrix by 0 unless it is important to specify its size, in which case we will denote the
 zero matrix by .



It should be evident that if A and 0 are matrices with the same size, then

Thus, 0 play s the same role in this matrix equation that the number 0 plays in the numerical equation
.

The following theorem lists the basic properties of zero matrices. Since the results should be self-evident, we
will omit the formal proofs.

THEOREM 1.4.2   Properties of Zero Matrices

If c is a scalar, and if the sizes of the matrices are such that the operations can be perfomed, then:
(a)  
(b)  
(c)  
(d)  
(e)  If , then  or .

Since we know that the commutative law of real arithmetic is not valid in matrix arithmetic, it should not be
surprising that there are other rules that fail as well. For example, consider the following two laws of real
arithmetic:
•  If  and , then . [The cancellation law]
•  If , then at least one of the factors on the left is 0.
The next two examples show that these laws are not universally true in matrix arithmetic.

 EXAMPLE 3    Failure of the Cancellation Law

Consider the matrices

We leave it for you to confirm that

Although , canceling A from both sides of the equation  would lead to the
incorrect conclusion that . Thus, the cancellation law does not hold, in general, for matrix
multiplication.

 EXAMPLE 4    A Zero Product with Nonzero Factors



Here are two matrices for which , but  and :

Identity Matrices

A square matrix with 1's on the main diagonal and zeros elsewhere is called an identity matrix. Some
examples are

An identity matrix is denoted by the letter I. If it is important to emphasize the size, we will write In for the
 identity matrix.

To explain the role of identity matrices in matrix arithmetic, let us consider the effect of multiplying a general
 matrix A on each side by an identity matrix. Multiplying on the right by the  identity matrix yields

and multiplying on the left by the  identity matrix yields

The same result holds in general; that is, if A is any  matrix, then

Thus, the identity matrices play the same role in these matrix equations that the number 1 plays in the
numerical equation .

As the next theorem shows, identity matrices arise naturally in studying reduced row echelon forms of square
matrices.

THEOREM 1.4.3

If R is the reduced row echelon form of an  matrix A, then either R has a row of zeros or R is the
identity matrix In.



Proof   Suppose that the reduced row echelon form of A is

Either the last row in this matrix consists entirely of zeros or it does not. If not, the matrix contains no zero
rows, and consequently each of the n rows has a leading entry of 1. Since these leading 1's occur
progressively farther to the right as we move down the matrix, each of these 1's must occur on the main
diagonal. Since the other entries in the same column as one of these 1's are zero, R must be In. Thus, either R
has a row of zeros or .

Inverse of a Matrix

In real arithmetic every nonzero number a has a reciprocal  with the property

The number  is sometimes called the multiplicative inverse of a. Our next objective is to develop an
analog of this result for matrix arithmetic. For this purpose we make the following definition.

DEFINITION 1

If A is a square matrix, and if a matrix B of the same size can be found such that , then A
is said to be invertible (or nonsingular) and B is called an inverse of A. If no such matrix B can be
found, then A is said to be singular.

Remark   The relationship  is not changed by interchanging A and B, so if A is invertible and B
is an inverse of A, then it is also true that B is invertible, and A is an inverse of B. Thus, when

we say that A and B are inverses of one another.

 EXAMPLE 5    An Invertible Matrix

Let

Then



Thus, A and B are invertible and each is an inverse of the other.

 EXAMPLE 6    Class of Singular Matrices

In general, a square matrix with a row or column of zeros is singular. To help understand why
this is so, consider the matrix

To prove that A is singular we must show that there is no  matrix B such that 
. For this purpose let  be the column vectors of A. Thus, for any  matrix B we
can express the product BA as

The column of zeros shows that  and hence that A is singular.

Properties of Inverses

It is reasonable to ask whether an invertible matrix can have more than one inverse. The next theorem shows
that the answer is no—an invertible matrix has exactly one inverse.

THEOREM 1.4.4

If B and C are both inverses of the matrix A, then .

Proof   Since B is an inverse of A, we have . Multiplying both sides on the right by C gives
. But it is also true that , so .

As a consequence of this important result, we can now speak of “the” inverse of an invertible matrix. If A is
invertible, then its inverse will be denoted by the symbol . Thus,

  (1)



The inverse of A plays much the same role in matrix arithmetic that the reciprocal  plays in the numerical
relationships  and .

In the next section we will develop a method for computing the inverse of an invertible matrix of any size.
For now we give the following theorem that specifies conditions under which a  matrix is invertible and
provides a simple formula for its inverse.

THEOREM 1.4.5

The matrix

is invertible if and only if , in which case the inverse is given by the formula

  (2)

We will omit the proof, because we will study a more general version of this theorem later. For now, you
should at least confirm the validity of Formula 2 by showing that .

Historical Note    The formula for  given in Theorem 1.4.5 first appeared (in a more general
form) in Arthur Cayley's 1858 Memoir on the Theory of Matrices. The more general result that
Cayley discovered will be studied later.

The quantity  in Theorem 1.4.5 is
called the determinant of the  matrix A
and is denoted by

or alternatively by

Remark   Figure 1.4.1 illustrates that the determinant of a  matrix A is the product of the entries on its
main diagonal minus the product of the entries off its main diagonal. In words, Theorem 1.4.5 states that a

 matrix A is invertible if and only if its determinant is nonzero, and if invertible, then its inverse can be
obtained by interchanging its diagonal entries, reversing the signs of its off-diagonal entries, and multiplying
the entries by the reciprocal of the determinant of A.



Figure 1.4.1   

 EXAMPLE 7    Calculating the Inverse of a 2 × 2 Matrix

In each part, determine whether the matrix is invertible. If so, find its inverse.
(a)  

(b)  

Solution   
(a)  The determinant of A is , which is nonzero. Thus, A is

invertible, and its inverse is

We leave it for you to confirm that .

(b)  The matrix is not invertible since .

 EXAMPLE 8    Solution of a Linear System by Matrix Inversion

A problem that arises in many applications is to solve a pair of equations of the form

for x and y in terms of u and v. One approach is to treat this as a linear system of two equations in the
unknowns x and y and use Gauss–Jordan elimination to solve for x and y. However, because the
coefficients of the unknowns are literal rather than numerical, this procedure is a little clumsy. As an
alternative approach, let us replace the two equations by the single matrix equation

which we can rewrite as

If we assume that the  matrix is invertible (i.e., ), then we can multiply through on
the left by the inverse and rewrite the equation as



which simplifies to

Using Theorem 1.4.5, we can rewrite this equation as

from which we obtain

The next theorem is concerned with inverses of matrix products.

THEOREM 1.4.6

If A and B are invertible matrices with the same size, then AB is invertible and

Proof   We can establish the invertibility and obtain the stated formula at the same time by showing that

But

and similarly, .

Although we will not prove it, this result can be extended to three or more factors:

A product of any number ofinvertible matrices is invertible, and the inverse of the product is the
product of the inverses in the reverse order.

 EXAMPLE 9    The Inverse of a Product



Consider the matrices

We leave it for you to show that

and also that

Thus,  as guaranteed by Theorem 1.4.6.

Powers of a Matrix

If A is a square matrix, then we define the nonnegative integer powers of A to be

and if A is invertible, then we define the negative integer powers of A to be

Because these definitions parallel those for real numbers, the usual laws of nonnegative exponents hold; for
example,

If a product of matrices is singular, then at least
one of the factors must be singular. Why?

In addition, we have the following properties of negative exponents.

THEOREM 1.4.7

If A is invertible and n is a nonnegative integer, then:
(a)   is invertible and .



(b)  An is invertible and .

(c)  kA is invertible for any nonzero scalar k, and .

We will prove part (c) and leave the proofs of parts (a) and (b) as exercises.

Proof (c)   Properties (c) and (m) in Theorem 1.4.1 imply that

and similarly, . Thus, kA is invertible and .

 EXAMPLE 10    Properties of Exponents

Let A and  be the matrices in Example 9; that is,

Then

Also,

so, as expected from Theorem 1.4.7(b),

 EXAMPLE 11    The Square of a Matrix Sum

In real arithmetic, where we have a commutative law for multiplication, we can write

However, in matrix arithmetic, where we have no commutative law for multiplication, the best
we can do is to write

It is only in the special case where A and B commute (i.e., ) that we can go a step
further and write



Matrix Polynomials

If A is a square matrix, say , and if

is any polynomial, then we define the  matrix p(A) to be

  (3)

where I is the  identity matrix; that is, p(A) is obtained by substituting A for x and replacing the constant
term  by the matrix . An expression of form 3 is called a matrix polynomial in A.

 EXAMPLE 12    A Matrix Polynomial

Find  for

Solution   

or more briefly, .

Remark   It follows from the fact that  that powers of a square matrix
commute, and since a matrix polynomial in A is built up from powers of A, any two matrix polynomials in A
also commute; that is, for any polynomials p1 and p2 we have

  (4)

Properties of the Transpose



The following theorem lists the main properties of the transpose.

THEOREM 1.4.8

If the sizes of the matrices are such that the stated operations can be performed, then:
(a)  

(b)  

(c)  

(d)  

(e)  

If you keep in mind that transposing a matrix interchanges its rows and columns, then you should have little
trouble visualizing the results in parts (a)–(d). For example, part (a) states the obvious fact that interchanging
rows and columns twice leaves a matrix unchanged; and part (b) states that adding two matrices and then
interchanging the rows and columns produces the same result as interchanging the rows and columns before
adding. We will omit the formal proofs. Part (e) is a less obvious, but for brevity we will omit its proof as
well. The result in that part can be extended to three or more factors and restated as:

The transpose of a product of any number of matrices is the product of the transposes in the reverse
order.

The following theorem establishes a relationship between the inverse of a matrix and the inverse of its
transpose.

THEOREM 1.4.9

If A is an invertible matrix, then AT is also invertible and

Proof   We can establish the invertibility and obtain the formula at the same time by showing that

But from part (e) of Theorem 1.4.8 and the fact that , we have



which completes the proof.

 EXAMPLE 13    Inverse of a Transpose

Consider a general  invertible matrix and its transpose:

Since A is invertible, its determinant  is nonzero. But the determinant of AT is also
 (verify), so AT is also invertible. It follows from Theorem 1.4.5 that

which is the same matrix that results if  is transposed (verify). Thus,

as guaranteed by Theorem 1.4.9.

Concept Review
•  Commutative law for matrix addition
•  Associative law for matrix addition
•  Associative law for matrix multiplication
•  Left and right distributive laws
•  Zero matrix
•  Identity matrix
•  Inverse of a matrix
•  Invertible matrix
•  Nonsingular matrix
•  Singular matrix
•  Determinant
•  Power of a matrix



•  Matrix polynomial

Skills
•  Know the arithmetic properties of matrix operations.
•  Be able to prove arithmetic properties of matrices.
•  Know the properties of zero matrices.
•  Know the properties of identity matrices.
•  Be able to recognize when two square matrices are inverses of each other.
•  Be able to determine whether a  matrix is invertible.
•  Be able to solve a linear system of two equations in two unknowns whose coefficient matrix is

invertible.
•  Be able to prove basic properties involving invertible matrices.
•  Know the properties of the matrix transpose and its relationship with invertible matrices.

Exercise Set 1.4
1. Let

Show that
(a)  
(b)  
(c)  
(d)  

2. Using the matrices and scalars in Exercise 1, verify that
(a)  
(b)  
(c)  
(d)  

3. Using the matrices and scalars in Exercise 1, verify that
(a)  

(b)  

(c)  

(d)  



In Exercises 4–7 use Theorem 1.4.5 to compute the inverses of the following matrices.

4. 

5. 

Answer:

6. 

7. 

Answer:

8. Find the inverse of

9. Find the inverse of

Answer:

10. Use the matrix A in Exercise 4 to verify that .

11. Use the matrix B in Exercise 5 to verify that .

12. Use the matrices A and B in 4 and 5 to verify that .



13. Use the matrices A, B, and C in Exercises 4–6 to verify that .

In Exercises 14–17, use the given information to find A.

14. 

15. 

Answer:

16. 

17. 

Answer:

18. Let A be the matrix

In each part, compute the given quantity.
(a)  

(b)  

(c)  

(d)  , where 

(e)  , where 

(f)  , where 

19. Repeat Exercise 18 for the matrix

Answer:



(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

20. Repeat Exercise 18 for the matrix

21. Repeat Exercise 18 for the matrix

Answer:

(a)  

(b)  

(c)  

(d)  

(e)  



(f)  

In Exercises 22–24, let , and . Show that
 for the given matrix.

22. The matrix A in Exercise 18.

23. The matrix A in Exercise 21.

24. An arbitrary square matrix A.

25. Show that if  and

then .

26. Show that if  and

then .

27. Consider the matrix

where . Show that A is invertible and find its inverse.

Answer:

28. Show that if a square matrix A satisfies , then .

29. (a)  Show that a matrix with a row of zeros cannot have an inverse.
(b)  Show that a matrix with a column of zeros cannot have an inverse.

30. Assuming that all matrices are  and invertible, solve for D.



31. Assuming that all matrices are  and invertible, solve for D.

Answer:

32. If A is a square matrix and n is a positive integer, is it true that ? Justify your answer.

33. Simplify:

Answer:

34. Simplify:

In Exercises 35–37, determine whether A is invertible, and if so, find the inverse. [Hint: Solve  for X
by equating corresponding entries on the two sides.]

35. 

Answer:

36. 

37. 

Answer:



38. Prove Theorem 1.4.2.

In Exercises 39–42, use the method of Example 8 to find the unique solution of the given linear system.

39. 

Answer:

40. 

41. 

Answer:

42. 

43. Prove part (a) of Theorem 1.4.1.

44. Prove part (c) of Theorem 1.4.1.

45. Prove part (f) of Theorem 1.4.1.

46. Prove part (b) of Theorem 1.4.2.

47. Prove part (c) of Theorem 1.4.2.

48. Verify Formula 4 in the text by a direct calculation.

49. Prove part (d) of Theorem 1.4.8.

50. Prove part (e) of Theorem 1.4.8.

51. (a)  Show that if A is invertible and , then .
(b)  Explain why part (a) and Example 3 do not contradict one another.

52. Show that if A is invertible and k is any nonzero scalar, then  for all integer values of n.

53. (a)  Show that if A, B, and  are invertible matrices with the same size, then

(b)  What does the result in part (a) tell you about the matrix ?



54. A square matrix A is said to be idempotent if .

(a)  Show that if A is idempotent, then so is .
(b)  Show that if A is idempotent, then  is invertible and is its own inverse.

55. Show that if A is a square matrix such that  for some positive integer k, then the matrix A is
invertible and

True-False Exercises

In parts (a)–(k) determine whether the statement is true or false, and justify your answer.

(a) Two  matrices, A and B, are inverses of one another if and only if .

Answer:

False

(b) For all square matrices A and B of the same size, it is true that .

Answer:

False

(c) For all square matrices A and B of the same size, it is true that .

Answer:

False

(d) If A and B are invertible matrices of the same size, then AB is invertible and .

Answer:

False

(e) If A and B are matrices such that AB is defined, then it is true that .

Answer:

False

(f) The matrix

is invertible if and only if .

Answer:

True



(g) If A and B are matrices of the same size and k is a constant, then .

Answer:

True

(h) If A is an invertible matrix, then so is .

Answer:

True

(i) If  and I is an identity matrix, then
.

Answer:

False

(j) A square matrix containing a row or column of zeros cannot be invertible.

Answer:

True

(k) The sum of two invertible matrices of the same size must be invertible.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.5  Elementary Matrices and a Method for Finding
A−1

In this section we will develop an algorithm for finding the inverse of a matrix, and we will discuss some of the
basic properties of invertible matrices.

In Section 1.1 we defined three elementary row operations on a matrix A:
1.  Multiply a row by a nonzero constant c.
2.  Interchange two rows.
3.  Add a constant c times one row to another.
It should be evident that if we let B be the matrix that results from A by performing one of the operations in this
list, then the matrix A can be recovered from B by performing the corresponding operation in the following list:
1.  Multiply the same row by 1/c.
2.  Interchange the same two rows.
3.  If B resulted by adding c times row r1 of A to row r2, then add −c times r1 to r2.

It follows that if B is obtained from A by performing a sequence of elementary row operations, then there is a
second sequence of elementary row operations, which when applied to B recovers A (Exercise 43). Accordingly,
we make the following definition.

DEFINITION 1

Matrices A and B are said to be row equivalent if either (hence each) can be obtained from the other by
a sequence of elementary row operations.

Our next goal is to show how matrix multiplication can be used to carry out an elementary row operation.

DEFINITION 2

An  matrix is called an elementary matrix if it can be obtained from the  identity matrix 
by performing a single elementary row operation.

 EXAMPLE 1    Elementary Matrices and Row Operations

Listed below are four elementary matrices and the operations that produce them.



The following theorem, whose proof is left as an exercises, shows that when a matrix A is multiplied on the left
by an elementary matrix E, the effect is to perform an elementary row operation on A.

THEOREM 1.5.1   Row Operations by Matrix Multiplication

If the elementary matrix E results from performing a certain row operation on Im and if A is an 
matrix, then the product EA is the matrix that results when this same row operation is performed on A.

 EXAMPLE 2    Using Elementary Matrices

Consider the matrix

and consider the elementary matrix

which results from adding 3 times the first row of  to the third row. The product EA is

which is precisely the same matrix that results when we add 3 times the first row of A to the third
row.

Theorem 1.5.1 will be a useful tool for
developing new results about matrices,
but as a practical matter it is usually
preferable to perform row operations
directly.



We know from the discussion at the beginning of this section that if E is an elementary matrix that results from
performing an elementary row operation on an identity matrix I, then there is a second elementary row
operation, which when applied to E, produces I back again. Table 1 lists these operations. The operations on the
right side of the table are called the inverse operations of the corresponding operations on the left.

Table 1

Row Operation on I That Produces E Row Operation on E That Reproduces I

Multiply row i by Multiply row i by 1/c

Interchange rows i and j Interchange rows i and j

Add c times row i to row j Add −c times row i to row j

 EXAMPLE 3    Row Operations and Inverse Row Operations

In each of the following, an elementary row operation is applied to the  identity matrix to
obtain an elementary matrix E, then E is restored to the identity matrix by applying the inverse row
operation.

The next theorem is a key result about invertibility of elementary matrices. It will be a building block for many
results that follow.



THEOREM 1.5.2

Every elementary matrix is invertible, and the inverse is also an elementary matrix.

Proof   If E is an elementary matrix, then E results by performing some row operation on I. Let  be the
matrix that results when the inverse of this operation is performed on I. Applying Theorem 1.5.1 and using the
fact that inverse row operations cancel the effect of each other, it follows that

Thus, the elementary matrix  is the inverse of E.

Equivalence Theorem

One of our objectives as we progress through this text is to show how seemingly diverse ideas in linear algebra
are related. The following theorem, which relates results we have obtained about invertibility of matrices,
homogeneous linear systems, reduced row echelon forms, and elementary matrices, is our first step in that
direction. As we study new topics, more statements will be added to this theorem.

THEOREM 1.5.3   Equivalent Statements

If A is an  matrix, then the following statements are equivalent, that is, all true or all false.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A is expressible as a product of elementary matrices.

It may make the logic of our proof of Theorem
1.5.3 more apparent by writing the implications

This makes it evident visually that the validity



of any one statement implies the validity of all
the others, and hence that the falsity of any one
implies the falsity of the others.

Proof   We will prove the equivalence by establishing the chain of implications:

  Assume A is invertible and let  be any solution of. Multiplying both sides of this equation by the
matrix  gives , or , or , or . Thus,  has only the

trivial solution.
  Let  be the matrix form of the system

  (1)

and assume that the system has only the trivial solution. If we solve by Gauss-Jordan elimination, then the
system of equations corresponding to the reduced row echelon form of the augmented matrix will be

  (2)

Thus the augmented matrix

for 1 can be reduced to the augmented matrix

for 2 by a sequence of elementary row operations. If we disregard the last column (all zeros) in each of these
matrices, we can conclude that the reduced row echelon form of A is .

  Assume that the reduced row echelon form of A is , so that A can be reduced to  by a finite
sequence of elementary row operations. By Theorem 1.5.1, each of these operations can be accomplished by
multiplying on the left by an appropriate elementary matrix. Thus we can find elementary matrices

 such that

  (3)



By Theorem 1.5.2,  are invertible. Multiplying both sides of Equation 3 on the left successively
by  we obtain

  (4)

By Theorem 1.5.2, this equation expresses A as a product of elementary matrices.
  If A is a product of elementary matrices, then from Theorem 1.4.7 and Theorem 1.5.2, the matrix A

is a product of invertible matrices and hence is invertible.

A Method for Inverting Matrices

As a first application of Theorem 1.5.3, we will develop a procedure (or algorithm) that can be used to tell
whether a given matrix is invertible, and if so, produce its inverse. To derive this algorithm, assume for the
moment, that A is an invertible  matrix. In Equation 3, the elementary matrices execute a sequence of row
operations that reduce A to . If we multiply both sides of this equation on the right by  and simplify, we
obtain

But this equation tells us that the same sequence of row operations that reduces A to  will transform  to 
. Thus, we have established the following result.

   Inversion Algorithm

To find the inverse of an invertible matrix A, find a sequence of elementary row operations that reduces
A to the identity and then perform that same sequence of operations on  to obtain .

A simple method for carrying out this procedure is given in the following example.

 EXAMPLE 4    Using Row Operations to Find A−1

Find the inverse of

Solution   We want to reduce A to the identity matrix by row operations and simultaneously
apply these operations to I to produce . To accomplish this we will adjoin the identity matrix
to the right side of A, thereby producing a partitioned matrix of the form

Then we will apply row operations to this matrix until the left side is reduced to I; these
operations will convert the right side to , so the final matrix will have the form



The computations are as follows:

Thus,

Often it will not be known in advance if a given  matrix A is invertible. However, if it is not, then by parts
(a) and (c) of Theorem 1.5.3 it will be impossible to reduce A to  by elementary row operations. This will be
signaled by a row of zeros appearing on the left side of the partition at some stage of the inversion algorithm. If
this occurs, then you can stop the computations and conclude that A is not invertible.

 EXAMPLE 5    Showing That a Matrix Is Not Invertible

Consider the matrix

Applying the procedure of Example 4 yields



Since we have obtained a row of zeros on the left side, A is not invertible.

 EXAMPLE 6    Analyzing Homogeneous Systems

Use Theorem 1.5.3 to determine whether the given homogeneous system has nontrivial solutions.
(a)  

(b)  

Solution   From parts (a) and (b) of Theorem 1.5.3 a homogeneous linear system has only the
trivial solution if and only if its coefficient matrix is invertible. From Example 4 and Example 5
the coefficient matrix of system (a) is invertible and that of system (b) is not. Thus, system (a) has
only the trivial solution whereas system (b) has nontrivial solutions.

Concept Review
•  Row equivalent matrices
•  Elementary matrix
•  Inverse operations
•  Inversion algorithm

Skills
•  Determine whether a given square matrix is an elementary.
•  Determine whether two square matrices are row equivalent.
•  Apply the inverse of a given elementary rwo operation to a matrix.
•  Apply elementary row operations to reduce a given square matrix to the identity matrix.



•  Understand the relationships between statements that are equivalent to the invertibility of a square
matrix (Theorem 1.5.3).

•  Use the inversion algorithm to find the inverse of an invertible matrix.
•  Express an invertible matrix as a product of elementary matrices.

Exercise Set 1.5
1. Decide whether each matrix below is an elementary matrix.

(a)  

(b)  

(c)  

(d)  

Answer:

(a)  Elementary
(b)  Not elementary
(c)  Not elementary
(d)  Not elementary

2. Decide whether each matrix below is an elementary matrix.
(a)  

(b)  

(c)  

(d)  

3. Find a row operation and the corresponding elementry matrix that will restore the given elementary matrix to



the identity matrix.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  Add 3 times row 2 to row 1: 

(b)  

Multiply row 1 by : 

(c)  
Add 5 times row 1 to row 3: 

(d)  

Swap rows 1 and 3: 

4. Find a row operation and the corresponding elementry matrix that will restore the given elementary matrix to
the identity matrix.
(a)  

(b)  

(c)  



(d)  

5. In each part, an elementary matrix E and a matrix A are given. Write down the row operation corresponding
to E and show that the product EA results from applying the row operation to A.
(a)  

(b)  

(c)  

Answer:

(a)  Swap rows 1 and 2: 

(b)  
Add  times row 2 to row 3: 

(c)  
Add 4 times row 3 to row 1: 

6. In each part, an elementary matrix E and a matrix A are given. Write down the row operation corresponding
to E and show that the product EA results from applying the row operation to A.
(a)  

(b)  

(c)  

In Exercises 7–8, use the following matrices.



7. Find an elementary matrix E that satisfies the equation.
(a)  
(b)  
(c)  
(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

8. Find an elementary matrix E that satisfies the equation.
(a)  
(b)  
(c)  
(d)  

In Exercises 9–24, use the inversion algorithm to find the inverse of the given matrix, if the inverse exists.

9. 

Answer:



10. 

11. 

Answer:

12. 

13. 

Answer:

14. 

15. 

Answer:

No inverse

16. 

17. 

Answer:



18. 

19. 

Answer:

20. 

21. 

Answer:

22. 



23. 

Answer:

24. 

In Exercises 25–26, find the inverse of each of the following  matrices, where , and k are
all nonzero.

25. (a)  

(b)  

Answer:

(a)  



(b)  

26. (a)  

(b)  

In Exercise 27–Exercise 28, find all values of c, if any, for which the given matrix is invertible.

27. 

Answer:

28. 

In Exercises 29–32, write the given matrix as a product of elementary matrices.

29. 

Answer:

30. 

31. 

Answer:



32. 

In Exercises 33–36, write the inverse of the given matrix as a product of elementary matrices.

33. The matrix in Exercise 29.

Answer:

34. The matrix in Exercise 30.

35. The matrix in Exercise 31.

Answer:

36. The matrix in Exercise 32.

In Exercises 37–38, show that the given matrices A and B are row equivalent, and find a sequence of
elementary row operations that produces B from A.

37. 

Answer:

Add  times the first row to the second row. Add  times the first row to the third row. Add  times
the second row to the first row. Add the second row to the third row.

38. 

39. Show that if

is an elementary matrix, then at least one entry in the third row must be a zero.



40. Show that

is not invertible for any values of the entries.

41. Prove that if A and B are  matrices, then A and B are row equivalent if and only if A and B have the
same reduced row echelon form.

42. Prove that if A is an invertible matrix and B is row equivalent to A, then B is also invertible.

43. Show that if B is obtained from A by performing a sequence of elementary row operations, then there is a
second sequence of elementary row operations, which when applied to B recovers A.

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) The product of two elementary matrices of the same size must be an elementary matrix.

Answer:

False

(b) Every elementary matrix is invertible.

Answer:

True

(c) If A and B are row equivalent, and if B and C are row equivalent, then A and C are row equivalent.

Answer:

True

(d) If A is an  matrix that is not invertible, then the linear system  has infinitely many solutions.

Answer:

True

(e) If A is an  matrix that is not invertible, then the matrix obtained by interchanging two rows of A cannot
be invertible.

Answer:

True



(f) If A is invertible and a multiple of the first row of A is added to the second row, then the resulting matrix is
invertible.

Answer:

True

(g) An expression of the invertible matrix A as a product of elementary matrices is unique.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.6  More on Linear Systems and Invertible Matrics
In this section we will show how the inverse of a matrix can be used to solve a linear system and we will develop some more results about
invertible matrices.

Number of Solutions of a Linear System

In Section 1.1 we made the statement (based on Figures 1.1.1 and 1.1.2) that every linear system has either no solutions, has exactly one solution,
or has infinitely many solutions. We are now in a position to prove this fundamental result.

THEOREM 1.6.1

A system of linear equations has zero, one, or infinitely many solutions. There are no other possibilities.

Proof   If  is a system of linear equations, exactly one of the following is true: (a) the system has no solutions, (b) the system has exactly
one solution, or (c) the system has more than one solution. The proof will be complete if we can show that the system has infinitely many solutions
in case (c).

Assume that  has more than one solution, and let , where x1 and x2 are any two distinct solutions. Because x1 and x2 are
distinct, the matrix x0 is nonzero; moreover,

If we now let k be any scalar, then

But this says that  is a solution of . Since x0 is nonzero and there are infinitely many choices for k, the system  has
infinitely many solutions.

Solving Linear Systems by Matrix Inversion

Thus far we have studied two procedures for solving linear systems–Gauss–Jordan elimination and Gaussian elimination. The following theorem
provides an actual formula for the solution of a linear system of n equations in n unknowns in the case where the coefficient matrix is invertible.

THEOREM 1.6.2

If A is an invertible  matrix, then for each  matrix b, the system of equations  has exactly one solution, namely, 
.

Proof   Since , it follows that  is a solution of . To show that this is the only solution, we will assume that x0 is an

arbitrary solution and then show that x0 must be the solution .

If x0 is any solution of , then . Multiplying both sides of this equation by , we obtain .

 EXAMPLE 1    Solution of a Linear System Using A−1

Consider the system of linear equations

In matrix form this system can be written as , where



In Example 4 of the preceding section, we showed that A is invertible and

By Theorem 1.6.2, the solution of the system is

or .

Keep in mind that the method of Example 1 only applies when the
system has as many equations as unknowns and the coefficient
matrix is invertible.

Linear Systems with a Common Coefficient Matrix

Frequently, one is concerned with solving a sequence of systems

each of which has the same square coefficient matrix A. If A is invertible, then the solutions

can be obtained with one matrix inversion and k matrix multiplications. An efficient way to do this is to form the partitioned matrix

  (1)

in which the coefficient matrix A is “augmented” by all k of the matrices b1, b2,…,bk, and then reduce 1 to reduced row echelon form by Gauss-
Jordan elimination. In this way we can solve all k systems at once. This method has the added advantage that it applies even when A is not
invertible.

 EXAMPLE 2    Solving Two Linear Systems at Once

Solve the systems
(a)  

(b)  

Solution   The two systems have the same coefficient matrix. If we augment this coefficient matrix with the columns of constants on
the right sides of these systems, we obtain

Reducing this matrix to reduced row echelon form yields (verify)

It follows from the last two columns that the solution of system (a) is , ,  and the solution of system (b) is 
, , .



Properties of Invertible Matrices

Up to now, to show that an  matrix A is invertible, it has been necessary to find an  matrix B such that

The next theorem shows that if we produce an  matrix B satisfying either condition, then the other condition holds automatically.

THEOREM 1.6.3

Let A be a square matrix.
(a)  If B is a square matrix satisfying , then .

(b)  If B is a square matrix satisfying , then .

We will prove part (a) and leave part (b) as an exercise.

Proof (a)   Assume that . If we can show that A is invertible, the proof can be completed by multiplying  on both sides by  to
obtain

To show that A is invertible, it suffices to show that the system  has only the trivial solution (see Theorem 1.5.3). Let x0 be any solution of
this system. If we multiply both sides of  on the left by B, we obtain  or  or . Thus, the system of equations

 has only the trivial solution.

Equivalence Theorem

We are now in a position to add two more statements to the four given in Theorem 1.5.3.

THEOREM 1.6.4   Equivalent Statements

If A is an  matrix, then the following are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is In.

(d)  A is expressible as a product of elementary matrices.
(e)   is consistent for every  matrix b.
(f)   has exactly one solution for every  matrix b.

It follows from the equivalency of parts (e) and (f) that if you can
show that  has at least one solution for every  matrix
b, then you can conclude that it has exactly one solution for every

 matrix b.

Proof   Since we proved in Theorem 1.5.3 that (a), (b), (c), and (d) are equivalent, it will be sufficient to prove that .

  This was already proved in Theorem 1.6.2.
  This is self-evident, for if  has exactly one solution for every  matrix b, then  is consistent for every  matrix b.



  If the system  is consistent for every  matrix b, then, in particular, this is so for the systems

Let x1, x2,…,xn be solutions of the respective systems, and let us form an  matrix C having these solutions as columns. Thus C has the form

As discussed in Section 1.3, the successive columns of the product AC will be

[see Formula 8 of Section 1.3]. Thus,

By part (b) of Theorem 1.6.3, it follows that . Thus, A is invertible.

We know from earlier work that invertible matrix factors produce an invertible product. Conversely, the following theorem It shows that if the
product of square matrices is invertible, then the factors themselves must be invertible.

THEOREM 1.6.5

Let A and B be square matrices of the same size. If AB is invertible, then A and B must also be invertible.

In our later work the following fundamental problem will occur frequently in various contexts.

A Fundamental Problem

Let A be a fixed  matrix. Find all  matrices b such that the system of equations  is consistent.

If A is an invertible matrix, Theorem 1.6.2 completely solves this problem by asserting that for every  matrix b, the linear system  has
the unique solution . If A is not square, or if A is square but not invertible, then Theorem 1.6.2 does not apply. In these cases the matrix b
must usually satisfy certain conditions in order for  to be consistent. The following example illustrates how the methods of Section 1.2 can
be used to determine such conditions.

 EXAMPLE 3    Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

to be consistent?

Solution   The augmented matrix is

which can be reduced to row echelon form as follows:



It is now evident from the third row in the matrix that the system has a solution if and only if b1, b2, and b3 satisfy the condition

To express this condition another way,  is consistent if and only if b is a matrix of the form

where b1 and b2 are arbitrary.

 EXAMPLE 4    Determining Consistency by Elimination

What conditions must b1, b2, and b3 satisfy in order for the system of equations

to be consistent?

Solution   The augmented matrix is

Reducing this to reduced row echelon form yields (verify)

  (2)

In this case there are no restrictions on b1, b2, and b3, so the system has the unique solution

  (3)

for all values of b1, b2, and b3.

What does the result in Example 4 tell you about the coefficient
matrix of the system?

Skills
•  Determine whether a linear system of equations has no solutions, exactly one solution, or infinitely many solutions.
•  Solve linear systems by inverting its coefficient matrix.
•  Solve multiple linear systems with the same coefficient matrix simultaneously.



•  Be familiar with the additional conditions of invertibility stated in the Equivalence Theorem.

Exercise Set 1.6

In Exercises 1–8, solve the system by inverting the coefficient matrix and using Theorem 1.6.2.

1. 

Answer:

2. 

3. 

Answer:

4. 

5. 

Answer:

6. 

7. 

Answer:

8. 

In Exercises 9–12, solve the linear systems together by reducing the appropriate augmented matrix.

9. 

(i)  
(ii)  

Answer:

(i)  

(ii)  



10. 

(i)  
(ii)  

11. 

(i)  
(ii)  
(iii)  
(iv)  

Answer:

(i)  

(ii)  

(iii)  

(iv)  

12. 

(i)  
(ii)  
(iii)  

In Exercises 13–17, determine conditions on the bi's, if any, in order to guarantee that the linear system is consistent.

13. 

Answer:

No conditions on  and 

14. 

15. 

Answer:

16. 

17. 

Answer:

18. Consider the matrices



(a)  Show that the equation  can be rewritten as  and use this result to solve  for x.

(b)  Solve .

In Exercises 19–20, solve the given matrix equation for X.

19. 

Answer:

20. 

21. Let  be a homogeneous system of n linear equations in n unknowns that has only the trivial solution. Show that if k is any positive
integer, then the system  also has only the trivial solution.

22. Let  be a homogeneous system of n linear equations in n unknowns, and let Q be an invertible  matrix. Show that  has just
the trivial solution if and only if  has just the trivial solution.

23. Let  be any consistent system of linear equations, and let x1 be a fixed solution. Show that every solution to the system can be written in
the form , where x0 is a solution to . Show also that every matrix of this form is a solution.

24. Use part (a) of Theorem 1.6.3 to prove part (b).

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) It is impossible for a linear system of linear equations to have exactly two solutions.

Answer:

True

(b) If the linear system  has a unique solution, then the linear system  also must have a unique solution.

Answer:

True

(c) If A and B are  matrices such that , then .

Answer:

True

(d) If A and B are row equivalent matrices, then the linear systems  and  have the same solution set.

Answer:

True

(e) If A is an  matrix and S is an  invertible matrix, then if x is a solution to the linear system , then Sx is a solution to the
linear system .

Answer:

True



(f) Let A be an  matrix. The linear system  has a unique solution if and only if  is an invertible matrix.

Answer:

True

(g) Let A and B be  matrices. If A or B (or both) are not invertible, then neither is AB.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.7  Diagonal, Triangular, and Symmetric Matrices
In this section we will discuss matrices that have various special forms. These matrices arise in a wide variety of applications
and will also play an important role in our subsequent work.

Diagonal Matrices

A square matrix in which all the entries off the main diagonal are zero is called a diagonal matrix. Here are some examples:

A general  diagonal matrix D can be written as

  (1)

A diagonal matrix is invertible if and only if all of its diagonal entries are nonzero; in this case the inverse of 1 is

  (2)

Confirm Formula 2 by showing that

Powers of diagonal matrices are easy to compute; we leave it for you to verify that if D is the diagonal matrix 1 and k is a
positive integer, then

  (3)

 EXAMPLE 1    Inverses and Powers of Diagonal Matrices

If

then



Matrix products that involve diagonal factors are especially easy to compute. For example,

In words, to multiply a matrix A on the left by a diagonal matrix D, one can multiply successive rows of A by the
successive diagonal entries of D, and to multiply A on the right by D, one can multiply successive columns of A by the
successive diagonal entries of D.

Triangular Matrices

A square matrix in which all the entries above the main diagonal are zero is called lower triangular, and a square matrix in
which all the entries below the main diagonal are zero is called upper triangular. A matrix that is either upper triangular or
lower triangular is called triangular.

 EXAMPLE 2    Upper and Lower Triangular Matrices

Remark   Observe that diagonal matrices are both upper triangular and lower triangular since they have zeros below and
above the main diagonal. Observe also that a square matrix in row echelon form is upper triangular since it has zeros below
the main diagonal.

Properties of Triangular Matrices



Example 2 illustrates the following four facts about triangular matrices that we will state without formal proof.
•  A square matrix  is upper triangular if and only if all entries to the left of the main diagonal are zero; that is,

 if  (Figure 1.7.1).

•  A square matrix  is lower triangular if and only if all entries to the right of the main diagonal are zero; that is,
 if  (Figure 1.7.1).

•  A square matrix  is upper triangular if and only if the ith row starts with at least  zeros for every i.

•  A square matrix  is lower triangular if and only if the jth column starts with at least  zeros for every j.

Figure 1.7.1   

The following theorem lists some of the basic properties of triangular matrices.

THEOREM 1.7.1

(a)  The transpose of a lower triangular matrix is upper triangular, and the transpose of an upper triangular matrix is
lower triangular.

(b)  The product of lower triangular matrices is lower triangular, and the product of upper triangular matrices is upper
triangular.

(c)  A triangular matrix is invertible if and only if its diagonal entries are all nonzero.
(d)  The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an invertible upper

triangular matrix is upper triangular.

Part (a) is evident from the fact that transposing a square matrix can be accomplished by reflecting the entries about the main
diagonal; we omit the formal proof. We will prove (b), but we will defer the proofs of (c) and (d) to the next chapter, where
we will have the tools to prove those results more efficiently.

Proof (b)   We will prove the result for lower triangular matrices; the proof for upper triangular matrices is similar. Let
 and  be lower triangular  matrices, and let  be the product . We can prove that C

is lower triangular by showing that  for . But from the definition of matrix multiplication,

If we assume that , then the terms in this expression can be grouped as follows:

In the first grouping all of the b factors are zero since B is lower triangular, and in the second grouping all of the a factors are
zero since A is lower triangular. Thus, , which is what we wanted to prove.

 EXAMPLE 3    Computations with Triangular Matrices



Consider the upper triangular matrices

It follows from part (c) of Theorem 1.7.1 that the matrix A is invertible but the matrix B is not. Moreover, the
theorem also tells us that , AB, and BA must be upper triangular. We leave it for you to confirm these three
statements by showing that

Symmetric Matrices

DEFINITION 1

A square matrix A is said to be symmetric if .

It is easy to recognize a symmetric matrix by
inspection: The entries on the main diagonal have no
restrictions, but mirror images of entries across the
main diagonal must be equal. Here is a picture using
the second matrix in Example 4:

All diagonal matrices, such as the third matrix in
Example 4, obviously have this property.

 EXAMPLE 4    Symmetric Matrices

The following matrices are symmetric, since each is equal to its own transpose (verify).



Remark   It follows from Formula 11 of Section 1.3 that a square matrix  is symmetric if and only if

  (4)

for all values of i and j.

The following theorem lists the main algebraic properties of symmetric matrices. The proofs are direct consequences of
Theorem 1.4.8 and are omitted.

THEOREM 1.7.2

If A and B are symmetric matrices with the same size, and if k is any scalar, then:
(a)  AT is symmetric.
(b)   and  are symmetric.
(c)  kA is symmetric.

It is not true, in general, that the product of symmetric matrices is symmetric. To see why this is so, let A and B be symmetric
matrices with the same size. Then it follows from part (e) of Theorem 1.4.8 and the symmetry of A and B that

Thus,  if and only if , that is, if and only if A and B commute. In summary, we have the following
result.

THEOREM 1.7.3

The product of two symmetric matrices is symmetric if and only if the matrices commute.

 EXAMPLE 5    Products of Symmetric Matrices

The first of the following equations shows a product of symmetric matrices that is not symmetric, and the
second shows a product of symmetric matrices that is symmetric. We conclude that the factors in the first
equation do not commute, but those in the second equation do. We leave it for you to verify that this is so.

Invertibility of Symmetric Matrices

In general, a symmetric matrix need not be invertible. For example, a diagonal matrix with a zero on the main diagonal is



symmetric but not invertible. However, the following theorem shows that if a symmetric matrix happens to be invertible, then
its inverse must also be symmetric.

THEOREM 1.7.4

If A is an invertible symmetric matrix, then  is symmetric.

Proof   Assume that A is symmetric and invertible. From Theorem 1.4.9 and the fact that , we have

which proves that  is symmetric.

Products AAT and ATA

Matrix products of the form AAT and ATA arise in a variety of applications. If A is an  matrix, then AT is an 
matrix, so the products AAT and ATA are both square matrices—the matrix AAT has size , and the matrix ATA has size

. Such products are always symmetric since

 EXAMPLE 6    The Product of a Matrix and Its Transpose Is Symmetric

Let A be the  matrix

Then

Observe that ATA and AAT are symmetric as expected.

Later in this text, we will obtain general conditions on A under which AAT and ATA are invertible. However, in the special
case where A is square, we have the following result.

THEOREM 1.7.5

If A is an invertible matrix, then AAT and ATA are also invertible.



Proof   Since A is invertible, so is AT by Theorem 1.4.9. Thus AAT and ATA are invertible, since they are the products of
invertible matrices.

Concept Review
•  Diagonal matrix
•  Lower triangular matrix
•  Upper triangular matrix
•  Triangular matrix
•  Symmetric matrix

Skills
•  Determine whether a diagonal matrix is invertible with no computations.
•  Compute matrix products involving diagonal matrices by inspection.
•  Determine whether a matrix is triangular.
•  Understand how the transpose operation affects diagonal and triangular matrices.
•  Understand how inversion affects diagonal and triangular matrices.
•  Determine whether a matrix is a symmetric matrix.

Exercise Set 1.7

In Exercises 1–4, determine whether the given matrix is invertible.

1. 

Answer:

2. 

3. 

Answer:



4. 

In Exercises 5–8, determine the product by inspection.

5. 

Answer:

6. 

7. 

Answer:

8. 

In Exercises 9–12, find , , and  (where k is any integer) by inspection.

9. 

Answer:

10. 



11. 

Answer:

12. 

In Exercises 13–19, decide whether the given matrix is symmetric.

13. 

Answer:

Not symmetric

14. 

15. 

Answer:

Symmetric

16. 

17. 

Answer:

Not symmetric

18. 

19. 

Answer:



Not symmetric

In Exercises 20–22, decide by inspection whether the given matrix is invertible.

20. 

21. 

Answer:

Not invertible

22. 

In Exercises 23–24, find all values of the unknown constant(s) in order for A to be symmetric.

23. 

Answer:

24. 

In Exercises 25–26, find all values of x in order for A to be invertible.

25. 

Answer:

26. 

In Exercises 27–28, find a diagonal matrix A that satisfies the given condition.

27. 

Answer:



28. 

29. Verify Theorem 1.7.1(b) for the product AB, where

30. Verify Theorem 1.7.1(d) for the matrices A and B in Exercise 29.

31. Verify Theorem 1.7.4 for the given matrix A.
(a)  

(b)  

32. Let A be an  symmetric matrix.
(a)  Show that A2 is symmetric.
(b)  Show that  is symmetric.

33. Prove: If , then A is symmetric and .

34. Find all  diagonal matrices A that satisfy .

35. Let  be an  matrix. Determine whether A is symmetric.

(a)  

(b)  

(c)  
(d)  

Answer:

(a)  Yes
(b)  No (unless )
(c)  Yes
(d)  No (unless )

36. On the basis of your experience with Exercise 35, devise a general test that can be applied to a formula for aij to determine
whether  is symmetric.

37. A square matrix A is called skew-symmetric if .

Prove:
(a)  If A is an invertible skew-symmetric matrix, then  is skew-symmetric.

(b)  If A and B are skew-symmetric matrices, then so are  for any scalar k.



(c)  Every square matrix A can be expressed as the sum of a symmetric matrix and a skew-symmetric matrix. [Hint: Note
the identity .]

In Exercises 38–39, fill in the missing entries (marked with ×) to produce a skew-symmetric matrix.

38. 

39. 

Answer:

40. Find all values of a, b, c, and d for which A is skew-symmetric.

41. We showed in the text that the product of symmetric matrices is symmetric if and only if the matrices commute. Is the
product of commuting skew-symmetric matrices skew- symmetric? Explain. [Note: See Exercise 37 for the deffinition of
skew-symmetric.]

42. If the  matrix A can be expressed as , where L is a lower triangular matrix and U is an upper triangular
matrix, then the linear system  can be expressed as  and can be solved in two steps:
Step 1. Let , so that  can be expressed as . Solve this system.

Step 2. Solve the system  for x.

In each part, use this two-step method to solve the given system.
(a)  

(b)  

43. Find an upper triangular matrix that satisfies

Answer:

True-False Exercises

In parts (a)–(m) determine whether the statement is true or false, and justify your answer.

(a) The transpose of a diagonal matrix is a diagonal matrix.



Answer:

True

(b) The transpose of an upper triangular matrix is an upper triangular matrix.

Answer:

False

(c) The sum of an upper triangular matrix and a lower triangular matrix is a diagonal matrix.

Answer:

False

(d) All entries of a symmetric matrix are determined by the entries occurring on and above the main diagonal.

Answer:

True

(e) All entries of an upper triangular matrix are determined by the entries occurring on and above the main diagonal.

Answer:

True

(f) The inverse of an invertible lower triangular matrix is an upper triangular matrix.

Answer:

False

(g) A diagonal matrix is invertible if and only if all of its diagonal entries are positive.

Answer:

False

(h) The sum of a diagonal matrix and a lower triangular matrix is a lower triangular matrix.

Answer:

True

(i) A matrix that is both symmetric and upper triangular must be a diagonal matrix.

Answer:

True

(j) If A and B are  matrices such that  is symmetric, then A and B are symmetric.

Answer:

False

(k) If A and B are  matrices such that  is upper triangular, then A and B are upper triangular.

Answer:

False

(l) If A2 is a symmetric matrix, then A is a symmetric matrix.



Answer:

False

(m) If kA is a symmetric matrix for some , then A is a symmetric matrix.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.8  Applications of Linear Systems
In this section we will discuss some relatively brief applications of linear systems. These are but a small sample of the wide
variety of real-world problems to which our study of linear systems is applicable.

Network Analysis

The concept of a network appears in a variety of applications. Loosely stated, a network is a set of branches through which
something “flows.” For example, the branches might be electrical wires through which electricity flows, pipes through
which water or oil flows, traffic lanes through which vehicular traffic flows, or economic linkages through which money
flows, to name a few possibilities.

In most networks, the branches meet at points, called nodes or junctions, where the flow divides. For example, in an
electrical network, nodes occur where three or more wires join, in a traffic network they occur at street intersections, and in
a financial network they occur at banking centers where incoming money is distributed to individuals or other institutions.

In the study of networks, there is generally some numerical measure of the rate at which the medium flows through a
branch. For example, the flow rate of electricity is often measured in amperes, the flow rate of water or oil in gallons per
minute, the flow rate of traffic in vehicles per hour, and the flow rate of European currency in millions of Euros per day.
We will restrict our attention to networks in which there is flow conservation at each node, by which we mean that the rate
of flow into any node is equal to the rate of flow out of that node. This ensures that the flow medium does not build up at
the nodes and block the free movement of the medium through the network.

A common problem in network analysis is to use known flow rates in certain branches to find the flow rates in all of the
branches. Here is an example.

 EXAMPLE 1    Network Analysis Using Linear Systems

Figure 1.8.1 shows a network with four nodes in which the flow rate and direction of flow in certain
branches are known. Find the flow rates and directions of flow in the remaining branches.

Figure 1.8.1   

Solution   As illustrated in Figure 1.8.2, we have assigned arbitrary directions to the unknown flow rates
, and . We need not be concerned if some of the directions are incorrect, since an incorrect direction

will be signaled by a negative value for the flow rate when we solve for the unknowns.



Figure 1.8.2   

It follows from the conservation of flow at node A that

Similarly, at the other nodes we have

These four conditions produce the linear system

which we can now try to solve for the unknown flow rates. In this particular case the system is sufficiently
simple that it can be solved by inspection (work from the bottom up). We leave it for you to confirm that the
solution is

The fact that  is negative tells us that the direction assigned to that flow in Figure 1.8.2 is incorrect; that is,
the flow in that branch is into node A.

 EXAMPLE 2    Design of Traffic Patterns

The network in Figure 1.8.3 shows a proposed plan for the traffic flow around a new park that will house the
Liberty Bell in Philadelphia, Pennsylvania. The plan calls for a computerized traffic light at the north exit on
Fifth Street, and the diagram indicates the average number of vehicles per hour that are expected to flow in
and out of the streets that border the complex. All streets are one-way.
(a)  How many vehicles per hour should the traffic light let through to ensure that the average number of

vehicles per hour flowing into the complex is the same as the average number of vehicles flowing out?
(b)  Assuming that the traffic light has been set to balance the total flow in and out of the complex, what can

you say about the average number of vehicles per hour that will flow along the streets that border the
complex?



Figure 1.8.3   

Solution   
(a)  If, as indicated in Figure 1.8.3b we let x denote the number of vehicles per hour that the traffic light must

let through, then the total number of vehicles per hour that flow in and out of the complex will be

Equating the flows in and out shows that the traffic light should let x = 600 vehicles per hour pass
through.

(b)  To avoid traffic congestion, the flow in must equal the flow out at each intersection. For this to happen,
the following conditions must be satisfied:

Intersection Flow In  Flow Out

A =

B =

C =

D = 700

Thus, with , as computed in part (a), we obtain the following linear system:

We leave it for you to show that the system has infinitely many solutions and that these are given by the
parametric equations

  (1)

However, the parameter t is not completely arbitrary here, since there are physical constraints to be
considered. For example, the average flow rates must be nonnegative since we have assumed the streets
to be one-way, and a negative flow rate would indicate a flow in the wrong direction. This being the
case, we see from 1 that t can be any real number that satisfies , which implies that the
average flow rates along the streets will fall in the ranges



Electrical Circuits

Next, we will show how network analysis can be used to analyze electrical circuits consisting of batteries and resistors. A
battery is a source of electric energy, and a resistor, such as a lightbulb, is an element that dissipates electric energy. Figure
1.8.4 shows a schematic diagram of a circuit with one battery (represented by the symbol ), one resistor (represented by

the symbol ), and a switch. The battery has a positive pole (+) and a negative pole (−). When the switch is closed,
electrical current is considered to flow from the positive pole of the battery, through the resistor, and back to the negative
pole (indicated by the arrowhead in the figure).

Figure 1.8.4   

Electrical current, which is a flow of electrons through wires, behaves much like the flow of water through pipes. A battery
acts like a pump that creates “electrical pressure” to increase the flow rate of electrons, and a resistor acts like a restriction
in a pipe that reduces the flow rate of electrons. The technical term for electrical pressure is electrical potential; it is
commonly measured in volts (V). The degree to which a resistor reduces the electrical potential is called its resistance and
is commonly measured in ohms (Ω). The rate of flow of electrons in a wire is called current and is commonly measured in
amperes (also called amps) (A). The precise effect of a resistor is given by the following law:

Ohm's Law

If a current of I amperes passes through a resistor with a resistance of R ohms, then there is a resulting drop of E
volts in electrical potential that is the product of the current and resistance; that is,

A typical electrical network will have multiple batteries and resistors joined by some configuration of wires. A point at
which three or more wires in a network are joined is called a node (or junction point). A branch is a wire connecting two
nodes, and a closed loop is a succession of connected branches that begin and end at the same node. For example, the
electrical network in Figure 1.8.5 has two nodes and three closed loops— two inner loops and one outer loop. As current
flows through an electrical network, it undergoes increases and decreases in electrical potential, called voltage rises and
voltage drops, respectively. The behavior of the current at the nodes and around closed loops is governed by two
fundamental laws:

Figure 1.8.5   



Kirchhoff's Current Law

The sum of the currents flowing into any node is equal to the sum of the currents flowing out.

Kirchhoff's Voltage Law

In one traversal of any closed loop, the sum of the voltage rises equals the sum of the voltage drops.

Kirchhoff's current law is a restatement of the principle of flow conservation at a node that was stated for general networks.
Thus, for example, the currents at the top node in Figure 1.8.6 satisfy the equation .

Figure 1.8.6   

In circuits with multiple loops and batteries there is usually no way to tell in advance which way the currents are flowing,
so the usual procedure in circuit analysis is to assign arbitrary directions to the current flows in the branches and let the
mathematical computations determine whether the assignments are correct. In addition to assigning directions to the
current flows, Kirchhoff's voltage law requires a direction of travel for each closed loop. The choice is arbitrary, but for
consistency we will always take this direction to be clockwise (Figure 1.8.7). We also make the following conventions:
•  A voltage drop occurs at a resistor if the direction assigned to the current through the resistor is the same as the direction

assigned to the loop, and a voltage rise occurs at a resistor if the direction assigned to the current through the resistor is
the opposite to that assigned to the loop.

•  A voltage rise occurs at a battery if the direction assigned to the loop is from − to + through the battery, and a voltage
drop occurs at a battery if the direction assigned to the loop is from + to − through the battery.

If you follow these conventions when calculating currents, then those currents whose directions were assigned correctly
will have positive values and those whose directions were assigned incorrectly will have negative values.

Figure 1.8.7   

 EXAMPLE 3    A Circuit with One Closed Loop



Determine the current I in the circuit shown in Figure 1.8.8.

Figure 1.8.8   

Solution   Since the direction assigned to the current through the resistor is the same as the direction of the
loop, there is a voltage drop at the resistor. By Ohm's law this voltage drop is . Also, since the
direction assigned to the loop is from − to + through the battery, there is a voltage rise of 6 volts at the
battery. Thus, it follows from Kirchhoff's voltage law that

from which we conclude that the current is . Since I is positive, the direction assigned to the current
flow is correct.

 EXAMPLE 4    A Circuit with Three Closed Loops

Determine the currents , and  in the circuit shown in Figure 1.8.9.

Figure 1.8.9   

Solution   Using the assigned directions for the currents, Kirchhoff s current law provides one equation for
each node:

Node Current In  Current Out

A =

B =

However, these equations are really the same, since both can be expressed as

  (2)



Gustav Kirchhoff (1824-1887)

Historical Note    The German physicist Gustav Kirchhoff was a student of Gauss. His work on
Kirchhoff's laws, announced in 1854, was a major advance in the calculation of currents, voltages,
and resistances of electrical circuits. Kirchhoff was severely disabled and spent most of his life on
crutches or in a wheelchair.
Image: © SSPL/The Image Works]

To find unique values for the currents we will need two more equations, which we will obtain from
Kirchhoff's voltage law. We can see from the network diagram that there are three closed loops, a left inner
loop containing the 50 V battery, a right inner loop containing the 30 V battery, and an outer loop that
contains both batteries. Thus, Kirchhoff's voltage law will actually produce three equations. With a
clockwise traversal of the loops, the voltage rises and drops in these loops are as follows:

 Voltage Rises Voltage Drops

Left Inside Loop 50

Right Inside Loop 0

Outside Loop

These conditions can be rewritten as

  (3)

However, the last equation is superfluous, since it is the difference of the first two. Thus, if we combine 2
and the first two equations in 3, we obtain the following linear system of three equations in the three
unknown currents:

We leave it for you to solve this system and show that , and . The fact that 
is negative tells us that the direction of this current is opposite to that indicated in Figure 1.8.9.

Balancing Chemical Equations



Chemical compounds are represented by chemical formulas that describe the atomic makeup of their molecules. For
example, water is composed of two hydrogen atoms and one oxygen atom, so its chemical formula is H2O; and stable
oxygen is composed of two oxygen atoms, so its chemical formula is O2.

When chemical compounds are combined under the right conditions, the atoms in their molecules rearrange to form new
compounds. For example, when methane burns, the methane (CH4) and stable oxygen (O2) react to form carbon dioxide
(CO2) and water (H2O). This is indicated by the chemical equation

  (4)

The molecules to the left of the arrow are called the reactants and those to the right the products. In this equation the plus
signs serve to separate the molecules and are not intended as algebraic operations. However, this equation does not tell the
whole story, since it fails to account for the proportions of molecules required for a complete reaction (no reactants left
over). For example, we can see from the right side of 4 that to produce one molecule of carbon dioxide and one molecule
of water, one needs three oxygen atoms for each carbon atom. However, from the left side of 4 we see that one molecule of
methane and one molecule of stable oxygen have only two oxygen atoms for each carbon atom. Thus, on the reactant side
the ratio of methane to stable oxygen cannot be one-to-one in a complete reaction.

A chemical equation is said to be balanced if for each type of atom in the reaction, the same number of atoms appears on
each side of the arrow. For example, the balanced version of Equation 4 is

  (5)

by which we mean that one methane molecule combines with two stable oxygen molecules to produce one carbon dioxide
molecule and two water molecules. In theory, one could multiply this equation through by any positive integer. For
example, multiplying through by 2 yields the balanced chemical equation

However, the standard convention is to use the smallest positive integers that will balance the equation.

Equation 4 is sufficiently simple that it could have been balanced by trial and error, but for more complicated chemical
equations we will need a systematic method. There are various methods that can be used, but we will give one that uses
systems of linear equations. To illustrate the method let us reexamine Equation 4. To balance this equation we must find
positive integers, , and  such that

  (6)

For each of the atoms in the equation, the number of atoms on the left must be equal to the number of atoms on the right.
Expressing this in tabular form we have

 Left Side  Right Side

Carbon =

Hydrogen =

Oxygen =

from which we obtain the homogeneous linear system

The augmented matrix for this system is



We leave it for you to show that the reduced row echelon form of this matrix is

from which we conclude that the general solution of the system is

where t is arbitrary. The smallest positive integer values for the unknowns occur when we let , so the equation can be
balanced by letting . This agrees with our earlier conclusions, since substituting these
values into Equation 6 yields Equation 5.

 EXAMPLE 5    Balancing Chemical Equations Using Linear Systems

Balance the chemical equation

Solution   Let , and  be positive integers that balance the equation

  (7)

Equating the number of atoms of each type on the two sides yields

from which we obtain the homogeneous linear system

We leave it for you to show that the reduced row echelon form of the augmented matrix for this system is

from which we conclude that the general solution of the system is



where t is arbitrary. To obtain the smallest positive integers that balance the equation, we let , in which
case we obtain , and . Substituting these values in 7 produces the balanced
equation

Polynomial Interpolation

An important problem in various applications is to find a polynomial whose graph passes through a specified set of points
in the plane; this is called an interpolating polynomial for the points. The simplest example of such a problem is to find a
linear polynomial

  (8)

whose graph passes through two known distinct points,  and , in the xy-plane (Figure 1.8.10). You have
probably encountered various methods in analytic geometry for finding the equation of a line through two points, but here
we will give a method based on linear systems that can be adapted to general polynomial interpolation.

Figure 1.8.10   

The graph of 8 is the line , and for this line to pass through the points  and , we must have

Therefore, the unknown coefficients a and b can be obtained by solving the linear system

We don't need any fancy methods to solve this system—the value of a can be obtained by subtracting the equations to
eliminate b, and then the value of a can be substituted into either equation to find b. We leave it as an exercise for you to
find a and b and then show that they can be expressed in the form

  (9)

provided . Thus, for example, the line  that passes through the points

can be obtained by taking  and , in which case 9 yields

Therefore, the equation of the line is



(Figure 1.8.11).

Figure 1.8.11   

Now let us consider the more general problem of finding a polynomial whose graph passes through n points with distinct
x-coordinates

  (10)

Since there are n conditions to be satisfied, intuition suggests that we should begin by looking for a polynomial of the form

  (11)

since a polynomial of this form has n coefficients that are at our disposal to satisfy the n conditions. However, we want to
allow for cases where the points may lie on a line or have some other configuration that would make it possible to use a
polynomial whose degree is less than ; thus, we allow for the possibility that  and other coefficients in 11 may
be zero.

The following theorem, which we will prove later in the text, is the basic result on polynomial interpolation.

THEOREM 1.8.1   Polynomial Interpolation

Given any n points in the xy-plane that have distinct x-coordinates, there is a unique polynomial of degree n — 1
or less whose graph passes through those points.

Let us now consider how we might go about finding the interpolating polynomial 11 whose graph passes through the points
in 10. Since the graph of this polynomial is the graph of the equation

  (12)

it follows that the coordinates of the points must satisfy

  (13)

In these equations the values of x's and y's are assumed to be known, so we can view this as a linear system in the
unknowns . From this point of view the augmented matrix for the system is



  (14)

and hence the interpolating polynomial can be found by reducing this matrix to reduced row echelon form (Gauss-Jordan
elimination).

 EXAMPLE 6    Polynomial Interpolation by Gauss-Jordan Elimination

Find a cubic polynomial whose graph passes through the points

Solution   Since there are four points, we will use an interpolating polynomial of degree . Denote this
polynomial by

and denote the x- and y-coordinates of the given points by

Thus, it follows from 14 that the augmented matrix for the linear system in the unknowns , and 
is

We leave it for you to confirm that the reduced row echelon form of this matrix is

from which it follows that . Thus, the interpolating polynomial is

The graph of this polynomial and the given points are shown in Figure 1.8.12.



Figure 1.8.12   

Remark   Later we will give a more efficient method for finding interpolating polynomials that is better suited for
problems in which the number of data points is large.

 C A L C U L U S  A N D  C A L C U L AT I N G  U T I L I T Y R E Q U I R E D  

 EXAMPLE 7    Approximate Integration

There is no way to evaluate the integral

directly since there is no way to express an antiderivative of the integrand in terms of elementary functions.
This integral could be approximated by Simpson's rule or some comparable method, but an alternative
approach is to approximate the integrand by an interpolating polynomial and integrate the approximating
polynomial. For example, let us consider the five points

that divide the interval [0, 1] into four equally spaced subintervals. The values of

at these points are approximately

The interpolating polynomial is (verify)

  (15)

and

  (16)

As shown in Figure 1.8.13, the graphs of f and p match very closely over the interval [0, 1], so the
approximation is quite good.

Figure 1.8.13   



Concept Review
•  Network
•  Branches
•  Nodes
•  Flow conservation
•  Electrical circuits: battery, resistor, poles (positive and negative), electrical potential, Ohm's law, Kirchhoff's

current law, Kirchhoff's voltage law
•  Chemical equations: reactants, products, balanced equation
•  Interpolating polynomial

Skills
•  Find the flow rates and directions of flow in branches of a network.
•  Find the amount of current flowing through parts of an electrical circuit.
•  Write a balanced chemical equation for a given chemical reaction.
•  Find an interpolating polynomial for a graph passing through a given collection of points.

Exercise Set 1.8
1. The accompanying figure shows a network in which the flow rate and direction of flow in certain branches are known.

Find the flow rates and directions of flow in the remaining branches.

Figure Ex-1   

Answer:

2. The accompanying figure shows known flow rates of hydrocarbons into and out of a network of pipes at an oil refinery.
(a)  Set up a linear system whose solution provides the unknown flow rates.



(b)  Solve the system for the unknown flow rates.
(c)  Find the flow rates and directions of flow if  and .

Figure Ex-2   

3. The accompanying figure shows a network of one-way streets with traffic flowing in the directions indicated. The flow
rates along the streets are measured as the average number of vehicles per hour.
(a)  Set up a linear system whose solution provides the unknown flow rates.
(b)  Solve the system for the unknown flow rates.
(c)  If the flow along the road from A to B must be reduced for construction, what is the minimum flow that is required

to keep traffic flowing on all roads?

Figure Ex-3   

Answer:

(a)  
(b)  
(c)  For all rates to be nonnegative, we need  cars per hour, so 

4. The accompanying figure shows a network of one-way streets with traffic flowing in the directions indicated. The flow
rates along the streets are measured as the average number of vehicles per hour.
(a)  Set up a linear system whose solution provides the unknown flow rates.
(b)  Solve the system for the unknown flow rates.
(c)  Is it possible to close the road from A to B for construction and keep traffic flowing on the other streets? Explain.

Figure Ex-4   

In Exercises 5–8, analyze the given electrical circuits by finding the unknown currents.

5. 



Answer:

6. 

7. 

Answer:

8. 

In Exercises 9–12, write a balanced equation for the given chemical reaction.

9. 

Answer:

, and ; the balanced equation is 

10. 

11. 



Answer:

; the balanced equation is 

12. 

13. Find the quadratic polynomial whose graph passes through the points (1, 1), (2, 2), and (3, 5).

Answer:

14. Find the quadratic polynomial whose graph passes through the points (0, 0), (−1, 1), and (1, 1).

15. Find the cubic polynomial whose graph passes through the points (−1, −1), (0, 1), (1, 3), (4, −1).

Answer:

16. The accompanying figure shows the graph of a cubic polynomial. Find the polynomial.

Figure Ex-16   

17. (a)  Find an equation that represents the family of all second-degree polynomials that pass through the points (0, 1) and
(1,2). [Hint: The equation will involve one arbitrary parameter that produces the members of the family when
varied.]

(b)  By hand, or with the help of a graphing utility, sketch four curves in the family.

Answer:

(a)  Using  as a parameter,  where .

(b)  The graphs for , and 3 are shown.

18. In this section we have selected only a few applications of linear systems. Using the Internet as a search tool, try to find
some more real-world applications of such systems. Select one that is of interest to you, and write a paragraph about it.



True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) In any network, the sum of the flows out of a node must equal the sum of the flows into a node.

Answer:

True

(b) When a current passes through a resistor, there is an increase in the electrical potential in a circuit.

Answer:

False

(c) Kirchhoff's current law states that the sum of the currents flowing into a node equals the sum of the currents flowing out
of the node.

Answer:

True

(d) A chemcial equation is called balanced if the total number of atoms on each side of the equation is the same.

Answer:

False

(e) Given any n points in the xy-plane, there is a unique polynomial of degree  or less whose graph passes through
those points.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



1.9  Leontief Input-Output Models
In 1973 the economist Wassily Leontief was awarded the Nobel prize for his work on economic modeling in which he
used matrix methods to study the relationships between different sectors in an economy. In this section we will discuss
some of the ideas developed by Leontief.

Inputs and Outputs in an Economy

One way to analyze an economy is to divide it into sectors and study how the sectors interact with one another. For
example, a simple economy might be divided into three sectors—manufacturing, agriculture, and utilities. Typically, a
sector will produce certain outputs but will require inputs from the other sectors and itself. For example, the agricultural
sector may produce wheat as an output but will require inputs of farm machinery from the manufacturing sector,
electrical power from the utilities sector, and food from its own sector to feed its workers. Thus, we can imagine an
economy to be a network in which inputs and outputs flow in and out of the sectors; the study of such flows is called
input-output analysis. Inputs and outputs are commonly measured in monetary units (dollars or millions of dollars, for
example) but other units of measurement are also possible.

The flows between sectors of a real economy are not always obvious. For example, in World War II the United States had
a demand for 50,000 new airplanes that required the construction of many new aluminum manufacturing plants. This
produced an unexpectedly large demand for certain copper electrical components, which in turn produced a copper
shortage. The problem was eventually resolved by using silver borrowed from Fort Knox as a copper substitute. In all
likelihood modern input-output analysis would have anticipated the copper shortage.

Most sectors of an economy will produce outputs, but there may exist sectors that consume outputs without producing
anything themselves (the consumer market, for example). Those sectors that do not produce outputs are called open
sectors. Economies with no open sectors are called closed economies, and economies with one or more open sectors are
called open economies (Figure 1.9.1). In this section we will be concerned with economies with one open sector, and our
primary goal will be to determine the output levels that are required for the productive sectors to sustain themselves and
satisfy the demand of the open sector.

Figure 1.9.1   

Leontief Model of an Open Economy

Let us consider a simple open economy with one open sector and three product-producing sectors: manufacturing,
agriculture, and utilities. Assume that inputs and outputs are measured in dollars and that the inputs required by the



productive sectors to produce one dollar's worth of output are in accordance with Table 1.

Table 1

  Income Required per Dollar Output

  Manufacturing Agriculture Utilities

Provider

Manufacturing $ 0.50 $ 0.10 $ 0.10

Agriculture $ 0.20 $ 0.50 $ 0.30

Utilities $ 0.10 $ 0.30 $ 0.40

Wassily Leontief (1906–1999)

Historical Note    It is somewhat ironic that it was the Russian-born Wassily Leontief who won the Nobel prize
in 1973 for pioneering the modern methods for analyzing free-market economies. Leontief was a precocious
student who entered the University of Leningrad at age 15. Bothered by the intellectual restrictions of the Soviet
system, he was put in jail for anti-Communist activities, after which he headed for the University of Berlin,
receiving his Ph.D. there in 1928. He came to the United States in 1931, where he held professorships at Harvard
and then New York University.
[Image: © Bettmann/©Corbis]

Usually, one would suppress the labeling and express this matrix as

  (1)

This is called the consumption matrix (or sometimes the technology matrix) for the economy. The column vectors

in C list the inputs required by the manufacturing, agricultural, and utilities sectors, respectively, to produce $1.00 worth
of output. These are called the consumption vectors of the sectors. For example, c1 tells us that to produce $1.00 worth of
output the manufacturing sector needs $0.50 worth of manufacturing output, $0.20 worth of agricultural output, and
$0.10 worth of utilities output.

What is the economic significance of the row sums
of the consumption matrix?



Continuing with the above example, suppose that the open sector wants the economy to supply it manufactured goods,
agricultural products, and utilities with dollar values:

 dollars of manufactured goods
 dollars of agricultural products
 dollars of utilities

The column vector d that has these numbers as successive components is called the outside demand vector. Since the
product-producing sectors consume some of their own output, the dollar value of their output must cover their own needs
plus the outside demand. Suppose that the dollar values required to do this are

 dollars of manufactured goods
 dollars of agricultural products
 dollars of utilities

The column vector x that has these numbers as successive components is called the production vector for the economy.
For the economy with consumption matrix 1, that portion of the production vector x that will be consumed by the three
productive sectors is

The vector  is called the intermediate demand vector for the economy. Once the intermediate demand is met, the
portion of the production that is left to satisfy the outside demand is . Thus, if the outside demand vector is d, then
x must satisfy the equation

which we will find convenient to rewrite as

  (2)

The matrix  is called the Leontief matrix and 2 is called the Leontief equation.

 EXAMPLE 1    Satisfying Outside Demand

Consider the economy described in Table 1. Suppose that the open sector has a demand for $7900 worth of
manufacturing products, $3950 worth of agricultural products, and $1975 worth of utilities.
(a)  Can the economy meet this demand?
(b)  If so, find a production vector x that will meet it exactly.

Solution   The consumption matrix, production vector, and outside demand vector are

  (3)

To meet the outside demand, the vector x must satisfy the Leontief equation 2, so the problem reduces to
solving the linear system



  (4)

(if consistent). We leave it for you to show that the reduced row echelon form of the augmented matrix for
this system is

This tells us that 4 is consistent, and the economy can satisfy the demand of the open sector exactly by
producing $27,500 worth of manufacturing output, $33,750 worth of agricultural output, and $24,750
worth of utilities output.

Productive Open Economies

In the preceding discussion we considered an open economy with three product-producing sectors; the same ideas apply
to an open economy with n product-producing sectors. In this case, the consumption matrix, production vector, and
outside demand vector have the form

where all entries are nonnegative and
= the monetary value of the output of the ith sector that is needed by the jth sector to produce one unit of output
= the monetary value of the output of the ith sector
= the monetary value of the output of the ith sector that is required to meet the demand of the open sector

Remark   Note that the jth column vector of C contains the monetary values that the jth sector requires of the other
sectors to produce one monetary unit of output, and the ith row vector of C contains the monetary values required of the
ith sector by the other sectors for each of them to produce one monetary unit of output.

As discussed in our example above, a production vector x that meets the demand d of the outside sector must satisfy the
Leontief equation

If the matrix  is invertible, then this equation has the unique solution

  (5)

for every demand vector d. However, for x to be a valid production vector it must have nonnegative entries, so the
problem of importance in economics is to determine conditions under which the Leontief equation has a solution with
nonnegative entries.

It is evident from the form of 5 that if  is invertible, and if  has non-negative entries, then for every



demand vector d the corresponding x will also have non-negative entries, and hence will be a valid production vector for
the economy. Economies for which  has nonnegative entries are said to be productive. Such economies are
desirable because demand can always be met by some level of production. The following theorem, whose proof can be
found in many books on economics, gives conditions under which open economies are productive.

THEOREM 1.9.1

If C is the consumption matrix for an open economy, and if all of the column sums are less than then the matrix
 is invertible, the entries of  are nonnegative, and the economy is productive.

Remark   The jth column sum of C represents the total dollar value of input that the jth sector requires to produce $1 of
output, so if the jth column sum is less than 1, then the jth sector requires less than $1 of input to produce $1 of output; in
this case we say that the jth sector is profitable. Thus, Theorem 1.9.1 states that if all product-producing sectors of an
open economy are profitable, then the economy is productive. In the exercises we will ask you to show that an open
economy is productive if all of the row sums of C are less than 1 (Exercise 11). Thus, an open economy is productive if
either all of the column sums or all of the row sums of C are less than 1.

 EXAMPLE 2    An Open Economy Whose Sectors Are All Profitable

The column sums of the consumption matrix C in 1 are less than 1, so  exists and has nonnegative
entries. Use a calculating utility to confirm this, and use this inverse to solve Equation 4 in Example 1.

Solution   We leave it for you to show that

This matrix has nonnegative entries, and

which is consistent with the solution in Example 1.

Concept Review
•  Sectors
•  Inputs
•  Outputs
•  Input-output analysis
•  Open sector
•  Economies: open, closed



•  Consumption (technology) matrix
•  Consumption vector
•  Outside demand vector
•  Production vector
•  Intermediate demand vector
•  Leontief matrix
•  Leontief equation

Skills
•  Construct a consumption matrix for an economy.
•  Understand the relationships among the vectors of a sector of an economy: consumption, outside demand,

production, and intermediate demand.

Exercise Set 1.9
1. An automobile mechanic (M) and a body shop (B) use each other's services. For each $1.00 of business that M does, it

uses $0.50 of its own services and $0.25 of B's services, and for each $1.00 of business that B does it uses $0.10 of its
own services and $0.25 of M's services.
(a)  Construct a consumption matrix for this economy.
(b)  How much must M and B each produce to provide customers with $7000 worth of mechanical work and $14,000

worth of body work?

Answer:

(a)  

(b)  

2. A simple economy produces food (F) and housing (H). The production of $1.00 worth of food requires $0.30 worth of
food and $0. 10 worth of housing, and the production of $1.00 worth of housing requires $0.20 worth of food and
$0.60 worth of housing.
(a)  Construct a consumption matrix for this economy.
(b)  What dollar value of food and housing must be produced for the economy to provide consumers $130,000 worth

of food and $130,000 worth of housing?

3. Consider the open economy described by the accompanying table, where the input is in dollars needed for $1.00 of
output.
(a)  Find the consumption matrix for the economy.
(b)  Suppose that the open sector has a demand for $1930 worth of housing, $3860 worth of food, and $5790 worth of

utilities. Use row reduction to find a production vector that will meet this demand exactly.

Table Ex-3

  Income Required per Dollar Output



  Housing Food Utilities

Provider

Housing $ 0.10 $ 0.60 $ 0.40

Food $ 0.30 $ 0.20 $ 0.30

Utilities $ 0.40 $ 0.10 $ 0.20

Answer:

(a)  

(b)  

4. A company produces Web design, software, and networking services. View the company as an open economy
described by the accompanying table, where input is in dollars needed for $1.00 of output.
(a)  Find the consumption matrix for the company.
(b)  Suppose that the customers (the open sector) have a demand for $5400 worth of Web design, $2700 worth of

software, and $900 worth of networking. Use row reduction to find a production vector that will meet this demand
exactly.

Table Ex-4

  Income Required per Dollar Output

  Web Design Software Networking

Provider

Web Design $ 0.40 $ 0.20 $ 0.45

Software $ 0.30 $ 0.35 $ 0.30

Networking $0.15 $0.10 $ 0.20

In Exercises 5–6, use matrix inversion to find the production vector x that meets the demand d for the consumption
matrix C.

5. 

Answer:

6. 

7. Consider an open economy with consumption matrix



(a)  Showthat the economy can meet a demand of  units from the first sector and  units from the second
sector, but it cannot meet a demand of  units from the first sector and  unit from the second sector.

(b)  Give both a mathematical and an economic explanation of the result in part (a).

8. Consider an open economy with consumption matrix

If the open sector demands the same dollar value from each product-producing sector, which such sector must
produce the greatest dollar value to meet the demand?

9. Consider an open economy with consumption matrix

Show that the Leontief equation  has a unique solution for every demand vector d if .

10. (a)  Consider an open economy with a consumption matrix C whose column sums are less than 1, and let x be the
production vector that satisfies an outside demand d; that is, . Let  be the demand vector that is
obtained by increasing the jth entry of d by 1 and leaving the other entries fixed. Prove that the production vector

 that meets this demand is

(b)  In words, what is the economic significance of the jth column vector of ? [Hint: Look at .]

11. Prove: If C is an  matrix whose entries are nonnegative and whose row sums are less than 1, then  is

invertible and has nonnegative entries. [Hint:  for any invertible matrix A.]

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) Sectors of an economy that produce outputs are called open sectors.

Answer:

False

(b) A closed economy is an economy that has no open sectors.

Answer:

True

(c) The rows of a consumption matrix represent the outputs in a sector of an economy.

Answer:

False



(d) If the column sums of the consumption matrix are all less than 1, then the Leontif matrix is invertible.

Answer:

True

(e) The Leontif equation relates the production vector for an economy to the outside demand vector.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



Chapter 1 Supplementary Exercises

In Exercises 1–4 the given matrix represents an augmented matrix for a linear system. Write the
corresponding set of linear equations for the system, and use Gaussian elimination to solve the linear system.
Introduce free parameters as necessary.

1. 

Answer:

2. 

3. 

Answer:

4. 

5. Use Gauss–Jordan elimination to solve for x′ and y′ in terms of x and y.

Answer:

6. Use Gauss–Jordan elimination to solve for x′ and y′ in terms of x and y.



7. Find positive integers that satisfy

Answer:

8. A box containing pennies, nickels, and dimes has 13 coins with a total value of 83 cents. How many coins
of each type are in the box?

9. Let

be the augmented matrix for a linear system. Find for what values of a and b the system has
(a)  a unique solution.
(b)  a one-parameter solution.
(c)  a two-parameter solution.
(d)  no solution.

Answer:

(a)  
(b)  
(c)  
(d)  

10. For which value(s) of a does the following system have zero solutions? One solution? Infinitely many
solutions?

11. Find a matrix K such that  given that



Answer:

12. How should the coefficients a, b, and c be chosen so that the system

has the solution , and ?

13. In each part, solve the matrix equation for X.
(a)  

(b)  

(c)  

Answer:

(a)  

(b)  

(c)  

14. Let A be a square matrix.
(a)  Show that  if .

(b)  Show that

if .

15. Find values of a, b, and c such that the graph of the polynomial  passes through the
points (1, 2), (−1, 6), and (2, 3).

Answer:

16. (Calculus required) Find values of a, b, and c such that the graph of the polynomial



 passes through the point (−1, 0) and has a horizontal tangent at (2, −9).

17. Let Jn be the  matrix each of whose entries is 1. Show that if , then

18. Show that if a square matrix A satisfies

then so does .

19. Prove: If B is invertible, then  if and only if .

20. Prove: If A is invertible, then  and  are both invertible or both not invertible.

21. Prove: If A is an  matrix and B is the  matrix each of whose entries is 1/n, then

where  is the average of the entries in the ith row of A.

22. (Calculus required) If the entries of the matrix

are differentiable functions of x, then we define

Show that if the entries in A and B are differentiable functions of x and the sizes of the matrices are such
that the stated operations can be performed, then
(a)  

(b)  

(c)  

23. (Calculus required) Use part (c) of Exercise 22 to show that

State all the assumptions you make in obtaining this formula.

24. Assuming that the stated inverses exist, prove the following equalities.



(a)  

(b)  

(c)  

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



CHAPTER

   2 Determinants

CHAPTER CONTENTS

2.1.  Determinants by Cofactor Expansion
2.2.  Evaluating Determinants by Row Reduction
2.3.  Properties of Determinants; Cramer's Rule

INTRODUCTION

In this chapter we will study “determinants” or, more precisely, “determinant functions.”
Unlike real-valued functions, such as , that assign a real number to a real
variable x, determinant functions assign a real number  to a matrix variable A.
Although determinants first arose in the context of solving systems of linear equations,
they are no longer used for that purpose in real-world applications. Although they can be
useful for solving very small linear systems (say two or three unknowns), our main
interest in them stems from the fact that they link together various concepts in linear
algebra and provide a useful formula for the inverse of a matrix.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



2.1  Determinants by Cofactor Expansion
In this section we will define the notion of a “determinant.” This will enable us to give a specific formula for the inverse of an
invertible matrix, whereas up to now we have had only a computational procedure for finding it. This, in turn, will eventually
provide us with a formula for solutions of certain kinds of linear systems.

Recall from Theorem 1.4.5 that the  matrix

WARNING

It is important to keep in mind that  is a number,
whereas A is a matrix.

is invertible if and only if  and that the expression  is called the determinant of the matrix A. Recall also
that this determinant is denoted by writing

  (1)

and that the inverse of A can be expressed in terms of the determinant as

  (2)

Minors and Cofactors

One of our main goals in this chapter is to obtain an analog of Formula 2 that is applicable to square matrices of all orders. For
this purpose we will find it convenient to use subscripted entries when writing matrices or determinants. Thus, if we denote a

 matrix as

then the two equations in 1 take the form

  (3)

We define the determinant of a  matrix 
as 

The following definition will be key to our goal of extending the definition of a determinant to higher order matrices.

DEFINITION 1

If A is a square matrix, then the minor of entry  is denoted by  and is defined to be the determinant of the
submatrix that remains after the ith row and jth column are deleted from A. The number  is denoted by

 and is called the cofactor of entry .



 EXAMPLE 1    Finding Minors and Cofactors

Let

WARNING

We have followed the standard convention of
using capital letters to denote minors and cofactors
even though they are numbers, not matrices.

The minor of entry  is

The cofactor of  is

Similarly, the minor of entry  is

The cofactor of  is

Historical Note    The term determinant was first introduced by the German mathematician Carl Friedrich
Gauss in 1801 (see p. 15), who used them to “determine” properties of certain kinds of functions.
Interestingly, the term matrix is derived from a Latin word for “womb” because it was viewed as a container
of determinants.

Historical Note    The term minor is apparently due to the English mathematician James Sylvester (see p.
34), who wrote the following in a paper published in 1850: “Now conceive any one line and any one column
be struck out, we get… a square, one term less in breadth and depth than the original square; and by varying
in every possible selection of the line and column excluded, we obtain, supposing the original square to
consist of n lines and n columns,  such minor squares, each of which will represent what I term a “First
Minor Determinant” relative to the principal or complete determinant.”

Remark   Note that a minor  and its corresponding cofactor  are either the same or negatives of each other and that the



relating sign  is either  or  in accordance with the pattern in the “checkerboard” array

For example,

and so forth. Thus, it is never really necessary to calculate  to calculate —you can simply compute the minor 
and then adjust the sign in accordance with the checkerboard pattern. Try this in Example 1.

 EXAMPLE 2    Cofactor Expansions of a  Matrix

The checkerboard pattern for a  matrix  is

so that

We leave it for you to use Formula 3 to verify that  can be expressed in terms of cofactors in the following
four ways:

  (4)

Each of last four equations is called a cofactor expansion of . In each cofactor expansion the entries and
cofactors all come from the same row or same column of A. For example, in the first equation the entries and
cofactors all come from the first row of A, in the second they all come from the second row of A, in the third they all
come from the first column of A, and in the fourth they all come from the second column of A.

Definition of a General Determinant

Formula 4 is a special case of the following general result, which we will state without proof.

THEOREM 2.1.1

If A is an  matrix, then regardless of which row or column of A is chosen, the number obtained by multiplying the
entries in that row or column by the corresponding cofactors and adding the resulting products is always the same.



This result allows us to make the following definition.

DEFINITION 2

If A is an  matrix, then the number obtained by multiplying the entries in any row or column of A by the
corresponding cofactors and adding the resulting products is called the determinant of A, and the sums themselves are
called cofactor expansions of A. That is,

  (5)

and

  (6)

 EXAMPLE 3    Cofactor Expansion Along the First Row

Find the determinant of the matrix

by cofactor expansion along the first row.

Solution   

 EXAMPLE 4    Cofactor Expansion Along the First Column

Let A be the matrix in Example 3, and evaluate  by cofactor expansion along the first column of A.

Solution   

Note that in Example 4 we had to compute three
cofactors, whereas in Example 3 only two were
needed because the third was multiplied by zero.
As a rule, the best strategy for cofactor
expansion is to expand along a row or column
with the most zeros.



This agrees with the result obtained in Example 3.

Charles Lutwidge Dodgson (Lewis Carroll) (1832–1898)

Historical Note    Cofactor expansion is not the only method for expressing the determinant of a matrix
in terms of determinants of lower order. For example, although it is not well known, the English
mathematician Charles Dodgson, who was the author of Alice's Adventures in Wonderland and Through
the Looking Glass under the pen name of Lewis Carroll, invented such a method, called “condensation.”
That method has recently been resurrected from obscurity because of its suitability for parallel
processing on computers.
[Image: Time & Life Pictures/Getty Images, Inc.]

 EXAMPLE 5    Smart Choice of Row or Column

If A is the  matrix

then to find  it will be easiest to use cofactor expansion along the second column, since it has the most zeros:

For the  determinant, it will be easiest to use cofactor expansion along its second column, since it has the most
zeros:

 EXAMPLE 6    Determinant of an Upper Triangular Matrix



The following computation shows that the determinant of a  upper triangular matrix is the product of its
diagonal entries. Each part of the computation uses a cofactor expansion along the first row.

The method illustrated in Example 6 can be easily adapted to prove the following general result.

THEOREM 2.1.2

If A is an  triangular matrix (upper triangular, lower triangular, or diagonal), then  is the product of the
entries on the main diagonal of the matrix; that is, .

A Useful Technique for Evaluating 2 × 2 and 3 × 3 Determinants

Determinants of  and  matrices can be evaluated very efficiently using the pattern suggested in Figure 2.1.1.

Figure 2.1.1   

In the  case, the determinant can be computed by forming the product of the entries on the rightward arrow and
subtracting the product of the entries on the leftward arrow. In the  case we first recopy the first and second columns as
shown in the figure, after which we can compute the determinant by summing the products of the entries on the rightward
arrows and subtracting the products on the leftward arrows. These procedures execute the computations

WARNING

The arrow technique only works for determinants of
 and  matrices.



which agrees with the cofactor expansions along the first row.

 EXAMPLE 7    A Technique for Evaluating 2 × 2 and 3 × 3 Determinants

Concept Review
•  Determinant
•  Minor
•  Cofactor
•  Cofactor expansion

Skills
•  Find the minors and cofactors of a square matrix.
•  Use cofactor expansion to evaluate the determinant of a square matrix.
•  Use the arrow technique to evaluate the determinant of a  or  matrix.
•  Use the determinant of a  invertible matrix to find the inverse of that matrix.
•  Find the determinant of an upper triangular, lower triangular, or diagonal matrix by inspection.

Exercise Set 2.1

In Exercises 1–2, find all the minors and cofactors of the matrix A.

1. 

Answer:



2. 

3. Let

Find
(a)  
(b)  
(c)  
(d)  

Answer:

(a)  
(b)  
(c)  
(d)  

4. Let

Find
(a)  
(b)  
(c)  
(d)  

In Exercises 5–8, evaluate the determinant of the given matrix. If the matrix is invertible, use Equation 2 to find its inverse.

5. 

Answer:



6. 

7. 

Answer:

8. 

In Exercises 9–14, use the arrow technique to evaluate the determinant of the given matrix.

9. 

Answer:

10. 

11. 

Answer:

12. 

13. 

Answer:

14. 

In Exercises 15–18, find all values of λ for which .



15. 

Answer:

16. 

17. 

Answer:

18. 

19. Evaluate the determinant of the matrix in Exercise 13 by a cofactor expansion along
(a)  the first row.
(b)  the first column.
(c)  the second row.
(d)  the second column.
(e)  the third row.
(f)  the third column.

Answer:

20. Evaluate the determinant of the matrix in Exercise 12 by a cofactor expansion along
(a)  the first row.
(b)  the first column.
(c)  the second row.
(d)  the second column.
(e)  the third row.
(f)  the third column.

In Exercises 21–26, evaluate  by a cofactor expansion along a row or column of your choice.

21. 

Answer:

22. 



23. 

Answer:

0

24. 

25. 

Answer:

26. 

In Exercises 27–32, evaluate the determinant of the given matrix by inspection.

27. 

Answer:

28. 

29. 

Answer:

0

30. 

31. 



Answer:

6

32. 

33. Show that the value of the following determinant is independent of θ.

Answer:

The determinant is .

34. Show that the matrices

commute if and only if

35. By inspection, what is the relationship between the following determinants?

Answer:

36. Show that

for every  matrix A.

37. What can you say about an nth-order determinant all of whose entries are 1? Explain your reasoning.

38. What is the maximum number of zeros that a  matrix can have without having a zero determinant? Explain your
reasoning.

39. What is the maximum number of zeros that a  matrix can have without having a zero determinant? Explain your
reasoning.

40. Prove that , , and  are collinear points if and only if

41. Prove that the equation of the line through the distinct points  and  can be written as



42. Prove that if A is upper triangular and  is the matrix that results when the ith row and jth column of A are deleted, then
 is upper triangular if .

True-False Exercises

In parts (a)–(i) determine whether the statement is true or false, and justify your answer.

(a) The determinant of the  matrix  is .

Answer:

False

(b) Two square matrices A and B can have the same determinant only if they are the same size.

Answer:

False

(c) The minor  is the same as the cofactor  if and only if  is even.

Answer:

True

(d) If A is a  symmetric matrix, then  for all i and j.

Answer:

True

(e) The value of a cofactor expansion of a matrix A is independent of the row or column chosen for the expansion.

Answer:

True

(f) The determinant of a lower triangular matrix is the sum of the entries along its main diagonal.

Answer:

False

(g) For every square matrix A and every scalar c, we have .

Answer:

False

(h) For all square matrices A and B, we have .

Answer:

False



(i) For every  matrix A, we have .

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



2.2  Evaluating Determinants by Row Reduction
In this section we will show how to evaluate a determinant by reducing the associated matrix to row echelon form. In
general, this method requires less computation than cofactor expansion and hence is the method of choice for large
matrices.

A Basic Theorem

We begin with a fundamental theorem that will lead us to an efficient procedure for evaluating the determinant of a square
matrix of any size.

THEOREM 2.2.1

Let A be a square matrix. If A has a row of zeros or a column of zeros, then .

Proof   Since the determinant of A can be found by a cofactor expansion along any row or column, we can use the row or
column of zeros. Thus, if we let  denote the cofactors of A along that row or column, then it follows from
Formula 5 or 6 in Section 2.1 that

The following useful theorem relates the determinant of a matrix and the determinant of its transpose.

THEOREM 2.2.2

Let A be a square matrix. Then .

Because transposing a matrix changes its columns to
rows and its rows to columns, almost every theorem
about the rows of a determinant has a companion
version about columns, and vice versa.

Proof   Since transposing a matrix changes its columns to rows and its rows to columns, the cofactor expansion of A
along any row is the same as the cofactor expansion of AT along the corresponding column. Thus, both have the same
determinant.

Elementary Row Operations

The next theorem shows how an elementary row operation on a square matrix affects the value of its determinant. In



place of a formal proof we have provided a table to illustrate the ideas in the  case (see Table 1).

THEOREM 2.2.3

Let A be an  matrix.
(a)  If B is the matrix that results when a single row or single column of A is multiplied by a scalar k, then

.

(b)  If B is the matrix that results when two rows or two columns of A are interchanged, then .

(c)  If B is the matrix that results when a multiple of one row of A is added to another row or when a multiple of
one column is added to another column, then .

The first panel of Table 1 shows that you can bring a
common factor from any row (column) of a
determinant through the determinant sign. This is a
slightly different way of thinking about part (a) of
Theorem 2.2.3.

Table 1

We will verify the first equation in Table 1 and leave the other two for you. To start, note that the determinants on the two
sides of the equation differ only in the first row, so these determinants have the same cofactors, , , , along that
row (since those cofactors depend only on the entries in the second two rows). Thus, expanding the left side by cofactors
along the first row yields



Elementary Matrices

It will be useful to consider the special case of Theorem 2.2.3 in which  is the  identity matrix and E (rather
than B) denotes the elementary matrix that results when the row operation is performed on . In this special case
Theorem 2.2.3 implies the following result.

THEOREM 2.2.4

Let E be an  elementary matrix.
(a)  If E results from multiplying a row of  by a nonzero number k, then .

(b)  If E results from interchanging two rows of , then .

(c)  If E results from adding a multiple of one row of  to another, then .

 EXAMPLE 1    Determinants of Elementary Matrices

The following determinants of elementary matrices, which are evaluated by inspection, illustrate Theorem
2.2.4.

Observe that the determinant of an elementary
matrix cannot be zero.

Matrices with Proportional Rows or Columns

If a square matrix A has two proportional rows, then a row of zeros can be introduced by adding a suitable multiple of one



of the rows to the other. Similarly for columns. But adding a multiple of one row or column to another does not change
the determinant, so from Theorem 2.2.1, we must have . This proves the following theorem.

THEOREM 2.2.5

If A is a square matrix with two proportional rows or two proportional columns, then .

 EXAMPLE 2    Introducing Zero Rows

The following computation shows how to introduce a row of zeros when there are two proportional rows.

Each of the following matrices has two proportional rows or columns; thus, each has a determinant of zero.

Evaluating Determinants by Row Reduction

We will now give a method for evaluating determinants that involves substantially less computation than cofactor
expansion. The idea of the method is to reduce the given matrix to upper triangular form by elementary row operations,
then compute the determinant of the upper triangular matrix (an easy computation), and then relate that determinant to
that of the original matrix. Here is an example.

 EXAMPLE 3    Using Row Reduction to Evaluate a Determinant

Evaluate  where

Solution   We will reduce A to row echelon form (which is upper triangular) and then apply Theorem
2.1.2.

Even with today's fastest computers it would
take millions of years to calculate a 
determinant by cofactor expansion, so



methods based on row reduction are often
used for large determinants. For determinants
of small size (such as those in this text),
cofactor expansion is often a reasonable
choice.

 EXAMPLE 4    Using Column Operations to Evaluate a Determinant

Compute the determinant of

Solution   This determinant could be computed as above by using elementary row operations to reduce A to
row echelon form, but we can put A in lower triangular form in one step by adding −3 times the first column
to the fourth to obtain

Example 4 points out that it is always wise to keep
an eye open for column operations that can shorten



computations.

Cofactor expansion and row or column operations can sometimes be used in combination to provide an effective method
for evaluating determinants. The following example illustrates this idea.

 EXAMPLE 5    Row Operations and Cofactor Expansion

Evaluate  where

Solution   By adding suitable multiples of the second row to the remaining rows, we obtain

Skills
•  Know the effect of elementary row operations on the value of a determinant.
•  Know the determinants of the three types of elementary matrices.
•  Know how to introduce zeros into the rows or columns of a matrix to facilitate the evaluation of its determinant.
•  Use row reduction to evaluate the determinant of a matrix.
•  Use column operations to evaluate the determinant of a matrix.
•  Combine the use of row reduction and cofactor expansion to evaluate the determinant of a matrix.

Exercise Set 2.2

In Exercises 1–4, verify that .

1. 



2. 

3. 

4. 

In Exercises 5–9, find the determinant of the given elementary matrix by inspection.

5. 

Answer:

6. 

7. 

Answer:

8. 

9. 

Answer:

1

In Exercises 10–17, evaluate the determinant of the given matrix by reducing the matrix to row echelon form.

10. 

11. 



Answer:

5

12. 

13. 

Answer:

33

14. 

15. 

Answer:

6

16. 

17. 

Answer:

18. Repeat Exercises 10–13 by using a combination of row reduction and cofactor expansion.

19. Repeat Exercises 14–17 by using a combination of row operations and cofactor expansion.

Answer:

Exercise 14: 39; Exercise 15: 6; Exercise 16: ; Exercise 17: 

In Exercises 20–27, evaluate the determinant, given that



20. 

21. 

Answer:

22. 

23. 

Answer:

72

24. 

25. 

Answer:

26. 

27. 

Answer:

18

28. Show that



(a)  

(b)  

29. 
Use row reduction to show that 

In Exercises 30–33, confirm the identities without evaluating the determinants directly.

30. 

31. 

32. 

33. 

34. Find the determinant of the following matrix.

In Exercises 35–36, show that  without directly evaluating the determinant.

35. 

36. 

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.



(a) If A is a  matrix and B is obtained from A by interchanging the first two rows and then interchanging the last two
rows, then .

Answer:

True

(b) If A is a  matrix and B is obtained from A by multiplying the first column by 4 and multiplying the third column
by , then .

Answer:

True

(c) If A is a  matrix and B is obtained from A by adding 5 times the first row to each of the second and third rows,
then .

Answer:

False

(d) If A is an  matrix and B is obtained from A by multiplying each row of A by its row number, then

Answer:

False

(e) If A is a square matrix with two identical columns, then .

Answer:

True

(f) If the sum of the second and fourth row vectors of a  matrix A is equal to the last row vector, then .

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



2.3  Properties of Determinants; Cramer's Rule
In this section we will develop some fundamental properties of matrices, and we will use these results to derive a
formula for the inverse of an invertible matrix and formulas for the solutions of certain kinds of linear systems.

Basic Properties of Determinants

Suppose that A and B are  matrices and k is any scalar. We begin by considering possible relationships
between , , and

Since a common factor of any row of a matrix can be moved through the determinant sign, and since each of the
n rows in  has a common factor of k, it follows that

  (1)

For example,

Unfortunately, no simple relationship exists among , , and . In particular, we emphasize
that  will usually not be equal to . The following example illustrates this fact.

 EXAMPLE 1    det(A + B) ≠ det(A) + det(B)

Consider

We have , , and ; thus

In spite of the previous example, there is a useful relationship concerning sums of determinants that is applicable
when the matrices involved are the same except for one row (column). For example, consider the following two
matrices that differ only in the second row:

Calculating the determinants of A and B we obtain



Thus

This is a special case of the following general result.

THEOREM 2.3.1

Let A, B, and C be  matrices that differ only in a single row, say the rth, and assume that the rth row
of C can be obtained by adding corresponding entries in the rth rows of A and B. Then

The same result holds for columns.

 EXAMPLE 2    Sums of Determinants

We leave it to you to confirm the following equality by evaluating the determinants.

Determinant of a Matrix Product

Considering the complexity of the formulas for determinants and matrix multiplication, it would seem unlikely
that a simple relationship should exist between them. This is what makes the simplicity of our next result so
surprising. We will show that if A and B are square matrices of the same size, then

  (2)

The proof of this theorem is fairly intricate, so we will have to develop some preliminary results first. We begin
with the special case of 2 in which A is an elementary matrix. Because this special case is only a prelude to 2, we
call it a lemma.



LEMMA 2.3.2

If B is an  matrix and E is an  elementary matrix, then

Proof   We will consider three cases, each in accordance with the row operation that produces the matrix E.

Case 1  If E results from multiplying a row of  by k, then by Theorem 1.5.1,  results from B by multiplying
the corresponding row by k; so from Theorem 2.2.3(a) we have

But from Theorem 2.2.4(a) we have , so

Case 2 and 3  The proofs of the cases where E results from interchanging two rows of  or from adding a
multiple of one row to another follow the same pattern as Case 1 and are left as exercises.

Remark   It follows by repeated applications of Lemma 2.3.2 that if B is an  matrix and  are
 elementary matrices, then

  (3)

Determinant Test for Invertibility

Our next theorem provides an important criterion for determining whether a matrix is invertible. It also takes us a
step closer to establishing Formula 2.

THEOREM 2.3.3

A square matrix A is invertible if and only if .

Proof   Let R be the reduced row echelon form of A. As a preliminary step, we will show that  and 
are both zero or both nonzero: Let  be the elementary matrices that correspond to the elementary
row operations that produce R from A. Thus

and from 3,



  (4)

We pointed out in the margin note that accompanies Theorem 2.2.4 that the determinant of an elementary matrix
is nonzero. Thus, it follows from Formula 4 that  and  are either both zero or both nonzero, which
sets the stage for the main part of the proof. If we assume first that A is invertible, then it follows from Theorem
1.6.4 that  and hence that . This, in turn, implies that , which is what we
wanted to show.

It follows from Theorems 2.3.3 and Theorem
2.2.5 that a square matrix with two proportional
rows or two proportional columns is not
invertible.

Conversely, assume that . It follows from this that , which tells us that R cannot have a row
of zeros. Thus, it follows from Theorem 1.4.3 that  and hence that A is invertible by Theorem 1.6.4.

 EXAMPLE 3    Determinant Test for Invertibility

Since the first and third rows of

are proportional, . Thus A is not invertible.

We are now ready for the main result concerning products of matrices.

THEOREM 2.3.4

If A and B are square matrices of the same size, then

Proof   We divide the proof into two cases that depend on whether or not A is invertible. If the matrix A is not
invertible, then by Theorem 1.6.5 neither is the product AB. Thus, from Theorem Theorem 2.3.3, we have

 and , so it follows that .



Augustin Louis Cauchy (1789–1857)

Historical Note    In 1815 the great French mathematician Augustin Cauchy published a landmark paper
in which he gave the first systematic and modern treatment of determinants. It was in that paper that
Theorem 2.3.4 was stated and proved in full generality for the first time. Special cases of the theorem had
been stated and proved earlier, but it was Cauchy who made the final jump.
[Image: The Granger Collection, New York]

Now assume that A is invertible. By Theorem 1.6.4, the matrix A is expressible as a product of elementary
matrices, say

  (5)

so

Applying 3 to this equation yields

and applying 3 again yields

which, from 5, can be written as .

 EXAMPLE 4    Verifying That det(AB) = det(A), det(B)

Consider the matrices

We leave it for you to verify that

Thus , as guaranteed by Theorem 2.3.4.

The following theorem gives a useful relationship between the determinant of an invertible matrix and the
determinant of its inverse.



THEOREM 2.3.5

If A is invertible, then

Proof   Since , it follows that . Therefore, we must have .
Since , the proof can be completed by dividing through by .

Adjoint of a Matrix

In a cofactor expansion we compute  by multiplying the entries in a row or column by their cofactors and
adding the resulting products. It turns out that if one multiplies the entries in any row by the corresponding
cofactors from a different row, the sum of these products is always zero. (This result also holds for columns.)
Although we omit the general proof, the next example illustrates the idea of the proof in a special case.

It follows from Theorems 2.3.5 and 2.1.2 that

Moreover, by using the adjoint formula it is
possible to show that

are actually the successive diagonal entries of
 (compare A and  in Example 3 of

Section 1.7 ).

 EXAMPLE 5    Entries and Cofactors from Different Rows

Let

Consider the quantity

that is formed by multiplying the entries in the first row by the cofactors of the corresponding entries
in the third row and adding the resulting products. We can show that this quantity is equal to zero by
the following trick: Construct a new matrix  by replacing the third row of A with another copy of the
first row. That is,



Let , ,  be the cofactors of the entries in the third row of . Since the first two rows of A
and  are the same, and since the computations of , , , , , and  involve only
entries from the first two rows of A and , it follows that

Since  has two identical rows, it follows from 3 that

  (6)

On the other hand, evaluating  by cofactor expansion along the third row gives

  (7)

From 6 and 7 we obtain

DEFINITION 1

If A is any  matrix and  is the cofactor of , then the matrix

is called the matrix of cofactors from A. The transpose of this matrix is called the adjoint of A and is
denoted by adj(A).

 EXAMPLE 6    Adjoint of a 3 × 3 Matrix

Let

The cofactors of A are

so the matrix of cofactors is



and the adjoint of A is

Leonard Eugene Dickson (1874–1954)

Historical Note    The use of the term adjoint for the transpose of the matrix of cofactors appears to have
been introduced by the American mathematician L. E. Dickson in a research paper that he published in
1902.
[Image: Courtesy of the American Mathematical Society]

In Theorem 1.4.5 we gave a formula for the inverse of a  invertible matrix. Our next theorem extends that
result to  invertible matrices.

THEOREM 2.3.6   Inverse of a Matrix Using Its Adjoint

If A is an invertible matrix, then

  (8)

Proof   We show first that



Consider the product

The entry in the ith row and jth column of the product  is

  (9)

(see the shaded lines above).

If , then 9 is the cofactor expansion of  along the ith row of A (Theorem 2.1.1), and if , then the
a's and the cofactors come from different rows of A, so the value of 9 is zero. Therefore,

  (10)

Since A is invertible, . Therefore, Equation 10 can be rewritten as

Multiplying both sides on the left by  yields

 EXAMPLE 7    Using the Adjoint to Find an Inverse Matrix

Use 8 to find the inverse of the matrix A in Example 6.

Solution   We leave it for you to check that . Thus

Cramer's Rule

Our next theorem uses the formula for the inverse of an invertible matrix to produce a formula, called Cramer's



rule, for the solution of a linear system  of n equations in n unknowns in the case where the coefficient
matrix A is invertible (or, equivalently, when ).

THEOREM 2.3.7   Cramer's Rule

If  is a system of n linear equations in n unknowns such that , then the system has a
unique solution. This solution is

where  is the matrix obtained by replacing the entries in the jth column of A by the entries in the matrix

Proof   If , then A is invertible, and by Theorem 1.6.2,  is the unique solution of .
Therefore, by Theorem 2.3.6 we have

Multiplying the matrices out gives

The entry in the jth row of x is therefore

  (11)

Now let

Since  differs from A only in the jth column, it follows that the cofactors of entries  in  are the
same as the cofactors of the corresponding entries in the jth column of A. The cofactor expansion of 
along the jth column is therefore



Substituting this result in 11 gives

 EXAMPLE 8    Using Cramer's Rule to Solve a Linear System

Use Cramer's rule to solve

Gabriel Cramer (1704–1752)

Historical Note    Variations of Cramer's rule were fairly well known before the Swiss
mathematician discussed it in work he published in 1750. It was Cramer's superior notation
that popularized the method and led mathematicians to attach his name to it.
[Image: Granger Collection]

Solution   



For n > 3, it is usually more efficient to
solve a linear system with n equations in n
unknowns by Gauss–Jordan elimination
than by Cramer's rule. Its main use is for
obtaining properties of solutions of a
linear system without actually solving the
system.

Therefore,

Equivalence Theorem

In Theorem 1.6.4 we listed five results that are equivalent to the invertibility of a matrix A. We conclude this
section by merging Theorem 2.3.3 with that list to produce the following theorem that relates all of the major
topics we have studied thus far.

THEOREM 2.3.8   Equivalent Statements

If A is an  matrix, then the following statements are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A can be expressed as a product of elementary matrices.
(e)   is consistent for every  matrix b.
(f)   has exactly one solution for every  matrix b.
(g)  .

   O P T I O N A L    

We now have all of the machinery necessary to prove the following two results, which we stated without proof in
Theorem 1.7.1:
•  Theorem 1.7.1(c) A triangular matrix is invertible if and only if its diagonal entries are all nonzero.



•  Theorem 1.7.1(d) The inverse of an invertible lower triangular matrix is lower triangular, and the inverse of an
invertible upper triangular matrix is upper triangular.

Proof of Theorem 1.7.1(c)   Let  be a triangular matrix, so that its diagonal entries are

From Theorem 2.1.2, the matrix A is invertible if and only if

is nonzero, which is true if and only if the diagonal entries are all nonzero.

Proof of Theorem 1.7.1(d)   We will prove the result for upper triangular matrices and leave the lower
triangular case for you. Assume that A is upper triangular and invertible. Since

we can prove that  is upper triangular by showing that  is upper triangular or, equivalently, that the
matrix of cofactors is lower triangular. We can do this by showing that every cofactor  with  (i.e., above
the main diagonal) is zero. Since

it suffices to show that each minor  with  is zero. For this purpose, let  be the matrix that results when
the ith row and jth column of A are deleted, so

  (12)

From the assumption that , it follows that  is upper triangular (see Figure Figure 1.7.1). Since A is upper
triangular, its -st row begins with at least i zeros. But the ith row of  is the -st row of A with the
entry in the jth column removed. Since , none of the first i zeros is removed by deleting the jth column; thus
the ith row of  starts with at least i zeros, which implies that this row has a zero on the main diagonal. It now
follows from Theorem 2.1.2 that  and from 12 that .

Concept Review
•  Determinant test for invertibility
•  Matrix of cofactors
•  Adjoint of a matrix
•  Cramer's rule
•  Equivalent statements about an invertible matrix

Skills
•  Know how determinants behave with respect to basic arithmetic operations, as given in Equation 1,

Theorem 2.3.1, Lemma 2.3.2, and Theorem 2.3.4.
•  Use the determinant to test a matrix for invertibility.



•  Know how  and  are related.

•  Compute the matrix of cofactors for a square matrix A.
•  Compute  for a square matrix A.

•  Use the adjoint of an invertible matrix to find its inverse.
•  Use Cramer's rule to solve linear systems of equations.
•  Know the equivalent characterizations of an invertible matrix given in Theorem 2.3.8.

Exercise Set 2.3

In Exercises 1–4, verify that .

1. 

2. 

3. 

4. 

In Exercises 5–6, verify that  and determine whether the equality
 holds.

5. 

6. 

In Exercises 7–14, use determinants to decide whether the given matrix is invertible.

7. 

Answer:

Invertible



8. 

9. 

Answer:

Invertible

10. 

11. 

Answer:

Not invertible

12. 

13. 

Answer:

Invertible

14. 

In Exercises 15–18, find the values of k for which A is invertible.

15. 

Answer:

16. 



17. 

Answer:

18. 

In Exercises 19–23, decide whether the given matrix is invertible, and if so, use the adjoint method to find its
inverse.

19. 

Answer:

20. 

21. 

Answer:

22. 

23. 

Answer:



In Exercises 24–29, solve by Cramer's rule, where it applies.

24. 

25. 

Answer:

26. 

27. 

Answer:

28. 

29. 

Answer:

Cramer's rule does not apply.

30. Show that the matrix

is invertible for all values of θ; then find  using Theorem 2.3.6.

31. Use Cramer's rule to solve for y without solving for the unknowns x, z, and w.



Answer:

32. Let  be the system in Exercise 31.
(a)  Solve by Cramer's rule.
(b)  Solve by Gauss–Jordan elimination.
(c)  Which method involves fewer computations?

33. Prove that if  and all the entries in A are integers, then all the entries in  are integers.

34. Let  be a system of n linear equations in n unknowns with integer coefficients and integer constants.
Prove that if , the solution x has integer entries.

35. Let

Assuming that , find

(a)  
(b)  

(c)  

(d)  

(e)  

Answer:

(a)  
(b)  

(c)  

(d)  

(e)  7

36. In each part, find the determinant given that A is a  matrix for which 

(a)  



(b)  

(c)  

(d)  

37. In each part, find the determinant given that A is a  matrix for which 

(a)  
(b)  

(c)  

(d)  

Answer:

(a)  189
(b)  

(c)  

(d)  

38. Prove that a square matrix A is invertible if and only if  is invertible.

39. Show that if A is a square matrix, then .

True-False Exercises

In parts (a)–(l) determine whether the statement is true or false, and justify your answer.

(a) If A is a  matrix, then .

Answer:

False

(b) If A and B are square matrices of the same size such that , then .

Answer:

False

(c) If A and B are square matrices of the same size and A is invertible, then

Answer:

True



(d) A square matrix A is invertible if and only if .

Answer:

False

(e) The matrix of cofactors of A is precisely .

Answer:

True

(f) For every  matrix A, we have

Answer:

True

(g) If A is a square matrix and the linear system  has multiple solutions for x, then .

Answer:

True

(h) If A is an  matrix and there exists an  matrix b such that the linear system  has no solutions,
then the reduced row echelon form of A cannot be In.

Answer:

True

(i) If E is an elementary matrix, then  has only the trivial solution.

Answer:

True

(j) If A is an invertible matrix, then the linear system  has only the trivial solution if and only if the linear
system  has only the trivial solution.

Answer:

True

(k) If A is invertible, then  must also be invertible.

Answer:

True

(l) If A has a row of zeros, then so does .

Answer:

False
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Chapter 2 Supplementary Exercises

In Exercises 1–8, evaluate the determinant of the given matrix by (a) cofactor expansion and (b) using
elementary row operations to introduce zeros into the matrix.

1. 

Answer:

2. 

3. 

Answer:

24

4. 

5. 

Answer:

6. 

7. 

Answer:

329

8. 



9. Evaluate the determinants in Exercises 3–6 by using the arrow technique (see Example 7 in Section 2.1).

Answer:

Exercise 3: 24; Exercise 4: 0; Exercise 5: ; Exercise 6: 

10. (a)  Construct a  matrix whose determinant is easy to compute using cofactor expansion but hard to
evaluate using elementary row operations.

(b)  Construct a  matrix whose determinant is easy to compute using elementary row operations but
hard to evaluate using cofactor expansion.

11. Use the determinant to decide whether the matrices in Exercises 1–4 are invertible.

Answer:

The matrices in Exercises 1–3 are invertible, the matrix in Exercise 4 is not.

12. Use the determinant to decide whether the matrices in Exercises 5–8 are invertible.

In Exercises 13–15, find the determinant of the given matrix by any method.

13. 

Answer:

14. 

15. 

Answer:

16. Solve for x.

In Exercises 17–24, use the adjoint method (Theorem 2.3.6) to find the inverse of the given matrix, if it
exists.

17. The matrix in Exercise 1.



Answer:

18. The matrix in Exercise 2.

19. The matrix in Exercise 3.

Answer:

20. The matrix in Exercise 4.

21. The matrix in Exercise 5.

Answer:

22. The matrix in Exercise 6.

23. The matrix in Exercise 7.

Answer:

24. The matrix in Exercise 8.

25. Use Cramer's rule to solve for  and  in terms of x and y.



Answer:

26. Use Cramer's rule to solve for  and  in terms of x and y.

27. By examining the determinant of the coefficient matrix, show that the following system has a nontrivial
solution if and only if .

28. Let A be a  matrix, each of whose entries is 1 or 0. What is the largest possible value for ?

29. (a)  For the triangle in the accompanying figure, use trigonometry to show that

and then apply Cramer's rule to show that

(b)  Use Cramer's rule to obtain similar formulas for  and .

Figure Ex-29   

Answer:

(b)  

30. Use determinants to show that for all real values of λ, the only solution of

is , .



31. Prove: If A is invertible, then  is invertible and

32. Prove: If A is an  matrix, then

33. Prove: If the entries in each row of an  matrix A add up to zero, then the determinant of A is zero.
[Hint: Consider the product , where X is the  matrix, each of whose entries is one.

34. (a)  In the accompanying figure, the area of the triangle  can be expressed as

Use this and the fact that the area of a trapezoid equals  the altitude times the sum of the parallel

sides to show that

[Note: In the derivation of this formula, the vertices are labeled such that the triangle is traced
counterclockwise proceeding from  to  to . For a clockwise orientation, the
determinant above yields the negative of the area.]

(b)  Use the result in (a) to find the area of the triangle with vertices (3, 3), (4, 0), (−2, −1).

Figure Ex-34   

35. Use the fact that 21,375, 38,798, 34,162, 40,223, and 79,154 are all divisible by 19 to show that

is divisible by 19 without directly evaluating the determinant.

36. Without directly evaluating the determinant, show that
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CHAPTER

   3 Euclidean Vector Spaces

CHAPTER CONTENTS

3.1.  Vectors in 2-Space, 3-Space, and n-Space
3.2.  Norm, Dot Product, and Distance in Rn

3.3.  Orthogonality
3.4.  The Geometry of Linear Systems
3.5.  Cross Product

INTRODUCTION

Engineers and physicists distinguish between two types of physical quantities—scalars,
which are quantities that can be described by a numerical value alone, and vectors, which
are quantities that require both a number and a direction for their complete physical
description. For example, temperature, length, and speed are scalars because they can be
fully described by a number that tells “how much”—a temperature of 20°C, a length of 5
cm, or a speed of 75 km/h. In contrast, velocity and force are vectors because they require
a number that tells “how much” and a direction that tells “which way”—say, a boat
moving at 10 knots in a direction 45° northeast, or a force of 100 lb acting vertically.
Although the notions of vectors and scalars that we will study in this text have their
origins in physics and engineering, we will be more concerned with using them to build
mathematical structures and then applying those structures to such diverse fields as
genetics, computer science, economics, telecommunications, and environmental science.
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3.1  Vectors in 2-Space, 3-Space, and n-Space
Linear algebra is concerned with two kinds of mathematical objects, “matrices” and “vectors.” We are already
familiar with the basic ideas about matrices, so in this section we will introduce some of the basic ideas about
vectors. As we progress through this text we will see that vectors and matrices are closely related and that
much of linear algebra is concerned with that relationship.

Geometric Vectors

Engineers and physicists represent vectors in two dimensions (also called 2-space) or in three dimensions
(also called 3-space) by arrows. The direction of the arrowhead specifies the direction of the vector and the
length of the arrow specifies the magnitude. Mathematicians call these geometric vectors. The tail of the
arrow is called the initial point of the vector and the tip the terminal point (Figure 3.1.1).

Figure 3.1.1   

In this text we will denote vectors in boldface type such as a, b, v, w, and x, and we will denote scalars in
lowercase italic type such as a, k, v, w, and x. When we want to indicate that a vector v has initial point A and
terminal point B, then, as shown in Figure 3.1.2, we will write

Figure 3.1.2   

Vectors with the same length and direction, such as those in Figure 3.1.3, are said to be equivalent. Since we
want a vector to be determined solely by its length and direction, equivalent vectors are regarded to be the
same vector even though they may be in different positions. Equivalent vectors are also said to be equal,
which we indicate by writing



Figure 3.1.3   

The vector whose initial and terminal points coincide has length zero, so we call this the zero vector and
denote it by 0. The zero vector has no natural direction, so we will agree that it can be assigned any direction
that is convenient for the problem at hand.

Vector Addition

There are a number of important algebraic operations on vectors, all of which have their origin in laws of
physics.

Parallelogram Rule for Vector Addition

If v and w are vectors in 2-space or 3-space that are positioned so their initial points coincide, then the
two vectors form adjacent sides of a parallelogram, and the sum  is the vector represented by
the arrow from the common initial point of  and  to the opposite vertex of the parallelogram
(Figure 3.1.4a).

Figure 3.1.4   

Here is another way to form the sum of two vectors.

Triangle Rule for Vector Addition

If  and  are vectors in 2-space or 3-space that are positioned so the initial point of  is at the
terminal point of , then the sum  is represented by the arrow from the initial point of  to the
terminal point of  (Figure 3.1.4b).



In Figure 3.1.4c we have constructed the sums  and  by the triangle rule. This construction makes
it evident that

  (1)

and that the sum obtained by the triangle rule is the same as the sum obtained by the parallelogram rule.

Vector addition can also be viewed as a process of translating points.

Vector Addition Viewed as Translation

If , and  are positioned so their initial points coincide, then the terminal point of  can
be viewed in two ways:
1.  The terminal point of  is the point that results when the terminal point of  is translated in

the direction of  by a distance equal to the length of  (Figure 3.1.5a).
2.  The terminal point of  is the point that results when the terminal point of  is translated in

the direction of  by a distance equal to the length of  (Figure 3.1.5b).
Accordingly, we say that  is the translation of  by  or, alternatively, the translation of  by .

Figure 3.1.5   

Vector Subtraction

In ordinary arithmetic we can write , which expresses subtraction in terms of addition.
There is an analogous idea in vector arithmetic.

Vector Subtraction

The negative of a vector , denoted by , is the vector that has the same length as  but is
oppositely directed (Figure 3.1.6a), and the difference of  from , denoted by , is taken to be



the sum

  (2)

Figure 3.1.6   

The difference of  from  can be obtained geometrically by the parallelogram method shown in Figure
3.1.6b, or more directly by positioning  and  so their initial points coincide and drawing the vector from the
terminal point of  to the terminal point of  (Figure 3.1.6c).

Scalar Multiplication

Sometimes there is a need to change the length of a vector or change its length and reverse its direction. This
is accomplished by a type of multiplication in which vectors are multiplied by scalars. As an example, the
product  denotes the vector that has the same direction as  but twice the length, and the product 
denotes the vector that is oppositely directed to  and has twice the length. Here is the general result.

Scalar Multiplication

If  is a nonzero vector in 2-space or 3-space, and if k is a nonzero scalar, then we define the scalar
product of  by  to be the vector whose length is  times the length of  and whose direction is the
same as that of  if k is positive and opposite to that of  if k is negative. If  or , then we
define  to be .

Figure 3.1.7 shows the geometric relationship between a vector  and some of its scalar multiples. In
particular, observe that  has the same length as  but is oppositely directed; therefore,

  (3)



Figure 3.1.7   

Parallel and Collinear Vectors

Suppose that  and  are vectors in 2-space or 3-space with a common initial point. If one of the vectors is a
scalar multiple of the other, then the vectors lie on a common line, so it is reasonable to say that they are
collinear (Figure 3.1.8a). However, if we translate one of the vectors, as indicated in Figure 3.1.8b, then the
vectors are parallel but no longer collinear. This creates a linguistic problem because translating a vector does
not change it. The only way to resolve this problem is to agree that the terms parallel and collinear mean the
same thing when applied to vectors. Although the vector  has no clearly defined direction, we will regard it
to be parallel to all vectors when convenient.

Figure 3.1.8   

Sums of Three or More Vectors

Vector addition satisfies the associative law for addition, meaning that when we add three vectors, say u, ,
and , it does not matter which two we add first; that is,

It follows from this that there is no ambiguity in the expression  because the same result is obtained
no matter how the vectors are grouped.

A simple way to construct  is to place the vectors “tip to tail” in succession and then draw the
vector from the initial point of u to the terminal point of  (Figure 3.1.9a). The tip-to-tail method also works
for four or more vectors (Figure 3.1.9b). The tip-to-tail method also makes it evident that if u, , and  are
vectors in 3-space with a common initial point, then  is the diagonal of the parallelepiped that has
the three vectors as adjacent sides (Figure 3.1.9c).



Figure 3.1.9   

Vectors in Coordinate Systems

Up until now we have discussed vectors without reference to a coordinate system. However, as we will soon
see, computations with vectors are much simpler to perform if a coordinate system is present to work with.

The component forms of the zero vector are
 in 2-space and  in

3-space.

If a vector  in 2-space or 3-space is positioned with its initial point at the origin of a rectangular coordinate
system, then the vector is completely determined by the coordinates of its terminal point (Figure 3.1.10). We
call these coordinates the components of  relative to the coordinate system. We will write  to
denote a vector  in 2-space with components , and  to denote a vector  in 3-space
with components .

Figure 3.1.10   

It should be evident geometrically that two vectors in 2-space or 3-space are equivalent if and only if they
have the same terminal point when their initial points are at the origin. Algebraically, this means that two
vectors are equivalent if and only if their corresponding components are equal. Thus, for example, the vectors

in 3-space are equivalent if and only if

Remark   It may have occurred to you that an ordered pair  can represent either a vector with



components  and  or a point with components  and  (and similarly for ordered triples). Both are valid
geometric interpretations, so the appropriate choice will depend on the geometric viewpoint that we want to
emphasize (Figure 3.1.11).

Figure 3.1.11   The ordered pair  can represent a point or a vector.

Vectors Whose Initial Point Is Not at the Origin

It is sometimes necessary to consider vectors whose initial points are not at the origin. If  denotes the
vector with initial point  and terminal point , then the components of this vector are
given by the formula

  (4)

That is, the components of  are obtained by subtracting the coordinates of the initial point from the
coordinates of the terminal point. For example, in Figure 3.1.12 the vector  is the difference of vectors

 and , so

As you might expect, the components of a vector in 3-space that has initial point  and terminal
point  are given by

  (5)



Figure 3.1.12   

 EXAMPLE 1    Finding the Components of a Vector

The components of the vector  with initial point  and terminal point
 are

n-Space

The idea of using ordered pairs and triples of real numbers to represent points in two-dimensional space and
three-dimensional space was well known in the eighteenth and nineteenth centuries. By the dawn of the
twentieth century, mathematicians and physicists were exploring the use of “higher-dimensional” spaces in
mathematics and physics. Today, even the layman is familiar with the notion of time as a fourth dimension, an
idea used by Albert Einstein in developing the general theory of relativity. Today, physicists working in the
field of “string theory” commonly use 11-dimensional space in their quest for a unified theory that will
explain how the fundamental forces of nature work. Much of the remaining work in this section is concerned
with extending the notion of space to n-dimensions.

To explore these ideas further, we start with some terminology and notation. The set of all real numbers can
be viewed geometrically as a line. It is called the real line and is denoted by R or . The superscript
reinforces the intuitive idea that a line is one-dimensional. The set of all ordered pairs of real numbers (called
2-tuples) and the set of all ordered triples of real numbers (called 3-tuples) are denoted by  and ,
respectively. The superscript reinforces the idea that the ordered pairs correspond to points in the plane
(two-dimensional) and ordered triples to points in space (three-dimensional). The following definition extends
this idea.

DEFINITION 1

If n is a positive integer, then an ordered n-tuple is a sequence of n real numbers .
The set of all ordered n-tuples is called n-space and is denoted by .

Remark   You can think of the numbers in an n-tuple  as either the coordinates of a
generalized point or the components of a generalized vector, depending on the geometric image you want to
bring to mind—the choice makes no difference mathematically, since it is the algebraic properties of n-tuples
that are of concern.

Here are some typical applications that lead to n-tuples.



•  Experimental Data  A scientist performs an experiment and makes n numerical measurements each time
the experiment is performed. The result of each experiment can be regarded as a vector

 in  in which  are the measured values.

•  Storage and Warehousing  A national trucking company has 15 depots for storing and servicing its trucks.
At each point in time the distribution of trucks in the service depots can be described by a 15-tuple

 in which  is the number of trucks in the first depot,  is the number in the second
depot, and so forth.

•  Electrical Circuits  A certain kind of processing chip is designed to receive four input voltages and
produces three output voltages in response. The input voltages can be regarded as vectors in  and the
output voltages as vectors in . Thus, the chip can be viewed as a device that transforms an input vector

 in  into an output vector  in .

•  Graphical Images  One way in which color images are created on computer screens is by assigning each
pixel (an addressable point on the screen) three numbers that describe the hue, saturation, and brightness
of the pixel. Thus, a complete color image can be viewed as a set of 5-tuples of the form 
in which x and y are the screen coordinates of a pixel and h, s, and b are its hue, saturation, and brightness.

•  Economics  One approach to economic analysis is to divide an economy into sectors (manufacturing,
services, utilities, and so forth) and measure the output of each sector by a dollar value. Thus, in an
economy with 10 sectors the economic output of the entire economy can be represented by a 10-tuple

 in which the numbers  are the outputs of the individual sectors.

•  Mechanical Systems  Suppose that six particles move along the same coordinate line so that at time t their
coordinates are  and their velocities are , respectively. This information can be
represented by the vector

in . This vector is called the state of the particle system at time t.

Albert Einstein (1879-1955)

Historical Note    The German-born physicist Albert Einstein immigrated to the United States in
1935, where he settled at Princeton University. Einstein spent the last three decades of his life
working unsuccessfully at producing a unified field theory that would establish an underlying link
between the forces of gravity and electromagnetism. Recently, physicists have made progress on the
problem using a framework known as string theory. In this theory the smallest, indivisible
components of the Universe are not particles but loops that behave like vibrating strings. Whereas



Einstein's space-time universe was four-dimensional, strings reside in an 11-dimensional world that is
the focus of current research.
[Image: © Bettmann/© Corbis]

Operations on Vectors in Rn

Our next goal is to define useful operations on vectors in . These operations will all be natural extensions
of the familiar operations on vectors in  and . We will denote a vector  in  using the notation

and we will call  the zero vector.

We noted earlier that in  and  two vectors are equivalent (equal) if and only if their corresponding
components are the same. Thus, we make the following definition.

DEFINITION 2

Vectors  and  in  are said to be equivalent (also called
equal) if

We indicate this by writing .

 EXAMPLE 2    Equality of Vectors

if and only if , and .

Our next objective is to define the operations of addition, subtraction, and scalar multiplication for vectors in
. To motivate these ideas, we will consider how these operations can be performed on vectors in  using

components. By studying Figure 3.1.13 you should be able to deduce that if  and ,
then

  (6)

  (7)



In particular, it follows from 7 that

  (8)

and hence that

  (9)

Figure 3.1.13   

Motivated by Formulas 6–9, we make the following definition.

DEFINITION 3

If  and  are vectors in , and if k is any scalar, then we
define

  (10)

  (11)

  (12)

  (13)



In words, vectors are added (or subtracted) by
adding (or subtracting) their corresponding
components, and a vector is multiplied by a
scalar by multiplying each component by that
scalar.

 EXAMPLE 3    Algebraic Operations Using Components

If  and , then

The following theorem summarizes the most important properties of vector operations.

THEOREM 3.1.1

If  and w are vectors in  and if k and m are scalars, then:

(a)  
(b)  
(c)  
(d)  
(e)  
(f)  
(g)  
(h)  

We will prove part (b) and leave some of the other proofs as exercises.

Proof (b)   Let , and . Then



The following additional properties of vectors in  can be deduced easily by expressing the vectors in terms
of components (verify).

THEOREM 3.1.2

If v is a vector in  and k is a scalar, then:

(a)  
(b)  
(c)  

Calculating Without Components

One of the powerful consequences of Theorems 3.1.1 and 3.1.2 is that they allow calculations to be performed
without expressing the vectors in terms of components. For example, suppose that x, a, and b are vectors in

, and we want to solve the vector equation  for the vector x without using components. We could
proceed as follows:

While this method is obviously more cumbersome than computing with components in , it will become
important later in the text where we will encounter more general kinds of vectors.

Linear Combinations

Addition, subtraction, and scalar multiplication are frequently used in combination to form new vectors. For
example, if , , and  are vectors in , then the vectors

are formed in this way. In general, we make the following definition.

DEFINITION 4

If  is a vector in , then  is said to be a linear combination of the vectors  in  if it



can be expressed in the form

  (14)

where  are scalars. These scalars are called the coefficients of the linear combination. In
the case where , Formula 14 becomes , so that a linear combination of a single vector
is just a scalar muliple of that vector.

Note that this definition of a linear combination
is consistent with that given in the context of
matrices (see Definition 6 in Section 1.3).

Application of Linear Combinations to Color Models

Colors on computer monitors are commonly based on what is called the RGB color model. Colors in
this system are created by adding together percentages of the primary colors red (R), green (G), and
blue (B). One way to do this is to identify the primary colors with the vectors

in  and to create all other colors by forming linear combinations of , and b using coefficients
between 0 and 1, inclusive; these coefficients represent the percentage of each pure color in the mix.
The set of all such color vectors is called RGB space or the RGB color cube (Figure 3.1.14). Thus,
each color vector c in this cube is expressible as a linear combination of the form

where . As indicated in the figure, the corners of the cube represent the pure primary colors
together with the colors black, white, magenta, cyan, and yellow. The vectors along the diagonal
running from black to white correspond to shades of gray.



Figure 3.1.14   

Alternative Notations for Vectors

Up to now we have been writing vectors in  using the notation

  (15)

We call this the comma-delimited form. However, since a vector in  is just a list of its n components in a
specific order, any notation that displays those components in the correct order is a valid way of representing
the vector. For example, the vector in 15 can be written as

  (16)

which is called row-matrix form, or as

  (17)

which is called column-matrix form. The choice of notation is often a matter of taste or convenience, but
sometimes the nature of a problem will suggest a preferred notation. Notations 15, 16, and 17 will all be used
at various places in this text.

Concept Review
•  Geometric vector
•  Direction
•  Length
•  Initial point
•  Terminal point
•  Equivalent vectors



•  Zero vector
•  Vector addition: parallelogram rule and triangle rule
•  Vector subtraction
•  Negative of a vector
•  Scalar multiplication
•  Collinear (i.e., parallel) vectors
•  Components of a vector
•  Coordinates of a point
•  n-tuple
•  n-space
•  Vector operations in n-space: addition, subtraction, scalar multiplication
•  Linear combination of vectors

Skills
•  Perform geometric operations on vectors: addition, subtraction, and scalar multiplication.
•  Perform algebraic operations on vectors: addition, subtraction, and scalar multiplication.
•  Determine whether two vectors are equivalent.
•  Determine whether two vectors are collinear.
•  Sketch vectors whose initial and terminal points are given.
•  Find components of a vector whose initial and terminal points are given.
•  Prove basic algebraic properties of vectors (Theorems 3.1.1 and 3.1.2).

Exercise Set 3.1

In Exercises 1–2, draw a coordinate system (as in Figure 3.1.10) and locate the points whose coordinates are
given.

1. (a)  (3, 4, 5)
(b)  (−3, 4, 5)
(c)  (3, −4, 5)
(d)  (3, 4, −5)
(e)  (−3, −4, 5)
(f)  (−3, 4, −5)

Answer:



(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

2. (a)  (0,3,−3)
(b)  (3,−3,0)
(c)  (−3, 0, 0)
(d)  (3, 0, 3)
(e)  (0, 0, −3)
(f)  (0, 3, 0)

In Exercises 3–4, sketch the following vectors with the initial points located at the origin.

3. (a)  
(b)  
(c)  



(d)  
(e)  
(f)  

Answer:

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

4. (a)  
(b)  
(c)  
(d)  
(e)  



(f)  

In Exercises 5–6, sketch the following vectors with the initial points located at the origin.

5. (a)  
(b)  
(c)  

Answer:

(a)  

(b)  

(c)  

6. (a)  
(b)  
(c)  
(d)  

In Exercises 7–8, find the components of the vector .

7. (a)  
(b)  

Answer:

(a)  

(b)  

8. (a)  
(b)  

9. (a)  Find the terminal point of the vector that is equivalent to  and whose initial point is 
.



(b)  Find the initial point of the vector that is equivalent to  and whose terminal point is
.

Answer:

(a)  The terminal point is B(2, 3).
(b)  The initial point is .

10. (a)  Find the initial point of the vector that is equivalent to  and whose terminal point is 
.

(b)  Find the terminal point of the vector that is equivalent to  and whose initial point is
.

11. Find a nonzero vector u with terminal point  such that

(a)  u has the same direction as .

(b)  u is oppositely directed to .

Answer:

(a)   is one possible answer.

(b)   is one possible answer.

12. Find a nonzero vector u with initial point  such that

(a)  u has the same direction as .

(b)  u is oppositely directed to .

13. Let , , and . Find the components of

(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

Answer:

(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

14. Let , , and . Find the components of



(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

15. Let , , and . Find the components of

(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

Answer:

(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

16. Let u, v, and w be the vectors in Exercise 15. Find the vector x that satisfies .

17. Let , , and . Find the
components of
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

Answer:

(a)  
(b)  
(c)  
(d)  



(e)  
(f)  

18. Let   and . Find the components of

(a)  
(b)  
(c)  

19. Let   and . Find the components
of
(a)  
(b)  
(c)  

Answer:

(a)  
(b)  
(c)  

20. Let u, v, and w be the vectors in Exercise 18. Find the components of the vector x that satisfies the
equation .

21. Let u, v, and w be the vectors in Exercise 19. Find the components of the vector x that satisfies the
equation .

Answer:

22. For what value(s) of t, if any, is the given vector parallel to ?

(a)  
(b)  
(c)  

23. Which of the following vectors in  are parallel to ?

(a)  
(b)  
(c)  

Answer:

(a)  Not parallel
(b)  Parallel



(c)  Parallel

24. Let  and  Find scalars a and b so that
.

25. Let  and . Find scalars a and b so that .

Answer:

26. Find all scalars , , and  such that

27. Find all scalars , , and  such that

Answer:

28. Find all scalars , , and  such that

29. Let , , , and . Find scalars ,
, , and  such that .

Answer:

30. Show that there do not exist scalars , , and  such that

31. Show that there do not exist scalars , , and  such that

32. Consider Figure 3.1.12. Discuss a geometric interpretation of the vector

33. Let P be the point  and Q the point .

(a)  Find the midpoint of the line segment connecting P and Q.
(b)  Find the point on the line segment connecting P and Q that is  of the way from P to Q.

Answer:

(a)  

(b)  



34. Let P be the point . If the point  is the midpoint of the line segment connecting P and
Q, what is Q?

35. Prove parts (a), (c), and (d) of Theorem 3.1.1.

36. Prove parts (e)–(h) of Theorem 3.1.1.

37. Prove parts (a)–(c) of Theorem 3.1.2.

True-False Exercises

In parts (a)–(k) determine whether the statement is true or false, and justify your answer.

(a) Two equivalent vectors must have the same initial point.

Answer:

False

(b) The vectors  and  are equivalent.

Answer:

False

(c) If k is a scalar and v is a vector, then v and kv are parallel if and only if .

Answer:

False

(d) The vectors  and  are the same.

Answer:

True

(e) If , then .

Answer:

True

(f) If a and b are scalars such that , then u and v are parallel vectors.

Answer:

False

(g) Collinear vectors with the same length are equal.

Answer:

False

(h) If , then  must be the zero vector.



Answer:

True

(i) If k and m are scalars and u and v are vectors, then

Answer:

False

(j) If the vectors v and w are given, then the vector equation

can be solved for x.

Answer:

True

(k) The linear combinations  and  can only be equal if  and .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



3.2  Norm, Dot Product, and Distance in Rn

In this section we will be concerned with the notions of length and distance as they relate to vectors. We will
first discuss these ideas in  and  and then extend them algebraically to .

Norm of a Vector

In this text we will denote the length of a vector v by the symbol , which is read as the norm of v, the
length of v, or the magnitude of v (the term “norm” being a common mathematical synonym for length). As
suggested in Figure 3.2.1a, it follows from the Theorem of Pythagoras that the norm of a vector  in 
is

  (1)

Similarly, for a vector  in , it follows from Figure 3.2.1b and two applications of the Theorem of
Pythagoras that

and hence that

  (2)

Motivated by the pattern of Formulas 1 and 2 we make the following definition.

DEFINITION 1

If  is a vector in , then the norm of v (also called the length of v or the
magnitude of v) is denoted by , and is defined by the formula

  (3)

 EXAMPLE 1    Calculating Norms

It follows from Formula 2 that the norm of the vector  in  is

and it follows from Formula 3 that the norm of the vector  in  is



Figure 3.2.1   

Our first theorem in this section will generalize to  the following three familiar facts about vectors in  and
:

•  Distances are nonnegative.
•  The zero vector is the only vector of length zero.
•  Multiplying a vector by a scalar multiplies its length by the absolute value of that scalar.
It is important to recognize that just because these results hold in  and  does not guarantee that they hold
in —their validity in  must be proved using algebraic properties of n-tuples.

THEOREM 3.2.1

If v is a vector in  and if k is any scalar, then:

(a)  
(b)   if and only if 
(c)  

We will prove part (c) and leave (a) and (b) as exercises.

Proof (c)   If , then , so



Unit Vectors

A vector of norm 1 is called a unit vector. Such vectors are useful for specifying a direction when length is not
relevant to the problem at hand. You can obtain a unit vector in a desired direction by choosing any nonzero
vector v in that direction and multiplying v by the reciprocal of its length. For example, if v is a vector of
length 2 in  or , then  is a unit vector in the same direction as v. More generally, if v is any nonzero

vector in , then

  (4)

defines a unit vector that is in the same direction as v. We can confirm that 4 is a unit vector by applying part
(c) of Theorem 3.2.1 with  to obtain

The process of multiplying a nonzero vector by the reciprocal of its length to obtain a unit vector is called
normalizing v.

WARNING

Sometimes you will see Formula 4 expressed as

This is just a more compact way of writing that
formula and is not intended to convey that v is
being divided by .

 EXAMPLE 2    Normalizing a Vector

Find the unit vector u that has the same direction as .

Solution   The vector v has length

Thus, from 4



As a check, you may want to confirm that .

The Standard Unit Vectors

When a rectangular coordinate system is introduced in  or , the unit vectors in the positive directions of
the coordinate axes are called the standard unit vectors. In  these vectors are denoted by

and in  by

(Figure 3.2.2). Every vector  in  and every vector  in  can be expressed as a
linear combination of standard unit vectors by writing

  (5)

  (6)

Moreover, we can generalize these formulas to  by defining the standard unit vectors in  to be

  (7)

in which case every vector  in  can be expressed as

  (8)

 EXAMPLE 3    Linear Combinations of Standard Unit Vectors



Figure 3.2.2   

Distance in Rn

If  and  are points in  or , then the length of the vector  is equal to the distance d between the
two points (Figure 3.2.3). Specifically, if  and  are points in , then Formula 4 of
Section 3.1 implies that

  (9)

This is the familiar distance formula from analytic geometry. Similarly, the distance between the points
 and  in 3-space is

  (10)

Motivated by Formulas 9 and 10, we make the following definition.

DEFINITION 2

If  and  are points in , then we denote the distance between
u and v by  and define it to be

  (11)



Figure 3.2.3   

We noted in the previous section that n-tuples
can be viewed either as vectors or points in .
In Definition 2 we chose to describe them as
points, as that seemed the more natural
interpretation.

 EXAMPLE 4    Calculating Distance in Rn

If

then the distance between u and v is

Dot Product

Our next objective is to define a useful multiplication operation on vectors in  and  and then extend that
operation to . To do this we will first need to define exactly what we mean by the “angle” between two
vectors in  or . For this purpose, let u and v be nonzero vectors in  or  that have been positioned so
that their initial points coincide. We define the angle between u and v to be the angle θ determined by u and v
that satisfies the inequalities  (Figure 3.2.4).

DEFINITION 3

If u and v are nonzero vectors in  or , and if θ is the angle between u and v, then the dot product
(also called the Euclidean inner product) of u and v is denoted by  and is defined as

  (12)

If  or , then we define  to be 0.



Figure 3.2.4   

The sign of the dot product reveals information about the angle θ that we can obtain by rewriting Formula 12
as

  (13)

Since , it follows from Formula 13 and properties of the cosine function studied in trigonometry that
•   is acute if .
•   is obtuse if .
•   if .

 EXAMPLE 5    Dot Product

Find the dot product of the vectors shown in Figure 3.2.5.

Figure 3.2.5   

Solution   The lengths of the vectors are

and the cosine of the angle θ between them is

Thus, it follows from Formula 12 that



 EXAMPLE 6    A Geometry Problem Solved Using Dot Product

Find the angle between a diagonal of a cube and one of its edges.

Solution   Let k be the length of an edge and introduce a coordinate system as shown in Figure 3.2.6.
If we let , , and , then the vector

is a diagonal of the cube. It follows from Formula 13 that the angle θ between d and the edge 
satisfies

With the help of a calculator we obtain

Figure 3.2.6   

Note that the angle θ obtained in Example 6
does not involve k. Why was this to be
expected?

Component Form of the Dot Product

For computational purposes it is desirable to have a formula that expresses the dot product of two vectors in
terms of components. We will derive such a formula for vectors in 3-space; the derivation for vectors in
2-space is similar.



Let  and  be two nonzero vectors. If, as shown in Figure 3.2.7, θ is the angle
between u and v, then the law of cosines yields

  (14)

Josiah Willard Gibbs (1839-1903)

Historical Note    The dot product notation was first introduced by the American physicist and
mathematician J. Willard Gibbs in a pamphlet distributed to his students at Yale University in the
1880s. The product was originally written on the baseline, rather than centered as today, and was
referred to as the direct product. Gibbs's pamphlet was eventually incorporated into a book entitled
Vector Analysis that was published in 1901 and coauthored with one of his students. Gibbs made major
contributions to the fields of thermodynamics and electromagnetic theory and is generally regarded as
the greatest American physicist of the nineteenth century.
[Image: The Granger Collection, New York]

Since , we can rewrite 14 as

or

Substituting

and

we obtain, after simplifying,

  (15)



Although we derived Formula 15 and its
2-space companion under the assumption that u
and v are nonzero, it turned out that these
formulas are also applicable if  or 
(verify).

The companion formula for vectors in 2-space is

  (16)

Motivated by the pattern in Formulas 15 and 16, we make the following definition.

DEFINITION 4

If  and  are vectors in , then the dot product (also called the
Euclidean inner product) of u and v is denoted by  and is defined by

  (17)

In words, to calculate the dot product
(Euclidean inner product) multiply
corresponding components and add the
resulting products.

 EXAMPLE 7    Calculating Dot Products Using Components

(a)  Use Formula 15 to compute the dot product of the vectors u and v in Example 5.
(b)  Calculate  for the following vectors in :

Solution   
(a)  The component forms of the vectors are  and . Thus,

which agrees with the result obtained geometrically in Example 5.
(b)  



Figure 3.2.7   

Algebraic Properties of the Dot Product

In the special case where  in Definition 4, we obtain the relationship

  (18)

This yields the following formula for expressing the length of a vector in terms of a dot product:

  (19)

Dot products have many of the same algebraic properties as products of real numbers.

THEOREM 3.2.2

If u, v, and w are vectors in  and if k is a scalar, then:

(a)  
(b)  
(c)  
(d)  

We will prove parts (c) and (d) and leave the other proofs as exercises.

Proof (c)   Let  and . Then

Proof (d)   The result follows from parts (a) and (b) of Theorem 3.2.1 and the fact that



The next theorem gives additional properties of dot products. The proofs can be obtained either by expressing
the vectors in terms of components or by using the algebraic properties established in Theorem 3.2.2.

THEOREM 3.2.3

If  and w are vectors in  and if k is a scalar, then:

(a)  
(b)  
(c)  
(d)  
(e)  

We will show how Theorem 3.2.2 can be used to prove part (b) without breaking the vectors into components.
The other proofs are left as exercises.

Proof (b)   

Formulas 18 and 19 together with Theorems 3.2.2 and 3.2.3 make it possible to manipulate expressions
involving dot products using familiar algebraic techniques.

 EXAMPLE 8    Calculating with Dot Products

Cauchy—Schwarz Inequality and Angles in Rn

Our next objective is to extend to  the notion of “angle” between nonzero vectors u and v. We will do this
by starting with the formula



  (20)

which we previously derived for nonzero vectors in  and . Since dot products and norms have been
defined for vectors in , it would seem that this formula has all the ingredients to serve as a definition of the
angle θ between two vectors, u and v, in . However, there is a fly in the ointment, the problem being that the
inverse cosine in Formula 20 is not defined unless its argument satisfies the inequalities

  (21)

Fortunately, these inequalities do hold for all nonzero vectors in  as a result of the following fundamental
result known as the Cauchy—Schwarz inequality.

THEOREM 3.2.4   Cauchy—Schwarz Inequality

If  and  are vectors in  then

  (22)

or in terms of components

  (23)

We will omit the proof of this theorem because later in the text we will prove a more general version of which
this will be a special case. Our goal for now will be to use this theorem to prove that the inequalities in 21 hold
for all nonzero vectors in . Once that is done we will have established all the results required to use Formula
20 as our definition of the angle between nonzero vectors u and v in .

To prove that the inequalities in 21 hold for all nonzero vectors in , divide both sides of Formula 22 by the
product  to obtain

from which 21 follows.



Hermann Amandus Schwarz (1843-1921)

Viktor Yakovlevich Bunyakovsky (1804-1889)

Historical Note    The Cauchy—Schwarz inequality is named in honor of the French mathematician
Augustin Cauchy (see p. 109) and the German mathematician Hermann Schwarz. Variations of this
inequality occur in many different settings and under various names. Depending on the context in
which the inequality occurs, you may find it called Cauchy's inequality, the Schwarz inequality, or
sometimes even the Bunyakovsky inequality, in recognition of the Russian mathematician who
published his version of the inequality in 1859, about 25 years before Schwarz.
[Images: wikipedia (Schwarz); wikipedia (Bunyakovsky)]

Geometry in Rn

Earlier in this section we extended various concepts to  with the idea that familiar results that we can
visualize in  and  might be valid in  as well. Here are two fundamental theorems from plane geometry
whose validity extends to :

•  The sum of the lengths of two side of a triangle is at least as large as the third (Figure 3.2.8).
•  The shortest distance between two points is a straight line (Figure 3.2.9).
The following theorem generalizes these theorems to .



THEOREM 3.2.5

If u, v, and w are vectors in  and if k is any scalar, then:

(a)  
(b)  

Proof (a)   

Proof (b)   It follows from part (a) and Formula 11 that

Figure 3.2.8   



Figure 3.2.9   

It is proved in plane geometry that for any parallelogram the sum of the squares of the diagonals is equal to the
sum of the squares of the four sides (Figure 3.2.10). The following theorem generalizes that result to .

THEOREM 3.2.6   Parallelogram Equation for Vectors

If u and v are vectors in  then

  (24)

Proof   

Figure 3.2.10   

We could state and prove many more theorems from plane geometry that generalize to , but the ones already
given should suffice to convince you that  is not so different from  and  even though we cannot
visualize it directly. The next theorem establishes a fundamental relationship between the dot product and norm
in .



THEOREM 3.2.7

If u and v are vectors in  with the Euclidean inner product, then

  (25)

Proof   

from which 25 follows by simple algebra.

Note that Formula 25 expresses the dot product
in terms of norms.

Dot Products as Matrix Multiplication

There are various ways to express the dot product of vectors using matrix notation. The formulas depend on
whether the vectors are expressed as row matrices or column matrices. Here are the possibilities.

If A is an  matrix and u and v are  matrices, then it follows from the first row in Table 1 and
properties of the transpose that

The resulting formulas

  (26)

  (27)

provide an important link between multiplication by an  matrix A and multiplication by .

 EXAMPLE 9    Verifying That Au · v = u · ATv



Suppose that

Then

from which we obtain

Thus,  as guaranteed by Formula 26. We leave it for you to verify that Formula
27 also holds.

Table 1

Form Dot Product Example

u a column matrix and
v a column matrix

u a row matrix and v a
column matrix

u a column matrix and
v a row matrix



Form Dot Product Example

u a row matrix and v a
row matrix

A Dot Product View of Matrix Multiplication

Dot products provide another way of thinking about matrix multiplication. Recall that if  is an 
matrix and  is an  matrix, then the th entry of AB is

which is the dot product of the ith row vector of A

and the jth column vector of B

Thus, if the row vectors of A are  and the column vectors of B are , then the matrix
product AB can be expressed as

  (28)

Application of Dot Products to ISBN Numbers

Although the system has recently changed, most books published in the last 25 years have been
assigned a unique 10-digit number called an International Standard Book Number or ISBN. The first
nine digits of this number are split into three groups—the first group representing the country or group
of countries in which the book originates, the second identifying the publisher, and the third assigned to
the book title itself. The tenth and final digit, called a check digit, is computed from the first nine digits
and is used to ensure that an electronic transmission of the ISBN, say over the Internet, occurs without
error.

To explain how this is done, regard the first nine digits of the ISBN as a vector b in , and let a be the



vector

Then the check digit c is computed using the following procedure:
1.  Form the dot product .
2.  Divide  by 11, thereby producing a remainder c that is an integer between 0 and 10, inclusive.

The check digit is taken to be c, with the proviso that  is written as X to avoid double digits.
For example, the ISBN of the brief edition of Calculus, sixth edition, by Howard Anton is

which has a check digit of 9. This is consistent with the first nine digits of the ISBN, since

Dividing 152 by 11 produces a quotient of 13 and a remainder of 9, so the check digit is . If an
electronic order is placed for a book with a certain ISBN, then the warehouse can use the above
procedure to verify that the check digit is consistent with the first nine digits, thereby reducing the
possibility of a costly shipping error.

Concept Review
•  Norm (or length or magnitude) of a vector
•  Unit vector
•  Normalized vector
•  Standard unit vectors
•  Distance between points in 

•  Angle between two vectors in 

•  Dot product (or Euclidean inner product) of two vectors in 

•  Cauchy-Schwarz inequality
•  Triangle inequality
•  Parallelogram equation for vectors

Skills
•  Compute the norm of a vector in .

•  Determine whether a given vector in  is a unit vector.

•  Normalize a nonzero vector in .

•  Determine the distance between two vectors in .

•  Compute the dot product of two vectors in .

•  Compute the angle between two nonzero vectors in .

•  Prove basic properties pertaining to norms and dot products (Theorems 3.2.1–3.2.3 and 3.2.5–3.2.7).



Exercise Set 3.2

In Exercises 1–2, find the norm of v, a unit vector that has the same direction as v, and a unit vector that is
oppositely directed to v.

1. (a)  
(b)  
(c)  

Answer:

(a)  

(b)  

(c)  

2. (a)  
(b)  
(c)  

In Exercises 3–4, evaluate the given expression with   and
.

3. (a)  
(b)  
(c)  
(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

4. (a)  
(b)  
(c)  



(d)  

In Exercises 5–6, evaluate the given expression with   and

5. (a)  
(b)  
(c)  

Answer:

(a)  

(b)  

(c)  

6. (a)  
(b)  
(c)  

7. Let . Find all scalars k such that .

Answer:

8. Let . Find all scalars k such that .

In Exercises 9–10, find   and .

9. (a)   

(b)  

Answer:

(a)  
(b)  

10. (a)   

(b)   

In Exercises 11–12, find the Euclidean distance between u and v.

11. (a)   

(b)   

(c)  



Answer:

(a)  

(b)  

(c)  

12. (a)   

(b)  

(c)   

13. Find the cosine of the angle between the vectors in each part of Exercise 11, and then state whether the
angle is acute, obtuse, or 90°.

Answer:

(a)  ; θ is acute

(b)  ; θ is obtuse

(c)  ; θ is obtuse

14. Find the cosine of the angle between the vectors in each part of Exercise 12, and then state whether the
angle is acute, obtuse, or 90°.

15. Suppose that a vector a in the xy-plane has a length of 9 units and points in a direction that is 120°
counterclockwise from the positive x-axis, and a vector b in that plane has a length of 5 units and points in
the positive y-direction. Find .

Answer:

16. Suppose that a vector a in the xy-plane points in a direction that is 47° counterclockwise from the positive
x-axis, and a vector b in that plane points in a direction that is 43° clockwise from the positive x-axis. What
can you say about the value of ?

In Exercises 17–18, determine whether the expression makes sense mathematically. If not, explain why.

17. (a)  
(b)  
(c)  
(d)  

Answer:



(a)   does not make sense because  is a scalar.

(b)   makes sense.

(c)   does not make sense because the quantity inside the norm is a scalar.
(d)   makes sense since the terms are both scalars.

18. (a)  
(b)  
(c)  
(d)  

19. Find a unit vector that has the same direction as the given vector.
(a)  
(b)  
(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

20. Find a unit vector that is oppositely directed to the given vector.
(a)  
(b)  
(c)  
(d)  

21. State a procedure for finding a vector of a specified length m that points in the same direction as a given
vector v.

22. If  and , what are the largest and smallest values possible for ? Give a geometric
explanation of your results.

23. Find the cosine of the angle θ between u and v.
(a)  
(b)  
(c)  



(d)  

Answer:

(a)  

(b)  

(c)  
(d)  

24. Find the radian measure of the angle θ (with ) between u and v.
(a)   and 

(b)   and 

(c)   and 

(d)   and 

In Exercises 25–26, verify that the Cauchy-Schwarz inequality holds.

25. (a)   

(b)   

(c)   

Answer:

(a)  

(b)  

(c)  

26. (a)   

(b)   

(c)   

27. Let  and . Describe the set of all points  for which .

Answer:

A sphere of radius 1 centered at .

28. (a)  Show that the components of the vector  in Figure Ex-28a are  and
.

(b)  Let u and v be the vectors in Figure Ex-28b. Use the result in part (a) to find the components of
.



Figure Ex-28   

29. Prove parts (a) and (b) of Theorem 3.2.1.

30. Prove parts (a) and (c) of Theorem 3.2.3.

31. Prove parts (d) and (e) of Theorem 3.2.3.

32. Under what conditions will the triangle inequality (Theorem 3.2.5a) be an equality? Explain your answer
geometrically.

33. What can you say about two nonzero vectors, u and v, that satisfy the equation ?

34. (a)  What relationship must hold for the point  to be equidistant from the origin and the
xz-plane? Make sure that the relationship you state is valid for positive and negative values of a, b, and
c.

(b)  What relationship must hold for the point  to be farther from the origin than from the
xz-plane? Make sure that the relationship you state is valid for positive and negative values of a, b, and
c

True-False Exercises

In parts (a)–(j) determine whether the statement is true or false, and justify your answer.

(a) If each component of a vector in  is doubled, the norm of that vector is doubled.

Answer:

True

(b) In , the vectors of norm 5 whose initial points are at the origin have terminal points lying on a circle of
radius 5 centered at the origin.

Answer:

True

(c) Every vector in  has a positive norm.

Answer:

False



(d) If v is a nonzero vector in , there are exactly two unit vectors that are parallel to v.

Answer:

True

(e) If , , and , then the angle between u and v is  radians.

Answer:

True

(f) The expressions  and  are both meaningful and equal to each other.

Answer:

False

(g) If , then .

Answer:

False

(h) If , then either  or .

Answer:

False

(i) In , if u lies in the first quadrant and v lies in the third quadrant, then  cannot be positive.

Answer:

True

(j) For all vectors u, v, and w in , we have

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



3.3  Orthogonality
In the last section we defined the notion of “angle” between vectors in . In this section we will focus on the notion of
“perpendicularity.” Perpendicular vectors in  play an important role in a wide variety of applications.

Orthogonal Vectors

Recall from Formula 20 in the previous section that the angle θ between two nonzero vectors u and v in  is defned by the
formula

It follows from this that  if and only if . Thus, we make the following definition.

DEFINITION 1

Two nonzero vectors u and v in  are said to be orthogonal (or perpendicular) if . We will also agree that the
zero vector in  is orthogonal to every vector in . A nonempty set of vectors in  is called an orthogonal set if all
pairs of distinct vectors in the set are orthogonal. An orthogonal set of unit vectors is called an orthonormal set.

 EXAMPLE 1    Orthogonal Vectors

(a)  Show that  and  are orthogonal vectors in .

(b)  Show that the set  of standard unit vectors is an orthogonal set in .

Solution   
(a)  The vectors are orthogonal since

(b)  We must show that all pairs of distinct vectors are orthogonal, that is,

This is evident geometrically (Figure 3.2.2), but it can be seen as well from the computations

In Example 1 there is no need to check that

since this follows from computations in the example and
the symmetry property of the dot product.

Lines and Planes Determined by Points and Normals



One learns in analytic geometry that a line in  is determined uniquely by its slope and one of its points, and that a plane in  is
determined uniquely by its “inclination” and one of its points. One way of specifying slope and inclination is to use a nonzero
vector n, called a normal, that is orthogonal to the line or plane in question. For example, Figure 3.3.1 shows the line through the
point  that has normal  and the plane through the point  that has normal . Both
the line and the plane are represented by the vector equation

  (1)

where P is either an arbitrary point  on the line or an arbitrary point  in the plane. The vector  can be expressed
in terms of components as

  (2)

  (3)

These are called the point-normal equations of the line and plane.

 EXAMPLE 2    Point-Normal Equations

It follows from 2 that in  the equation

represents the line through the point  with normal ; and it follows from 3 that in  the equation

represents the plane through the point  with normal .

Figure 3.3.1   

When convenient, the terms in Equations 2 and 3 can be multiplied out and the constants combined. This leads to the following
theorem.

THEOREM 3.3.1

(a)  If a and b are constants that are not both zero, then an equation of the form



  (4)

represents a line in  with normal .

(b)  If a, b, and c are constants that are not all zero, then an equation of the form

  (5)

represents a plane in  with normal .

 EXAMPLE 3    Vectors Orthogonal to Lines and Planes Through the Origin

(a)  The equation  represents a line through the origin in . Show that the vector  formed
from the coefficients of the equation is orthogonal to the line, that is, orthogonal to every vector along the line.

(b)  The equation  represents a plane through the origin in . Show that the vector 
formed from the coefficients of the equation is orthogonal to the plane, that is, orthogonal to every vector that
lies in the plane.

Solution   We will solve both problems together. The two equations can be written as

or, alternatively, as

These equations show that  is orthogonal to every vector  on the line and that  is orthogonal to every
vector  in the plane (Figure 3.3.1).

Recall that

are called homogeneous equations. Example 3 illustrates that homogeneous equations in two or three unknowns can be written in
the vector form

  (6)

where n is the vector of coefficients and x is the vector of unknowns. In  this is called the vector form of a line through the
origin, and in  it is called the vector form of a plane through the origin.

Referring to Table 1 of Section 3.2, in what other ways
can you write 6 if n and x are expressed in matrix form?

Orthogonal Projections

In many applications it is necessary to “decompose” a vector u into a sum of two terms, one term being a scalar multiple of a
specified nonzero vector a and the other term being orthogonal to a. For example, if u and a are vectors in  that are positioned
so their initial points coincide at a point Q, then we can create such a decomposition as follows (Figure 3.3.2):
•  Drop a perpendicular from the tip of u to the line through a.
•  Construct the vector  from Q to the foot of the perpendicular.



•  Construct the vector .

Figure 3.3.2   In parts (b) through (d), , where  is parallel to a and  is orthogonal to a.

Since

we have decomposed u into a sum of two orthogonal vectors, the first term being a scalar multiple of a and the second being
orthogonal to a.

The following theorem shows that the foregoing results, which we illustrated using vectors in , apply as well in .

THEOREM 3.3.2   Projection Theorem

If u and a are vectors in  and if  then u can be expressed in exactly one way in the form  where
 is a scalar multiple of a and  is orthogonal to a.

Proof   Since the vector  is to be a scalar multiple of a, it must have the form

  (7)

Our goal is to find a value of the scalar k and a vector  that is orthogonal to a such that

  (8)

We can determine k by using 7 to rewrite 8 as

and then applying Theorems 3.2.2 and 3.2.3 to obtain

  (9)

Since  is to be orthogonal to a, the last term in 9 must be 0, and hence k must satisfy the equation

from which we obtain

as the only possible value for k. The proof can be completed by rewriting 8 as

and then confirming that  is orthogonal to a by showing that  (we leave the details for you).

The vectors  and  in the Projection Theorem have associated names—the vector  is called the orthogonal projection of u
on a or sometimes the vector component of u along a, and the vector  is called the vector component of u orthogonal to a. The
vector  is commonly denoted by the symbol , in which case it follows from 8 that . In summary,



  (10)

  (11)

 EXAMPLE 4    Orthogonal Projection on a Line

Find the orthogonal projections of the vectors  and  on the line L that makes an angle θ with
the positive x-axis in .

Solution   As illustrated in Figure 3.3.3,  is a unit vector along the line L, so our first problem is
to find the orthogonal projection of  along a. Since

it follows from Formula 10 that this projection is

Similarly, since , it follows from Formula 10 that

 EXAMPLE 5    Vector Component of u Along a

Let  and . Find the vector component of u along a and the vector component of u
orthogonal to a.

Solution   

Thus the vector component of u along a is

and the vector component of u orthogonal to a is

As a check, you may wish to verify that the vectors  and a are perpendicular by showing that their dot
product is zero.

Figure 3.3.3   



Sometimes we will be more interested in the norm of the vector component of u along a than in the vector component itself. A
formula for this norm can be derived as follows:

where the second equality follows from part (c) of Theorem 3.2.1 and the third from the fact that . Thus,

  (12)

If  denotes the angle between u and a, then , so 12 can also be written as

  (13)

(Verify.) A geometric interpretation of this result is given in Figure 3.3.4.

Figure 3.3.4   

The Theorem of Pythagoras

In Section 3.2 we found that many theorems about vectors in  and  also hold in . Another example of this is the following
generalization of the Theorem of Pythagoras (Figure 3.3.5).

THEOREM 3.3.3   Theorem of Pythagoras in Rn

If u and  are orthogonal vectors in  with the Euclidean inner product, then

  (14)

Proof   Since u and v are orthogonal, we have , from which it follows that



 EXAMPLE 6    Theorem of Pythagoras in R4

We showed in Example 1 that the vectors

are orthogonal. Verify the Theorem of Pythagoras for these vectors.

Solution   We leave it for you to confirm that

Thus, 

Figure 3.3.5   

   O P T I O N A L    

Distance Problems

We will now show how orthogonal projections can be used to solve the following three distance problems:
Problem 1. Find the distance between a point and a line in .

Problem 2. Find the distance between a point and a plane in .

Problem 3. Find the distance between two parallel planes in .

A method for solving the first two problems is provided by the next theorem. Since the proofs of the two parts are similar, we will
prove part (b) and leave part (a) as an exercise.

THEOREM 3.3.4

(a)  In  the distance D between the point  and the line  is

  (15)

(b)  In  the distance D between the point  and the plane  is

  (16)



Proof (b)   Let  be any point in the plane. Position the normal  so that its initial point is at Q. As
illustrated in Figure 3.3.6, the distance D is equal to the length of the orthogonal projection of  on n. Thus, it follows from
Formula 12 that

But

Thus

  (17)

Since the point  lies in the given plane, its coordinates satisfy the equation of that plane; thus

or

Substituting this expression in 17 yields 16.

 EXAMPLE 7    Distance Between a Point and a Plane

Find the distance D between the point  and the plane .

Solution   Since the distance formulas in Theorem 3.3.4 require that the equations of the line and plane be written
with zero on the right side, we first need to rewrite the equation of the plane as

from which we obtain

Figure 3.3.6   

The third distance problem posed above is to find the distance between two parallel planes in . As suggested in Figure 3.3.7, the



distance between a plane V and a plane W can be obtained by finding any point  in one of the planes, and computing the
distance between that point and the other plane. Here is an example.

Figure 3.3.7   The distance between the parallel planes V and W is equal to the distance between  and W.

 EXAMPLE 8    Distance Between Parallel Planes

The planes

are parallel since their normals,  and , are parallel vectors. Find the distance between these
planes.

Solution   To find the distance D between the planes, we can select an arbitrary point in one of the planes and
compute its distance to the other plane. By setting  in the equation , we obtain the point

 in this plane. From 16, the distance between  and the plane  is

Concept Review
•  Orthogonal (perpendicular) vectors
•  Orthogonal set of vectors
•  Normal to a line
•  Normal to a plane
•  Point-normal equations
•  Vector form of a line
•  Vector form of a plane
•  Orthogonal projection of u on a
•  Vector component of u along a
•  Vector component of u orthogonal to a
•  Theorem of Pythagoras

Skills
•  Determine whether two vectors are orthogonal.
•  Determine whether a given set of vectors forms an orthogonal set.
•  Find equations for lines (or planes) by using a normal vector and a point on the line (or plane).
•  Find the vector form of a line or plane through the origin.
•  Compute the vector component of u along a and orthogonal to a.



•  Find the distance between a point and a line in  or .

•  Find the distance between two parallel planes in .

•  Find the distance between a point and a plane.

Exercise Set 3.3

In Exercises 1–2, determine whether u and v are orthogonal vectors.

1. (a)  
(b)  
(c)  
(d)  

Answer:

(a)  Orthogonal
(b)  Not orthogonal
(c)  Not orthogonal
(d)  Not orthogonal

2. (a)  
(b)  
(c)  
(d)  

In Exercises 3–4, determine whether the vectors form an orthogonal set.

3. (a)  , 

(b)  , 

(c)  , , 

(d)  , , 

Answer:

(a)  Not an orthogonal set
(b)  Orthogonal set
(c)  Orthogonal set
(d)  Not an orthogonal set

4. (a)  , 

(b)  , 

(c)  , , 

(d)  , , 

5. Find a unit vector that is orthogonal to both  and 

Answer:



6. (a)  Show that  and  are orthogonal vectors.

(b)  Use the result in part (a) to find two vectors that are orthogonal to .

(c)  Find two unit vectors that are orthogonal to .

7. Do the points , , and  form the vertices of a right triangle? Explain your answer.

Answer:

Yes

8. Repeat Exercise 7 for the points , , and .

In Exercises 9–12, find a point-normal form of the equation of the plane passing through P and having n as a normal.

9. 

Answer:

10. 

11. 

Answer:

12. 

In Exercises 13–16, determine whether the given planes are parallel.

13.  and 

Answer:

Not parallel

14.  and 

15.  and 

Answer:

Parallel

16.  and 

In Exercises 17–18, determine whether the given planes are perpendicular.

17. 

Answer:

Not perpendicular

18. 

In Exercises 19–20, find .

19. (a)  
(b)  



Answer:

(a)  

(b)  

20. (a)  
(b)  

In Exercises 21–28, find the vector component of u along a and the vector component of u orthogonal to a.

21. 

Answer:

22. 

23. 

Answer:

24. 

25. 

Answer:

26. 

27. 

Answer:

28. 

In Exercises 29–32, find the distance between the point and the line.

29. 

Answer:

1

30. 

31. 

Answer:

32. 

In Exercises 33–36, find the distance between the point and the plane.



33. 

Answer:

34. 

35. 

Answer:

36. 

In Exercises 37–40, find the distance between the given parallel planes.

37.  and 

Answer:

38.  and 

39.  and 

Answer:

0 (The planes coincide.)

40.  and 

41. Let i, j, and k be unit vectors along the positive x, y, and z axes of a rectangular coordinate system in 3-space. If 
is a nonzero vector, then the angles α, β, and γ between v and the vectors i, j, and k, respectively, are called the direction
angles of v (Figure Ex-41), and the numbers , and  are called the direction cosines of v.

(a)  Show that .
(b)  Find  and .
(c)  Show that .

(d)  Show that .

Figure Ex-41   

Answer:

(b)  

42. Use the result in Exercise 41 to estimate, to the nearest degree, the angles that a diagonal of a box with dimensions



 makes with the edges of the box.

43. Show that if v is orthogonal to both  and , then v is orthogonal to  for all scalars  and .

44. Let u and v be nonzero vectors in 2- or 3-space, and let  and . Show that the vector  bisects the
angle between u and v.

45. Prove part (a) of Theorem 3.3.4.

46. Is it possible to have

Explain your reasoning.

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) The vectors  and  are orthogonal.

Answer:

True

(b) If u and v are orthogonal vectors, then for all nonzero scalars k and m,  and  are orthogonal vectors.

Answer:

True

(c) The orthogonal projection of u along a is perpendicular to the vector component of u orthogonal to a.

Answer:

True

(d) If a and b are orthogonal vectors, then for every nonzero vector u, we have

Answer:

True

(e) If a and u are nonzero vectors, then

Answer:

True

(f) If the relationship

holds for some nonzero vector a, then .

Answer:

False

(g) For all vectors u and v, it is true that

Answer:

False
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3.4  The Geometry of Linear Systems
In this section we will use parametric and vector methods to study general systems of linear equations. This work will enable us to interpret
solution sets of linear systems with n unknowns as geometric objects in  just as we interpreted solution sets of linear systems with two
and three unknowns as points, lines, and planes in  and .

Vector and Parametric Equations of Lines in R2 and R3

In the last section we derived equations of lines and planes that are determined by a point and a normal vector. However, there are other
useful ways of specifying lines and planes. For example, a unique line in  or  is determined by a point  on the line and a nonzero
vector v parallel to the line, and a unique plane in  is determined by a point  in the plane and two noncollinear vectors  and 
parallel to the plane. The best way to visualize this is to translate the vectors so their initial points are at  (Figure 3.4.1).

Figure 3.4.1   

Let us begin by deriving an equation for the line L that contains the point  and is parallel to v. If x is a general point on such a line, then,
as illustrated in Figure 3.4.2, the vector  will be some scalar multiple of v, say

As the variable t (called a parameter) varies from  to , the point x traces out the line L. Accordingly, we have the following result.

THEOREM 3.4.1

Let L be the line in  or  that contains the point  and is parallel to the nonzero vector . Then the equation of the line through
 that is parallel to  is

  (1)

If , then the line passes through the origin and the equation has the form

  (2)

Although it is not stated explicitly, it is understood in
Formulas 1 and 2 that the parameter t varies from  to .
This applies to all vector and parametric equations in this text
except where stated otherwise.



Figure 3.4.2   

Vector and Parametric Equations of Planes in R3

Next we will derive an equation for the plane W that contains the point  and is parallel to the noncollinear vectors  and . As shown in
Figure 3.4.3, if x is any point in the plane, then by forming suitable scalar multiples of  and , say  and , we can create a
parallelogram with diagonal  and adjacent sides  and . Thus, we have

Figure 3.4.3   

As the variables  and  (called parameters) vary independently from  to , the point x varies over the entire plane W. Accordingly,
we make the following definition.

THEOREM 3.4.2

Let W be the plane in  that contains the point  and is parallel to the noncollinear vectors  and . Then an equation of the
plane through  that is parallel to  and  is given by

  (3)

If , then the plane passes through the origin and the equation has the form

  (4)

Remark   Observe that the line through  represented by Equation 1 is the translation by  of the line through the origin represented by
Equation 2 and that the plane through  represented by Equation 3 is the translation by  of the plane through the origin represented by
Equation 4 (Figure 3.4.4).



Figure 3.4.4   

Motivated by the forms of Formulas 1 to 4, we can extend the notions of line and plane to  by making the following definitions.

DEFINITION 1

If  and v are vectors in , and if v is nonzero, then the equation

  (5)

defines the line through  that is parallel to . In the special case where , the line is said to pass through the origin.

DEFINITION 2

If  and  are vectors in , and if  and  are not collinear, then the equation

  (6)

defines the plane through  that is parallel to  and . In the special case where , the plane is said to pass through the
origin.

Equations 5 and 6 are called vector forms of a line and plane in . If the vectors in these equations are expressed in terms of their
components and the corresponding components on each side are equated, then the resulting equations are called parametric equations of
the line and plane. Here are some examples.

 EXAMPLE 1    Vector and Parametric Equations of Lines in R2 and R3

(a)  Find a vector equation and parametric equations of the line in  that passes through the origin and is parallel to the
vector .

(b)  Find a vector equation and parametric equations of the line in  that passes through the point  and is
parallel to the vector .

(c)  Use the vector equation obtained in part (b) to find two points on the line that are different from .

Solution   
(a)  It follows from 5 with  that a vector equation of the line is . If we let , then this equation can be

expressed in vector form as

Equating corresponding components on the two sides of this equation yields the parametric equations



(b)  It follows from 5 that a vector equation of the line is . If we let , and if we take
, then this equation can be expressed in vector form as

  (7)

Equating corresponding components on the two sides of this equation yields the parametric equations

(c)  A point on the line represented by Equation 7 can be obtained by substituting a specific numerical value for the
parameter t . However, since  produces , which is the point , this value of t does not serve
our purpose. Taking  produces the point  and taking  produces the point . Any
other distinct values for t (except ) would work just as well.

 EXAMPLE 2    Vector and Parametric Equations of a Plane in R3

Find vector and parametric equations of the plane .

Solution   We will find the parametric equations first. We can do this by solving the equation for any one of the variables in
terms of the other two and then using those two variables as parameters. For example, solving for x in terms of y and z yields

  (8)

and then using y and z as parameters  and , respectively, yields the parametric equations

We would have obtained different parametric and
vector equations in Example 2 had we solved 8 for y or
z rather than x. However, one can show the same plane
results in all three cases as the parameters vary from

 to .

To obtain a vector equation of the plane we rewrite these parametric equations as

or, equivalently, as

 EXAMPLE 3    Vector and Parametric Equations of Lines and Planes in R4

(a)  Find vector and parametric equations of the line through the origin of  that is parallel to the vector .

(b)  Find vector and parametric equations of the plane in  that passes through the point  and is parallel
to both  and .

Solution   
(a)  If we let , then the vector equation  can be expressed as

Equating corresponding components yields the parametric equations



(b)  The vector equation  can be expressed as

which yields the parametric equations

Lines Through Two Points in Rn

If  and  are distinct points in , then the line determined by these points is parallel to the vector  (Figure 3.4.5), so it
follows from 5 that the line can be expressed in vector form as

  (9)

or, equivalently, as

  (10)

These are called the two-point vector equations of a line in .

 EXAMPLE 4    A Line Through Two Points in R2

Find vector and parametric equations for the line in  that passes through the points  and .

Solution   We will see below that it does not matter which point we take to be  and which we take to be , so let us
choose  and . It follows that  and hence that

  (11)

which we can rewrite in parametric form as

Had we reversed our choices and taken  and , then the resulting vector equation would have been

  (12)

and the parametric equations would have been

(verify). Although 11 and 12 look different, they both represent the line whose equation in rectangular coordinates is

(Figure 3.4.6). This can be seen by eliminating the parameter t from the parametric equations (verify).

Figure 3.4.5   



Figure 3.4.6   

The point  in Equations 9 and 10 traces an entire line in  as the parameter t varies over the interval . If, however,
we restrict the parameter to vary from  to , then x will not trace the entire line but rather just the line segment joining the points

 and . The point x will start at  when  and end at  when . Accordingly, we make the following definition.

DEFINITION 3

If  and  are vectors in , then the equation

  (13)

defines the line segment from  to . When convenient, Equation 13 can be written as

  (14)

 EXAMPLE 5    A Line Segment from One Point to Another in R2

It follows from 13 and 14 that the line segment in  from  to  can be represented either by the
equation

or by

Dot Product Form of a Linear System

Our next objective is to show how to express linear equations and linear systems in dot product notation. This will lead us to some
important results about orthogonality and linear systems.

Recall that a linear equation in the variables  has the form

  (15)

and that the corresponding homogeneous equation is

  (16)

These equations can be rewritten in vector form by letting



in which case Formula 15 can be written as

  (17)

and Formula 16 as

  (18)

Except for a notational change from n to a, Formula 18 is the extension to  of Formula 6 in Section 3.3. This equation reveals that each
solution vector x of a homogeneous equation is orthogonal to the coefficient vector a. To take this geometric observation a step further,
consider the homogeneous system

If we denote the successive row vectors of the coefficient matrix by , then we can rewrite this system in dot product form as

  (19)

from which we see that every solution vector x is orthogonal to every row vector of the coefficient matrix. In summary, we have the
following result.

THEOREM 3.4.3

If A is an  matrix, then the solution set of the homogeneous linear system  consists of all vectors in  that are
orthogonal to every row vector of A.

 EXAMPLE 6    Orthogonality of Row Vectors and Solution Vectors

We showed in Example 6 of Section 1.2 that the general solution of the homogeneous linear system

is

which we can rewrite in vector form as

According to Theorem 3.4.3, the vector x must be orthogonal to each of the row vectors



We will confirm that x is orthogonal to , and leave it for you to verify that x is orthogonal to the other three row vectors as
well. The dot product of  and x is

which establishes the orthogonality.

The Relationship Between Ax = 0 and Ax = b

We will conclude this section by exploring the relationship between the solutions of a homogeneous linear system  and the solutions
(if any) of a nonhomogeneous linear system  that has the same coefficient matrix. These are called corresponding linear systems.

To motivate the result we are seeking, let us compare the solutions of the corresponding linear systems

We showed in Example 5 and Example 6 of Section 1.2 that the general solutions of these linear systems can be written in parametric form
as

which we can then rewrite in vector form as

By splitting the vectors on the right apart and collecting terms with like parameters, we can rewrite these equations as

  (20)

  (21)

Formulas 20 and 21 reveal that each solution of the nonhomogeneous system can be obtained by adding the fixed vector 

to the corresponding solution of the homogeneous system. This is a special case of the following general result.

THEOREM 3.4.4

The general solution of a consistent linear system  can be obtained by adding any specific solution of  to the general
solution of .

Proof   Let  be any specific solution of , let W denote the solution set of , and let  denote the set of all vectors that
result by adding  to each vector in W. We must show that if x is a vector in , then x is a solution of , and conversely, that
every solution of  is in the set .

Assume first that x is a vector in  This implies that x is expressible in the form  where  and  Thus,

which shows that x is a solution of 



Conversely, let x be any solution of  To show that x is in the set  we must show that x is expressible in the form

  (22)

where w is in W (i.e., ). We can do this by taking  This vector obviously satisfies 22, and it is in W since

Figure 3.4.7   The solution set of  is a translation of the solution space of .

Remark   Theorem 3.4.4 has a useful geometric interpretation that is illustrated in Figure 3.4.7. If, as discussed in Section 3.1, we interpret
vector addition as translation, then the theorem states that if  is any specific solution of , then the entire solution set of  can
be obtained by translating the solution set of  by the vector 

Concept Review
•  Parameters
•  Parametric equations of lines
•  Parametric equations of planes
•  Two-point vector equations of a line
•  Vector equation of a line
•  Vector equation of a plane

Skills
•  Express the equations of lines in  and  using either vector or parametric equations.

•  Express the equations of planes in  using either vector or parametric equations.

•  Express the equation of a line containing two given points in  or  using either vector or parametric equations.

•  Find equations of a line and a line segment.
•  Verify the orthogonality of the row vectors of a linear system of equations and a solution vector.
•  Use a specific solution to the nonhomogeneous linear system  and the general solution of the corresponding linear system

 to obtain the general solution to .

Exercise Set 3.4

In Exercises 1–4, find vector and parametric equations of the line containing the point and parallel to the vector.

1. Point: ; vector: 

Answer:

Vector equation: ;

parametric equations: 



2. Point: ; vector: 

3. Point: ; vector: 

Answer:

Vector equation: ;

parametric equations: 

4. Point: ; vector: 

In Exercises 5–8, use the given equation of a line to find a point on the line and a vector parallel to the line.

5. 

Answer:

Point: ; parallel vector: 

6. 

7. 

Answer:

Point: (4, 6); parallel vector: 

8. 

In Exercises 9–12, find vector and parametric equations of the plane containing the given point and parallel vectors.

9. Point: ; vectors:  and 

Answer:

Vector equation: 

parametric equations: 

10. Point: ; vectors:  and 

11. Point: ; vectors:  and 

Answer:

Vector equation: 

parametric equations: 

12. Point: ; vectors:  and 

In Exercises 13–14, find vector and parametric equations of the line in  that passes through the origin and is orthogonal to v.

13. 

Answer:

A possible answer is vector equation: ;

parametric equations: 

14. 

In Exercises 15–16, find vector and parametric equations of the plane in  that passes through the origin and is orthogonal to v.

15.  [Hint: Construct two nonparallel vectors orthogonal to v in ].

Answer:



A possible answer is vector equation: ;

parametric equations: 

16. 

In Exercises 17–20, find the general solution to the linear system and confirm that the row vectors of the coefficient matrix are orthogonal
to the solution vectors.

17. 

Answer:

18. 

19. 

Answer:

20. 

21. (a)  The equation  can be viewed as a linear system of one equation in three unknowns. Express a general solution of this
equation as a particular solution plus a general solution of the associated homogeneous system.

(b)  Give a geometric interpretation of the result in part (a).

Answer:

(a)  
(b)  a plane in  passing through P(1, 0, 0) and parallel to  and 

22. (a)  The equation  can be viewed as a linear system of one equation in two unknowns. Express a general solution of this
equation as a particular solution plus a general solution of the associated homogeneous system.

(b)  Give a geometric interpretation of the result in part (a).

23. (a)  Find a homogeneous linear system of two equations in three unknowns whose solution space consists of those vectors in  that are
orthogonal to  and .

(b)  What kind of geometric object is the solution space?
(c)  Find a general solution of the system obtained in part (a), and confirm that Theorem 3.4.3 holds.

Answer:

(a)  

(b)  a line through the origin in 

(c)  

24. (a)  Find a homogeneous linear system of two equations in three unknowns whose solution space consists of those vectors in  that are
orthogonal to  and .

(b)  What kind of geometric object is the solution space?



(c)  Find a general solution of the system obtained in part (a), and confirm that Theorem 3.4.3 holds.

25. Consider the linear systems

and

(a)  Find a general solution of the homogeneous system.
(b)  Confirm that  is a solution of the nonhomogeneous system.

(c)  Use the results in parts (a) and (b) to find a general solution of the nonhomogeneous system.
(d)  Check your result in part (c) by solving the nonhomogeneous system directly.

Answer:

a.  

c.  

26. Consider the linear systems

and

(a)  Find a general solution of the homogeneous system.
(b)  Confirm that  is a solution of the nonhomogeneous system.

(c)  Use the results in parts (a) and (b) to find a general solution of the nonhomogeneous system.
(d)  Check your result in part (c) by solving the nonhomogeneous system directly.

In Exercises 27–28, find a general solution of the system, and use that solution to find a general solution of the associated homogeneous
system and a particular solution of the given system.

27. 

Answer:

; The general solution of the associated homogeneous system is

. A particular solution of the given system is .

28. 

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.



(a) The vector equation of a line can be determined from any point lying on the line and a nonzero vector parallel to the line.

Answer:

True

(b) The vector equation of a plane can be determined from any point lying in the plane and a nonzero vector parallel to the plane.

Answer:

False

(c) The points lying on a line through the origin in  or  are all scalar multiples of any nonzero vector on the line.

Answer:

True

(d) All solution vectors of the linear system  are orthogonal to the row vectors of the matrix A if and only if .

Answer:

True

(e) The general solution of the nonhomogeneous linear system  can be obtained by adding b to the general solution of the
homogeneous linear system .

Answer:

False

(f) If  and  are two solutions of the nonhomogeneous linear system , then  is a solution of the corresponding
homogeneous linear system.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



3.5  Cross Product
This optional section is concerned with properties of vectors in 3-space that are important to physicists and
engineers. It can be omitted, if desired, since subsequent sections do not depend on its content. Among other
things, we define an operation that provides a way of constructing a vector in 3-space that is perpendicular to two
given vectors, and we give a geometric interpretation of  determinants.

Cross Product of Vectors

In Section 3.2 we defined the dot product of two vectors u and v in n-space. That operation produced a scalar as its
result. We will now define a type of vector multiplication that produces a vector as the result but which is
applicable only to vectors in 3-space.

DEFINITION 1

If  and  are vectors in 3-space, then the cross product  is the vector
defined by

or, in determinant notation,

  (1)

Remark   Instead of memorizing 1, you can obtain the components of  as follows:

•  Form the  matrix  whose first row contains the components of u and whose second row

contains the components of v.
•  To find the first component of , delete the first column and take the determinant; to find the second

component, delete the second column and take the negative of the determinant; and to find the third component,
delete the third column and take the determinant.

 EXAMPLE 1    Calculating a Cross Product

Find , where  and .

Solution   From either 1 or the mnemonic in the preceding remark, we have



The following theorem gives some important relationships between the dot product and cross product and also
shows that  is orthogonal to both u and v.

Historical Note    The cross product notation  was introduced by the American physicist and
mathematician J. Willard Gibbs, (see p. 134) in a series of unpublished lecture notes for his students at Yale
University. It appeared in a published work for the first time in the second edition of the book Vector
Analysis, (Edwin Wilson) by Edwin Wilson (1879--1964), a student of Gibbs. Gibbs originally referred to

 as the “skew product.”

THEOREM 3.5.1   Relationships Involving Cross Product and Dot Product

If u, v, and w are vectors in 3-space, then

Proof (a)   Let  and . Then

Proof (b)   Similar to (a).

Proof (c)   Since

  (2)

and

  (3)

the proof can be completed by “multiplying out” the right sides of 2 and 3 and verifying their equality.

Proof (d) and (e)   See Exercises 38 and 39.



 EXAMPLE 2    u × v Is Perpendicular to u and to v

Consider the vectors

In Example 1 we showed that

Since

and

 is orthogonal to both u and v, as guaranteed by Theorem 3.5.1.

Joseph Louis Lagrange (1736-1813)

Historical Note    Joseph Louis Lagrange was a French-Italian mathematician and astronomer. Although
his father wanted him to become a lawyer, Lagrange was attracted to mathematics and astronomy after
reading a memoir by the astronomer Halley. At age 16 he began to study mathematics on his own and by
age 19 was appointed to a professorship at the Royal Artillery School in Turin. The following year he
solved some famous problems using new methods that eventually blossomed into a branch of mathematics
called the calculus of variations. These methods and Lagrange's applications of them to problems in
celestial mechanics were so monumental that by age 25 he was regarded by many of his contemporaries as
the greatest living mathematician. One of Lagrange's most famous works is a memoir, Mécanique
Analytique, in which he reduced the theory of mechanics to a few general formulas from which all other
necessary equations could be derived. Napoleon was a great admirer of Lagrange and showered him with
many honors. In spite of his fame, Lagrange was a shy and modest man. On his death, he was buried with
honor in the Pantheon.
[Image: ©SSPL/The Image Works]

The main arithmetic properties of the cross product are listed in the next theorem.



THEOREM 3.5.2   Properties of Cross Product

If u, v, and w are any vectors in 3-space and k is any scalar, then:
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

The proofs follow immediately from Formula 1 and properties of determinants; for example, part (a) can be proved
as follows.

Proof (a)   Interchanging u and v in 1 interchanges the rows of the three determinants on the right side of 1 and
hence changes the sign of each component in the cross product. Thus .

The proofs of the remaining parts are left as exercises.

 EXAMPLE 3    Standard Unit Vectors

Consider the vectors

These vectors each have length 1 and lie along the coordinate axes (Figure 3.5.1). They are called the
standard unit vectors in 3-space. Every vector  in 3-space is expressible in terms of
i, j, and k since we can write

For example,

From 1 we obtain

Figure 3.5.1   The standard unit vectors



You should have no trouble obtaining the following results:

Figure 3.5.2 is helpful for remembering these results. Referring to this diagram, the cross product of two
consecutive vectors going clockwise is the next vector around, and the cross product of two consecutive vectors
going counterclockwise is the negative of the next vector around.

Figure 3.5.2   

Determinant Form of Cross Product

It is also worth noting that a cross product can be represented symbolically in the form

  (4)

For example, if  and , then

which agrees with the result obtained in Example 1.

WARNING

It is not true in general that . For example,

and

so

We know from Theorem 3.5.1 that  is orthogonal to both u and v. If u and v are nonzero vectors, it can be
shown that the direction of  can be determined using the following “right-hand rule” (Figure 3.5.3): Let θ be



the angle between u and v, and suppose u is rotated through the angle θ until it coincides with v. If the fingers of
the right hand are cupped so that they point in the direction of rotation, then the thumb indicates (roughly) the
direction of .

Figure 3.5.3   

You may find it instructive to practice this rule with the products

Geometric Interpretation of Cross Product

If u and v are vectors in 3-space, then the norm of  has a useful geometric interpretation. Lagrange's identity,
given in Theorem 3.5.1, states that

  (5)

If θ denotes the angle between u and v, then , so 5 can be rewritten as

Since , it follows that , so this can be rewritten as

  (6)

But  is the altitude of the parallelogram determined by u and v (Figure 3.5.4). Thus, from 6, the area A of
this parallelogram is given by

This result is even correct if u and v are collinear, since the parallelogram determined by u and v has zero area and
from 6 we have  because  in this case. Thus we have the following theorem.

THEOREM 3.5.3   Area of a Parallelogram

If, u and v are vectors in 3-space, then  is equal to the area of the parallelogram determined by u
and v.



 EXAMPLE 4    Area of a Triangle

Find the area of the triangle determined by the points , , and .

Solution   The area A of the triangle is  the area of the parallelogram determined by the vectors

 and  (Figure 3.5.5). Using the method discussed in Example 1 of Section 3.1,
 and . It follows that

(verify) and consequently that

DEFINITION 2

If u, v, and w are vectors in 3-space, then

is called the scalar triple product of u, v, and w.

Figure 3.5.4   

Figure 3.5.5   



The scalar triple product of , , and  can be calculated from the
formula

  (7)

This follows from Formula 4 since

 EXAMPLE 5    Calculating a Scalar Triple Product

Calculate the scalar triple product  of the vectors

Solution   From 7,

Remark   The symbol  makes no sense because we cannot form the cross product of a scalar and a
vector. Thus, no ambiguity arises if we write  rather than . However, for clarity we will usually
keep the parentheses.

It follows from 7 that

since the  determinants that represent these products can be obtained from one another by two row
interchanges. (Verify.) These relationships can be remembered by moving the vectors u, v, and w clockwise around
the vertices of the triangle in Figure 3.5.6.



Figure 3.5.6   

Geometric Interpretation of Determinants

The next theorem provides a useful geometric interpretation of  and  determinants.

THEOREM 3.5.4

(a)  The absolute value of the determinant

is equal to the area of the parallelogram in 2-space determined by the vectors  and
. (See Figure 3.5.7a.)

(b)  The absolute value of the determinant

is equal to the volume of the parallelepiped in 3-space determined by the vectors 
 and . (See Figure 3.5.7b.)

Figure 3.5.7   

Proof (a)   The key to the proof is to use Theorem 3.5.3. However, that theorem applies to vectors in 3-space,
whereas  and  are vectors in 2-space. To circumvent this “dimension problem,” we will
view u and v as vectors in the xy-plane of an xyz-coordinate system (Figure 3.5.7c), in which case these vectors are
expressed as  and . Thus



It now follows from Theorem 3.5.3 and the fact that  that the area A of the parallelogram determined by u
and v is

which completes the proof.

Proof (b)   As shown in Figure 3.5.8, take the base of the parallelepiped determined by u, v, and w to be the
parallelogram determined by v and w. It follows from Theorem 3.5.3 that the area of the base is  and, as
illustrated in Figure 3.5.8, the height h of the parallelepiped is the length of the orthogonal projection of u on 
. Therefore, by Formula 12 of Section 3.3,

It follows that the volume V of the parallelepiped is

so from 7,

  (8)

which completes the proof.

Figure 3.5.8   

Remark   If V denotes the volume of the parallelepiped determined by vectors u, v, and w, then it follows from
Formulas 7 and 8 that

  (9)

From this result and the discussion immediately following Definition 3 of Section 3.2, we can conclude that

where the + or − results depending on whether u makes an acute or an obtuse angle with .



Formula 9 leads to a useful test for ascertaining whether three given vectors lie in the same plane. Since three
vectors not in the same plane determine a parallelepiped of positive volume, it follows from 9 that

 if and only if the vectors u, v, and w lie in the same plane. Thus we have the following result.

THEOREM 3.5.5

If the vectors   and  have the same initial point, then
they lie in the same plane if and only if

Concept Review
•  Cross product of two vectors
•  Determinant form of cross product
•  Scalar triple product

Skills
•  Compute the cross product of two vectors u and v in .

•  Know the geometric relationship between  to u and v.
•  Know the properties of the cross product (listed in Theorem 3.5.2).
•  Compute the scalar triple product of three vectors in 3-space.
•  Know the geometric interpretation of the scalar triple product.
•  Compute the areas of triangles and parallelograms determined by two vectors or three points in 2-space

or 3-space.
•  Use the scalar triple product to determine whether three given vectors in 3-space are collinear.

Exercise Set 3.5

In Exercises 1–2, let   and . Compute the indicated vectors.

1. (a)  
(b)  
(c)  

Answer:



(a)  
(b)  
(c)  

2. (a)  
(b)  
(c)  

In Exercises 3–6, use the cross product to find a vector that is orthogonal to both u and v.

3. 

Answer:

4. 

5. 

Answer:

6. 

In Exercises 7–10, find the area of the parallelogram determined by the given vectors u and v.

7. 

Answer:

8. 

9. 

Answer:

10. 

In Exercises 11–12, find the area of the parallelogram with the given vertices.

11. 

Answer:

3

12. 

In Exercises 13–14, find the area of the triangle with the given vertices.

13. 

Answer:



7

14. 

In Exercises 15–16, find the area of the triangle in 3-space that has the given vertices.

15. 

Answer:

16. 

In Exercises 17–18, find the volume of the parallelepiped with sides u, v, and w.

17. 

Answer:

16

18. 

In Exercises 19–20, determine whether u, v, and w lie in the same plane when positioned so that their initial
points coincide.

19. 

Answer:

The vectors do not lie in the same plane.

20. 

In Exercises 21–24, compute the scalar triple product .

21. 

Answer:

22. 

23. 

Answer:

abc

24. 

In Exercises 25–26, suppose that . Find

25. (a)  
(b)  
(c)  



Answer:

(a)  
(b)  3
(c)  3

26. (a)  
(b)  
(c)  

27. (a)  Find the area of the triangle having vertices , , and .

(b)  Use the result of part (a) to find the length of the altitude from vertex C to side AB.

Answer:

(a)  

(b)  

28. Use the cross product to find the sine of the angle between the vectors  and .

29. Simplify .

Answer:

30. Let , , , and . Show that

31. Let u, v, and w be nonzero vectors in 3-space with the same initial point, but such that no two of them are
collinear. Show that
(a)   lies in the plane determined by v and w.

(b)   lies in the plane determined by u and v.

32. Prove the following identities.
(a)  
(b)  

33. Prove: If a, b, c, and d lie in the same plane, then .

34. Prove: If θ is the angle between u and v and , then .

35. Show that if u, v, and w are vectors in  no two of which are collinear, then  lies in the plane
determined by v and w.

36. It is a theorem of solid geometry that the volume of a tetrahedron is . Use this result

to prove that the volume of a tetrahedron whose sides are the vectors a, b, and c is  (see the

accompanying figure).



Figure Ex-36   

37. Use the result of Exercise 26 to find the volume of the tetrahedron with vertices P, Q, R, S.
(a)  
(b)  

Answer:

(a)  

(b)  

38. Prove part (d) of Theorem 3.5.1. [Hint: First prove the result in the case where , then when
, and then when . Finally, prove it for an arbitrary vector 

by writing .]

39. Prove part (e) of Theorem 3.5.1. [Hint: Apply part (a) of Theorem 3.5.2 to the result in part (d) of Theorem
3.5.1.]

40. Prove:
(a)  Prove (b) of Theorem 3.5.2.
(b)  Prove (c) of Theorem 3.5.2.
(c)  Prove (d) of Theorem 3.5.2.
(d)  Prove (e) of Theorem 3.5.2.
(e)  Prove (f) of Theorem 3.5.2.

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) The cross product of two nonzero vectors u and v is a nonzero vector if and only if u and v are not parallel.

Answer:

True

(b) A normal vector to a plane can be obtained by taking the cross product of two nonzero and noncollinear vectors
lying in the plane.

Answer:

True

(c) The scalar triple product of u, v, and w determines a vector whose length is equal to the volume of the
parallelepiped determined by u, v, and w.



Answer:

False

(d) If u and v are vectors in 3-space, then  is equal to the area of the parallelogram determined by u and v.

Answer:

True

(e) For all vectors u, v, and w in 3-space, the vectors  and  are the same.

Answer:

False

(f) If u, v, and w are vectors in , where u is nonzero and , then .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



Chapter 3 Supplementary Exercises

1. Let , , and . Compute

(a)  
(b)  
(c)  the distance between  and 
(d)  
(e)  }

(f)  

Answer:

(a)  
(b)  

(c)  

(d)  

(e)  
(f)  

2. Repeat Exercise 1 for the vectors , , and .

3. Repeat parts (a)–(d) of Exercise 1 for the vectors , , and
.

Answer:

(a)  
(b)  

(c)  

(d)  

4. Repeat parts (a)–(d) of Exercise 1 for the vectors , , and
.

In Exercises 5–6, determine whether the given set of vectors forms an orthogonal set. If so, normalize each
vector to form an orthonormal set.

5. , , 

Answer:

Not an orthogonal set



6. , , 

7. (a)  The set of all vectors in  that are orthogonal to a nonzero vector is what kind of geometric object?

(b)  The set of all vectors in  that are orthogonal to a nonzero vector is what kind of geometric object?

(c)  The set of all vectors in  that are orthogonal to two noncollinear vectors is what kind of geometric
object?

(d)  The set of all vectors in  that are orthogonal to two noncollinear vectors is what kind of geometric
object?

Answer:

(a)  A line through the origin, perpendicular to the given vector.
(b)  A plane through the origin, perpendicular to the given vector.
(c)  {0} (the origin)
(d)  A line through the origin, perpendicular to the plane containing the two noncollinear vectors.

8. Show that  and  are orthonormal vectors, and find a third vector  for

which  is an orthonormal set.

9. True or False: If u and v are nonzero vectors such that , then u and v are
orthogonal.

Answer:

True

10. True or False: If u is orthogonal to , then u is orthogonal to v and w.

11. Consider the points , , and . Find the point S in  whose first
component is  and such that  is parallel to .

Answer:

12. Consider the points , , and . Find the point S in  whose
third component is 6 and such that  is parallel to .

13. Using the points in Exercise 11, find the cosine of the angle between the vectors  and .

Answer:

14. Using the points in Exercise 12, find the cosine of the angle between the vectors  and .

15. Find the distance between the point  and the plane .

Answer:



16. Show that the planes  and  are parallel, and find the distance
between the planes.

In Exercises 17–22, find vector and parametric equations for the line or plane in question.

17. The plane in  that contains the points , , and .

Answer:

Vector equation: ;

parametric equations: 

18. The line in  that contains the point  and is orthogonal to the plane .

19. The line in  that is parallel to the vector  and contains the point .

Answer:

Vector equation: ;

parametric equations: 

20. The plane in  that contains the point  and parallel to the plane .

21. The line in  with equation .

Answer:

A possible answer is vector equation: ; parametric equations:

22. The plane in  with equation .

In Exercises 23–25, find a point-normal equation for the given plane.

23. The plane that is represented by the vector equation
.

Answer:

24. The plane that contains the point  and is orthogonal to the line with parametric equations
, , and .

25. The plane that passes through the points , , and .

Answer:



26. Suppose that  and  are two sets of vectors such that  and  are orthogonal for
all i and j. Prove that if  are any scalars, then the vectors  and

 are orthogonal.

27. Prove that if two vectors u and v in  are orthogonal to a nonzero vector w in , then u and v are scalar
multiples of each other.

28. Prove that  if and only if u and v are parallel vectors.

29. The equation  represents a line through the origin in  if A and B are not both zero. What
does this equation represent in  if you think of it as ? Explain.

Answer:

A plane

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



CHAPTER

   4 General Vector Spaces

CHAPTER CONTENTS

4.1.  Real Vector Spaces
4.2.  Subspaces
4.3.  Linear Independence
4.4.  Coordinates and Basis
4.5.  Dimension
4.6.  Change of Basis
4.7.  Row Space, Column Space, and Null Space
4.8.  Rank, Nullity, and the Fundamental Matrix Spaces
4.9.  Matrix Transformations from  to 

4.10.  Properties of Matrix Transformations
4.11.  Geometry of Matrix Operators on 

4.12.  Dynamical Systems and Markov Chains

INTRODUCTION

Recall that we began our study of vectors by viewing them as directed line segments
(arrows). We then extended this idea by introducing rectangular coordinate systems, which
enabled us to view vectors as ordered pairs and ordered triples of real numbers. As we
developed properties of these vectors we noticed patterns in various formulas that enabled
us to extend the notion of a vector to an n-tuple of real numbers. Although w-tuples took
us outside the realm of our “visual experience,” it gave us a valuable tool for
understanding and studying systems of linear equations. In this chapter we will extend the
concept of a vector yet again by using the most important algebraic properties of vectors
in  as axioms. These axioms, if satisfied by a set of objects, will enable us to think of
those objects as vectors.
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4.1  Real Vector Spaces
In this section we will extend the concept of a vector by using the basic properties of vectors in  as axioms, which if satisfied
by a set of objects, guarantee that those objects behave like familiar vectors.

Vector Space Axioms

The following definition consists often axioms, eight of which are properties of vectors in  that were stated in Theorem 3.1.1.
It is important to keep in mind that one does not prove axioms; rather, they are assumptions that serve as the starting point for
proving theorems.

Vector space scalars can be real numbers or complex
numbers. Vector spaces with real scalars are called real
vector spaces and those with complex scalars are called
complex vector spaces. For now we will be concerned
exclusively with real vector spaces. We will consider
complex vector spaces later.

DEFINITION 1

Let V be an arbitrary nonempty set of obj ects on which two operations are defined: addition, and multiplication by
scalars. By addition we mean a rule for associating with each pair of objects u and v in V an object , called the
sum of u and v; by scalar multiplication we mean a rule for associating with each scalar k and each object u in V an
object ku, called the scalar multiple of u by k. If the following axioms are satisfied by all objects u, v, w in V and all
scalars k and m, then we call V a vector space and we call the objects in V vectors.
1.  If u and v are objects in V, then  is in V.
2.  
3.  
4.  There is an object 0 in V, called a zero vector for V, such that  for all u in V.
5.  For each u in V, there is an object  in V, called a negative of u, such that .

6.  If k is any scalar and u is any object in V, then ku is in V.
7.  
8.  
9.  
10.  

Observe that the definition of a vector space does not specify the nature of the vectors or the operations. Any kind of object can
be a vector, and the operations of addition and scalar multiplication need not have any relationship to those on . The only
requirement is that the ten vector space axioms be satisfied. In the examples that follow we will use four basic steps to show
that a set with two operations is a vector space.

To Show that a Set with Two Operations is a Vector Space
Step 1  Identify the set V of objects that will become vectors.



Step 2  Identify the addition and scalar multiplication operations on V.
Step 3  Verify Axioms 1 and 6; that is, adding two vectors in V produces a vector in V, and multiplying a vector in V by
a scalar also produces a vector in V. Axiom 1 is called closure under addition, and Axiom 6 is called closure under
scalar multiplication.
Step 4  Confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold.

Hermann Günther Grassmann (1809-1877)

Historical Note    The notion of an “abstract vector space” evolved over many years and had many contributors. The
idea crystallized with the work of the German mathematician H. G. Grassmann, who published a paper in 1862 in which
he considered abstract systems of unspecified elements on which he defined formal operations of addition and scalar
multiplication. Grassmann's work was controversial, and others, including Augustin Cauchy (p. 137), laid reasonable
claim to the idea.
[Image: (c)Sueddeutsche Zeitung Photo/The Image Works]

Our first example is the simplest of all vector spaces in that it contains only one object. Since Axiom 4 requires that every
vector space contain a zero vector, the object will have to be that vector.

 EXAMPLE 1    The Zero Vector Space

Let V consist of a single object, which we denote by 0, and define

for all scalars k. It is easy to check that all the vector space axioms are satisfied. We call this the zero vector
space.

Our second example is one of the most important of all vector spaces—the familiar space . It should not be surprising that
the operations on  satisfy the vector space axioms because those axioms were based on known properties of operations on 
.

 EXAMPLE 2    Rn Is a Vector Space

Let , and define the vector space operations on V to be the usual operations of addition and scalar
multiplication of n-tuples; that is,

The set  is closed under addition and scalar multiplication because the foregoing operations produce



n-tuples as their end result, and these operations satisfy Axioms 2, 3, 4, 5, 7, 8, 9, and 10 by virtue of Theorem
3.1.1.

Our next example is a generalization of  in which we allow vectors to have infinitely many components.

 EXAMPLE 3    The Vector Space of Infinite Sequences of Real Numbers

Let V consist of objects of the form

in which . is an infinite sequence of real numbers. We define two infinite sequences to be equal if
their corresponding components are equal, and we define addition and scalar multiplication componentwise by

We leave it as an exercise to confirm that V with these operations is a vector space. We will denote this vector
space by the symbol .

In the next example our vectors will be matrices. This may be a little confusing at first because matrices are composed of rows
and columns, which are themselves vectors (row vectors and column vectors). However, here we will not be concerned with the
individual rows and columns but rather with the properties of the matrix operations as they relate to the matrix as a whole.

Note that Equation 1 involves three different addition
operations: the addition operation on vectors, the
addition operation on matrices, and the addition
operation on real numbers.

 EXAMPLE 4    A Vector Space of 2 × 2 Matrices

Let V be the set of  matrices with real entries, and take the vector space operations on V to be the usual
operations of matrix addition and scalar multiplication; that is,

  (1)

The set V is closed under addition and scalar multiplication because the foregoing operations produce 
matrices as the end result. Thus, it remains to confirm that Axioms 2, 3, 4, 5, 7, 8, 9, and 10 hold. Some of these
are standard properties of matrix operations. For example, Axiom 2 follows from Theorem 1.4.1a since

Similarly, Axioms 3, 7, 8, and 9 follow from parts (b), (h), (j), and (e), respectively, of that theorem (verify). This
leaves Axioms 4, 5, and 10 that remain to be verified.

To confirm that Axiom 4 is satisfied, we must find a  matrix 0 in V for which  for all 
matrices in V. We can do this by taking



With this definition,

and similarly . To verify that Axiom 5 holds we must show that each object u in V has a negative  in
V such that  and . This can be done by defining the negative of u to be

With this definition,

and similarly . Finally, Axiom 10 holds because

 EXAMPLE 5    The Vector Space of m × n Matrices

Example 4 is a special case of a more general class of vector spaces. You should have no trouble adapting the
argument used in that example to show that the set V of all  matrices with the usual matrix operations of
addition and scalar multiplication is a vector space. We will denote this vector space by the symbol . Thus,
for example, the vector space in Example 4 is denoted as .

In Example 6 the functions were defined on the entire
interval . However, the arguments used in
that example apply as well on all subin-tervals of

, such as a closed interval [a, b] or an open
interval (a, b). We will denote the vector spaces of
functions on these intervals by F[a, b] and F(a, b),
respectively.

 EXAMPLE 6    The Vector Space of Real-Valued Functions

Let V be the set of real-valued functions that are defined at each x in the interval . If  and
 are two functions in V and if k is any scalar, then define the operations of addition and scalar

multiplication by

  (2)

  (3)

One way to think about these operations is to view the numbers f(x) and g(x) as “components” of f and g at the
point x, in which case Equations 2 and 3 state that two functions are added by adding corresponding components,
and a function is multiplied by a scalar by multiplying each component by that scalar—exactly as in  and .
This idea is illustrated in parts (a) and (b) of Figure 4.1.1. The set V with these operations is denoted by the
symbol . We can prove that this is a vector space as follows:



Axioms 1 and 6  These closure axioms require that if we add two functions that are defined at each x in the
interval , then sums and scalar multiples of those functions are also defined at each x in the interval

. This follows from Formulas 2 and 3.

Axiom 4  This axiom requires that there exists a function 0 in , which when added to any other
function f in  produces f back again as the result. The function, whose value at every point x in the
interval  is zero, has this property. Geometrically, the graph of the function 0 is the line that
coincides with the x-axis.
Axiom 5  This axiom requires that for each function fin  there exists a function —f in

, which when added to f produces the function 0. The function defined by  has
this property. The graph of  can be obtained by reflecting the graph of f about the x-axis (Figure 4.1.1c).
Axioms 2,3,7,8,9,10  The validity of each of these axioms follows from properties of real numbers. For example,
if f and g are functions in , then Axiom 2 requires that . This follows from the
computation

in which the first and last equalities follow from 2, and the middle equality is a property of real numbers. We will
leave the proofs of the remaining parts as exercises.

Figure 4.1.1   

It is important to recognize that you cannot impose any two operations on any set V and expect the vector space axioms to hold.
For example, if V is the set of n-tuples withpositive components, and if the standard operations from  are used, then V is not
closed under scalar multiplication, because if u is a nonzero n-tuple in V, then  has at least one negative component and
hence is not in V. The following is a less obvious example in which only one of the ten vector space axioms fails to hold.

 EXAMPLE 7    A Set That Is Not a Vector Space

Let  and define addition and scalar multiplication operations as follows: If  and 
, then define

and if k is any real number, then define

For example, if , and , then

The addition operation is the standard one from , but the scalar multiplication is not. In the exercises we will
ask you to show that the first nine vector space axioms are satisfied. However, Axiom 10 fails to hold for certain
vectors. For example, if  is such that , then

Thus, V is not a vector space with the stated operations.



Our final example will be an unusual vector space that we have included to illustrate how varied vector spaces can be. Since the
objects in this space will be real numbers, it will be important for you to keep track of which operations are intended as vector
operations and which ones as ordinary operations on real numbers.

 EXAMPLE 8    An Unusual Vector Space

Let V be the set of positive real numbers, and define the operations on V to be

Thus, for example,  and —strange indeed, but nevertheless the set V with these
operations satisfies the 10 vector space axioms and hence is a vector space. We will confirm Axioms 4, 5, and 7,
and leave the others as exercises.
•  Axiom 4—The zero vector in this space is the number 1 (i.e., ) since

•  Axiom 5—The negative of a vector u is its reciprocal (i.e., ) since

•  Axiom 7—

Some Properties of Vectors

The following is our first theorem about general vector spaces. As you will see, its proof is very formal with each step being
justified by a vector space axiom or a known property of real numbers. There will not be many rigidly formal proofs of this type
in the text, but we have included these to reinforce the idea that the familiar properties of vectors can all be derived from the
vector space axioms.

THEOREM 4.1.1

Let V be a vector space, u a vector in V, and k a scalar; then:
(a)  
(b)  
(c)  
(d)  If , then  or .

We will prove parts (a) and (c) and leave proofs of the remaining parts as exercises.

Proof (a)   We can write



By Axiom 5 the vector 0u has a negative, . Adding this negative to both sides above yields

or

Proof (c)   To prove that , we must show that . The proof is as follows:

A Closing Observation

This section of the text is very important to the overall plan of linear algebra in that it establishes a common thread between
such diverse mathematical objects as geometric vectors, vectors in , infinite sequences, matrices, and real-valued functions,
to name a few. As a result, whenever we discover a new theorem about general vector spaces, we will at the same time be
discovering a theorem about geometric vectors, vectors in , sequences, matrices, real-valued functions, and about any new
kinds of vectors that we might discover.

To illustrate this idea, consider what the rather innocent-looking result in part (a) of Theorem 4.1.1 says about the vector space
in Example 8. Keeping in mind that the vectors in that space are positive real numbers, that scalar multiplication means
numerical exponentiation, and that the zero vector is the number 1, the equation

is a statement of the fact that if u is a positive real number, then

Concept Review
•  Vector space
•  Closure under addition
•  Closure under scalar multiplication
•  Examples of vector spaces

Skills
•  Determine whether a given set with two operations is a vector space.
•  Show that a set with two operations is not a vector space by demonstrating that at least one of the vector space axioms

fails.

Exercise Set 4.1



1. Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations
on  and :

(a)  Compute  and ku for ,  and .

(b)  In words, explain why V is closed under addition and scalar multiplication.
(c)  Since addition on V is the standard addition operation on , certain vector space axioms hold for V because they are

known to hold for . Which axioms are they?

(d)  Show that Axioms 7, 8, and 9 hold.
(e)  Show that Axiom 10 fails and hence that V is not a vector space under the given operations.

Answer:

(a)  
(c)  Axioms 1–5

2. Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar multiplication operations
on  and :

(a)  Compute  and ku for , , and .

(b)  Show that .

(c)  Show that .

(d)  Show that Axiom 5 holds by producing an ordered pair  such that  for .

(e)  Find two vector space axioms that fail to hold.

In Exercises 3–12, determine whether each set equipped with the given operations is a vector space. For those that are not
vector spaces identify the vector space axioms that fail.

3. The set of all real numbers with the standard operations of addition and multiplication.

Answer:

The set is a vector space with the given operations.

4. The set of all pairs of real numbers of the form (x, 0) with the standard operations on .

5. The set of all pairs of real numbers of the form (x, y), where , with the standard operations on .

Answer:

Not a vector space, Axioms 5 and 6 fail.

6. The set of all n-tuples of real numbers that have the form  with the standard operations on .

7. The set of all triples of real numbers with the standard vector addition but with scalar multiplication defined by

Answer:

Not a vector space. Axiom 8 fails.

8. The set of all  invertible matrices with the standard matrix addition and scalar multiplication.

9. The set of all  matrices of the form



with the standard matrix addition and scalar multiplication.

Answer:

The set is a vector space with the given operations.

10. The set of all real-valued functions f defined everywhere on the real line and such that  with the operations used in
Example 6.

11. The set of all pairs of real numbers of the form (1, x) with the operations

Answer:

The set is a vector space with the given operations.

12. The set of polynomials of the form  with the operations

and

13. Verify Axioms 3, 7, 8, and 9 for the vector space given in Example 4.

14. Verify Axioms 1, 2, 3, 7, 8, 9, and 10 for the vector space given in Example 6.

15. With the addition and scalar multiplication operations defined in Example 7, show that  satisfies Axioms 1-9.

16. Verify Axioms 1, 2, 3, 6, 8, 9, and 10 for the vector space given in Example 8.

17. Show that the set of all points in  lying on a line is a vector space with respect to the standard operations of vector
addition and scalar multiplication if and only if the line passes through the origin.

18. Show that the set of all points in  lying in a plane is a vector space with respect to the standard operations of vector
addition and scalar multiplication if and only if the plane passes through the origin.

In Exercises 19–21, prove that the given set with the stated operations is a vector space.

19. The set  with the operations of addition and scalar multiplication given in Example 1.

20. The set  of all infinite sequences of real numbers with the operations of addition and scalar multiplication given in
Example 3.

21. The set  of all  matrices with the usual operations of addition and scalar multiplication.

22. Prove part (d) of Theorem 4.1.1.

23. The argument that follows proves that if u, v, and w are vectors in a vector space V such that , then 
(the cancellation law for vector addition). As illustrated, justify the steps by filling in the blanks.

24. Let v be any vector in a vector space V. Prove that .

25. Below is a seven-step proof of part (b) of Theorem 4.1.1. Justify each step either by stating that it is true by hypothesis or by
specifying which of the ten vector space axioms applies.

Hypothesis: Let u be any vector in a vector space V, let 0 be the zero vector in V, and let k be a scalar.

Conclusion: Then .



Proof:

(1) k0 + ku = k(0 + u

(2)              = ku

(3) Since ku is in V, −ku is in V.

(4) Therefore, (k0 + ku + (−ku = ku + (−ku).

(5)               k0 + (ku + (−ku)) = ku + (−ku)

(6)                                k0 + 0 = 0

(7)                                      k0 = 0

26. Let v be any vector in a vector space V. Prove that .

27. Prove: If u is a vector in a vector space V and k a scalar such that , then either  or . [Suggestion: Show
that if  and , then . The result then follows as a logical consequence of this.]

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) A vector is a directed line segment (an arrow).

Answer:

False

(b) A vector is an n-tuple of real numbers.

Answer:

False

(c) A vector is any element of a vector space.

Answer:

True

(d) There is a vector space consisting of exactly two distinct vectors.

Answer:

False

(e) The set of polynomials with degree exactly 1 is a vector space under the operations defined in Exercise 12.

Answer:

False
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4.2  Subspaces
It is possible for one vector space to be contained within another. We will explore this idea in this section, we
will discuss how to recognize such vector spaces, and we will give a variety of examples that will be used in
our later work.

We will begin with some terminology.

DEFINITION 1

A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition
and scalar multiplication defined on V.

In general, to show that a nonempty set W with two operations is a vector space one must verify the ten vector
space axioms. However, if W is a subspace of a known vector space V, then certain axioms need not be verified
because they are “inherited” from V. For example, it is not necessary to verify that  holds in W
because it holds for all vectors in V including those in W. On the other hand, it is necessary to verify that W is
closed under addition and scalar multiplication since it is possible that adding two vectors in W or multiplying a
vector in W by a scalar produces a vector in V that is outside of W (Figure 4.2.1).

Figure 4.2.1   The vectors u and v are in W, but the vectors  and ku are not

Those axioms that are not inherited by W are
Axiom 1—Closure of W under addition
Axiom 4—Existence of a zero vector in W
Axiom 5—Existence of a negative in W for every vector in W
Axiom 6—Closure of W under scalar multiplication
so these must be verified to prove that it is a subspace of V. However, the following theorem shows that if
Axiom 1 and Axiom 6 hold in W, then Axioms 4 and 5 hold in W as a consequence and hence need not be
verified.

THEOREM 4.2.1



If W is a set of one or more vectors in a vector space V, then W is a subspace of V if and only if the
following conditions hold.
(a)  If u and v are vectors in W, then  is in W.
(b)  If k is any scalar and u is any vector in W, then ku is in W.

In words, Theorem 4.2.1 states that W is a
subspace of V if and only if it is closed under
addition and scalar multiplication.

Proof   If W is a subspace of V, then all the vector space axioms hold in W, including Axioms 1 and 6, which
are precisely conditions (a) and (b).

Conversely, assume that conditions (a) and (b) hold. Since these are Axioms 1 and 6, and since Axioms 2, 3, 7,
8, 9, and 10 are inherited from V, we only need to show that Axioms 4 and 5 hold in W. For this purpose, let u
be any vector in W. It follows from condition (b) that ku is a vector in W for every scalar k. In particular,

 and  are in W, which shows that Axioms 4 and 5 hold in W.

Note that every vector space has at least two
subspaces, itself and its zero subspace.

 EXAMPLE 1    The Zero Subspace

If V is any vector space, and if  is the subset of V that consists of the zero vector only,
then W is closed under addition and scalar multiplication since

for any scalar k. We call W the zero subspace of V.

 EXAMPLE 2    Lines Through the Origin Are Subspaces of R2 and of R3

If W is a line through the origin of either  or , then adding two vectors on the line W or multiplying a vector
on the line W by a scalar produces another vector on the line W, so W is closed under addition and scalar
multiplication (see Figure 4.2.2 for an illustration in ).



Figure 4.2.2   

 EXAMPLE 3    Planes Through the Origin AreSubspaces of R3

If u and v are vectors in a plane W through the origin of , then it is evident geometrically that 
and ku lie in the same plane W for any scalar k (Figure 4.2.3). Thus W is closed under addition and
scalar multiplication.

Figure 4.2.3   The vectors  and ku both lie in the same plane as u and v

Table 1 that follows gives a list of subspaces of  and of  that we have encountered thus far. We will see
later that these are the only subspaces of  and of .

Table 1

Subspaces of Subspaces of 

•  {0}
•  Lines through the origin
•  

•  {0}
•  Lines through the origin
•  Planes through the origin
•  

 EXAMPLE 4    A Subset of R2 That Is Not a Subspace



Let W be the set of all points (x, y) in  for which  and  (the shaded region in Figure
4.2.4). This set is not a subspace of  because it is not closed under scalar multiplication. For
example,  is a vector in W, but  is not.

Figure 4.2.4   W is not closed under scalar multiplication

 EXAMPLE 5    Subspaces of Mnn

We know from Theorem 1.7.2 that the sum of two symmetric  matrices is symmetric and
that a scalar multiple of a symmetric  matrix is symmetric. Thus, the set of symmetric 
matrices is closed under addition and scalar multiplication and hence is a subspace of .
Similarly, the sets of upper triangular matrices, lower triangular matrices, and diagonal matrices
are subspaces of .

 EXAMPLE 6    A Subset of Mnn That Is Not a Subspace

The set W of invertible  matrices is not a subspace of , failing on two counts—it is not
closed under addition and not closed under scalar multiplication. We will illustrate this with an
example in  that you can readily adapt to . Consider the matrices

The matrix 0U is the  zero matrix and hence is not invertible, and the matrix  has a
column of zeros, so it also is not invertible.

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 7    The Subspace C(−∞, ∞)

There is a theorem in calculus which states that a sum of continuous functions is continuous and
that a constant times a continuous function is continuous. Rephrased in vector language, the set
of continuous functions on  is a subspace of . We will denote this



subspace by .

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 8    Functions with Continuous Derivatives

A function with a continuous derivative is said to be continuously differentiable. There is a
theorem in calculus which states that the sum of two continuously differentiable functions is
continuously differentiable and that a constant times a continuously differentiable function is
continuously differentiable. Thus, the functions that are continuously differentiable on

 form a subspace of . We will denote this subspace by
, where the superscript emphasizes that the first derivative is continuous. To take

this a step further, the set of functions with m continuous derivatives on  is a
subspace of  as is the set of functions with derivatives of all orders on

. We will denote these subspaces by  and ,
respectively.

 EXAMPLE 9    The Subspace of All Polynomials

Recall that a polynomial is a function that can be expressed in the form

  (1)

where  are constants. It is evident that the sum of two polynomials is a
polynomial and that a constant times a polynomial is a polynomial. Thus, the set W of all
polynomials is closed under addition and scalar multiplication and hence is a subspace of

. We will denote this space by .

 EXAMPLE 10    The Subspace of Polynomials of Degree ≤ n

Recall that the degree of a polynomial is the highest power of the variable that occurs with a
nonzero coefficient. Thus, for example, if  in Formula 1, then that polynomial has degree n.
It is not true that the set W of polynomials with positive degree n is a subspace of 
because that set is not closed under addition. For example, the polynomials

both have degree 2, but their sum has degree 1. What is true, however, is that for each nonnegative
integer n the polynomials of degree n or less form a subspace of . We will denote
this space by .



In this text we regard all constants to be
polynomials of degree zero. Be aware, however,
that some authors do not assign a degree to the
constant 0.

The Hierarchy of Function Spaces

It is proved in calculus that polynomials are continuous functions and have continuous derivatives of all orders
on . Thus, it follows that  is not only a subspace of , as previously observed, but
is also a subspace of . We leave it for you to convince yourself that the vector spaces
discussed in Example 7 to Example 10 are “nested” one inside the other as illustrated in Figure 4.2.5.

Figure 4.2.5   

Remark   In our previous examples, and as illustrated in Figure 4.2.5, we have only considered functions that
are defined at all points of the interval . Sometimes we will want to consider functions that are
only defined on some subinterval of , say the closed interval [a, b] or the open interval (a, b). In
such cases we will make an appropriate notation change. For example, C[a, b] is the space of continuous
functions on [a, b] and C(a, b) is the space of continuous functions on (a, b).

Building Subspaces

The following theorem provides a useful way of creating a new subspace from known subspaces.

THEOREM 4.2.2

If  are subspaces of a vector space V, then the intersection of these subspaces is also a
subspace of V.



Note that the first step in proving Theorem 4.2.2
was to establish that W contained at least one
vector. This is important, for otherwise the
subsequent argument might be logically correct
but meaningless.

Proof   Let W be the intersection of the subspaces . This set is not empty because each of these
subspaces contains the zero vector of V, and hence so does their intersection. Thus, it remains to show that W is
closed under addition and scalar multiplication.

To prove closure under addition, let u and v be vectors in W. Since W is the intersection of , it
follows that u and v also lie in each of these subspaces. Since these subspaces are all closed under addition,
they all contain the vector  and hence so does their intersection W. This proves that W is closed under
addition. We leave the proof that W is closed under scalar multiplication to you.

Sometimes we will want to find the “smallest” subspace of a vector space V that contains all of the vectors in
some set of interest. The following definition, which generalizes Definition 4 of Section 3.1, will help us to do
that.

If , then Equation 2 has the form
, in which case the linear combination

is just a scalar multiple of .

DEFINITION 2

If w is a vector in a vector space V, then w is said to be a linear combination of the vectors
 in V if w can be expressed in the form

  (2)

where  are scalars. These scalars are called the coefficients of the linear combination.

THEOREM 4.2.3

If  is a nonempty set of vectors in a vector space V, then:

(a)  The set W of all possible linear combinations of the vectors in S is a subspace of V.
(b)  The set W in part (a) is the “smallest” subspace of V that contains all of the vectors in S in the sense

that any other subspace that contains those vectors contains W.



Proof (a)   Let W be the set of all possible linear combinations of the vectors in S. We must show that S is
closed under addition and scalar multiplication. To prove closure under addition, let

be two vectors in S. It follows that their sum can be written as

which is a linear combination of the vectors in S. Thus, W is closed under addition. We leave it for you to prove
that W is also closed under scalar multiplication and hence is a subspace of V.

Proof (b)   Let W′ be any subspace of V that contains all of the vectors in S. Since W′ is closed under addition
and scalar multiplication, it contains all linear combinations of the vectors in S and hence contains W.

The following definition gives some important notation and terminology related to Theorem 4.2.3.

DEFINITION 3

The subspace of a vector space V that is formed from all possible linear combinations of the vectors in
a nonempty set S is called the span of S, and we say that the vectors in S span that subspace. If

, then we denote the span of S by

 EXAMPLE 11    The Standard Unit Vectors Span Rn

Recall that the standard unit vectors in  are

These vectors span  since every vector  in  can be expressed as

which is a linear combination of . Thus, for example, the vectors

span  since every vector  in this space can be expressed as

 EXAMPLE 12    A Geometric View of Spanning in R2 and R3

(a)  If v is a nonzero vector in  or  that has its initial point at the origin, then span{v}, which
is the set of all scalar multiples of v, is the line through the origin determined by v. You should
be able to visualize this from Figure 4.2.6a by observing that the tip of the vector kv can be
made to fall at any point on the line by choosing the value of k appropriately.



George William Hill (1838-1914)

Historical Note    The terms linearly independent and linearly dependent were
introduced by Maxime Bôcher (see p. 7) in his book Introduction to Higher Algebra,
published in 1907. The term linear combination is due to the American mathematician
G. W. Hill, who introduced it in a research paper on planetary motion published in
1900. Hill was a “loner” who preferred to work out of his home in West Nyack, New
York, rather than in academia, though he did try lecturing at Columbia University for a
few years. Interestingly, he apparently returned the teaching salary, indicating that he
did not need the money and did not want to be bothered looking after it. Although
technically a mathematician, Hill had little interest in modern developments of
mathematics and worked almost entirely on the theory of planetary orbits.
[Image: Courtesy of the American Mathematical Society]

(b)  If  and  are nonzero vectors in  that have their initial points at the origin, then
, which consists of all linear combinations of  and , is the plane through the

origin determined by these two vectors. You should be able to visualize this from Figure 4.2.6b
by observing that the tip of the vector  can be made to fall at any point in the
plane by adjusting the scalars  and  to lengthen, shorten, or reverse the directions of the
vectors  and  appropriately.



Figure 4.2.6   

 EXAMPLE 13    A Spanning Set for Pn

The polynomials  span the vector space  defined in Example 10 since each
polynomial p in  can be written as

which is a linear combination of . We can denote this by writing

The next two examples are concerned with two important types of problems:
•  Given a set S of vectors in  and a vector v in , determine whether v is a linear combination of the

vectors in S.
•  Given a set S of vectors in , determine whether the vectors span .

 EXAMPLE 14    Linear Combinations

Consider the vectors  and  in . Show that  is a
linear combination of u and v and that  is not a linear combination of u and v.

Solution   In order for w to be a linear combination of u and v, there must be scalars  and 
such that ; that is,

or

Equating corresponding components gives

Solving this system using Gaussian elimination yields , , so

Similarly, for w′ to be a linear combination of u and v, there must be scalars  and  such that
; that is,

or



Equating corresponding components gives

This system of equations is inconsistent (verify), so no such scalars  and  exist.
Consequently, w′ is not a linear combination of u and v.

 EXAMPLE 15    Testing for Spanning

Determine whether , and  span the vector space .

Solution   We must determine whether an arbitrary vector  in  can be
expressed as a linear combination

of the vectors , , and . Expressing this equation in terms of components gives

or

or

Thus, our problem reduces to ascertaining whether this system is consistent for all values of ,
, and . One way of doing this is to use parts (e) and (g) of Theorem 2.3.8, which state that

the system is consistent if and only if its coefficient matrix

has a nonzero determinant. But this is not the case here; we leave it for you to confirm that
, so , , and  do not span .

Solution Spaces of Homogeneous Systems

The solutions of a homogeneous linear system  of m equations in n unknowns can be viewed as vectors
in . The following theorem provides a useful insight into the geometric structure of the solution set.



THEOREM 4.2.4

The solution set of a homogeneous linear system  in n unknowns is a sub space of .

Proof   Let W be the solution set for the system. The set W is not empty because it contains at least the trivial
solution .

To show that W is a subspace of , we must show that it is closed under addition and scalar multiplication. To
do this, let  and  be vectors in W. Since these vectors are solutions of , we have

It follows from these equations and the distributive property of matrix multiplication that

so W is closed under addition. Similarly, if k is any scalar then

so W is also closed under scalar multiplication.

Because the solution set of a homogeneous
system in n unknowns is actually a subspace of

, we will generally refer to it as the solution
space of the system.

 EXAMPLE 16    Solution Spaces of Homogeneous Systems

Consider the linear systems
(a)  

(b)  

(c)  

(d)  

Solution   
(a)  We leave it for you to verify that the solutions are

from which it follows that



This is the equation of a plane through the origin that has  as a normal.

(b)  We leave it for you to verify that the solutions are

which are parametric equations for the line through the origin that is parallel to the vector
.

(c)  We leave it for you to verify that the only solution is , so the solution
space is {0}.

(d)  This linear system is satisfied by all real values of x, y, and z, so the solution space is all of 
.

Remark   Whereas the solution set of every homogeneous system of m equations in n unknowns is a subspace
of , it is never true that the solution set of a nonhomogeneous system of m equations in n unknowns is a
subspace of . There are two possible scenarios: first, the system may not have any solutions at all, and
second, if there are solutions, then the solution set will not be closed under either addition or under scalar
multiplication (Exercise 18).

A Concluding Observation

It is important to recognize that spanning sets are not unique. For example, any nonzero vector on the line in
Figure 4.2.6a will span that line, and any two noncollinear vectors in the plane in Figure 4.2.6b will span that
plane. The following theorem, whose proof we leave as an exercise, states conditions under which two sets of
vectors will span the same space.

THEOREM 4.2.5

If  and  are nonempty sets of vectors in a vector space V,
then

if and only if each vector in S is a linear combination of those in S′, and each vector in S′ is a linear
combination of those in S.

Concept Review
•  Subspace



•  Zero subspace
•  Examples of subspaces
•  Linear combination
•  Span
•  Solution space

Skills
•  Determine whether a subset of a vector space is a subspace.
•  Show that a subset of a vector space is a subspace.
•  Show that a nonempty subset of a vector space is not a subspace by demonstrating that the set is

either not closed under addition or not closed under scalar multiplication.
•  Given a set S of vectors in  and a vector v in , determine whether v is a linear combination of

the vectors in S.
•  Given a set S of vectors in , determine whether the vectors in S span .

•  Determine whether two nonempty sets of vectors in a vector space V span the same subspace of V.

Exercise Set 4.2
1. Use Theorem 4.2.1 to determine which of the following are subspaces of .

(a)  All vectors of the form (a, 0, 0).
(b)  All vectors of the form (a, 1, 1).
(c)  All vectors of the form (a, b, c), where .
(d)  All vectors of the form (a, b, c), where .
(e)  All vectors of the form (a, b, 0).

Answer:

(a), (c), (e)

2. Use Theorem 4.2.1 to determine which of the following are subspaces of .
(a)  The set of all diagonal  matrices.
(b)  The set of all  matrices A such that .

(c)  The set of all  matrices A such that .

(d)  The set of all symmetric  matrices.
(e)  The set of all  matrices A such that .

(f)  The set of all  matrices A for which  has only the trivial solution.
(g)  The set of all  matrices A such that  for some fixed  matrix B.

3. Use Theorem 4.2.1 to determine which of the following are subspaces of .
(a)  All polynomials  for which .



(b)  All polynomials  for which .

(c)  All polynomials of the form  in which , , , and  are integers.

(d)  All polynomials of the form , where  and  are real numbers.

Answer:

(a), (b), (d)

4. Which of the following are subspaces of ?

(a)  All functions f in  for which .

(b)  All functions f in  for which .

(c)  All functions f in  for which .

(d)  All polynomials of degree 2.

5. Which of the following are subspaces of ?

(a)  All sequences v in  of the form .

(b)  All sequences v in  of the form .

(c)  All sequences v in  of the form  .

(d)  All sequences in  whose components are 0 from some point on.

Answer:

(a), (c), (d)

6. A line L through the origin in  can be represented by parametric equations of the form , ,
and . Use these equations to show that L is a subspace of  by showing that if  and

 are points on L and k is any real number, then k  and  are also points on L.

7. Which of the following are linear combinations of  and ?

(a)  (2,2,2)
(b)  (3,1,5)
(c)  (0, 4, 5)
(d)  (0, 0, 0)

Answer:

(a), (b), (d)

8. Express the following as linear combinations of , , and .

(a)  
(b)  (6,11,6)
(c)  (0,0,0)
(d)  (7,8,9)

9. Which of the following are linear combinations of



(a)  

(b)  

(c)  

(d)  

Answer:

(a), (b), (c)

10. In each part express the vector as a linear combination of , , and
.

(a)  

(b)  

(c)  0
(d)  

11. In each part, determine whether the given vectors span .

(a)  , , 

(b)  , , 

(c)  , , , 

(d)  , , , 

Answer:

(a)  The vectors span
(b)  The vectors do not span
(c)  The vectors do not span
(d)  The vectors span

12. Suppose that , , and . Which of the following
vectors are in ?

(a)  
(b)  (0, 0, 0, 0)
(c)  (1,1, 1, 1)
(d)  

13. Determine whether the following polynomials span .



Answer:

The polynomials do not span

14. Let  and . Which of the following lie in the space spanned by f and g?

(a)  
(b)  

(c)  1
(d)  
(e)  0

15. Determine whether the solution space of the system  is a line through the origin, a plane through the
origin, or the origin only. If it is a plane, find an equation for it. If it is a line, find parametric equations for
it.
(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Answer:

(a)  Line; 

(b)  Line; 

(c)  Origin
(d)  Origin



(e)  Line; 

(f)  Plane; 

16. (Calculus required) Show that the following sets of functions are subspaces of .

(a)  All continuous functions on .

(b)  All differentiable functions on .

(c)  All differentiable functions on  that satisfy .

17. (Calculus required) Show that the set of continuous functions  on [a, b] such that

is a subspace of C[a, b].

18. Show that the solution vectors of a consistent nonhomoge- neous system of m linear equations in n
unknowns do not form a subspace of .

19. Prove Theorem 4.2.5.

20. Use Theorem 4.2.5 to show that the vectors , , and the
vectors ,  span the same subspace of .

True-False Exercises

In parts (a)–(k) determine whether the statement is true or false, and justify your answer.

(a) Every subspace of a vector space is itself a vector space.

Answer:

True

(b) Every vector space is a subspace of itself.

Answer:

True

(c) Every subset of a vector space V that contains the zero vector in V is a subspace of V.

Answer:

False

(d) The set  is a subspace of .

Answer:

False

(e) The solution set of a consistent linear system  of m equations in n unknowns is a subspace of .

Answer:



False

(f) The span of any finite set of vectors in a vector space is closed under addition and scalar multiplication.

Answer:

True

(g) The intersection of any two subspaces of a vector space V is a subspace of V.

Answer:

True

(h) The union of any two subspaces of a vector space V is a subspace of V.

Answer:

False

(i) Two subsets of a vector space V that span the same subspace of V must be equal.

Answer:

False

(j) The set of upper triangular  matrices is a subspace of the vector space of all  matrices.

Answer:

True

(k) The polynomials , , and  span .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.3  Linear Independence
In this section we will consider the question of whether the vectors in a given set are interrelated in the sense
that one or more of them can be expressed as a linear combination of the others. This is important to know in
applications because the existence of such relationships often signals that some kind of complication is likely
to occur.

Extraneous Vectors

In a rectangular xy-coordinate system every vector in the plane can be expressed in exactly one way as a
linear combination of the standard unit vectors. For example, the only way to express the vector (3, 2) as a
linear combination of  and  is

  (1)

(Figure 4.3.1). Suppose, however, that we were to introduce a third coordinate axis that makes an angle of 45°
with the x-axis. Call it the w-axis. As illustrated in Figure 4.3.2, the unit vector along the w-axis is

Whereas Formula 1 shows the only way to express the vector (3, 2) as a linear combination of i and j, there
are infinitely many ways to express this vector as a linear combination of i, j, and w. Three possibilities are

In short, by introducing a superfluous axis we created the complication of having multiple ways of assigning
coordinates to points in the plane. What makes the vector w superfluous is the fact that it can be expressed as
a linear combination of the vectors i and j, namely,

Thus, one of our main tasks in this section will be to develop ways of ascertaining whether one vector in a set
S is a linear combination of other vectors in S.



Figure 4.3.1   

Figure 4.3.2   

Linear Independence and Dependence

We will often apply the terms linearly
independent and linearly dependent to the
vectors themselves rather than to the set.

DEFINITION 1

If  is a nonempty set of vectors in a vector space V, then the vector equation

has at least one solution, namely,

We call this the trivial solution. If this is the only solution, then S is said to be a linearly independent
set. If there are solutions in addition to the trivial solution, then S is said to be a linearly dependent
set.

 EXAMPLE 1    Linear Independence of the Standard Unit Vectors in Rn

The most basic linearly independent set in  is the set of standard unit vectors



For notational simplicity, we will prove the linear independence in  of

The linear independence or linear dependence of these vectors is determined by whether there exist nontrivial
solutions of the vector equation

Since the component form of this equation is

it follows that . This implies that 2 has only the trivial solution and hence that the vectors are
linearly independent.

 EXAMPLE 2    Linear Independence in R3

Determine whether the vectors

are linearly independent or linearly dependent in .

Solution   The linear independence or linear dependence of these vectors is determined by
whether there exist nontrivial solutions of the vector equation

  (3)

or, equivalently, of

Equating corresponding components on the two sides yields the homogeneous linear system

  (4)

Thus, our problem reduces to determining whether this system has nontrivial solutions. There
are various ways to do this; one possibility is to simply solve the system, which yields

(we omit the details). This shows that the system has nontrivial solutions and hence that the
vectors are linearly dependent. A second method for obtaining the same result is to compute the
determinant of the coefficient matrix

and use parts (b) and (g) of Theorem 2.3.8. We leave it for you to verify that , from
which it follows 3 has nontrivial solutions and the vectors are linearly dependent.



In Example 2, what relationship do you see
between the components of , , and  and
the columns of the coefficient matrix A?

 EXAMPLE 3    Linear Independence in R4

Determine whether the vectors

in  are linearly dependent or linearly independent.

Solution   The linear independence or linear dependence of these vectors is determined by
whether there exist nontrivial solutions of the vector equation

or, equivalently, of

Equating corresponding components on the two sides yields the homogeneous linear system

We leave it for you to show that this system has only the trivial solution

from which you can conclude that , , and  are linearly independent.

 EXAMPLE 4    An Important Linearly Independent Set in Pn

Show that the polynomials

form a linearly independent set in .

Solution   For convenience, let us denote the polynomials as

We must show that the vector equation

  (5)

has only the trivial solution



But 5 is equivalent to the statement that

  (6)

for all x in , so we must show that this holds if and only if each coefficient in 6 is zero.
To see that this is so, recall from algebra that a nonzero polynomial of degree n has at most n
distinct roots. That being the case, each coefficient in 6 must be zero, for otherwise the left side of
the equation would be a nonzero polynomial with infinitely many roots. Thus, 5 has only the
trivial solution.

The following example shows that the problem of determining whether a given set of vectors in  is linearly
independent or linearly dependent can be reduced to determining whether a certain set of vectors in  is
linearly dependent or independent.

 EXAMPLE 5    Linear Independence of Polynomials

Determine whether the polynomials

are linearly dependent or linearly independent in .

Solution   The linear independence or linear dependence of these vectors is determined by
whether there exist nontrivial solutions of the vector equation

  (7)

This equation can be written as

  (8)

or, equivalently, as

Since this equation must be satisfied by all x in , each coefficient must be zero (as
explained in the previous example). Thus, the linear dependence or independence of the given
polynomials hinges on whether the following linear system has a nontrivial solution:

  (9)

We leave it for you to show that this linear system has a nontrivial solutions either by solving it
directly or by showing that the coefficient matrix has determinant zero. Thus, the set

 is linearly dependent.



In Example 5, what relationship do you see
between the coefficients of the given
polynomials and the column vectors of the
coefficient matrix of system 9?

An Alternative Interpretation of Linear Independence

The terms linearly dependent and linearly independent are intended to indicate whether the vectors in a given
set are interrelated in some way. The following theorem, whose proof is deferred to the end of this section,
makes this idea more precise.

THEOREM 4.3.1

A set S with two or more vectors is
(a)  Linearly dependent if and only if at least one of the vectors in S is expressible as a linear

combination of the other vectors in S.
(b)  Linearly independent if and only if no vector in S is expressible as a linear combination of the

other vectors in S.

 EXAMPLE 6    Example 1 Revisited

In Example 1 we showed that the standard unit vectors in  are linearly independent. Thus, it
follows from Theorem 4.3.1 that none of these vectors is expressible as a linear combination of
the other two. To illustrate this in , suppose, for example, that

or in terms of components that

Since this equation cannot be satisfied by any values of  and , there is no way to express k
as a linear combination of i and j. Similarly, i is not expressible as a linear combination of j and
k, and j is not expressible as a linear combination of i and k.

 EXAMPLE 7    Example 2 Revisited

In Example 2 we saw that the vectors

are linearly dependent. Thus, it follows from Theorem 4.3.1 that at least one of these vectors is



expressible as a linear combination of the other two. We leave it for you to confirm that these
vectors satisfy the equation

from which it follows, for example, that

Sets with One or Two Vectors

The following basic theorem is concerned with the linear independence and linear dependence of sets with
one or two vectors and sets that contain the zero vector.

THEOREM 4.3.2

(a)  A finite set that contains 0 is linearly dependent.
(b)  A set with exactly one vector is linearly independent if and only if that vector is not 0.
(c)  A set with exactly two vectors is linearly independent if and only if neither vector is a scalar

multiple of the other.

Józef Hoëné de Wroński (1778–1853)

Historical Note    The Polish-French mathematician Józef Hoëné de Wroński was born Józef Hoëné
and adopted the name Wroński after he married. Wroński's life was fraught with controversy and
conflict, which some say was due to his psychopathic tendencies and his exaggeration of the
importance of his own work. Although Wroński's work was dismissed as rubbish for many years, and
much of it was indeed erroneous, some of his ideas contained hidden brilliance and have survived.
Among other things, Wroński designed a caterpillar vehicle to compete with trains (though it was



never manufactured) and did research on the famous problem of determining the longitude of a ship at
sea. His final years were spent in poverty.
[Image: wikipedia]

We will prove part (a) and leave the rest as exercises.

Proof (a)   For any vectors , the set  is linearly dependent since the
equation

expresses 0 as a linear combination of the vectors in S with coefficients that are not all zero.

 EXAMPLE 8    Linear Independence of Two Functions

The functions  and  are linearly independent vectors in  since
neither function is a scalar multiple of the other. On the other hand, the two functions

 and  are linearly dependent because the trigonometric identity
 reveals that  and  are scalar multiples of each other.

A Geometric Interpretation of Linear Independence

Linear independence has the following useful geometric interpretations in  and :

•  Two vectors in  or  are linearly independent if and only if they do not lie on the same line when they
have their initial points at the origin. Otherwise one would be a scalar multiple of the other (Figure 4.3.3).

Figure 4.3.3   

•  Three vectors in  are linearly independent if and only if they do not lie in the same plane when they have
their initial points at the origin. Otherwise at least one would be a linear combination of the other two
(Figure 4.3.4).



Figure 4.3.4   

At the beginning of this section we observed that a third coordinate axis in  is superfluous by showing that
a unit vector along such an axis would have to be expressible as a linear combination of unit vectors along the
positive x- and y-axis. That result is a consequence of the next theorem, which shows that there can be at most
n vectors in any linearly independent set .

It follows from Theorem 4.3.3, for example,
that a set in  with more than two vectors is
linearly dependent and a set in  with more
than three vectors is linearly dependent.

THEOREM 4.3.3

Let  be a set of vectors in . If , then S is linearly dependent.

Proof   Suppose that

and consider the equation

If we express both sides of this equation in terms of components and then equate the corresponding
components, we obtain the system



This is a homogeneous system of n equations in the r unknowns . Since , it follows from
Theorem 1.2.2 that the system has nontrivial solutions. Therefore,  is a linearly
dependent set.

 C A L C U L U S  R E Q U I R E D  

Linear Independence of Functions

Sometimes linear dependence of functions can be deduced from known identities. For example, the functions

form a linearly dependent set in , since the equation

expresses 0 as a linear combination of , , and  with coefficients that are not all zero.

Unfortunately, there is no general method that can be used to determine whether a set of functions is linearly
independent or linearly dependent. However, there does exist a theorem that is useful for establishing linear
independence in certain circumstances. The following definition will be useful for discussing that theorem.

DEFINITION 2

If  are functions that are  times differentiable on the
interval , then the determinant

is called the Wronskian of .

Suppose for the moment that ,  are linearly dependent vectors in
. This implies that for certain values of the coefficients the vector equation

has a nontrivial solution, or equivalently that the equation



is satisfied for all x in . Using this equation together with those that result by differentiating it
 times yields the linear system

Thus, the linear dependence of  implies that the linear system

  (10)

has a nontrivial solution. But this implies that the determinant of the coefficient matrix of 10 is zero for every
such x. Since this determinant is the Wronskian of , we have established the following result.

THEOREM 4.3.4

If the functions  have  continuous derivatives on the interval , and if the
Wronskian of these functions is not identically zero on , then these functions form a
linearly independent set of vectors in .

In Example 8 we showed that x and  are linearly independent functions by observing that neither is a
scalar multiple of the other. The following example shows how to obtain the same result using the Wronskian
(though it is a more complicated procedure in this particular case).

 EXAMPLE 9    Linear Independence Using the Wronskian

Use the Wronskian to show that  and  are linearly independent.

Solution   The Wronskian is

This function is not identically zero on the interval  since, for example,

Thus, the functions are linearly independent.



WARNING

The converse of Theorem 4.3.4 is false. If the
Wronskian of  is identically zero
on , then no conclusion can be
reached about the linear independence of

— this set of vectors may be
linearly independent or linearly dependent.

 EXAMPLE 10    Linear Independence Using the Wronskian

Use the Wronskian to show that , , and  are linearly independent.

Solution   The Wronskian is

This function is obviously not identically zero on , so , , and  form a linearly
independent set.

   O P T I O N A L    

We will close this section by proving part (a) of Theorem 4.3.1. We will leave the proof of part (b) as an
exercise.

Proof of Theorem 4.3.1 (a)   Let  be a set with two or more vectors. If we assume
that S is linearly dependent, then there are scalars , not all zero, such that

  (11)

To be specific, suppose that . Then 11 can be rewritten as

which expresses  as a linear combination of the other vectors in S. Similarly, if  in 11 for some
, then  is expressible as a linear combination of the other vectors in S.

Conversely, let us assume that at least one of the vectors in S is expressible as a linear combination of the
other vectors. To be specific, suppose that

so



It follows that S is linearly dependent since the equation

is satisfied by

which are not all zero. The proof in the case where some vector other than  is expressible as a linear
combination of the other vectors in S is similar.

Concept Review
•  Trivial solution
•  Linearly independent set
•  Linearly dependent set
•  Wronskian

Skills
•  Determine whether a set of vectors is linearly independent or linearly dependent.
•  Express one vector in a linearly dependent set as a linear combination of the other vectors in the set.
•  Use the Wronskian to show that a set of functions is linearly independent.

Exercise Set 4.3
1. Explain why the following are linearly dependent sets of vectors. (Solve this problem by inspection.)

(a)   and  in 

(b)  , ,  in 

(c)   and  in 

(d)   and  in 

Answer:

(a)   is a scalar multiple of .
(b)  The vectors are linearly dependent by Theorem 4.3.3.
(c)   is a scalar multiple of .
(d)  B is a scalar multiple of A.

2. Which of the following sets of vectors in  are linearly dependent?

(a)  



(b)  
(c)  
(d)  

3. Which of the following sets of vectors in  are linearly dependent?

(a)  , , , 

(b)  , , 

(c)  , , , 

(d)  , , , 

Answer:

None

4. Which of the following sets of vectors in  are linearly dependent?
(a)  , , 

(b)  , , 

(c)  

(d)  , , , 

5. Assume that , , and  are vectors in  that have their initial points at the origin. In each part,
determine whether the three vectors lie in a plane.
(a)  , , 

(b)  , , 

Answer:

(a)  They do not lie in a plane.
(b)  They do lie in a plane.

6. Assume that , , and  are vectors in  that have their initial points at the origin. In each part,
determine whether the three vectors lie on the same line.
(a)  , , 

(b)  , , 

(c)  , , 

7. (a)  Show that the three vectors , , and  form a
linearly dependent set in .

(b)  Express each vector in part (a) as a linear combination of the other two.

Answer:

(b)  



8. (a)  Show that the three vectors , , and  form a
linearly dependent set in .

(b)  Express each vector in part (a) as a linear combination of the other two.

9. For which real values of  do the following vectors form a linearly dependent set in ?

Answer:

10. Show that if  is a linearly independent set of vectors, then so are
, and .

11. Show that if  is a linearly independent set of vectors, then so is every nonempty
subset of S.

12. Show that if  is a linearly dependent set of vectors in a vector space V, and  is any
vector in V that is not in S, then  is also linearly dependent.

13. Show that if  is a linearly dependent set of vectors in a vector space V, and if
 are any vectors in V that are not in S, then  is also linearly

dependent.

14. Show that in  every set with more than three vectors is linearly dependent.

15. Show that if  is linearly independent and  does not lie in , then  is
linearly independent.

16. Prove: For any vectors u, v, and w in a vector space V, the vectors , , and  form a
linearly dependent set.

17. Prove: The space spanned by two vectors in  is a line through the origin, a plane through the origin, or
the origin itself.

18. Under what conditions is a set with one vector linearly independent?

19. Are the vectors , , and  in part (a) of the accompanying figure linearly independent? What about
those in part (b)? Explain.

Figure Ex-19   



Answer:

(a)  They are linearly independent since , and  do not lie in the same plane when they are placed
with their initial points at the origin.

(b)  They are not linearly independent since , and  line in the same plane when they are placed
with their initial points at the origin.

20. By using appropriate identities, where required, determine which of the following sets of vectors in
 are linearly dependent.

(a)  

(b)  
(c)  
(d)  

(e)  

(f)  

21. The functions  and  are linearly independent in  because neither
function is a scalar multiple of the other. Confirm the linear independence using Wroński's test.

Answer:

 for some x.

22. The functions  and  are linearly independent in  because
neither function is a scalar multiple of the other. Confirm the linear independence using Wroński's test.

23. (Calculus required) Use the Wronskian to show that the following sets of vectors are linearly
independent.
(a)  

(b)  

Answer:

(a)  

(b)  

24. Show that the functions , , and  are linearly independent.

25. Show that the functions , , and  are linearly independent.

Answer:

 for some x.

26. Use part (a) of Theorem 4.3.1 to prove part (b).



27. Prove part (b) of Theorem 4.3.2.

28. (a)  In Example 1 we showed that the mutually orthogonal vectors i, j, and k form a linearly independent
set of vectors in . Do you think that every set of three nonzero mutually orthogonal vectors in  is
linearly independent? Justify your conclusion with a geometric argument.

(b)  Justify your conclusion with an algebraic argument. [Hint: Use dot products.]

True-False Exercises

In parts (a)–(h) determine whether the statement is true or false, and justify your answer.

(a) A set containing a single vector is linearly independent.

Answer:

False

(b) The set of vectors  is linearly dependent for every scalar k.

Answer:

True

(c) Every linearly dependent set contains the zero vector.

Answer:

False

(d) If the set of vectors  is linearly independent, then  is also linearly
independent for every nonzero scalar k.

Answer:

True

(e) If  are linearly dependent nonzero vectors, then at least one vector  is a unique linear
combination of 

Answer:

True

(f) The set of  matrices that contain exactly two 1's and two 0's is a linearly independent set in .

Answer:

False

(g) The three polynomials , and  are linearly independent.

Answer:

True



(h) The functions  and  are linearly dependent if there is a real number x so that
 for some scalars  and .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.4  Coordinates and Basis
We usually think of a line as being one-dimensional, a plane as two-dimensional, and the space around us as three-
dimensional. It is the primary goal of this section and the next to make this intuitive notion of dimension precise.
In this section we will discuss coordinate systems in general vector spaces and lay the groundwork for a precise
definition of dimension in the next section.

Coordinate Systems in Linear Algebra

In analytic geometry we learned to use rectangular coordinate systems to create a one-to-one correspondence
between points in 2-space and ordered pairs of real numbers and between points in 3-space and ordered triples of
real numbers (Figure 4.4.1). Although rectangular coordinate systems are common, they are not essential. For
example, Figure 4.4.2 shows coordinate systems in 2-space and 3-space in which the coordinate axes are not
mutually perpendicular.

Figure 4.4.1   

Figure 4.4.2   

In linear algebra coordinate systems are commonly specified using vectors rather than coordinate axes. For
example, in Figure 4.4.3 we have recreated the coordinate systems in Figure 4.4.2 by using unit vectors to identify
the positive directions and then attaching coordinates to a point P using the scalar coefficients in the equations



Figure 4.4.3   

Units of measurement are essential ingredients of any coordinate system. In geometry problems one tries to use
the same unit of measurement on all axes to avoid distorting the shapes of figures. This is less important in
applications where coordinates represent physical quantities with diverse units (for example, time in seconds on
one axis and temperature in degrees Celsius on another axis). To allow for this level of generality, we will relax
the requirement that unit vectors be used to identify the positive directions and require only that those vectors be
linearly independent. We will refer to these as the “basis vectors” for the coordinate system. hi summary, it is the
directions of the basis vectors that establish the positive directions, and it is the lengths of the basis vectors that
establish the spacing between the integer points on the axes (Figure 4.4.4).

Figure 4.4.4   

Basis for a Vector Space

The following definition will make the preceding ideas more precise and will enable us to extend the concept of a
coordinate system to general vector spaces.

Note that in Definition 1 we have required a basis
to have finitely many vectors. Some authors call
this a finite basis, but we will not use this
terminology.



DEFINITION 1

If V is any vector space and  is a finite set of vectors in V, then S is called a basis for
V if the following two conditions hold:
(a)  S is linearly independent.
(b)  S spans V.

If you think of a basis as describing a coordinate system for a vector space in V, then part (a) of this definition
guarantees that there is no interrelationship between the basis vectors, and part (b) guarantees that there are
enough basis vectors to provide coordinates for all vectors in V. Here are some examples.

 EXAMPLE 1    The Standard Basis for Rn

Recall from Example 11 of Section 4.2 that the standard unit vectors

span  and from Example 1 of Section 4.3 that they are linearly independent. Thus, they form a
basis for  that we call the standard basis for . In particular,

is the standard basis for .

 EXAMPLE 2    The Standard Basis for Pn

Show that  is a basis for the vector space  of polynomials of degree n or

less.

Solution   We must show that the polynomials in S are linearly independent and span . Let us
denote these polynomials by

We showed in Example 13 of Section 4.2 that these vectors span  and in Example 4 of Section
4.3 that they are linearly independent. Thus, they form a basis for  that we call the standard basis
for .

 EXAMPLE 3    Another Basis for R3

Show that the vectors , and  form a basis for .

Solution   We must show that these vectors are linearly independent and span . To prove linear
independence we must show that the vector equation



  (1)

has only the trivial solution; and to prove that the vectors span  we must show that every vector
 in  can be expressed as

  (2)

By equating corresponding components on the two sides, these two equations can be expressed as
the linear systems

  (3)

(verify). Thus, we have reduced the problem to showing that in 3 the homogeneous system has only
the trivial solution and that the nonhomogeneous system is consistent for all values of , , and 
. But the two systems have the same coefficient matrix

so it follows from parts (b), (e), and (g) of Theorem 2.3.8 that we can prove both results at the same
time by showing that . We leave it for you to confirm that , which proves
that the vectors , , and  form a basis for .

 EXAMPLE 4    The Standard Basis for Mmn

Show that the matrices

form a basis for the vector space  of  matrices.

Solution   We must show that the matrices are linearly independent and span . To prove linear
independence we must show that the equation

  (4)

has only the trivial solution, where 0 is the  zero matrix; and to prove that the matrices span
 we must show that every  matrix

can be expressed as

  (5)



The matrix forms of Equations 4 and 5 are

and

which can be rewritten as

Since the first equation has only the trivial solution

the matrices are linearly independent, and since the second equation has the solution

the matrices span . This proves that the matrices , , ,  form a basis for .
More generally, the mn different matrices whose entries are zero except for a single entry of 1 form
a basis for  called the standard basis for .

Some writers define the empty set to be a basis
for the zero vector space, but we will not do so.

It is not true that every vector space has a basis in the sense of Definition 1. The simplest example is the zero
vector space, which contains no linearly independent sets and hence no basis. The following is an example of a
nonzero vector space that has no basis in the sense of Definition 1 because it cannot be spanned by finitely many
vectors.

 EXAMPLE 5    A Vector Space That Has No Finite Spanning Set

Show that the vector space of  of all polynomials with real coefficients has no finite spanning set.

Solution   If there were a finite spanning set, say , then the degrees of the
polynomials in S would have a maximum value, say n; and this in turn would imply that any linear
combination of the polynomials in S would have degree at most n. Thus, there would be no way to
express the polynomial  as a linear combination of the polynomials in S, contradicting the fact that
the vectors in S span .

For reasons that will become clear shortly, a vector space that cannot be spanned by finitely many vectors is said
to be infinite-dimensional, whereas those that can are said to be finite-dimensional.

 EXAMPLE 6    Some Finite-and Infinite-Dimensional Spaces



In Example 1, Example 2, and Example 4 we found bases for , , and , so these vector
spaces are finite-dimensional. We showed in Example 5 that the vector space  is not spanned by
finitely many vectors and hence is infinite-dimensional. In the exercises of this section and the next
we will ask you to show that the vector spaces , , , , and

 are infinite-dimensional.

Coordinates Relative to a Basis

Earlier in this section we drew an informal analogy between basis vectors and coordinate systems. Our next goal is
to make this informal idea precise by defining the notion of a coordinate system in a general vector space. The
following theorem will be our first step in that direction.

THEOREM 4.4.1   Uniqueness of Basis Representation

If  is a basis for a vector space V, then every vector v in V can be expressed in the
form  in exactly one way.

Proof   Since S spans V, it follows from the definition of a spanning set that every vector in V is expressible as a
linear combination of the vectors in S. To see that there is only one way to express a vector as a linear combination
of the vectors in S, suppose that some vector v can be written as

and also as

Subtracting the second equation from the first gives

Since the right side of this equation is a linear combination of vectors in S, the linear independence of S implies
that

that is,

Thus, the two expressions for v are the same.



Figure 4.4.5   

Sometimes it will be desirable to write a
coordinate vector as a column matrix, in which
case we will denote it using square brackets as

We will refer to  as a coordinate matrix and
reserve the terminology coordinate vector for the
comma delimited form .

We now have all of the ingredients required to define the notion of “coordinates” in a general vector space V. For
motivation, observe that in , for example, the coordinates (a, b, c) of a vector v are precisely the coefficients in
the formula

that expresses v as a linear combination of the standard basis vectors for  (see Figure 4.4.5). The following
definition generalizes this idea.

DEFINITION 2

If  is a basis for a vector space V, and

is the expression for a vector v in terms of the basis S, then the scalars  are called the
coordinates of v relative to the basis S. The vector  in  constructed from these
coordinates is called the coordinate vector of v relative to S; it is denoted by

  (6)

Remark   Recall that two sets are considered to be the same if they have the same members, even if those



members are written in a different order. However, if  is a set of basis vectors, then changing
the order in which the vectors are written would change the order of the entries in , possibly producing a
different coordinate vector. To avoid this complication, we will make the convention that in any discussion
involving a basis S the order of the vectors in S remains fixed. Some authors call a set of basis vectors with this
restriction an ordered basis. However, we will use this terminology only when emphasis on the order is required
for clarity.

Observe that  is a vector in , so that once basis S is given for a vector space V, Theorem 4.4.1 establishes a
one-to-one correspondence between vectors in V and vectors in  (Figure 4.4.6).

Figure 4.4.6   

 EXAMPLE 7    Coordinates Relative to the Standard Basis for Rn

In the special case where  and S is the standard basis, the coordinate vector  and the vector
v are the same; that is,

For example, in  the representation of a vector  as a linear combination of the vectors in
the standard basis  is

so the coordinate vector relative to this basis is , which is the same as the vector v.

 EXAMPLE 8    Coordinate Vectors Relative to Standard Bases

(a)  Find the coordinate vector for the polynomial

relative to the standard basis for the vector space .
(b)  Find the coordinate vector of

relative to the standard basis for .

Solution   
(a)  The given formula for  expresses this polynomial as a linear combination of the standard

basis vectors . Thus, the coordinate vector for p relative to S is



(b)  We showed in Example 4 that the representation of a vector

as a linear combination of the standard basis vectors is

so the coordinate vector of B relative to S is

 EXAMPLE 9    Coordinates in R3

(a)  We showed in Example 3 that the vectors

form a basis for . Find the coordinate vector of  relative to the basis
.

(b)  Find the vector v in  whose coordinate vector relative to S is .

Solution   
(a)  To find  we must first express v as a linear combination of the vectors in S; that is, we must

find values of , , and  such that

or, in terms of components,

Equating corresponding components gives

Solving this system we obtain , ,  (verify). Therefore,

(b)  Using the definition of , we obtain



Concept Review
•  Basis
•  Standard bases for , , 

•  Finite-dimensional
•  Infinite-dimensional
•  Coordinates
•  Coordinate vector

Skills
•  Show that a set of vectors is a basis for a vector space.
•  Find the coordinates of a vector relative to a basis.
•  Find the coordinate vector of a vector relative to a basis.

Exercise Set 4.4
1. In words, explain why the following sets of vectors are not bases for the indicated vector spaces.

(a)  , ,  for 

(b)  ,  for 

(c)  ,  for 

(d)  , , , , , for 

Answer:

(a)  A basis for  has two linearly independent vectors.

(b)  A basis for  has three linearly independent vectors.

(c)  A basis for  has three linearly independent vectors.
(d)  A basis for  has four linearly independent vectors.

2. Which of the following sets of vectors are bases for ?

(a)  
(b)  
(c)  
(d)  

3. Which of the following sets of vectors are bases for ?

(a)  
(b)  
(c)  



(d)  

Answer:

(a), (b)

4. Which of the following form bases for ?
(a)  

(b)  

(c)  

(d)  

5. Show that the following matrices form a basis for .

6. Let V be the space spanned by , , .

(a)  Show that  is not a basis for V.

(b)  Find a basis for V.

7. Find the coordinate vector of w relative to the basis  for .

(a)  , ; 

(b)  , ; 

(c)  , ; 

Answer:

(a)  
(b)  

(c)  

8. Find the coordinate vector of w relative to the basis  of .

(a)  , ; 

(b)  , ; 

(c)  , ; 

9. Find the coordinate vector of v relative to the basis .

(a)  ; , , 

(b)  ; , , 

Answer:

(a)  
(b)  



10. Find the coordinate vector of p relative to the basis .

(a)  ; , , 

(b)  ; , , 

11. Find the coordinate vector of A relative to the basis .

Answer:

In Exercises 12–13, show that  is a basis for , and express A as a linear combination of the
basis vectors.

12. 

13. 

Answer:

In Exercises 14–15, show that  is a basis for , and express p as a linear combination of the basis
vectors.

14. , , ; 

15. , , ; 

Answer:

16. The accompanying figure shows a rectangular xy-coordinate system and an -coordinate system with
skewed axes. Assuming that 1-unit scales are used on all the axes, find the -coordinates of the points
whose xy-coordinates are given.
(a)  (1, 1)
(b)  (1, 0)
(c)  (0, 1)
(d)  (a b)



Figure Ex-16   

17. The accompanying figure shows a rectangular xy-coordinate system determined by the unit basis vectors i and
j and an -coordinate system determined by unit basis vectors  and . Find the -coordinates of the
points whose xy-coordinates are given.
(a)  

(b)  (1, 0)
(c)  (0, 1)
(d)  (a, b)

Figure Ex-17   

Answer:

(a)  (2, 0)
(b)  

(c)  (0, 1)
(d)  

18. The basis that we gave for  in Example 4 consisted of noninvertible matrices. Do you think that there is a
basis for  consisting of invertible matrices? Justify your answer.

19. Prove that  is infinite-dimensional.

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) If , then  is a basis for V.



Answer:

False

(b) Every linearly independent subset of a vector space V is a basis for V.

Answer:

False

(c) If  is a basis for a vector space V, then every vector in V can be expressed as a linear
combination of 

Answer:

True

(d) The coordinate vector of a vector x in  relative to the standard basis for  is x.

Answer:

True

(e) Every basis of  contains at least one polynomial of degree 3 or less.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.5  Dimension
We showed in the previous section that the standard basis  has n vectors and hence that the standard basis

for  has three vectors, the standard basis for  has two vectors, and the standard basis for  has one

vector. Since we think of space as three dimensional, a plane as two dimensional, and a line as one
dimensional, there seems to be a link between the number of vectors in a basis and the dimension of a vector
space. We will develop this idea in this section.

Number of Vectors in a Basis

Our first goal in this section is to establish the following fundamental theorem.

THEOREM 4.5.1

All bases for a finite-dimensional vector space have the same number of vectors.

To prove this theorem we will need the following preliminary result, whose proof is deferred to the end of the
section.

THEOREM 4.5.2

Let V be a finite-dimensional vector space, and let  be any basis.

(a)  If a set has more than n vectors, then it is linearly dependent.
(b)  If a set has fewer than n vectors, then it does not span V.

Some writers regard the empty set to be a basis
for the zero vector space. This is consistent with
our definition of dimension, since the empty set
has no vectors and the zero vector space has
dimension zero.

We can now see rather easily why Theorem 4.5.1 is true; for if

is an arbitrary basis for V, then the linear independence of S implies that any set in V with more than n vectors
is linearly dependent and any set in V with fewer than n vectors does not span V. Thus, unless a set in V has
exactly n vectors it cannot be a basis.



We noted in the introduction to this section that for certain familiar vector spaces the intuitive notion of
dimension coincides with the number of vectors in a basis. The following definition makes this idea precise.

Engineers often use the term degrees of
freedom as a synonym for dimension.

DEFINITION 1

The dimension of a finite-dimensional vector space V is denoted by  and is defined to be the
number of vectors in a basis for V. In addition, the zero vector space is defined to have dimension zero.

 EXAMPLE 1    Dimensions of Some Familiar Vector Spaces

 EXAMPLE 2    Dimension of Span(S)

If  is a linearly independent set in a vector space V, then S is automatically
a basis for span(S) (why?), and this implies that

In words, the dimension of the space spanned by a linearly independent set of vectors is equal to
the number of vectors in that set.

 EXAMPLE 3    Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

Solution   We leave it for you to solve this system by Gauss-Jordan elimination and show that
its general solution is



which can be written in vector form as

or, alternatively, as

This shows that the vectors  and  span the
solution space. Since neither vector is a scalar multiple of the other, they are linearly independent
and hence form a basis for the solution space. Thus, the solution space has dimension 2.

 EXAMPLE 4    Dimension of a Solution Space

Find a basis for and the dimension of the solution space of the homogeneous system

Solution   In Example 6 of Section 1.2 we found the solution of this system to be

which can be written in vector form as

or, alternatively, as

This shows that the vectors

span the solution space. We leave it for you to check that these vectors are linearly independent
by showing that none of them is a linear combination of the other two (but see the remark that
follows). Thus, the solution space has dimension 3.

Remark   It can be shown that for a homogeneous linear system, the method of the last example always
produces a basis for the solution space of the system. We omit the formal proof.

Some Fundamental Theorems

We will devote the remainder of this section to a series of theorems that reveal the subtle interrelationships
among the concepts of linear independence, basis, and dimension. These theorems are not simply exercises in
mathematical theory—they are essential to the understanding of vector spaces and the applications that build
on them.



We will start with a theorem (proved at the end of this section) that is concerned with the effect on linear
independence and spanning if a vector is added to or removed from a given nonempty set of vectors.
Informally stated, if you start with a linearly independent set S and adjoin to it a vector that is not a linear
combination of those in S, then the enlarged set will still be linearly independent. Also, if you start with a set S
of two or more vectors in which one of the vectors is a linear combination of the others, then that vector can be
removed from S without affecting span(S) (Figure 4.5.1).

Figure 4.5.1   

THEOREM 4.5.3   Plus/Minus Theorem

Let S be a nonempty set of vectors in a vector space V.
(a)  If S is a linearly independent set, and if v is a vector in V that is outside of  then the set

 that results by inserting v into S is still linearly independent.

(b)  If v is a vector in S that is expressible as a linear combination of other vectors in S, and if 
denotes the set obtained by removing v from S, then  span the same space; that is,

 EXAMPLE 5    Applying the Plus/Minus Theorem

Show that , , and  are linearly independent vectors.

Solution   The set  is linearly independent, since neither vector in S is a scalar
multiple of the other. Since the vector  cannot be expressed as a linear combination of the
vectors in S (why?), it can be adjoined to S to produce a linearly independent set

.

In general, to show that a set of vectors  is a basis for a vector space V, we must show that the
vectors are linearly independent and span V. However, if we happen to know that V has dimension n (so that

 contains the right number of vectors for a basis), then it suffices to check either linear



independence or spanning— the remaining condition will hold automatically. This is the content of the
following theorem.

THEOREM 4.5.4

Let V be an n-dimensional vector space, and let S be a set in V with exactly n vectors. Then S is a basis
for V if and only if S spans V or S is linearly independent.

Proof   Assume that S has exactly n vectors and spans V. To prove that S is a basis, we must show that S is a
linearly independent set. But if this is not so, then some vector v in S is a linear combination of the remaining
vectors. If we remove this vector from S, then it follows from Theorem 4.5.3b that the remaining set of 
vectors still spans V. But this is impossible, since it follows from Theorem 4.5.2b that no set with fewer than n
vectors can span an n-dimensional vector space. Thus S is linearly independent.

Assume that S has exactly n vectors and is a linearly independent set. To prove that S is a basis, we must show
that S spans V. But if this is not so, then there is some vector v in V that is not in . If we insert this
vector into S, then it follows from Theorem 4.5.3a that this set of  vectors is still linearly independent.
But this is impossible, since Theorem 4.5.2a states that no set with more than n vectors in an n-dimensional
vector space can be linearly independent. Thus S spans V.

 EXAMPLE 6    Bases by Inspection

(a)  By inspection, explain why  and  form a basis for .

(b)  By inspection, explain why , , and  form a
basis for .

Solution   
(a)  Since neither vector is a scalar multiple of the other, the two vectors form a linearly

independent set in the two-dimensional space , and hence they form a basis by Theorem
4.5.4.

(b)  The vectors  and  form a linearly independent set in the xz-plane (why?). The vector 
is outside of the xz-plane, so the set  is also linearly independent. Since  is
three-dimensional, Theorem 4.5.4 implies that  is a basis for .

The next theorem (whose proof is deferred to the end of this section) reveals two important facts about the
vectors in a finite-dimensional vector space V:
1.  Every spanning set for a subspace is either a basis for that subspace or has a basis as a subset.
2.  Every linearly independent set in a subspace is either a basis for that subspace or can be extended to a basis

for it.



THEOREM 4.5.5

Let S be a finite set of vectors in a finite-dimensional vector space V.
(a)  If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate

vectors from S.
(b)  If S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis

for V by inserting appropriate vectors into S.

We conclude this section with a theorem that relates the dimension of a vector space to the dimensions of its
subspaces.

THEOREM 4.5.6

If W is a subspace of a finite-dimensional vector space V, then:
(a)  W is finite-dimensional.
(b)  .

(c)   if and only if .

Proof (a)   We will leave the proof of this part for the exercises.

Proof (b)   Part (a) shows that W is finite-dimensional, so it has a basis

Either S is also a basis for V or it is not. If so, then , which means that . Ifnot,
then because S is a linearly independent set it can be enlarged to a basis for V by part (b) of Theorem 4.5.5. But
this implies that , so we have shown that  in all cases.

Proof (c)   Assume that  and that

is a basis for W. If S is not also a basis for V, then being linearly independent S can be extended to a basis for V
by part (b) of Theorem 4.5.5. But this would mean that , which contradicts our hypothesis.
Thus S must also be a basis for V, which means that .

Figure 4.5.2 illustrates the geometric relationship between the subspaces of  in order of increasing
dimension.



Figure 4.5.2   

   O P T I O N A L    

We conclude this section with optional proofs of Theorem 4.5.2, Theorem 4.5.3, and Theorem 4.5.5.

Proof of Theorem 4.5.2(a)   Let  be any set of m vectors in V, where . We
want to show that S′ is linearly dependent. Since  is a basis, each  can be expressed as a
linear combination of the vectors in S, say

  (1)

To show that S′ is linearly dependent, we must find scalars , not all zero, such that

  (2)

Using the equations in 1, we can rewrite 2 as

Thus, from the linear independence of S, the problem of proving that S′ is a linearly dependent set reduces to
showing there are scalars , not all zero, that satisfy

  (3)

But 3 has more unknowns than equations, so the proof is complete since Theorem 1.2.2 guarantees the
existence of nontrivial solutions.

Proof of Theorem 4.5.2(b)   Let  be any set of m vectors in V, where . We
want to show that S′ does not span V. We will do this by showing that the assumption that S′ spans V leads to a
contradiction of the linear independence of . If S′ spans V, then every vector in V is a linear
combination of the vectors in S′. In particular, each basis vector  is a linear combination of the vectors in S′,



say

  (4)

To obtain our contradiction, we will show that there are scalars , not all zero, such that

  (5)

But 4 and 5 have the same form as 1 and 2 except that m and n are interchanged and the w′s and v′s are
interchanged. Thus, the computations that led to 3 now yield

This linear system has more unknowns than equations and hence has nontrivial solutions by Theorem 1.2.2.

Proof of Theorem 4.5.3(a)   Assume that  is a linearly independent set of vectors in V,
and v is a vector in V outside of . To show that  is a linearly independent set,
we must show that the only scalars that satisfy

  (6)

are . But it must be true that  for otherwise we could solve 6 for v
as a linear combination of , contradicting the assumption that v is outside of . Thus, 6
simplifies to

  (7)

which, by the linear independence of , implies that

Proof Theorem 4.5.3(b)   Assume that  is a set of vectors in V, and (to be specific)
suppose that  is a linear combination of , say

  (8)

We want to show that if  is removed from S, then the remaining set of vectors  still spans
S; that is, we must show that every vector w in  is expressible as a linear combination of

. But if w is in , then w is expressible in the form

or, on substituting 8,



which expresses w as a linear combination of .

Proof of Theorem 4.5.5(a)   If S is a set of vectors that spans V but is not a basis for V, then S is a linearly
dependent set. Thus some vector v in S is expressible as a linear combination of the other vectors in S. By the
Plus/Minus Theorem (4.5.3b), we can remove v from S, and the resulting set S′ will still span V. If S′ is linearly
independent, then S′ is a basis for V, and we are done. If S′ is linearly dependent, then we can remove some
appropriate vector from S′ to produce a set S″ that still spans V. We can continue removing vectors in this way
until we finally arrive at a set of vectors in S that is linearly independent and spans V. This subset of S is a basis
for V.

Proof of Theorem 4.5.5(b)   Suppose that . If S is a linearly independent set that is not already a
basis for V, then S fails to span V, so there is some vector v in V that is not in . By the Plus/Minus
Theorem (4.5.3a), we can insert v into S, and the resulting set S′ will still be linearly independent. If S′ spans V,
then S′ is a basis for V, and we are finished. If S′ does not span V, then we can insert an appropriate vector into
S′ to produce a set S″ that is still linearly independent. We can continue inserting vectors in this way until we
reach a set with n linearly independent vectors in V. This set will be a basis for V by Theorem 4.5.4.

Concept Review
•  Dimension
•  Relationships among the concepts of linear independence, basis, and dimension

Skills
•  Find a basis for and the dimension of the solution space of a homogeneous linear system.
•  Use dimension to determine whether a set of vectors is a basis for a finite-dimensional vector space.
•  Extend a linearly independent set to a basis.

Exercise Set 4.5

In Exercises 1–6, find a basis for the solution space of the homogeneous linear system, and find the
dimension of that space.

1. 

Answer:

Basis: (1, 0, 1); dimension = 1



2. 

3. 

Answer:

Basis: ; 

4. 

5. 

Answer:

No basis; 

6. 

7. Find bases for the following subspaces of .

(a)  The plane .

(b)  The plane .

(c)  The line .

(d)  All vectors of the form , where .

Answer:

(a)  

(b)  (1, 1, 0), (0, 0, 1)
(c)  
(d)  (1, 1, 0), (0, 1, 1)

8. Find the dimensions of the following subspaces of .

(a)  All vectors of the form .

(b)  All vectors of the form , where  and .

(c)  All vectors ofthe form , where .

9. Find the dimension of each ofthe following vector spaces.
(a)  The vector space of all diagonal  matrices.



(b)  The vector space of all symmetric  matrices.
(c)  The vector space of all upper triangular  matrices.

Answer:

(a)  n

(b)  

(c)  

10. Find the dimension of the subspace of  consisting of all polynomials  for which
.

11. (a)  Show that the set W of all polynomials in  such that  is a subspace of .

(b)  Make a conjecture about the dimension of W.
(c)  Confirm your conjecture by finding a basis for W.

12. Find a standard basis vector for  that can be added to the set  to produce a basis for .

(a)  
(b)  

13. Find standard basis vectors for  that can be added to the set  to produce a basis for .

Answer:

Any two of (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) can be used.

14. Let  be a basis for a vector space V. Show that  is also a basis, where ,
, and .

15. The vectors  and  are linearly independent. Enlarge  to a basis
for .

Answer:

 with 

16. The vectors  and  are linearly independent. Enlarge
 to a basis for .

17. (a)  Show that for every positive integer n, one can find  linearly independent vectors in 
. [Hint: Look for polynomials.]

(b)  Use the result inpart (a) to prove that  is infinite- dimensional.

(c)  Prove that , and  are infinite-dimensional vector spaces.

18. Let S be a basis for an n-dimensional vector space V. Show that if  form a linearly
independent set of vectors in V, then the coordinate vectors  form a linearly
independent set in , and conversely.



19. Using the notation from Exercise 18, show that if the vectors  span V, then the coordinate
vectors  span , and conversely.

20. Find a basis for the subspace of  spanned by the given vectors.
(a)  , , 9

(b)  , , , 

(c)  , , 

[Hint: Let S be the standard basis for , and work with the coordinate vectors relative to S as in Exercises
18 and 19.]

21. Prove: A subspace of a finite-dimensional vector space is finite-dimensional.

22. State the two parts of Theorem 4.5.2 in contrapositive form.

True-False Exercises

In parts (a)–(j) determine whether the statement is true or false, and justify your answer.

(a) The zero vector space has dimension zero.

Answer:

True

(b) There is a set of 17 linearly independent vectors in .

Answer:

True

(c) There is a set of 11 vectors that span .

Answer:

False

(d) Every linearly independent set of five vectors in  is a basis for .

Answer:

True

(e) Every set of five vectors that spans  is a basis for .

Answer:

True

(f) Every set of vectors that spans  contains a basis for .

Answer:

True



(g) Every linearly independent set of vectors in  is contained in some basis for .

Answer:

True

(h) There is a basis for  consisting of invertible matrices.

Answer:

True

(i) If A has size  and  are distinct matrices, then  is linearly

dependent.

Answer:

True

(j) There are at least two distinct three-dimensional subspaces of .

Answer:

False
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4.6  Change of Basis
A basis that is suitable for one problem may not be suitable for another, so it is a common process in the study
of vector spaces to change from one basis to another. Because a basis is the vector space generalization of a
coordinate system, changing bases is akin to changing coordinate axes in  and . In this section we will
study problems related to change of basis.

Coordinate Maps

If  is a basis for a finite-dimensional vector space V, and if

is the coordinate vector of v relative to S, then, as observed in Section 4.4 , the mapping

  (1)

creates a connection (a one-to-one correspondence) between vectors in the general vector space V and vectors
in the familiar vector space . We call 1 the coordinate map from V to . In this section we will find it
convenient to express coordinate vectors in the matrix form

  (2)

where the square brackets emphasize the matrix notation (Figure 4.6.1).

Figure 4.6.1   

Change of Basis

There are many applications in which it is necessary to work with more than one coordinate system. In such
cases it becomes important to know how the coordinates of a fixed vector relative to each coordinate system
are related. This leads to the following problem.



The Change-of-Basis Problem

If v is a vector in a finite-dimensional vector space V, and if we change the basis for V from a basis B
to a basis B′, how are the coordinate vectors  and ?

Remark   To solve this problem, it will be convenient to refer to B as the “old basis” and B′ as the “new
basis.” Thus, our objective is to find a relationship between the old and new coordinates of a fixed vector v in
V.

For simplicity, we will solve this problem for two-dimensional spaces. The solution for n-dimensional spaces
is similar. Let

be the old and new bases, respectively. We will need the coordinate vectors for the new basis vectors relative
to the old basis. Suppose they are

  (3)

That is,

  (4)

Now let v be any vector in V, and let

  (5)

be the new coordinate vector, so that

  (6)

In order to find the old coordinates of v, we must express v in terms of the old basis B. To do this, we
substitute 4 into 6. This yields

or

Thus, the old coordinate vector for v is

which, by using 5, can be written as



This equation states that the old coordinate vector  results when we multiply the new coordinate vector
 on the left by the matrix

Since the columns of this matrix are the coordinates of the new basis vectors relative to the old basis [see 3]
we have the following solution of the change-of-basis problem.

Solution of the Change-of-Basis Problem

If we change the basis for a vector space V from an old basis  to a new basis
, then for each vector v in V, the old coordinate vector  is related to the

new coordinate vector  by the equation

  (7)

where the columns of P are the coordinate vectors of the new basis vectors relative to the old basis;
that is, the column vectors of P are

  (8)

Transition Matrices

The matrix P in Equation 7 is called the transition matrix from  to B. For emphasis, we will often denote it
by  It follows from 8 that this matrix can be expressed in terms of its column vectors as

  (9)

Similarly, the transition matrix from B to  can be expressed in terms of its column vectors as

  (10)

Remark   There is a simple way to remember both of these formulas using the terms “old basis” and “new
basis” defined earlier in this section: In Formula 9 the old basis is  and the new basis is B, whereas in
Formula 10 the old basis is B and the new basis is . Thus, both formulas can be restated as follows:



The columns of the transition matrix from an old basis to a new basis are the coordinate vectors of the
old basis relative to the new basis.

 EXAMPLE 1    Finding Transition Matrices

Consider the bases  and  for , where

(a)  Find the transition matrix  from  to B.

(b)  Find the transition matrix  from B to .

Solution   
(a)  Here the old basis vectors are  and  and the new basis vectors are  and . We want

to find the coordinate matrices of the old basis vectors  and  relative to the new basis
vectors  and . To do this, first we observe that

from which it follows that

and hence that

(b)  Here the old basis vectors are  and  and the new basis vectors are  and . As in part
(a), we want to find the coordinate matrices of the old basis vectors  and  relative to
the new basis vectors  and . To do this, observe that

from which it follows that

and hence that



Suppose now that B and  are bases for a finite-dimensional vector space V. Since multiplication by 
maps coordinate vectors relative to the basis  into coordinate vectors relative to a basis B, and  maps
coordinate vectors relative to B into coordinate vectors relative to , it follows that for every vector v in V
we have

  (11)

  (12)

 EXAMPLE 2    Computing Coordinate Vectors

Let B and  be the bases in Example 1. Use an appropriate formula to find  given that

Solution   To find  we need to make the transition from  to B. It follows from Formula
11 and part (a) of Example 1 that

Invertibility of Transition Matrices

If B and  are bases for a finite-dimensional vector space V, then

because multiplication by  first maps B-coordinates of a vector into -coordinates, and
then maps those -coordinates back into the original B-coordinates. Since the net effect of the two operations
is to leave each coordinate vector unchanged, we are led to conclude that  must be the identity matrix,
that is,

  (13)

(we omit the formal proof). For example, for the transition matrices obtained in Example 1 we have

It follows from 13 that  is invertible and that its inverse is  Thus, we have the following
theorem.



THEOREM 4.6.1

If P is the transition matrix from a basis  to a basis B for a finite-dimensional vector space V, then P
is invertible and  is the transition matrix from B to .

An Efficient Method for Computing Transition Matrices for Rn

Our next objective is to develop an efficient procedure for computing transition matrices between bases for
. As illustrated in Example 1, the first step in computing a transition matrix is to express each new basis

vector as a linear combination of the old basis vectors. For  this involves solving n linear systems of n
equations in n unknowns, each of which has the same coefficient matrix (why?). An efficient way to do this is
by the method illustrated in Example 2 of Section 1.6, which is as follows:

A Procedure for Computing PB → B′

Step 1  Form the matrix .

Step 2  Use elementary row operations to reduce the matrix in Step 1 to reduced row echelon form.
Step 3  The resulting matrix will be 

Step 4  Extract the matrix  from the right side of the matrix in Step 3.

This procedure is captured in the following diagram.

  (14)

 EXAMPLE 3    Example 1 Revisited

In Example 1 we considered the bases  and  for , where

(a)  Use Formula 14 to find the transition matrix from  to B.

(b)  Use Formula 14 to find the transition matrix from B to .

Solution   



(a)  Here  is the old basis and B is the new basis, so

Since the left side is already the identity matrix, no reduction is needed. We see by
inspection that the transition matrix is

which agrees with the result in Example 1.
(b)  Here B is the old basis and  is the new basis, so

By reducing this matrix, so the left side becomes the identity we obtain (verify)

so the transition matrix is

which also agrees with the result in Example 1.

Transition to the Standard Basis for Rn

Note that in part (a) of the last example the column vectors of the matrix that made the transition from the
basis  to the standard basis turned out to be the vectors in  written in column form. This illustrates the
following general result.

THEOREM 4.6.2

Let  beany basis for the vector space  and let  be the
standard basis for . If the vectors in these bases are written in column form, then

  (15)

It follows from this theorem that if



is any invertible  matrix, then A can be viewed as the transition matrix from the basis 
for  to the standard basis for . Thus, for example, the matrix

which was shown to be invertible in Example 4 of Section 1.5, is the transition matrix from the basis

to the basis

Concept Review
•  Coordinate map
•  Change-of-basis problem
•  Transition matrix

Skills
•  Find coordinate vectors relative to a given basis directly.
•  Find the transition matrix from one basis to another.
•  Use the transition matrix to compute coordinate vectors.

Exercise Set 4.6
1. Find the coordinate vector for w relative to the basis  for .

(a)  
(b)  
(c)  

Answer:

(a)  

(b)  



(c)  

2. Find the coordinate vector for v relative to the basis  for .

(a)  ; 

(b)  ; 

3. Find the coordinate vector for p relative to the basis  for .

(a)  ; 

(b)  ; 

Answer:

(a)  

(b)  

4. Find the coordinate vector for A relative to the basis  for .

5. Consider the coordinate vectors

(a)  Find w if S is the basis in Exercise 2(a).
(b)  Find q if S is the basis in Exercise 3(a).
(c)  Find B if S is the basis in Exercise 4.

Answer:

(a)  
(b)  

(c)  



6. Consider the bases  and  for , where

(a)  Find the transition matrix from  to B.

(b)  Find the transition matrix from B to .

(c)  Compute the coordinate vector , where

and use 10 to compute .

(d)  Check your work by computing  directly.

7. Repeat the directions of Exercise 6 with the same vector w but with

Answer:

(a)  

(b)  

(c)  

8. Consider the bases  and  for , where

(a)  Find the transition matrix from B to .

(b)  Compute the coordinate vector , where



and use 12 to compute .

(c)  Check your work by computing  directly.

9. Repeat the directions of Exercise 8 with the same vector w, but with

Answer:

(a)  

(b)  

10. Consider the bases  and  for  where

(a)  Find the transition matrix from  to B.

(b)  Find the transition matrix from B to .

(c)  Compute the coordinate vector , where , and use 12 to compute .

(d)  Check your work by computing  directly.

11. Let V be the space spanned by  and .
(a)  Show that  and  form a basis for V.

(b)  Find the transition matrix from  to .

(c)  Find the transition matrix from B to .

(d)  Compute the coordinate vector , where , and use 12 to obtain .

(e)  Check your work by computing  directly.

Answer:

(b)  



(c)  

(d)  

12. Let S be the standard basis for , and let  be the basis in which  and

(a)  Find the transition matrix  by inspection.
(b)  Use Formula 14 to find the transition matrix 
(c)  Confirm that  and  are inverses of one another.
(d)  Let  Find  and then use Formula 11 to compute 

(e)  Let  Find  and then use Formula 12 to compute 

13. Let S be the standard basis for , and let  be the basis in which ,
, and .

(a)  Find the transition matrix  by inspection.
(b)  Use Formula 14 to find the transition matrix .
(c)  Confirm that  and  are inverses of one another.
(d)  Let . Find  and then use Formula 11 to compute .

(e)  Let . Find  and then use Formula 12 to compute .

Answer:

(a)  

(b)  

(d)  

(e)  

14. Let  and  be the bases for  in which
 and .

(a)  Use Formula 14 to find the transition matrix .

(b)  Use Formula 14 to find the transition matrix .

(c)  Confirm that  and  are inverses of one another.



(d)  Let . Find  and then use the matrix  to compute  from .

(e)  Let . Find  and then use the matrix  to compute  from .

15. Let  and  be the bases for  in which , ,
, and .

(a)  Use Formula 14 to find the transition matrix .

(b)  Use Formula 14 to find the transition matrix .

(c)  Confirm that  and  are inverses of one another.

(d)  Let . Find  and then use the matrix  to compute  from .

(e)  Let . Find  and then use the matrix  to compute  from .

Answer:

(a)  

(b)  

(d)  

(e)  

16. Let  and  be the bases for  in which ,
, , , , and
.

(a)  Find the transition matrix .

(b)  Let . Find  and then use the transition matrix obtained in part (a) to
compute  by matrix multiplication.

(c)  Check the result in part (b) by computing  directly.

17. Follow the directions of Exercise 16 with the same vector w but with ,
, and .

Answer:

(a)  



(b)  

18. Let  be the standard basis for , and let  be the basis that results when the
vectors in S are reflected about the line .

(a)  Find the transition matrix .
(b)  Let  and show that .

19. Let  be the standard basis for , and let  be the basis that results when the
vectors in S are reflected about the line that makes an angle  with the positive x-axis.
(a)  Find the transition matrix .
(b)  Let  and show that .

Answer:

(a)  

20. If , , and  are bases for , and if

then .

21. If P is the transition matrix from a basis  to a basis B, and Q is the transition matrix from B to a basis C,
what is the transition matrix from  to C? What is the transition matrix from C to ?

22. To write the coordinate vector for a vector, it is necessary to specify an order for the vectors in the basis. If
P is the transition matrix from a basis  to a basis B, what is the effect on P if we reverse the order of
vectors in B from  to ? What is the effect on P if we reverse the order of vectors in
both  and B?

23. Consider the matrix

(a)  P is the transition matrix from what basis B to the standard basis  for ?

(b)  P is the transition matrix from the standard basis  to what basis B for ?

Answer:

(a)  
(b)  



24. The matrix

is the transition matrix from what basis B to the basis  for ?

25. Let B be a basis for . Prove that the vectors  form a linearly independent set in  if and
only if the vectors  form a linearly independent set in .

26. Let B be a basis for . Prove that the vectors  span  if and only if the vectors
 span .

27. If  holds for all vectors  in , what can you say about the basis B?

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) If  and  are bases for a vector space V, then there exists a transition matrix from  to .

Answer:

True

(b) Transition matrices are invertible.

Answer:

True

(c) If B is a basis for a vector space , then  is the identity matrix.

Answer:

True

(d) If  is a diagonal matrix, then each vector in  is a scalar multiple of some vector in .

Answer:

True

(e) If each vector in  is a scalar multiple of some vector in , then  is a diagonal matrix.

Answer:

False

(f) If A is a square matrix, then  for some bases  and  for .

Answer:

False
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4.7  Row Space, Column Space, and Null Space
In this section we will study some important vector spaces that are associated with matrices. Our work here will provide
us with a deeper understanding of the relationships between the solutions of a linear system and properties of its
coefficient matrix.

Row Space, Column Space, and Null Space

Recall that vectors can be written in comma-delimited form or in matrix form as either row vectors or column vectors.
In this section we will use the latter two.

DEFINITION 1

For an  matrix

the vectors

in  that are formed from the rows of A are called the row vectors of A, and the vectors

in  formed from the columns of A are called the column vectors of A.

 EXAMPLE 1    Row and Column Vectors of a 2 × 3 Matrix

Let

The row vectors of A are

and the column vectors of A are



The following definition defines three important vector spaces associated with a matrix.

DEFINITION 2

If A is an  matrix, then the subspace of  spanned by the row vectors of A is called the row space of A,
and the subspace of  spanned by the column vectors of A is called the column space of A. The solution space
of the homogeneous system of equations , which is a subspace of , is called the null space of A.

In this section and the next we will be concerned with two general questions:
Question 1.  What relationships exist among the solutions of a linear system  and the row space, column space,
and null space of the coefficient matrix A?
Question 2.  What relationships exist among the row space, column space, and null space of a matrix?

Starting with the first question, suppose that

It follows from Formula 10 of Section 1.3 that if  denote the column vectors of A, then the product  can
be expressed as a linear combination of these vectors with coefficients from ; that is,

  (1)

Thus, a linear system, , of m equations in n unknowns can be written as

  (2)

from which we conclude that  is consistent if and only if  is expressible as a linear combination of the column
vectors of A. This yields the following theorem.

THEOREM 4.7.1

A system of linear equations  is consistent if and only if b is in the column space of A.

 EXAMPLE 2    A Vector  in the Column Space of A

Let  be the linear system



Show that  is in the column space of A by expressing it as a linear combination of the column vectors of
A.

Solution   Solving the system by Gaussian elimination yields (verify)

It follows from this and Formula 2 that

Recall from Theorem 3.4.4 that the general solution of a consistent linear system  can be obtained by adding any
specific solution of this system to the general solution of the corresponding homogeneous system . Keeping in
mind that the null space of A is the same as the solution space of , we can rephrase that theorem in the following
vector form.

THEOREM 4.7.2

If  is any solution of a consistent linear system , and if  is a basis for the null
space of A, then every solution of  can be expressed in the form

  (3)

Conversely, for all choices of scalars , the vector  in this formula is a solution of .

Equation 3 gives a formula for the general solution of . The vector  in that formula is called a particular
solution of , and the remaining part of the formula is called the general solution of . In words, this
formula tells us that.

The general solution of a consistent linear system can be expressed as the sum of a particular solution of that system
and the general solution of the corresponding homogeneous system.

Geometrically, the solution set of  can be viewed as the translation by  of the solution space of  (Figure
4.7.1).



Figure 4.7.1   

 EXAMPLE 3    General Solution of a Linear System Ax = b

In the concluding subsection of Section 3.4 we compared solutions of the linear systems

and deduced that the general solution  of the nonhomogeneous system and the general solution  of the
corresponding homogeneous system (when written in column-vector form) are related by

Recall from the Remark following Example 4 of Section 4.5 that the vectors in  form a basis for the solution space of
.

Bases for Row Spaces, Column Spaces, and Null Spaces

We first developed elementary row operations for the purpose of solving linear systems, and we know from that work
that performing an elementary row operation on an augmented matrix does not change the solution set of the
corresponding linear system. It follows that applying an elementary row operation to a matrix A does not change the
solution set of the corresponding linear system , or, stated another way, it does not change the null space of A.
Thus we have the following theorem.



THEOREM 4.7.3

Elementary row operations do not change the null space of a matrix.

The following theorem, whose proof is left as an exercise, is a companion to Theorem 4.7.3.

THEOREM 4.7.4

Elementary row operations do not change the row space of a matrix.

Theorems 4.7.3 and 4.7.4 might tempt you into incorrectly believing that elementary row operations do not change the
column space of a matrix. To see why this is not true, compare the matrices

The matrix B can be obtained from A by adding −2 times the first row to the second. However, this operation has
changed the column space of A, since that column space consists of all scalar multiples of

whereas the column space of B consists of all scalar multiples of

and the two are different spaces.

 EXAMPLE 4    Finding a Basis for the Null Space of a Matrix

Find a basis for the null space of the matrix

Solution   The null space of A is the solution space of the homogeneous linear system , which, as
shown in Example 3, has the basis



Remark   Observe that the basis vectors , , and  in the last example are the vectors that result by successively
setting one of the parameters in the general solution equal to 1 and the others equal to 0.

The following theorem makes it possible to find bases for the row and column spaces of a matrix in row echelon form
by inspection.

THEOREM 4.7.5

If a matrix R is in row echelon form, then the row vectors with the leading 1′s (the nonzero row vectors) form a
basis for the row space of R, and the column vectors with the leading 1′s of the row vectors form a basis for the
column space of R.

The proof involves little more than an analysis of the positions of the 0′s and 1′s of R. We omit the details.

 EXAMPLE 5    Bases for Row and Column Spaces

The matrix

is in row echelon form. From Theorem 4.7.5, the vectors

form a basis for the row space of R, and the vectors

form a basis for the column space of R.



 EXAMPLE 6    Basis for a Row Space by Row Reduction

Find a basis for the row space of the matrix

Solution   Since elementary row operations do not change the row space of a matrix, we can find a basis
for the row space of A by finding a basis for the row space of any row echelon form of A. Reducing A to
row echelon form, we obtain (verify)

By Theorem 4.7.5, the nonzero row vectors of R form a basis for the row space of R and hence form a
basis for the row space of A. These basis vectors are

The problem of finding a basis for the column space of a matrix A in Example 6 is complicated by the fact that an
elementary row operation can alter its column space. However, the good news is that elementary row operations do not
alter dependence relationships among the column vectors. To make this more precise, suppose that  are
linearly dependent column vectors of A, so there are scalars  that are not all zero and such that

  (4)

If we perform an elementary row operation on A, then these vectors will be changed into new column vectors
. At first glance it would seem possible that the transformed vectors might be linearly independent.

However, this is not so, since it can be proved that these new column vectors will be linear dependent and, in fact,
related by an equation

that has exactly the same coefficients as 4. It follows from the fact that elementary row operations are reversible that
they also preserve linear independence among column vectors (why?). The following theorem summarizes all of these
results.

THEOREM 4.7.6

If A and B are row equivalent matrices, then:
(a)  A given set of column vectors of A is linearly independent if and only if the corresponding column vectors

of B are linearly independent.



(b)  A given set of column vectors of A forms a basis for the column space of A if and only if the corresponding
column vectors of B form a basis for the column space of B.

 EXAMPLE 7    Basis for a Column Space by Row Reduction

Find a basis for the column space of the matrix

Solution   We observed in Example 6 that the matrix

is a row echelon form of A. Keeping in mind that A and R can have different column spaces, we cannot
find a basis for the column space of A directly from the column vectors of R. However, it follows from
Theorem 4.7.6b that if we can find a set of column vectors of R that forms a basis for the column space of
R, then the corresponding column vectors of A will form a basis for the column space of A.

Since the first, third, and fifth columns of R contain the leading 1′s of the row vectors, the vectors

form a basis for the column space of R. Thus, the corresponding column vectors of A, which are

form a basis for the column space of A.

Up to now we have focused on methods for finding bases associated with matrices. Those methods can readily be
adapted to the more general problem of finding a basis for the space spanned by a set of vectors in .

 EXAMPLE 8    Basis for a Vector Space Using Row Operations

Find a basis for the subspace of  spanned by the vectors



Solution   The space spanned by these vectors is the row space of the matrix

Reducing this matrix to row echelon form, we obtain

The nonzero row vectors in this matrix are

These vectors form a basis for the row space and consequently form a basis for the subspace of 
spanned by , , , and .

Bases Formed from Row and Column Vectors of a Matrix

In all of the examples we have considered thus far we have looked for bases in which no restrictions were imposed on
the individual vectors in the basis. We now want to focus on the problem of finding a basis for the row space of a matrix
A consisting entirely of row vectors from A and a basis for the column space of A consisting entirely of column vectors
of A.

Looking back on our earlier work, we see that the procedure followed in Example 7 did, in fact, produce a basis for the
column space of A consisting of column vectors of A, whereas the procedure used in Example 6 produced a basis for the
row space of A, but that basis did not consist of row vectors of A. The following example shows how to adapt the
procedure from Example 7 to find a basis for the row space of a matrix that is formed from its row vectors.

 EXAMPLE 9    Basis for the Row Space of a Matrix

Find a basis for the row space of

consisting entirely of row vectors from A.

Solution   We will transpose A, thereby converting the row space of A into the column space of ; then
we will use the method of Example 7 to find a basis for the column space of ; and then we will
transpose again to convert column vectors back to row vectors. Transposing A yields



Reducing this matrix to row echelon form yields

The first, second, and fourth columns contain the leading 1′s, so the corresponding column vectors in 
form a basis for the column space of ; these are

Transposing again and adjusting the notation appropriately yields the basis vectors

and

for the row space of A.

Next, we will give an example that adapts the methods we have developed above to solve the following general
problem in :

PROBLEM

Given a set of vectors  in , find a subset of these vectors that forms a basis for span (S),
and express those vectors that are not in that basis as a linear combination of the basis vectors.

 EXAMPLE 10    Basis and Linear Combinations

(a)  Find a subset of the vectors

that forms a basis for the space spanned by these vectors.
(b)  Express each vector not in the basis as a linear combination of the basis vectors.

Solution   



(a)  We begin by constructing a matrix that has  as its column vectors:

  (5)

The first part of our problem can be solved by finding a basis for the column space of this matrix.
Reducing the matrix to reduced row echelon form and denoting the column vectors of the resulting
matrix by , , , , and  yields

  (6)

The leading 1′s occur in columns 1, 2, and 4, so by Theorem 4.7.5,

is a basis for the column space of 6, and consequently,

is a basis for the column space of 5.
(b)  We will start by expressing  and  as linear combinations of the basis vectors , , . The

simplest way of doing this is to express  and  in terms of basis vectors with smaller subscripts.
Accordingly, we will express  as a linear combination of  and , and we will express  as a
linear combination of , , and . By inspection of 6, these linear combinations are

We call these the dependency equations. The corresponding relationships in 5 are

The following is a summary of the steps that we followed in our last example to solve the problem posed above.
Basis for Span(S)
Step 1.  Form the matrix A having vectors in  as column vectors.

Step 2.  Reduce the matrix A to reduced row echelon form R.
Step 3.  Denote the column vectors of R by .

Step 4.  Identify the columns of R that contain the leading 1′s. The corresponding column vectors of A form a basis for
span(S).
This completes the first part of the problem.
Step 5.  Obtain a set of dependency equations by expressing each column vector of R that does not contain a leading 1
as a linear combination of preceding column vectors that do contain leading 1′s.



Step 6.  Replace the column vectors of R that appear in the dependency equations by the corresponding column vectors
of A.
This completes the second part of the problem.

Concept Review
•  Row vectors
•  Column vectors
•  Row space
•  Column space
•  Null space
•  General solution
•  Particular solution
•  Relationships among linear systems and row spaces, column spaces, and null spaces
•  Relationships among the row space, column space, and null space of a matrix
•  Dependency equations

Skills
•  Determine whether a given vector is in the column space of a matrix; if it is, express it as a linear

combination of the column vectors of the matrix.
•  Find a basis for the null space of a matrix.
•  Find a basis for the row space of a matrix.
•  Find a basis for the column space of a matrix.
•  Find a basis for the span of a set of vectors in .

Exercise Set 4.7
1. List the row vectors and column vectors of the matrix

Answer:

;

2. Express the product  as a linear combination of the column vectors of A.



(a)  

(b)  

(c)  

(d)  

3. Determine whether  is in the column space of A, and if so, express  as a linear combination of the column vectors
of A.
(a)  

(b)  

(c)  

(d)  

(e)  

Answer:

(a)  

(b)  b is not in the column space of A.
(c)  

(d)  

(e)  



4. Suppose that , , ,  is a solution of a nonhomogeneous linear system  and that
the solution set of the homogeneous system  is given by the formulas

(a)  Find a vector form of the general solution of .
(b)  Find a vector form of the general solution of .

5. In parts (a)–(d), find the vector form of the general solution of the given linear system ; then use that result to
find the vector form of the general solution of .
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

6. Find a basis for the null space of A.
(a)  

(b)  



(c)  

(d)  

(e)  

7. In each part, a matrix in row echelon form is given. By inspection, find bases for the row and column spaces of A.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  ,



(d)  

8. For the matrices in Exercise 6, find a basis for the row space of A by reducing the matrix to row echelon form.

9. By inspection, find a basis for the row space and a basis for the column space of each matrix.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

(b)  

(c)  

(d)  



10. For the matrices in Exercise 6, find a basis for the row space of A consisting entirely of row vectors of A.

11. Find a basis for the subspace of  spanned by the given vectors.

(a)  , , 

(b)  , , 

(c)  

Answer:

(a)  

(b)  

(c)  (1, 1, 0, 0), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)

12. Find a subset of the vectors that forms a basis for the space spanned by the vectors; then express each vector that is
not in the basis as a linear combination of the basis vectors.
(a)  
(b)  
(c)  

13. Prove that the row vectors of an  invertible matrix A form a basis for .

14. Construct a matrix whose null space consists of all linear combinations of the vectors

15. (a)  Let

Show that relative to an -coordinate system in 3-space the null space of A consists of all points on the z-axis
and that the column space consists of all points in the xy-plane (see the accompanying figure).

(b)  Find a  matrix whose null space is the x-axis and whose column space is the yz-plane.



Figure Ex-15   

Answer:

(b)  

16. Find a  matrix whose null space is
(a)  a point.
(b)  a line.
(c)  a plane.

17. (a)  Find all  matrices whose null space is the line 

(b)  Sketch the null spaces of the following matrices:

Answer:

(a)   for all real numbers a, b not both 0.

(b)  Since A and B are invertible, their null spaces are the origin. The null space of C is the line . The null
space of D is the entire xy-plane.

18. The equation  can be viewed as a linear system of one equation in three unknowns. Express its
general solution as a particular solution plus the general solution of the corresponding homogeneous system.
[Suggestion: Write the vectors in column form.]

19. Suppose that A and B are  matrices and A is invertible.Invent and prove a theorem that describes how the row
spaces of  and B are related.

True-False Exercises

In parts (a)–(j) determine whether the statement is true or false, and justify your answer.

(a) The span of  is the column space of the matrix whose column vectors are .

Answer:

True

(b) The column space of a matrix A is the set of solutions of .

Answer:

False

(c) If R is the reduced row echelon form of A, then those column vectors of R that contain the leading 1′s form a basis for
the column space of A.



Answer:

False

(d) The set of nonzero row vectors of a matrix A is a basis for the row space of A.

Answer:

False

(e) If A and B are  matrices that have the same row space, then A and B have the same column space.

Answer:

False

(f) If E is an  elementary matrix and A is an  matrix, then the null space of E A is the same as the null space
of A.

Answer:

True

(g) If E is an  elementary matrix and A is an  matrix, then the row space of E A is the same as the row space
of A.

Answer:

True

(h) If E is an  elementary matrix and A is an  matrix, then the column space of E A is the same as the column
space of A.

Answer:

False

(i) The system  is inconsistent if and only if  is not in the column space of A.

Answer:

True

(j) There is an invertible matrix A and a singular matrix B such that the row spaces of A and B are the same.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.8  Rank, Nullity, and the Fundamental Matrix
Spaces

In the last section we investigated relationships between a system of linear equations and the row space, column
space, and null space of its coefficient matrix. In this section we will be concerned with the dimensions of those
spaces. The results weobtain will provide a deeper insight into the relationship between a linear system and its
coefficient matrix.

Row and Column Spaces Have Equal Dimensions

In Examples 6 and 7 of Section 4.7 we found that the row and column spaces of the matrix

both have three basis vectors and hence are both three-dimensional. The fact that these spaces have the same
dimension is not accidental, but rather a consequence of the following theorem.

THEOREM 4.8.1

The row space and column space of a matrix A have the same dimension.

Proof   Let R be any row echelon form of A. It follows from Theorem 4.7.4 and Theorem 4.7.6 b that

so it suffices to show that the row and column spaces of R have the same dimension. But the dimension of the row
space of R is the number of nonzero rows, and by Theorem 4.7.5 the dimension of the column space of R is the
number of leading 1′s. Since these two numbers are the same, the row and column space have the same dimension.

Rank and Nullity

The dimensions of the row space, column space, and null space of a matrix are such important numbers that there is
some notation and terminology associated with them.



DEFINITION 1

The common dimension of the row space and column space of a matrix A is called the rank of A and is
denoted by rank(A); the dimension of the null space of A is called the nullity of A and is denoted by
nullity(A).

The proof of Theorem 4.8.1 shows that the rank
of A can be interpreted as the number of leading
1′s in any row echelon form of A.

 EXAMPLE 1    Rank and Nullity of a 4 × 6 Matrix

Find the rank and nullity of the matrix

Solution   The reduced row echelon form of A is

  (1)

(verify). Since this matrix has two leading 1′s, its row and column spaces are two-dimensional and
rank . To find the nullity of A, we must find the dimension of the solution space of the linear
system . This system can be solved by reducing its augmented matrix to reduced row echelon
form. The resulting matrix will be identical to 1, except that it will have an additional last column of
zeros, and hence the corresponding system of equations will be

Solving these equations for the leading variables yields

  (2)

from which we obtain the general solution



or in column vector form

  (3)

Because the four vectors on the right side of 3 form a basis for the solution space, nullity(A) = 4.

 EXAMPLE 2    Maximum Value for Rank

What is the maximum possible rank of an  matrix A that is not square?

Solution   Since the row vectors of A lie in  and the column vectors in , the row space of A is
at most n-dimensional and the column space is at most m-dimensional. Since the rank of A is the
common dimension of its row and column space, it follows that the rank is at most the smaller of m
and n. We denote this by writing

in which min  is the minimum of m and n.

The following theorem establishes an important relationship between the rank and nullity of a matrix.

THEOREM 4.8.2   Dimension Theorem for Matrices

If A is a matrix with n columns, then

  (4)

Proof   Since A has n columns, the homogeneous linear system  has n unknowns (variables). These fall into
two distinct categories: the leading variables and the free variables. Thus,

But the number of leading variables is the same as the number of leading 1′s in the reduced row echelon form of A,
which is the rank of A; and the number of free variables is the same as the number of parameters in the general
solution of , which is the nullity of A. This yields Formula 4.



 EXAMPLE 3    The Sum of Rank and Nullity

The matrix

has 6 columns, so

This is consistent with Example 1, where we showed that

The following theorem, which summarizes results already obtained, interprets rank and nullity in the context of a
homogeneous linear system.

THEOREM 4.8.3

If A is an  matrix, then
(a)  .

(b)  

 EXAMPLE 4    Number of Parameters in a General Solution

Find the number of parameters in the general solution of  if A is a  matrix of rank 3.

Solution   From 4,

Thus there are four parameters.

Equivalence Theorem

In Theorem 2.3.8 we listed seven results that are equivalent to the invertibility of a square matrix A. We are now in
a position to add eight more results to that list to produce a single theorem that summarizes most of the topics we
have covered thus far.



THEOREM 4.8.4   Equivalent Statements

If A is an  matrix, then the following statements are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A is expressible as a product of elementary matrices.
(e)   is consistent for every  matrix .
(f)   has exactly one solution for every  matrix .
(g)  .

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span .

(k)  The row vectors of A span .

(l)  The column vectors of A form a basis for .

(m)  The row vectors of A form a basis for .

(n)  A has rank n.
(o)  A has nullity 0.

Proof   The equivalence of  through  follows from Theorem 4.5.4 (we omit the details). To complete the
proof we will show that , , and  are equivalent by proving the chain of implications

.

  If  has only the trivial solution, then there are no parameters in that solution, so nullity 
by Theorem 4.8.3 b.

  Theorem 4.8.2.
  If A has rank n, then Theorem 4.8.3a implies that there are n leading variables (hence no free variables)

in the general solution of . This leaves the trivial solution as the only possibility.

Overdetermined and Underdetermined Systems

In many applications the equations in a linear system correspond to physical constraints or conditions that must be
satisfied. In general, the most desirable systems are those that have the same number of constraints as unknowns,
since such systems often have a unique solution. Unfortunately, it is not always possible to match the number of
constraints and unknowns, so researchers are often faced with linear systems that have more constraints than
unknowns, called overdetermined systems, or with fewer constraints than unknowns, called underdetermined
systems. The following two theorems will help us to analyze both overdetermined and underdetermined systems.



In engineering and other applications, the
occurrence of an overdetermined or
underdetermined linear system often signals that
one or more variables were omitted in formulating
the problem or that extraneous variables were
included. This often leads to some kind of
undesirable physical result.

THEOREM 4.8.5

If  is a consistent linear system of m equations in n unknowns, and if A has rank r, then the general
solution of the system contains  parameters.

Proof   It follows from Theorem 4.7.2 that the number of parameters is equal to the nullity of A, which, by
Theorem 4.8.2, is .

THEOREM 4.8.6

Let A be an  matrix.
(a)  (Overdetermined Case)  If , then the linear system  is inconsistent for at least one vector

 in .

(b)  (Underdetermined Case)  If , then for each vector  in  the linear system  is either
inconsistent or has infinitely many solutions.

Proof (a)   Assume that , in which case the column vectors of A cannot span  (fewer vectors than the
dimension of ). Thus, there is at least one vector  in  that is not in the column space of A, and for that  the
system  is inconsistent by Theorem 4.7.1.

Proof (b)   Assume that . For each vector  in  there are two possibilities: either the system  is
consistent or it is inconsistent. If it is inconsistent, then the proof is complete. If it is consistent, then Theorem 4.8.5
implies that the general solution has  parameters, where . But rank (A) is the smaller of m and n,
so

This means that the general solution has at least one parameter and hence there are infinitely many solutions.

 EXAMPLE 5    Overdetermined and Underdetermined Systems



(a)  What can you say about the solutions of an overdetermined system  of 7 equations in 5
unknowns in which A has rank ?

(b)  What can you say about the solutions of an underdetermined system  of 5 equations in 7
unknowns in which A has rank ?

Solution   
(a)  The system is consistent for some vector  in , and for any such  the number of parameters in

the general solution is .
(b)  The system may be consistent or inconsistent, but if it is consistent for the vector  in , then the

general solution has  parameters.

 EXAMPLE 6    An Overdetermined System

The linear system

is overdetermined, so it cannot be consistent for all possible values of , , , , and . Exact
conditions under which the system is consistent can be obtained by solving the linear system by Gauss–
Jordan elimination. We leave it for you to show that the augmented matrix is row equivalent to

  (5)

Thus, the system is consistent if and only if , , , , and  satisfy the conditions

Solving this homogeneous linear system yields

where r and s are arbitrary.

Remark   The coefficient matrix for the linear system in the last example has  columns, and it has rank 
because there are two nonzero rows in its reduced row echelon form. This implies that when the system is
consistent its general solution will contain  parameters; that is, the solution will be unique. With a
moment's thought, you should be able to see that this is so from 5.



The Fundamental Spaces of a Matrix

There are six important vector spaces associated with a matrix A and its transpose :

However, transposing a matrix converts row vectors into column vectors and conversely, so except for a difference
in notation, the row space of  is the same as the column space of A, and the column space of  is the same as
the row space of A. Thus, of the six spaces listed above, only the following four are distinct:

If A is an  matrix, then the row space and
null space of A are subspaces of , and the
column space of A and the null space of  are
subspaces of .

These are called the fundamental spaces of a matrix A. We will conclude this section by discussing how these four
subspaces are related.

Let us focus for a moment on the matrix . Since the row space and column space of a matrix have the same
dimension, and since transposing a matrix converts its columns to rows and its rows to columns, the following
result should not be surprising.

THEOREM 4.8.7

If A is any matrix, then .

Proof   

This result has some important implications. For example, if A is an  matrix, then applying Formula 4 to the
matrix  and using the fact that this matrix has m columns yields



which, by virtue of Theorem 4.8.7, can be rewritten as

  (6)

This alternative form of Formula 4 in Theorem 4.8.2 makes it possible to express the dimensions of all four
fundamental spaces in terms of the size and rank of A. Specifically, if rank , then

  (7)

The four formulas in 7 provide an algebraic relationship between the size of a matrix and the dimensions of its
fundamental spaces. Our next objective is to find a geometric relationship between the fundamental spaces
themselves. For this purpose recall from Theorem 3.4.3 that if A is an  matrix, then the null space of A
consists of those vectors that are orthogonal to each of the row vectors of A. To develop that idea in more detail, we
make the following definition.

DEFINITION 2

If W is a subspace of , then the set of all vectors in  that are orthogonal to every vector in W is called
the orthogonal complement of W and is denoted by the symbol .

The following theorem lists three basic properties of orthogonal complements. We will omit the formal proof
because a more general version of this theorem will be given later in the text.

THEOREM 4.8.8

If W is a subspace of , then:

(a)   is a subspace of .

(b)  The only vector common to W and  is 0.

(c)  The orthogonal complement of  is W.

 EXAMPLE 7    Orthogonal Complements

In  the orthogonal complement of a line W through the origin is the line through the origin that is
perpendicular to W (Figure 4.8.1a); and in  the orthogonal complement of a plane W through the
origin is the line through the origin that is perpendicular to that plane (Figure 4.8.1b).



Figure 4.8.1   

Explain why  and  are orthogonal
complements.

A Geometric Link Between the Fundamental Spaces

The following theorem provides a geometric link between the fundamental spaces of a matrix. Part (a) is essentially
a restatement of Theorem 3.4.3 in the language of orthogonal complements, and part (b), whose proof is left as an
exercise, follows from part (a). The essential idea of the theorem is illustrated in Figure 4.8.2.

THEOREM 4.8.9

If A is an  matrix, then:
(a)  The null space of A and the row space of A are orthogonal complements in .

(b)  The null space of  and the column space of A are orthogonal complements in .

Figure 4.8.2   

More on the Equivalence Theorem



As our final result in this section, we will add two more statements to Theorem 4.8.4. We leave the proof that those
statements are equivalent to the rest as an exercise.

THEOREM 4.8.10   Equivalent Statements

If A is an  matrix, then the following statements are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A is expressible as a product of elementary matrices.
(e)   is consistent for every  matrix .
(f)   has exactly one solution for every  matrix .
(g)  .

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span .

(k)  The row vectors of A span .

(l)  The column vectors of A form a basis for .

(m)  The row vectors of A form a basis for .

(n)  A has .
(o)  A has .

(p)  The orthogonal complement of the null space of A is .

(q)  The orthogonal complement of the row space of A is .

Applications of Rank

The advent of the Internet has stimulated research on finding efficient methods for transmitting large amounts of
digital data over communications lines with limited bandwidths. Digital data are commonly stored in matrix form,
and many techniques for improving transmission speed use the rank of a matrix in some way. Rank plays a role
because it measures the “redundancy” in a matrix in the sense that if A is an  matrix of rank k, then  of
the column vectors and  of the row vectors can be expressed in terms of k linearly independent column or
row vectors. The essential idea in many data compression schemes is to approximate the original data set by a data
set with smaller rank that conveys nearly the same information, then eliminate redundant vectors in the
approximating set to speed up the transmission time.



Concept Review
•  Rank
•  Nullity
•  Dimension Theorem
•  Overdetermined system
•  Underdetermined system
•  Fundamental spaces of a matrix
•  Relationships among the fundamental spaces
•  Orthogonal complement
•  Equivalent characterizations of invertible matrices

Skills
•  Find the rank and nullity of a matrix.
•  Find the dimension of the row space of a matrix.

Exercise Set 4.8
1. Verify that .

Answer:

2. Find the rank and nullity of the matrix; then verify that the values obtained satisfy Formula 4 in the Dimension
Theorem.
(a)  

(b)  

(c)  

(d)  



(e)  

3. In each part of Exercise 2, use the results obtained to find the number of leading variables and the number of
parameters in the solution of  without solving the system.

Answer:

(a)  2; 1
(b)  1; 2
(c)  2; 2
(d)  2; 3
(e)  3; 2

4. In each part, use the information in the table to find the dimension of the row space of A, column space of A,
null space of A, and null space of .

 (a) (b) (c) (d) (e) (f) (g)

Size of A

Rank(A) 3 2 1 2 2 0 2

5. In each part, find the largest possible value for the rank of A and the smallest possible value for the nullity of A.
(a)  A is 
(b)  A is 
(c)  A is 

Answer:

(a)  
(b)  
(c)  

6. If A is an  matrix, what is the largest possible value for its rank and the smallest possible value for its
nullity?

7. In each part, use the information in the table to determine whether the linear system  is consistent. If so,
state the number of parameters in its general solution.

 (a) (b) (c) (d) (e) (f) (g)

Size of A

Rank (A) 3 2 1 2 2 0 2

Rank [A |b] 3 3 1 2 3 0 2



Answer:

(a)  Yes, 0
(b)  No
(c)  Yes, 2
(d)  Yes, 7
(e)  No
(f)  Yes, 4
(g)  Yes, 0

8. For each of the matrices in Exercise 7, find the nullity of A, and determine the number of parameters in the
general solution of the homogeneous linear system .

9. What conditions must be satisfied by , , , , and  for the overdetermined linear system

to be consistent?

Answer:

10. Let

Show that A has  if and only if one or more of the determinants

is nonzero.

11. Suppose that A is a  matrix whose null space is a line through the origin in 3-space. Can the row or column
space of A also be a line through the origin? Explain.

Answer:

No

12. Discuss how the rank of A varies with t.
(a)  

(b)  



13. Are there values of r and s for which

has rank 1? Has rank 2? If so, find those values.

Answer:

Rank is 2 if  and ; the rank is never 1.

14. Use the result in Exercise 10 to show that the set of points  in  for which the matrix

has  is the curve with parametric equations , , .

15. Prove: If , then A and kA have the same rank.

16. (a)  Give an example of a  matrix whose column space is a plane through the origin in 3-space.
(b)  What kind of geometric object is the null space of your matrix?
(c)  What kind of geometric object is the row space of your matrix?

17. (a)  If A is a  matrix, then the number of leading 1′s in the reduced row echelon form of A is at most
_________ . Why?

(b)  If A is a  matrix, then the number of parameters in the general solution of  is at most
_________ . Why?

(c)  If A is a  matrix, then the number of leading 1′s in the reduced row echelon form of A is at most
_________ . Why?

(d)  If A is a  matrix, then the number of parameters in the general solution of  is at most
_________ . Why?

Answer:

(a)  3
(b)  5
(c)  3
(d)  3

18. (a)  If A is a  matrix, then the rank of A is at most _________ . Why?
(b)  If A is a  matrix, then the nullity of A is at most _________ . Why?
(c)  If A is a  matrix, then the rank of  is at most _________ . Why?

(d)  If A is a  matrix, then the nullity of  is at most _________ . Why?

19. Find matrices A and B for which rank , but rank .

Answer:



20. Prove: If a matrix A is not square, then either the row vectors or the column vectors of A are linearly dependent.

True-False Exercises

In parts (a)–(j) determine whether the statement is true or false, and justify your answer.

(a) Either the row vectors or the column vectors of a square matrix are linearly independent.

Answer:

False

(b) A matrix with linearly independent row vectors and linearly independent column vectors is square.

Answer:

True

(c) The nullity of a nonzero  matrix is at most m.

Answer:

False

(d) Adding one additional column to a matrix increases its rank by one.

Answer:

False

(e) The nullity of a square matrix with linearly dependent rows is at least one.

Answer:

True

(f) If A is square and  is inconsistent for some vector , then the nullity of A is zero.

Answer:

False

(g) If a matrix A has more rows than columns, then the dimension of the row space is greater than the dimension of
the column space.

Answer:

False

(h) If rank , then A is square.

Answer:

False

(i) There is no  matrix whose row space and null space are both lines in 3-space.



Answer:

True

(j) If V is a subspace of  and W is a subspace of V, then  is a subspace of .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.9  Matrix Transformations from Rn to Rm

In this section we will study functions of the form , where the independent variable  is a vector in  and the
dependent variable  is a vector in . We will concentrate on a special class of such functions called “matrix
transformations.” Such transformations are fundamental in the study of linear algebra and have important applications
in physics, engineering, social sciences, and various branches of mathematics.

Functions and Transformations

Recall that a function is a rule that associates with each element of a set A one and only one element in a set B. If f
associates the element b with the element a, then we write

and we say that b is the image of a under f or that  is the value of f at a. The set A is called the domain of f and the
set B the codomain of f (Figure 4.9.1). The subset of the codomain that consists of all images of points in the domain is
called the range of f.

Figure 4.9.1   

For many common functions the domain and codomain are sets of real numbers, but in this text we will be concerned
with functions for which the domain and codomain are vector spaces.

DEFINITION 1

If V and W are vector spaces, and if f is a function with domain V and codomain W, then we say that f is a
transformation from V to W or that f maps V to W, which we denote by writing

In the special case where , the transformation is also called an operator on V.

In this section we will be concerned exclusively with transformations from  to ; transformations of general vector
spaces will be considered in a later section. To illustrate one way in which such transformations can arise, suppose that

 are real-valued functions of n variables, say



  (1)

These m equations assign a unique point  in  to each point  in  and thus define a
transformation from  to . If we denote this transformation by T, then  and

Matrix Transformations

In the special case where the equations in 1 are linear, they can be expressed in the form

  (2)

which we can write in matrix notation as

  (3)

or more briefly as

  (4)

Although we could view this as a linear system, we will view it instead as a transformation that maps the column vector
 in  into the column vector  in  by multiplying  on the left by A. We call this a matrix transformation (or

matrix operator if ), and we denote it by . With this notation, Equation 4 can be expressed as

  (5)

The matrix transformation  is called multiplication by A, and the matrix A is called the standard matrix for the
transformation.

We will also find it convenient, on occasion, to express 5 in the schematic form

  (6)

which is read “  maps  into .”

 EXAMPLE 1    A Matrix Transformation from R4 to R3

The matrix transformation  defined by the equations

  (7)

can be expressed in matrix form as



  (8)

so the standard matrix for T is

The image of a point  can be computed directly from the defining equations 7 or from 8
by matrix multiplication. For example, if

then substituting in 7 yields , ,  (verify), or alternatively from 8,

Some Notational Matters

Sometimes we will want to denote a matrix transformation without giving a name to the matrix itself. In such cases we
will denote the standard matrix for  by the symbol . Thus, the equation

  (9)

is simply the statement that T is a matrix transformation with standard matrix , and the image of  under this
transformation is the product of the matrix  and the column vector .

Properties of Matrix Transformations

The following theorem lists four basic properties of matrix transformations that follow from properties of matrix
multiplication.

THEOREM 4.9.1

For every matrix A the matrix transformation  has the following properties for all vectors  and 
in  and for every scalar k:

(a)  
(b)  
(c)  



(d)  

Proof   All four parts are restatements of familiar properties of matrix multiplication:

It follows from Theorem 4.9.1 that a matrix transformation maps linear combinations of vectors in  into the
corresponding linear combinations in  in the sense that

  (10)

Depending on whether n-tuples and m-tuples are regarded as vectors or points, the geometric effect of a matrix
transformation  is to map each vector (point) in  into a vector (point) in  (Figure 4.9.2).

Figure 4.9.2   

The following theorem states that if two matrix transformations from  to  have the same image at each point of
, then the matrices themselves must be the same.

THEOREM 4.9.2

If  and  are matrix transformations, and if  for every vector  in 
, then .

Proof   To say that  for every vector in  is the same as saying that

for every vector  in . This is true, in particular, if  is any of the standard basis vectors  for ; that is,

  (11)

Since every entry of  is 0 except for the jth, which is 1, it follows from Theorem 1.3.1 that  is the jth column of A
and  is the jth column of B. Thus, it follows from 11 that corresponding columns of A and B are the same, and hence
that .



 EXAMPLE 2    Zero Transformations

If 0 is the  zero matrix, then

so multiplication by zero maps every vector in  into the zero vector in . We call  the zero
transformation from  to .

 EXAMPLE 3    Identity Operators

If I is the  identity matrix, then

so multiplication by I maps every vector in  into itself. We call  the identity operator on .

A Procedure for Finding Standard Matrices

There is a way of finding the standard matrix for a matrix transformation from  to  by considering the effect of
that transformation on the standard basis vectors for . To explain the idea, suppose that A is unknown and that

are the standard basis vectors for . Suppose also that the images of these vectors under the transformation  are

It follows from Theorem 1.3.1 that  is a linear combination of the columns of A in which the successive coefficients
are the entries of . But all entries of  are zero except the jth, so the product  is just the jth column of the matrix
A. Thus,

  (12)

In summary, we have the following procedure for finding the standard matrix for a matrix transformation:

Finding the Standard Matrix for a Matrix Transformation

Step 1.  Find the images of the standard basis vectors  for  in column form.

Step 2.  Construct the matrix that has the images obtained in Step 1 as its successive columns. This matrix is the
standard matrix for the transformation.

Reflection Operators



Some of the most basic matrix operators on  and  are those that map each point into its symmetric image about a
fixed line or a fixed plane; these are called reflection operators. Table 1 shows the standard matrices for the reflections
about the coordinate axes in , and Table 2 shows the standard matrices for the reflections about the coordinate planes
in . In each case the standard matrix was obtained by finding the images of the standard basis vectors, converting
those images to column vectors, and then using those column vectors as successive columns of the standard matrix.

Table 1

Operator Illustration Images of e1 and e2 Standard
Matrix

Reflection about the
y-acis

Reflection about the
x-axis

Reflection about the line

Table 2

Operator Illustration e1, e2, e3 Standard
Matrix

Reflection about the
xy-plane

Reflection about the
xz-plane

Reflection about the
yz-plane



Projection Operators

Matrix operators on  and  that map each point into its orthogonal projection on a fixed line or plane are called
projection operators (or more precisely, orthogonal projection operators). Table 3 shows the standard matrices for the
orthogonal projections on the coordinate axes in , and Table 4 shows the standard matrices for the orthogonal
projections on the coordinate planes in .

Table 3

Operator Illustration Images of e1 and e2 Standard
Matrix

Orthogonal projection on the
x-axis 

Orthogonal projection on the
y-axis 

Table 4

Operator Illustration Images of e1, e2, e3 Standard
Matrix

Orthogonal projection on
the xy-plane

Orthogonal projection on
the xz-plane

Orthogonal projection on
the yz-plane

Rotation Operators



Matrix operators on  and  that move points along circular arcs are called rotation operators. Let us consider how
to find the standard matrix for the rotation operator  that moves points counterclockwise about the origin
through an angle θ (Figure 4.9.3). As illustrated in Figure 4.9.3, the images of the standard basis vectors are

so the standard matrix for T is

Figure 4.9.3   

In keeping with common usage we will denote this operator by  and call

  (13)

the rotation matrix for . If  is a vector in , and if  is its image under the rotation, then the
relationship  can be written in component form as

  (14)

These are called the rotation equations for . These ideas are summarized in Table 5.

Table 5

Operator Illustration Rotation Equations Standard Matrix

Rotation through an angle 

In the plane, counterclockwise angles are positive
and clockwise angles are negative. The rotation
matrix for a clockwise rotation of  radians can be
obtained by replacing  by  in 12. After
simplification this yields



 EXAMPLE 4    A Rotation Operator

Find the image of  under a rotation of  radians  about the origin.

Solution   It follows from 13 with  that

or in comma-delimited notation, .

Rotations in R3

A rotation of vectors in  is usually described in relation to a ray emanating from the origin, called the axis of
rotation. As a vector revolves around the axis of rotation, it sweeps out some portion of a cone (Figure 4.9.4a). The
angle of rotation, which is measured in the base of the cone, is described as “clockwise” or “counterclockwise” in
relation to a viewpoint that is along the axis of rotation looking toward the origin. For example, in Figure 4.9.4a the
vector  results from rotating the vector  counterclockwise around the axis l through an angle . As in , angles are
positive if they are generated by counterclockwise rotations and negative if they are generated by clockwise rotations.

Figure 4.9.4   

The most common way of describing a general axis of rotation is to specify a nonzero vector  that runs along the axis
of rotation and has its initial point at the origin. The counterclockwise direction for a rotation about the axis can then be
determined by a “right-hand rule” (Figure 4.9.4b): If the thumb of the right hand points in the direction of , then the
cupped fingers point in a counterclockwise direction.

A rotation operator on  is a matrix operator that rotates each vector in  about some rotation axis through a fixed
angle . In Table 6 we have described the rotation operators on  whose axes of rotation are the positive coordinate
axes. For each of these rotations one of the components is unchanged, and the relationships between the other
components can be derived by the same procedure used to derive 14. For example, in the rotation about the z-axis, the
z-components of  and  are the same, and the x- and y-components are related as in 14. This yields the rotation
equation shown in the last row of Table 6.



Table 6

For completeness, we note that the standard matrix for a counterclockwise rotation through an angle  about an axis in
, which is determined by an arbitrary unit vector  that has its initial point at the origin, is

  (15)

The derivation can be found in the book Principles of Interactive Computer Graphics, by W. M. Newman and R. F.
Sproull (New York: McGraw-Hill, 1979). You may find it instructive to derive the results in Table 6 as special cases of
this more general result.

Dilations and Contractions

If k is a nonnegative scalar, then the operator  on  or  has the effect of increasing or decreasing the
length of each vector by a factor of k. If  the operator is called a contraction with factor k, and if  it is



called a dilation with factor k (Figure 4.9.5). If , then T is the identity operator and can be regarded either as a
contraction or a dilation. Tables 7 and 8 illustrate these operators.

Figure 4.9.5   

Table 7

Operator Illustration Effect on the Standard Basis Standard
Matrix

Contraction with factor k
on  

Dilation with factor k on
 

Table 8

Yaw, Pitch, and Roll

In aeronautics and astronautics, the orientation of an aircraft or space shuttle relative to an -coordinate
system is often described in terms of angles called yaw, pitch, and roll. If, for example, an aircraft is flying



along the y-axis and the -plane defines the horizontal, then the aircraft's angle of rotation about the z-axis is
called the yaw, its angle of rotation about the x-axis is called the pitch, and its angle of rotation about the y-axis
is called the roll. A combination of yaw, pitch, and roll can be achieved by a single rotation about some axis
through the origin. This is, in fact, how a space shuttle makes attitude adjustments—it doesn't perform each
rotation separately; it calculates one axis, and rotates about that axis to get the correct orientation. Such rotation
maneuvers are used to align an antenna, point the nose toward a celestial object, or position a payload bay for
docking.

Expansion and Compressions

In a dilation or contraction of  or , all coordinates are multiplied by a factor k. If only one of the coordinates is
multiplied by k, then the resulting operator is called an expansion or compression with factor k. This is illustrated in
Table 9 for . You should have no trouble extending these results to .

Table 9

Operator Illustration Effect on the Standard Basis Standard
Matrix

Compression of  in the
x-direction with factor k

Expansion of  in the
x-direction with factor k

Operator Illustration Effect on the Standard Basis Standard
Matrix

Compression of  in the
y-direction with factor k



Operator Illustration Effect on the Standard Basis Standard
Matrix

Expansion of  in the
y-direction with factor k

Shears

A matrix operator of the form  translates a point  in the -plane parallel to the x-axis by
an amount  that is proportional to the y-coordinate of the point. This operator leaves the points on the x-axis fixed
(since ), but as we progress away from the x-axis, the translation distance increases. We call this operator the
shear in the x-direction with factor k. Similarly, a matrix operator of the form  is called the
shear in the y-direction with factor k. Table 10 illustrates the basic information about shears in .

Table 10

Operator Effect on the Standard Basis Standard
Matrix

Shear of  in the x-direction with
factor k 

Shear of  in the y-direction with
factor k 

 EXAMPLE 5    Some Basic Matrix Operators on R2

In each part describe the matrix operator corresponding to  and show its effect on the unit square.

Solution   By comparing the forms of these matrices to those in Tables 7, 9, and 10, we see that the
matrix  corresponds to a shear in the x-direction with factor 2, the matrix  corresponds to a dilation
with factor 2, and  corresponds to an expansion in the x-direction with factor 2. The effects of these
operators on the unit square are shown in Figure 4.9.6.



Figure 4.9.6   

   O P T I O N A L    

Orthogonal Projections on Lines Through the Origin

In Table 3 we listed the standard matrices for the orthogonal projections on the coordinate axes in . These are special
cases of the more general operator  that maps each point into its orthogonal projection on a line L through
the origin that makes an angle  with the positive x-axis (Figure 4.9.7). In Example 4 of Section 3.3 we used Formula 10
of that section to find the orthogonal projections of the standard basis vectors for  on that line. Expressed in matrix
form, we found those projections to be

Figure 4.9.7   

Thus, the standard matrix for T is

In keeping with common usage, we will denote this operator by

  (16)

We have included two versions of Formula 16
because both are commonly used. Whereas the first
version involves only the angle θ, the second
involves both θ and 2θ.



 EXAMPLE 6    Orthogonal Projection on a Line Through the Origin

Use Formula 16 to find the orthogonal projection of the vector  on the line through the origin
that makes an angle of  with the x-axis.

Solution   Since  and , it follows from 16 that the standard matrix

for this projection is

Thus,

or in comma-delimited notation, 

Reflections About Lines Through the Origin

In Table 1 we listed the reflections about the coordinate axes in . These are special cases of the more general operator
 that maps each point into its reflection about a line L through the origin that makes an angle θ with the

positive x-axis (Figure 4.9.8). We could find the standard matrix for  by finding the images of the standard basis
vectors, but instead we will take advantage of our work on orthogonal projections by using the Formula 16 for  to
find a formula for .

Figure 4.9.8   

You should be able to see from Figure 4.9.9 that for every vector x in 



Figure 4.9.9   

Thus, it follows from Theorem 4.9.2 that

  (17)

and hence from 16 that

  (18)

 EXAMPLE 7    Reflection About a Line Through the Origin

Find the reflection of the vector x = (1, 5) on the line through the origin that makes an angle of π/6(= 30°)
with the x-axis.

Solution   Since  and , it follows from 18 that the standard matrix

for this projection is

Thus,

or in comma-delimited notation, 

Show that the standard matrices in Tables 1 and 3
are special cases of 18 and 16.

Concept Review
•  Function
•  Image



•  Value
•  Domain
•  Codomain
•  Transformation
•  Relationships among the fundamental spaces
•  Operator
•  Matrix transformation
•  Matrix operator
•  Standard matrix
•  Properties of matrix transformations
•  Zero transformation
•  Identity operator
•  Reflection operator
•  Projection operator
•  Rotation operator
•  Rotation matrix
•  Rotation equations
•  Axis of rotation in 3-space
•  Angle of rotation in 3-space
•  Expansion operator
•  Compression operator
•  Shear
•  Dilation
•  Contraction

Skills
•  Find the domain and codomain of a transformation, and determine whether the transformation is linear.
•  Find the standard matrix for a matrix transformation.
•  Describe the effect of a matrix operator on the standard basis in Rn.

Exercise Set 4.9

In Exercises 1–2, find the domain and codomain of the transformation 

1. (a)  A has size .
(b)  A has size .
(c)  A has size .
(d)  A has size .

Answer:



(a)  Domain: ; codomain: 

(b)  Domain: ; codomain: 

(c)  Domain: ; codomain: 

(d)  Domain: ; codomain: 

2. (a)  A has size .
(b)  A has size .
(c)  A has size .
(d)  A has size .

3. If , then the domain of T is _________ , the codomain of T is _________ , and
the image of  under T is _________ .

Answer:

4. If , then the domain of T is _________ , the codomain of T is _________ ,
and the image of  under T is _________ .

5. In each part, find the domain and codomain of the transformation defined by the equations, and determine whether
the transformation is linear.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  Linear; 

(b)  Nonlinear; 

(c)  Linear; 

(d)  Nonlinear; 

6. In each part, determine whether T is a matrix transformation.
(a)  

(b)  

(c)  

(d)  



(e)  

7. In each part, determine whether T is a matrix transformation.
(a)  

(b)  

(c)  

(d)  

(e)  

Answer:

(a) and (c) are matrix transformations; (b), (d), and (e) are not matrix transformations.

8. Find the standard matrix for the transformation defined by the equations.
(a)  

(b)  

(c)  

(d)  

9. Find the standard matrix for the operator  defined by

and then calculate  by directly substituting in the equations and also by matrix multiplication.

Answer:

; 

10. Find the standard matrix for the operator T defined by the formula.
(a)  
(b)  
(c)  
(d)  

11. Find the standard matrix for the transformation T defined by the formula.
(a)  
(b)  



(c)  
(d)  

Answer:

(a)  

(b)  

(c)  

(d)  

12. In each part, find , and express the answer in matrix form.

(a)  

(b)  

(c)  

(d)  

13. In each part, use the standard matrix for T to find ; then check the result by calculating  directly.

(a)  ; 

(b)  ; 

Answer:

(a)  
(b)  

14. Use matrix multiplication to find the reflection of  about

(a)  the x-axis.



(b)  the y-axis.
(c)  the line .

15. Use matrix multiplication to find the reflection of  about

(a)  the xy-plane.
(b)  the xz-plane.
(c)  the yz-plane.

Answer:

(a)  
(b)  (2, 5, 3)
(c)  

16. Use matrix multiplication to find the orthogonal projection of  on

(a)  the x-axis.
(b)  the y-axis.

17. Use matrix multiplication to find the orthogonal projection of  on

(a)  the xy-plane.
(b)  the xz-plane.
(c)  the yz-plane.

Answer:

(a)  
(b)  
(c)  (0, 1, 3)

18. Use matrix multiplication to find the image of the vector  when it is rotated through an angle of

(a)  .

(b)  .

(c)  .

(d)  .

19. Use matrix multiplication to find the image of the vector  if it is rotated

(a)  30° about the x-axis.
(b)  45° about the y-axis.
(c)  90° about the z-axis.

Answer:

(a)  

(b)  

(c)  



20. Find the standard matrix for the operator that rotates a vector in  through an angle of  about

(a)  the x-axis.
(b)  the y-axis.
(c)  the z-axis.

21. Use matrix multiplication to find the image of the vector  if it is rotated

(a)   about the x-axis.

(b)   about the y-axis.

(c)   about the z-axis.

Answer:

(a)  

(b)  

(c)  (1, 2, 2)

22. In  the orthogonal projections on the x-axis, y-axis, and z-axis are defined by

respectively.
(a)  Show that the orthogonal projections on the coordinate axes are matrix operators, and find their standard

matrices.
(b)  Show that if  is an orthogonal projection on one of the coordinate axes, then for every vector  in 

, the vectors  and  are orthogonal.

(c)  Make a sketch showing  and  in the case where T is the orthogonal projection on the x-axis.

23. Use Formula 15 to derive the standard matrices for the rotations about the x-axis, y-axis, and z-axis in .

24. Use Formula 15 to find the standard matrix for a rotation of  radians about the axis determined by the vector
. [Note: Formula 15 requires that the vector defining the axis of rotation have length 1.]

25. Use Formula 15 to find the standard matrix for a rotation of 180° about the axis determined by the vector
. [Note: Formula 15 requires that the vector defining the axis of rotation have length 1.]

Answer:

26. It can be proved that if A is a  matrix with orthonormal column vectors and for which , then
multiplication by A is a rotation through some angle . Verify that



satisfies the stated conditions and find the angle of rotation.

27. The result stated in Exercise 26 can be extended to ; that is, it can be proved that if A is a  matrix with
orthonormal column vectors and for which , then multiplication by A is a rotation about some axis
through some angle . Use Formula 15 to show that the angle of rotation satisfies the equation

28. Let A be a  matrix (other than the identity matrix) satisfying the conditions stated in Exercise 27. It can be
shown that if  is any nonzero vector in , then the vector  determines an axis of

rotation when  is positioned with its initial point at the origin. [See “The Axis of Rotation: Analysis, Algebra,
Geometry,” by Dan Kalman, Mathematics Magazine, Vol. 62, No. 4, October 1989.]
(a)  Show that multiplication by

is a rotation.
(b)  Find a vector of length 1 that defines an axis for the rotation.
(c)  Use the result in Exercise 27 to find the angle of rotation about the axis obtained in part (b).

29. In words, describe the geometric effect of multiplying a vector  by the matrix A.
(a)  

(b)  

Answer:

(a)  Twice the orthogonal projection on the x-axis.
(b)  Twice the reflection about the x-axis.

30. In words, describe the geometric effect of multiplying a vector  by the matrix A.
(a)  

(b)  

31. In words, describe the geometric effect of multiplying a vector  by the matrix



Answer:

Rotation through the angle .

32. If multiplication by A rotates a vector  in the xy-plane through an angle θ, what is the effect of multiplying  by 
? Explain your reasoning.

33. Let  be a nonzero column vector in , and suppose that  is the transformation defined by the formula
, where  is the standard matrix of the rotation of  about the origin through the angle θ. Give a

geometric description of this transformation. Is it a matrix transformation? Explain.

Answer:

Rotation through the angle θ and translation by ; not a matrix transformation since  is nonzero.

34. A function of the form  is commonly called a “linear function” because the graph of  is
a line. Is f a matrix transformation on R?

35. Let  be a line in , and let  be a matrix operator on . What kind of geometric object is
the image of this line under the operator T? Explain your reasoning.

Answer:

A line in .

True-False Exercises

In parts (a)–(i) determine whether the statement is true or false, and justify your answer.

(a) If A is a  matrix, then the domain of the transformation  is .

Answer:

False

(b) If A is an  matrix, then the codomain of the transformation  is .

Answer:

False

(c) If  and , then T is a matrix transformation.

Answer:

False

(d) If  and  for all scalars  and  and all vectors  and  in , then
T is a matrix transformation.

Answer:

True

(e) There is only one matrix transformation  such that  for every vector  in .



Answer:

False

(f) There is only one matrix transformation  such that  for all vectors  and  in .

Answer:

True

(g) If  is a nonzero vector in , then  is a matrix operator on .

Answer:

False

(h) 

The matrix  is the standard matrix for a rotation.

Answer:

False

(i) The standard matrices of the reflections about the coordinate axes in 2-space have the form , where

.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.10  Properties of Matrix Transformations
In this section we will discuss properties of matrix transformations. We will show, for example, that if several
matrix transformations are performed in succession, then the same result can be obtained by a single matrix
transformation that is chosen appropriately. We will also explore the relationship between the invertibility of a
matrix and properties of the corresponding transformation.

Compositions of Matrix Transformations

Suppose that  is a matrix transformation from  to  and  is a matrix transformation from  to . If x
is a vector in , then  maps this vector into a vector  in , and , in turn, maps that vector into the
vector  in . This process creates a transformation from  to  that we call the composition of

 with  and denote by the symbol

which is read “  circle ”. As illustrated in Figure 4.10.1, the transformation  in the formula is performed
first; that is,

  (1)

This composition is itself a matrix transformation since

which shows that it is multiplication by . This is expressed by the formula

  (2)

WARNING

Just as it is not true, in general, that

so it is not true, in general, that

That is, order matters when matrix
transformations are composed.

Figure 4.10.1   

Compositions can be defined for any finite succession of matrix transformations whose domains and ranges have



the appropriate dimensions. For example, to extend Formula 2 to three factors, consider the matrix
transformations

We define the composition  by

As above, it can be shown that this is a matrix transformation whose standard matrix is  and that

  (3)

As in Formula 9 of Section 4.9 , we can use square brackets to denote a matrix transformation without
referencing a specific matrix. Thus, for example, the formula

  (4)

is a restatement of Formula 2 which states that the standard matrix for a composition is the product of the
standard matrices in the appropriate order. Similarly,

  (5)

is a restatement of Formula 3.

 EXAMPLE 1    Composition of Two Rotations

Let  and  be the matrix operators that rotate vectors through the angles 
and , respectively. Thus the operation

first rotates  through the angle , then rotates  through the angle . It follows that the net
effect of  is to rotate each vector in  through the angle  (Figure 4.10.2). Thus, the
standard matrices for these matrix operators are

These matrices should satisfy 4. With the help of some basic trigonometric identities, we can
confirm that this is so as follows:



Figure 4.10.2   

 EXAMPLE 2    Composition Is Not Commutative

Let  be the reflection about the line , and let  be the orthogonal
projection on the y-axis. Figure 4.10.3 illustrates graphically that  and  have
different effects on a vector . This same conclusion can be reached by showing that the standard
matrices for  and  do not commute:

so .



Figure 4.10.3   

 EXAMPLE 3    Composition of Two Reflections

Let  be the reflection about the y-axis, and let  be the reflection about the
x-axis. In this case  and  are the same; both map every vector  into its
negative  (Figure 4.10.4):

The equality of  and  can also be deduced by showing that the standard matrices for
 and  commute:

The operator  on  or  is called the reflection about the origin. As the foregoing
computations show, the standard matrix for this operator on  is

Figure 4.10.4   

 EXAMPLE 4    Composition of Three Transformations

Find the standard matrix for the operator  that first rotates a vector counterclockwise
about the z-axis through an angle , then reflects the resulting vector about the -plane, and then
projects that vector orthogonally onto the -plane.

Solution   The operator T can be expressed as the composition



where  is the rotation about the z-axis,  is the reflection about the yz-plane, and  is the
orthogonal projection on the xy-plane. From Tables 6, 2, and 4 of Section 4.9 , the standard
matrices for these operators are

Thus, it follows from 5 that the standard matrix for T is

One-to-One Matrix Transformations

Our next objective is to establish a link between the invertibility of a matrix A and properties of the
corresponding matrix transformation .

DEFINITION 1

A matrix transformation  is said to be one-to-one if  maps distinct vectors (points) in 
into distinct vectors (points) in .

(See Figure 4.10.5). This idea can be expressed in various ways. For example, you should be able to see that the
following are just restatements of Definition 1:
1.   is one-to-one if for each vector b in the range of A there is exactly one vector  in  such that .

2.   is one-to-one if the equality  implies that .

Figure 4.10.5   



Rotation operators on  are one-to-one since distinct vectors that are rotated through the same angle have
distinct images (Figure 4.10.6). In contrast, the orthogonal projection of  on the xy-plane is not one-to-one
because it maps distinct points on the same vertical line into the same point (Figure 4.10.7).

Figure 4.10.6   Distinct vectors  and  are rotated into distinct vectors  and 

Figure 4.10.7   The distinct points P and Q are mapped into the same point M

The following theorem establishes a fundamental relationship between the invertibility of a matrix and properties
of the corresponding matrix transformation.

THEOREM 4.10.1

If A is an  matrix and  is the corresponding matrix operator, then the following
statements are equivalent.
(a)  A is invertible.
(b)  The range of  is .

(c)   is one-to-one.

Proof   We will establish the chain of implications .

  Assume that A is invertible. By parts (a) and (e) of Theorem 4.8.10, the system  is consistent
for every  matrix  in . This implies that  maps  into the arbitrary vector  in , which in turn
implies that the range of  is all of .

  Assume that the range of  is . This implies that for every vector  in  there is some vector 
in  for which  and hence that the linear system  is consistent for every vector  in . But
the equivalence of parts (e) and (f) of Theorem 4.8.10 implies that  has a unique solution for every vector



 in  and hence that for every vector  in the range of  there is exactly one vector  in  such that
.

  Assume that  is one-to-one. Thus, if  is a vector in the range of , there is a unique vector  in
 for which . We leave it for you to complete the proof using Exercise 30.

 EXAMPLE 5    Properties of a Rotation Operator

As indicated in Figure 4.10.6, the operator  that rotates vectors in  through an angle
 is one-to-one. Confirm that  is invertible in accordance with Theorem 4.10.1.

Solution   From Table 5 of Section 4.9 the standard matrix for T is

This matrix is invertible because

 EXAMPLE 6    Properties of a Projection Operator

As indicated in Figure 4.10.7, the operator  that projects each vector in 
orthogonally on the xy-plane is not one-to-one. Confirm that  is not invertible in accordance
with Theorem 4.10.1.

Solution   From Table 4 of Section 4.9 the standard matrix for T is

This matrix is not invertible since .

Inverse of a One-to-One Matrix Operator

If  is a one-to-one matrix operator, then it follows from Theorem 4.10.1 that A is invertible. The
matrix operator

that corresponds to  is called the inverse operator or (more simply) the inverse of . This terminology is
appropriate because  and  cancel the effect of each other in the sense that if  is any vector in , then



or, equivalently,

From a more geometric viewpoint, if  is the image of  under , then  maps  back into , since

(Figure 4.10.8).

Figure 4.10.8   

Before considering examples, it will be helpful to touch on some notational matters. If  is a
one-to-one matrix operator, and if  is its inverse, then the standard matrices for these operators
are related by the equation

  (6)

In cases where it is preferable not to assign a name to the matrix, we will write this equation as

  (7)

 EXAMPLE 7    Standard Matrix for T−1

Let  be the operator that rotates each vector in  through the angle , so from Table 5
of Section 4.9 ,

  (8)

It is evident geometrically that to undo the effect of T, one must rotate each vector in  through
the angle . But this is exactly what the operator  does, since the standard matrix for  is

(verify), which is the standard matrix for a rotation through the angle .



 EXAMPLE 8    Finding T−1

Show that the operator  defined by the equations

is one-to-one, and find .

Solution   The matrix form of these equations is

so the standard matrix for T is

This matrix is invertible (so T is one-to-one) and the standard matrix for  is

Thus

from which we conclude that

Linearity Properties

Up to now we have focused exclusively on matrix transformations from  to . However, these are not the
only kinds of transformations from  to . For example, if  are any functions of the n
variables , then the equations

define a transformation  that maps the vector  into the vector .
But it is only in the case where these equations are linear that T is a matrix transformation. The question that we



will now consider is this:

   Question

Are there algebraic properties of a transformation  that can be used to determine whether T is
a matrix transformation?

The answer is provided by the following theorem.

THEOREM 4.10.2

 is a matrix transformation if and only if the following relationships hold for all vectors 
and  in  and for every scalar k:

(i)  
(ii)  

Proof   If T is a matrix transformation, then properties (i) and (ii) follow respectively from parts (c) and (b) of
Theorem 4.9.1.

Conversely, assume that properties (i) and (ii) hold. We must show that there exists an  matrix A such that

for every vector  in . As a first step, recall from Formula (10) of Section 4.9 that the additivity and
homogeneity properties imply that

  (9)

for all scalars  and all vectors  in . Let A be the matrix

in which  are the standard basis vectors for .

It follows from Theorem 1.3.1 that  is a linear combination of the columns of A in which the successive
coefficients are the entries  of . That is,

Using 9 we can rewrite this as

which completes the proof.

The additivity and homogeneity properties in Theorem 4.10.2 are called linearity conditions, and a
transformation that satisfies these conditions is called a linear transformation. Using this terminology Theorem



4.10.2 can be restated as follows.

THEOREM 4.10.3

Every linear transformation from  to  is a matrix transformation, and conversely, every matrix
transformation from  to  is a linear transformation.

More on the Equivalence Theorem

As our final result in this section, we will add parts (b) and (c) of Theorem 4.10.1 to Theorem 4.8.10.

THEOREM 4.10.4   Equivalent Statements

If A is an  matrix, then the following statements are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A is expressible as a product of elementary matrices.
(e)   is consistent for every  matrix .
(f)   has exactly one solution for every  matrix .
(g)  .

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span .

(k)  The row vectors of A span .

(l)  The column vectors of A form a basis for .

(m)  The row vectors of A form a basis for .

(n)  A has rank n.
(o)  A has nullity .
(p)  The orthogonal complement of the null space of A is .

(q)  The orthogonal complement of the row space of A is .

(r)  The range of  is .

(s)   is one-to-one.



Concept Review
•  Composition of matrix transformations
•  Reflection about the origin
•  One-to-one transformation
•  Inverse of a matrix operator
•  Linearity conditions
•  Linear transformation
•  Equivalent characterizations of invertible matrices

Skills
•  Find the standard matrix for a composition of matrix transformations.
•  Determine whether a matrix operator is one-to-one; if it is, then find the inverse operator.
•  Determine whether a transformation is a linear transformation.

Exercise Set 4.10

In Exercises 1–2, let  and  be the operators whose standard matrices are given. Find the standard matrices
for and 

1. 

Answer:

2. 

3. Let  and 

(a)  Find the standard matrices for  and .
(b)  Find the standard matrices for  and 
(c)  Use the matrices obtained in part (b) to find formulas for  and 

Answer:



(a)  

(b)  

(c)  ,

4. Let  and .

(a)  Find the standard matrices for  and .
(b)  Find the standard matrices for  and .
(c)  Use the matrices obtained in part (b) to find formulas for  and .

5. Find the standard matrix for the stated composition in .

(a)  A rotation of 90°, followed by a reflection about the line .

(b)  An orthogonal projection on the y-axis, followed by a contraction with factor .

(c)  A reflection about the x-axis, followed by a dilation with factor .

Answer:

(a)  

(b)  

(c)  

6. Find the standard matrix for the stated composition in .

(a)  A rotation of 60°, followed by an orthogonal projection on the x-axis, followed by a reflection about the
line .

(b)  A dilation with factor , followed by a rotation of 45°, followed by a reflection about the y-axis.
(c)  A rotation of 15°, followed by a rotation of 105°, followed by a rotation of 60°.

7. Find the standard matrix for the stated composition in .

(a)  A reflection about the yz-plane, followed by an orthogonal projection on the xz-plane.
(b)  A rotation of 45° about the y-axis, followed by a dilation with factor .

(c)  An orthogonal projection on the xy-plane, followed by a reflection about the yz-plane.

Answer:

(a)  



(b)  

(c)  

8. Find the standard matrix for the stated composition in .

(a)  A rotation of 30° about the x-axis, followed by a rotation of 30° about the z-axis, followed by a
contraction with factor .

(b)  A reflection about the xy-plane, followed by a reflection about the xz-plane, followed by an orthogonal
projection on the yz-plane.

(c)  A rotation of 270° about the x-axis, followed by a rotation of 90° about the y-axis, followed by a rotation
of 180° about the z-axis.

9. Determine whether .
(a)   is the orthogonal projection on the x-axis, and  is the orthogonal projection on

the y-axis.
(b)   is the rotation through an angle , and  is the rotation through an angle .

(c)   is the orthogonal projection on the x-axis, and  is the rotation through an angle
.

Answer:

(a)  
(b)  
(c)  

10. Determine whether .
(a)   is a dilation by a factor k, and  is the rotation about the z-axis through an angle

.
(b)   is the rotation about the x-axis through an angle , and  is the rotation about

the z-axis through an angle .

11. By inspection, determine whether the matrix operator is one-to-one.
(a)  the orthogonal projection on the x-axis in 

(b)  the reflection about the y-axis in 

(c)  the reflection about the line  in 

(d)  a contraction with factor  in 

(e)  a rotation about the z-axis in 

(f)  a reflection about the xy-plane in 

(g)  a dilation with factor  in 



Answer:

(a)  Not one-to-one
(b)  One-to-one
(c)  One-to-one
(d)  One-to-one
(e)  One-to-one
(f)  One-to-one
(g)  One-to-one

12. Find the standard matrix for the matrix operator defined by the equations, and use Theorem 4.10.4 to
determine whether the operator is one-to-one.
(a)  

(b)  

(c)  

(d)  

13. Determine whether the matrix operator  defined by the equations is one-to-one; if so, find the

standard matrix for the inverse operator, and find .

(a)  

(b)  

(c)  

(d)  

Answer:

(a)  

One-to-one; 

(b)  Not one-to-one
(c)  One-to-one; 



(d)  Not one-to-one

14. Determine whether the matrix operator  defined by the equations is one-to-one; if so, find the

standard matrix for the inverse operator, and find .

(a)  

(b)  

(c)  

(d)  

15. By inspection, find the inverse of the given one-to-one matrix operator.
(a)  The reflection about the x-axis in .

(b)  The rotation through an angle of  in .

(c)  The dilation by a factor of 3 in .

(d)  The reflection about the yz-plane in .

(e)  The contraction by a factor of  in .

Answer:

(a)  Reflection about the x-axis
(b)  Rotation through the angle 

(c)  Contraction by a factor of 

(d)  Reflection about the yz-plane
(e)  Dilation by a factor of 5

In Exercises 16—17, use Theorem 4.10.2 to determine whether  is a matrix operator.

16. (a)  

(b)  

(c)  

(d)  

17. (a)  

(b)  



(c)  

(d)  

Answer:

(a)  Matrix operator
(b)  Not a matrix operator
(c)  Matrix operator
(d)  Not a matrix operator

In Exercises 18–19, use Theorem 4.10.2 to determine whether  is a matrix transformation.

18. (a)  

(b)  

19. (a)  

(b)  

Answer:

(a)  Matrix transformation
(b)  Matrix transformation

20. In each part, use Theorem 4.10.3 to find the standard matrix for the matrix operator from the images of the
standard basis vectors.
(a)  The reflection operators on  in Table 1 of Section 4.9 .

(b)  The reflection operators on  in Table 2 of Section 4.9 .

(c)  The projection operators on  in Table 3 of Section 4.9 .

(d)  The projection operators on  in Table 4 of Section 4.9 .

(e)  The rotation operators on  in Table 5 of Section 4.9 .

(f)  The dilation and contraction operators on  in Table 8 of Section 4.9 .

21. Find the standard matrix for the given matrix operator.
(a)   projects a vector orthogonally onto the x-axis and then reflects that vector about the y-axis.

(b)   reflects a vector about the line  and then reflects that vector about the x-axis.

(c)   dilates a vector by a factor of 3, then reflects that vector about the line , and then
projects that vector orthogonally onto the y-axis.

Answer:

(a)  



(b)  

(c)  

22. Find the standard matrix for the given matrix operator.
(a)   reflects a vector about the xz-plane and then contracts that vector by a factor of .

(b)   projects a vector orthogonally onto the xz-plane and then projects that vector orthogonally
onto the xy-plane.

(c)   reflects a vector about the xy-plane, then reflects that vector about the xz-plane, and then
reflects that vector about the yz-plane.

23. Let  be multiplication by

and let , , and  be the standard basis vectors for . Find the following vectors by inspection.

(a)  , , and 

(b)  
(c)  

Answer:

(a)  
(b)  
(c)  

24. Determine whether multiplication by A is a one-to-one matrix transformation.
(a)  

(b)  

(c)  

25. (a)  Is a composition of one-to-one matrix transformations one-to-one? Justify your conclusion.
(b)  Can the composition of a one-to-one matrix transformation and a matrix transformation that is not

one-to-one be one-to-one? Account for both possible orders of composition and justify your conclusion.

Answer:



(a)  Yes
(b)  Yes

26. Show that  defines a matrix operator on  but  does not.

27. (a)  Prove: If  is a matrix transformation, then ; that is, T maps the zero vector in 
into the zero vector in .

(b)  The converse of this is not true. Find an example of a function that satisfies  but is not a matrix
transformation.

Answer:

(b)  

28. Prove: An  matrix A is invertible if and only if the linear system  has exactly one solution for
every vector  in  for which the system is consistent.

29. Let A be an  matrix such that , and let  be multiplication by A.

(a)  What can you say about the range of the matrix T? Give an example that illustrates your conclusion.
(b)  What can you say about the number of vectors that T maps into ?

Answer:

(a)  The range of T is a proper subset of .

(b)  T must map infinitely many vectors to 0.

30. Prove: If the matrix transformation  is one-to-one, then A is invertible.

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) If  and , then T is a matrix transformation.

Answer:

False

(b) If  and  for all scalars  and  and all vectors  and  in 
, then T is a matrix transformation.

Answer:

True

(c) If  is a one-to-one matrix transformation, then there are no distinct vectors  and  for which
.

Answer:

True



(d) If  is a matrix transformation and , then T is one-to-one.

Answer:

False

(e) If  is a matrix transformation and , then T is one-to-one.

Answer:

False

(f) If  is a matrix transformation and , then T is one-to-one.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.11  Geometry of Matrix Operators on 
In this optional section we will discuss matrix operators on  in a little more depth. The ideas that we will develop here
have important applications to computer graphics.

Transformations of Regions

In Section 4.9 we focused on the effect that a matrix operator has on individual vectors in  and . However, it is also
important to understand how such operators affect the shapes of regions. For example, Figure 4.11.1 shows a famous
picture of Albert Einstein and three computer-generated modifications of that image that result from matrix operators on

. The original picture was scanned and then digitized to decompose it into a rectangular array of pixels. The pixels
were then transformed as follows:
•  The program MATLAB was used to assign coordinates and a gray level to each pixel.
•  The coordinates of the pixels were transformed by matrix multiplication.
•  The pixels were then assigned their original gray levels to produce the transformed picture.

Figure 4.11.1   

The overall effect of a matrix operator on  can often be ascertained by graphing the images of the vertices
, and  of the unit square (Figure 4.11.2). Table 1 shows the effect that some of the matrix

operators studied in Section 4.9 have on the unit square. For clarity, we have shaded a portion of the original square and
its corresponding image.

Figure 4.11.2   



Table 1





 EXAMPLE 1    Transforming with Diagonal Matrices

Suppose that the xy-plane first is compressed or expanded by a factor of  in the x-direction and then is
compressed or expanded by a factor of  in the y-direction. Find a single matrix operator that performs
both operations.

Solution   The standard matrices for the two operations are

Thus, the standard matrix for the composition of the x-operation followed by the y-operation is

  (1)

This shows that multiplication by a diagonal  matrix compresses or expands the plane in the
x-direction and also in the y-direction. In the special case where  and  are the same, say ,
Formula 1 simplifies to

which is a contraction or a dilation (Table 7 of Section 4.9 ).

 EXAMPLE 2    Finding Matrix Operators

(a)  Find the standard matrix for the operator on  that first shears by a factor of 2 in the x-direction and
then reflects the result about the line . Sketch the image of the unit square under this operator.

(b)  Find the standard matrix for the operator on  that first reflects about  and then shears by a
factor of 2 in the x-direction. Sketch the image of the unit square under this operator.

(c)  Confirm that the shear and the reflection in parts (a) and (b) do not commute.

Solution   
(a)  The standard matrix for the shear is

and for the reflection is

Thus, the standard matrix for the shear followed by the reflection is



(b)  The standard matrix for the reflection followed by the shear is

(c)  The computations in Solutions (a) and (b) show that , so the standard matrices, and
hence the operators, do not commute. The same conclusion follows from Figures 4.11.3 and 4.11.4,
since the two operators produce different images of the unit square.

Figure 4.11.3   

Figure 4.11.4   

Geometry of One-to-One Matrix Operators

We will now turn our attention to one-to-one matrix operators on , which are important because they map distinct
points into distinct points. Recall from Theorem 4.10.4 (the Equivalence Theorem) that a matrix transformation  is
one-to-one if and only if A can be expressed as a product of elementary matrices. Thus, we can analyze the effect of any
one-to-one transformation  by first factoring the matrix A into a product of elementary matrices, say

and then expressing  as the composition

  (2)

The following theorem explains the geometric effect of matrix operators corresponding to elementary matrices.



THEOREM 4.11.1

If E is an elementary matrtix, then  is one of the following:

(a)  A shear along a coordinate axis.
(b)  A reflection about .

(c)  A compression along a coordinate axis.
(d)  An expansion along a coordinate axis.
(e)  A reflection about a coordinate axis.
(f)  A compression or expansion along a coordinate axis followed by a reflection about a coordinate axis.

Proof   Because a  elementary matrix results from performing a single elementary row operation on the 
identity matrix, such a matrix must have one of the following forms (verify):

The first two matrices represent shears along coordinate axes, and the third represents a reflection about . If ,
the last two matrices represent compressions or expansions along coordinate axes, depending on whether  or

. If , and if we express k in the form , where , then the last two matrices can be written as

  (3)

  (4)

Since , the product in 3 represents a compression or expansion along the x-axis followed by a reflection about the
y-axis, and 4 represents a compression or expansion along the y-axis followed by a reflection about the x-axis. In the
case where , transformations 3 and 4 are simply reflections about the y-axis and x-axis, respectively.

Since every invertible matrix is a product of elementary matrices, the following result follows from Theorem 4.11.1 and
Formula 2.

THEOREM 4.11.2

If  is multiplication by an invertible matrix A, then the geometric effect of  is the same as an
appropriate succession of shears, compressions, expansions, and reflections.

 EXAMPLE 3    Analyzing the Geometric Effect of a Matrix Operator

Assuming that  and  are positive, express the diagonal matrix



as a product of elementary matrices, and describe the geometric effect of multiplication by A in terms of
compressions and expansions.

Solution   From Example 1 we have

which shows that multiplication by A has the geometric effect of compressing or expanding by a factor of
 in the x-direction and then compressing or expanding by a factor of  in the y-direction.

 EXAMPLE 4    Analyzing the Geometric Effect of a Matrix Operator

Express

as a product of elementary matrices, and then describe the geometric effect of multiplication by A in terms
of shears, compressions, expansions, and reflections.

Solution   A can be reduced to I as follows:

The three successive row operations can be performed by multiplying A on the left successively by

Inverting these matrices and using Formula 4 of Section 1.5 yields

Reading from right to left and noting that

it follows that the effect of multiplying by A is equivalent to
1.  shearing by a factor of 2 in the x-direction,
2.  then expanding by a factor of 2 in the y-direction,
3.  then reflecting about the x-axis,
4.  then shearing by a factor of 3 in the y-direction.



Images of Lines Under Matrix Operators

Many images in computer graphics are constructed by connecting points with line segments. The following theorem,
some of whose parts are proved in the exercises, is helpful for understanding how matrix operators transform such
figures.

THEOREM 4.11.3

If  is multiplication by an invertible matrix, then:

(a)  The image of a straight line is a straight line.
(b)  The image of a straight line through the origin is a straight line through the origin.
(c)  The images of parallel straight lines are parallel straight lines.
(d)  The image of the line segment joining points P and Q is the line segment joining the images of P and Q.
(e)  The images of three points lie on a line if and only if the points themselves lie on a line.

Note that it follows from Theorem 4.11.3 that if A is
an invertible  matrix, then multiplication by A
maps triangles into triangles and parallelograms into
parallelograms.

 EXAMPLE 5    Image of a Square

Sketch the image of the square with vertices , , and  under multiplication by

Solution   Since

the image of the square is a parallelogram with vertices , and  (Figure
4.11.5).



Figure 4.11.5   

 EXAMPLE 6    Image of a Line

According to Theorem 4.11.3, the invertible matrix

maps the line  into another line. Find its equation.

Solution   Let  be a point on the line , and let  be its image under
multiplication by A. Then

so

Substituting in  yields

Thus  satisfies

which is the equation we want.



Concept Review
•  Effect of a matrix operator on the unit square
•  Geometry of one-to-one matrix operators
•  Images of lines under matrix operators

Skills
•  Find standard matrices for geometric transformations of .

•  Describe the geometric effect of an invertible matrix operator.
•  Find the image of the unit square under a matrix operator.
•  Find the image of a line under a matrix operator.

Exercise Set 4.11
1. Find the standard matrix for the operator  that maps a point  into

(a)  its reflection about the line .

(b)  its reflection through the origin.
(c)  its orthogonal projection on the x-axis.
(d)  its orthogonal projection on the y-axis.

Answer:

(a)  

(b)  

(c)  

(d)  

2. For each part of Exercise 1, use the matrix you have obtained to compute . Check your answers geometrically
by plotting the points  and .

3. Find the standard matrix for the operator  that maps a point  into

(a)  its reflection through the xy-plane.
(b)  its reflection through the xz-plane.
(c)  its reflection through the yz-plane.

Answer:

(a)  



(b)  

(c)  

4. For each part of Exercise 3, use the matrix you have obtained to compute . Check your answers
geometrically by plotting the points  and .

5. Find the standard matrix for the operator  that

(a)  rotates each vector 90° counterclockwise about the z-axis (looking along the positive z-axis toward the origin).
(b)  rotates each vector 90° counterclockwise about the x-axis (looking along the positive x-axis toward the origin).
(c)  rotates each vector 90° counterclockwise about the y-axis (looking along the positive y-axis toward the origin).

Answer:

(a)  

(b)  

(c)  

6. Sketch the image of the rectangle with vertices , , , and  under

(a)  a reflection about the x-axis.
(b)  a reflection about the y-axis.
(c)  a compression of factor  in the y-direction.

(d)  an expansion of factor  in the x-direction.
(e)  a shear of factor  in the x-direction.
(f)  a shear of factor  in the y-direction.

7. Sketch the image of the square with vertices , and  under multiplication by

Answer:

Rectangle with vertices at (0, 0), 

8. Find the matrix that rotates a point  about the origin

(a)  45°
(b)  90°
(c)  180°
(d)  270°



(e)  −30°

9. Find the matrix that shears by
(a)  a factor of  in the y-direction.
(b)  a factor of  in the x-direction.

Answer:

(a)  

(b)  

10. Find the matrix that compresses or expands by
(a)  a factor of  in the y-direction.

(b)  a factor of 6 in the x-direction.

11. In each part, describe the geometric effect of multiplication by A.
(a)  

(b)  

(c)  

Answer:

(a)  Expansion by a factor of 3 in the x-direction
(b)  Expansion by a factor of 5 in the y-direction and reflection about the x-axis
(c)  Shearing by a factor of 4 in the x-direction

12. In each part, express the matrix as a product of elementary matrices, and then describe the effect of multiplication by
A in terms of compressions, expansions, reflections, and shears.
(a)  

(b)  

(c)  

(d)  

13. In each part, find a single matrix that performs the indicated succession of operations.
(a)  Compresses by a factor of  in the x-direction, then expands by a factor of 5 in the y-direction.

(b)  Expands by a factor of 5 in the y-direction, then shears by a factor of 2 in the y-direction.
(c)  Reflects about , then rotates through an angle of 180° about the origin.

Answer:



(a)  

(b)  

(c)  

14. In each part, find a single matrix that performs the indicated succession of operations.
(a)  Reflects about the y-axis, then expands by a factor of 5 in the x-direction, and then reflects about .

(b)  Rotates through 30° about the origin, then shears by a factor of  in the y-direction, and then expands by a
factor of 3 in the y-direction.

15. Use matrix inversion to show the following.
(a)  The inverse transformation for a reflection about  is a reflection about .

(b)  The inverse transformation for a compression along an axis is an expansion along that axis.
(c)  The inverse transformation for a reflection about a coordinate axis is a reflection about that axis.
(d)  The inverse transformation for a shear along a coordinate axis is a shear along that axis.

16. Find an equation of the image of the line  under multiplication by

17. In parts (a) through (e), find an equation of the image of the line  under

(a)  a shear of factor 3 in the x-direction.
(b)  a compression of factor  in the y-direction.

(c)  a reflection about .

(d)  a reflection about the y-axis.
(e)  a rotation of 60° about the origin.

Answer:

(a)  

(b)  
(c)  

(d)  

(e)  

18. Find the matrix for a shear in the x-direction that transforms the triangle with vertices , and  into
a right triangle with the right angle at the origin.

19. (a)  Show that multiplication by

maps each point in the plane onto the line .



(b)  It follows from part (a) that the noncollinear points  are mapped onto a line. Does this
violate part (e) of Theorem 4.11.3?

Answer:

(b)  No

20. Prove part (a) of Theorem 4.11.3. [Hint: A line in the plane has an equation of the form , where A
and B are not both zero. Use the method of Example 6 to show that the image of this line under multiplication by the
invertible matrix

has the equation , where

and

Then show that  and  are not both zero to conclude that the image is a line.]

21. Use the hint in Exercise 20 to prove parts (b) and (c) of Theorem 4.11.3.

22. In each part of the accompanying figure, find the standard matrix for the operator described.

Figure Ex-22   

23. In  the shear in the xy-direction with factor k is the matrix transformation that moves each point  parallel
to the xy-plane to the new position . (See the accompanying figure.)

(a)  Find the standard matrix for the shear in the xy-direction with factor k.
(b)  How would you define the shear in the xz-direction with factor k and the shear in the yz-direction with factor k?

Find the standard matrices for these matrix transformations.

Figure Ex-23   



Answer:

(a)  

(b)  Shear in the xz-direction with

factor k maps (x, y, z) to : .

Shear in the yz-direction with factor k maps (x, y, z) to : .

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) The image of the unit square under a one-to-one matrix operator is a square.

Answer:

False

(b) A  invertible matrix operator has the geometric effect of a succession of shears, compressions, expansions, and
reflections.

Answer:

True

(c) The image of a line under a one-to-one matrix operator is a line.

Answer:

True

(d) Every reflection operator on  is its own inverse.

Answer:

True

(e) The matrix  represents reflection about a line.

Answer:

False

(f) The matrix  represents a shear.

Answer:



False

(g) The matrix  represents an expansion.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



4.12  Dynamical Systems and Markov Chains
In this optional section we will show how matrix methods can be used to analyze the behavior of physical systems that
evolve over time. The methods that we will study here have been applied to problems in business, ecology,
demographics, sociology, and most of the physical sciences.

Dynamical Systems

A dynamical system is a finite set of variables whose values change with time. The value of a variable at a point in time
is called the state of the variable at that time, and the vector formed from these states is called the state of the
dynamical system at that time. Our primary objective in this section is to analyze how the state of a dynamical system
changes with time. Let us begin with an example.

 EXAMPLE 1    Market Share as a Dynamical System

Suppose that two competing television channels, channel 1 and channel 2, each have 50% of the viewer
market at some initial point in time. Assume that over each one-year period channel 1 captures 10% of
channel 2's share, and channel 2 captures 20% of channel 1's share (see Figure 4.12.1). What is each
channel's market share after one year?

Figure 4.12.1   

Solution   Let us begin by introducing the time-dependent variables

and the column vector

The variables  and  form a dynamical system whose state at time t is the vector . If we
take  to be the starting point at which the two channels had 50% of the market, then the state of the
system at that time is

  (1)

Now let us try to find the state of the system at time  (one year later). Over the one-year period,
channel 1 retains 80% of its initial 50%, and it gains 10% of channel 2's initial 50%. Thus,



  (2)

Similarly, channel 2 gains 20% of channel 1's initial 50%, and retains 90% of its initial 50%. Thus,

  (3)

Therefore, the state of the system at time  is

  (4)

 EXAMPLE 2    Evolution of Market Share over Five Years

Track the market shares of channels 1 and 2 in Example 1 over a five-year period.

Solution   To solve this problem suppose that we have already computed the market share of each
channel at time  and we are interested in using the known values of  and  to compute the
market shares  and  one year later. The analysis is exactly the same as that used to
obtain Equations 2 and 3. Over the one-year period, channel 1 retains 80% of its starting fraction 
and gains 10% of channel 2's starting fraction . Thus,

  (5)

Similarly, channel 2 gains 20% of channel 1's starting fraction  and retains 90% of its own starting
fraction . Thus,

  (6)

Equations 5 and 6 can be expressed in matrix form as

  (7)

which provides a way of using matrix multiplication to compute the state of the system at time 
from the state at time . For example, using 1 and 7 we obtain

which agrees with 4. Similarly,

We can now continue this process, using Formula 7 to compute  from , then  from ,
and so on. This yields (verify)

  (8)

Thus, after five years, channel 1 will hold about 36% of the market and channel 2 will hold about 64%of
the market.



If desired, we can continue the market analysis in the last example beyond the five-year period and explore what
happens to the market share over the long term. We did so, using a computer, and obtained the following state vectors
(rounded to six decimal places):

  (9)

All subsequent state vectors, when rounded to six decimal places, are the same as , so we see that the market
shares eventually stabilize with channel 1 holding about one-third of the market and channel 2 holding about
two-thirds. Later in this section, we will explain why this stabilization occurs.

Markov Chains

In many dynamical systems the states of the variables are not known with certainty but can be expressed as
probabilities; such dynamical systems are called stochastic processes (from the Greek word stokastikos, meaning
“proceeding by guesswork”). A detailed study of stochastic processes requires a precise definition of the term
probability, which is outside the scope of this course. However, the following interpretation will suffice for our present
purposes:

Stated informally, the probability that an experiment or observation will have a certain outcome is
approximately the fraction of the time that the outcome would occur if the experiment were to be repeated many
times under constant conditions—the greater the number of repetitions, the more accurately the probability
describes the fraction of occurrences.

For example, when we say that the probability of tossing heads with a fair coin is , we mean that if the coin were

tossed many times under constant conditions, then we would expect about half of the outcomes to be heads.
Probabilities are often expressed as decimals or percentages. Thus, the probability of tossing heads with a fair coin can
also be expressed as 0.5 or 50%.

If an experiment or observation has n possible outcomes, then the probabilities of those outcomes must be nonnegative
fractions whose sum is 1. The probabilities are nonnegative because each describes the fraction of occurrences of an
outcome over the long term, and the sum is 1 because they account for all possible outcomes. For example, if a box
containing 10 balls has one red ball, three green balls, and six yellow balls, and if a ball is drawn at random from the
box, then the probabilities of the various outcomes are

Each probability is a nonnegative fraction and

In a stochastic process with n possible states, the state vector at each time t has the form



The entries in this vector must add up to 1 since they account for all n possibilities. In general, a vector with
nonnegative entries that add up to 1 is called a probability vector.

 EXAMPLE 3    Example 1 Revisited from the Probability Viewpoint

Observe that the state vectors in Example 1 and Example 2 are all probability vectors. This is to be
expected since the entries in each state vector are the fractional market shares of the channels, and together
they account for the entire market. In practice, it is preferable to interpret the entries in the state vectors as
probabilities rather than exact market fractions, since market information is usually obtained by statistical
sampling procedures with intrinsic uncertainties. Thus, for example, the state vector

which we interpreted in Example 1 to mean that channel 1 has 45% of the market and channel 2 has 55%,
can also be interpreted to mean that an individual picked at random from the market will be a channel 1
viewer with probability 0.45 and a channel 2 viewer with probability 0.55.

A square matrix, each of whose columns is a probability vector, is called a stochastic matrix. Such matrices commonly
occur in formulas that relate successive states of a stochastic process. For example, the state vectors  and 
in 7 are related by an equation of the form  in which

  (10)

is a stochastic matrix. It should not be surprising that the column vectors of P are probability vectors, since the entries
in each column provide a breakdown of what happens to each channel's market share over the year—the entries in
column 1 convey that each year channel 1 retains 80% of its market share and loses 20%; and the entries in column 2
convey that each year channel 2 retains 90% of its market share and loses 10%. The entries in 10 can also be viewed as
probabilities:

Example 1 is a special case of a large class of stochastic processes, called Markov chains.



Andrei Andreyevich Markov (1856–1922)

Historical Note    Markov chains are named in honor of the Russian mathematician A. A. Markov, a lover of
poetry, who used them to analyze the alternation of vowels and consonants in the poem Eugene Onegin by
Pushkin. Markov believed that the only applications of his chains were to the analysis of literary works, so he
would be astonished to learn that his discovery is used today in the social sciences, quantum theory, and
genetics!
[Image: wikipedia]

DEFINITION 1

A Markov chain is a dynamical system whose state vectors at a succession of time intervals are probability
vectors and for which the state vectors at successive time intervals are related by an equation of the form

in which  is a stochastic matrix and  is the probability that the system will be in state i at time
 if it is in state j at time . The matrix P is called the transition matrix for the system.

Remark   Note that in this definition the row index i corresponds to the later state and the column index j to the earlier
state (Figure 4.12.2).

Figure 4.12.2   



 EXAMPLE 4    Wildlife Migration as a Markov Chain

Suppose that a tagged lion can migrate over three adjacent game reserves in search of food, reserve 1,
reserve 2, and reserve 3. Based on data about the food resources, researchers conclude that the monthly
migration pattern of the lion can be modeled by a Markov chain with transition matrix

(see Figure 4.12.3). That is,

Assuming that t is in months and the lion is released in reserve 2 at time , track its probable
locations over a six-month period.

Figure 4.12.3   

Solution   Let , and  be the probabilities that the lion is in reserve 1, 2, or 3,
respectively, at time , and let

be the state vector at that time. Since we know with certainty that the lion is in reserve 2 at time , the
initial state vector is



We leave it for you to show that the state vectors over a six-month period are

As in Example 2, the state vectors here seem to stabilize over time with a probability of approximately
0.504 that the lion is in reserve 1, a probability of approximately 0.227 that it is in reserve 2, and a
probability of approximately 0.269 that it is in reserve 3.

Markov Chains in Terms of Powers of the Transition Matrix

In a Markov chain with an initial state of , the successive state vectors are

For brevity, it is common to denote  by , which allows us to write the successive state vectors more briefly as

  (11)

Note that Formula 12 makes it possible to compute
the state vector  without first computing the
earlier state vectors as required in Formula 11.

Alternatively, these state vectors can be expressed in terms of the initial state vector  as

from which it follows that

  (12)

 EXAMPLE 5    Finding a State Vector Directly from x0

Use Formula 12 to find the state vector  in Example 2.

Solution   From 1 and 7, the initial state vector and transition matrix are

We leave it for you to calculate  and show that

which agrees with the result in 8.



Long-Term Behavior of a Markov Chain

We have seen two examples of Markov chains in which the state vectors seem to stabilize after a period of time. Thus,
it is reasonable to ask whether all Markov chains have this property. The following example shows that this is not the
case.

 EXAMPLE 6    A Markov Chain That Does Not Stabilize

The matrix

is stochastic and hence can be regarded as the transition matrix for a Markov chain. A simple calculation
shows that , from which it follows that

Thus, the successive states in the Markov chain with initial vector  are

which oscillate between  and . Thus, the Markov chain does not stabilize unless both components
of  are  (verify).

A precise definition of what it means for a sequence of numbers or vectors to stabilize is given in calculus; however,
that level of precision will not be needed here. Stated informally, we will say that a sequence of vectors

approaches a limit  or that it converges to  if all entries in  can be made as close as we like to the corresponding
entries in the vector  by taking k sufficiently large. We denote this by writing  as .

We saw in Example 6 that the state vectors of a Markov chain need not approach a limit in all cases. However, by
imposing a mild condition on the transition matrix of a Markov chain, we can guarantee that the state vectors will
approach a limit.

DEFINITION 2

A stochastic matrix P is said to be regular if P or some positive power of P has all positive entries, and a
Markov chain whose transition matrix is regular is said to be a regular Markov chain.

 EXAMPLE 7    Regular Stochastic Matrices



The transition matrices in Example 2 and Example 4 are regular because their entries are positive. The
matrix

is regular because

has positive entries. The matrix P in Example 6 is not regular because P and every positive power of P
have some zero entries (verify).

The following theorem, which we state without proof, is the fundamental result about the long-term behavior of
Markov chains.

THEOREM 4.12.1

If P is the transition matrix for a regular Markov chain, then:
(a)  There is a unique probability vector  such that .

(b)  For any initial probability vector , the sequence of state vectors

converges to .

The vector  in this theorem is called the steady-state vector of the Markov chain. It can be found by rewriting the
equation in part (a) as

and then solving this equation for  subject to the requirement that  be a probability vector. Here are some examples.

 EXAMPLE 7    Example 1 and Example 2 Revisited

The transition matrix for the Markov chain in Example 2 is

Since the entries of P are positive, the Markov chain is regular and hence has a unique steady-state vector
 To find  we will solve the system , which we can write as

The general solution of this system is

(verify), which we can write in vector form as



  (13)

For  to be a probability vector, we must have

which implies that . Substituting this value in 13 yields the steady-state vector

which is consistent with the numerical results obtained in 9.

 EXAMPLE 9    Example 4 Revisited

The transition matrix for the Markov chain in Example 4 is

Since the entries of P are positive, the Markov chain is regular and hence has a unique steady-state vector
 To find  we will solve the system , which we can write (using fractions) as

  (14)

(We have converted to fractions to avoid roundoff error in this illustrative example.) We leave it for you
to confirm that the reduced row echelon form of the coefficient matrix is

and that the general solution of 14 is

  (15)

For  to be a probability vector we must have , from which it follows that 

(verify). Substituting this value in 15 yields the steady-state vector



(verify), which is consistent with the results obtained in Example 4.

Concept Review
•  Dynamical system
•  State of a variable
•  State of a dynamical system
•  Stochastic process
•  Probability
•  Probability vector
•  Stochastic matrix
•  Markov chain
•  Transition matrix
•  Regular stochastic matrix
•  Regular Markov chain
•  Steady-state vector

Skills
•  Determine whether a matrix is stochastic.
•  Compute the state vectors from a transition matrix and an initial state.
•  Determine whether a stochastic matrix is regular.
•  Determine whether a Markov chain is regular.
•  Find the steady-state vector for a regular transition matrix.

Exercise Set 4.12

In Exercises 1–2, determine whether A is a stochastic matrix. If A is not stochastic, then explain why not.

1. (a)  

(b)  



(c)  

(d)  

Answer:

(a)  Stochastic
(b)  Not stochastic
(c)  Stochastic
(d)  Not stochastic

2. (a)  

(b)  

(c)  

(d)  

In Exercises 3–4, use Formulas 11 and 12 to compute the state vector  in two different ways.

3. ; 

Answer:

4. 

In Exercises 5–6, determine whether P is a regular stochastic matrix.



5. (a)  

(b)  

(c)  

Answer:

(a)  Regular
(b)  Not regular
(c)  Regular

6. (a)  

(b)  

(c)  

In Exercises 7–10, verify that P is a regular stochastic matrix, and find the steady-state vector for the associated
Markov chain.

7. 

Answer:

8. 



9. 

Answer:

10. 

11. Consider a Markov process with transition matrix

(a)  What does the entry 0.2 represent?
(b)  What does the entry 0.1 represent?
(c)  If the system is in state 1 initially, what is the probability that it will be in state 2 at the next observation?
(d)  If the system has a 50% chance of being in state 1 initially, what is the probability that it will be in state 2 at the

next observation?

Answer:

(a)  Probability that something in state 1 stays in state 1
(b)  Probability that something in state 2 moves to state 1
(c)  0.8
(d)  0.85

12. Consider a Markov process with transition matrix

(a)  What does the entry  represent?

(b)  What does the entry 0 represent?



(c)  If the system is in state 1 initially, what is the probability that it will be in state 1 at the next observation?
(d)  If the system has a 50% chance of being in state 1 initially, what is the probability that it will be in state 2 at the

next observation?

13. On a given day the air quality in a certain city is either good or bad. Records show that when the air quality is good
on one day, then there is a 95% chance that it will be good the next day, and when the air quality is bad on one day,
then there is a 45% chance that it will be bad the next day.
(a)  Find a transition matrix for this phenomenon.
(b)  If the air quality is good today, what is the probability that it will be good two days from now?
(c)  If the air quality is bad today, what is the probability that it will be bad three days from now?
(d)  If there is a 20% chance that the air quality will be good today, what is the probability that it will be good

tomorrow?

Answer:

(a)  

(b)  0.93
(c)  0.142
(d)  0.63

14. In a laboratory experiment, a mouse can choose one of two food types each day, type I or type II. Records show that
if the mouse chooses type I on a given day, then there is a 75% chance that it will choose type I the next day, and if
it chooses type II on one day, then there is a 50% chance that it will choose type II the next day.
(a)  Find a transition matrix for this phenomenon.
(b)  If the mouse chooses type I today, what is the probability that it will choose type I two days from now?
(c)  If the mouse chooses type II today, what is the probability that it will choose type II three days from now?
(d)  If there is a 10% chance that the mouse will choose type I today, what is the probability that it will choose type

I tomorrow?

15. Suppose that at some initial point in time 100,000 people live in a certain city and 25,000 people live in its suburbs.
The Regional Planning Commission determines that each year 5% of the city population moves to the suburbs and
3% of the suburban population moves to the city.
(a)  Assuming that the total population remains constant, make a table that shows the populations of the city and its

suburbs over a five-year period (round to the nearest integer).
(b)  Over the long term, how will the population be distributed between the city and its suburbs?

Answer:

(a)  
Year 1 2 3 4 5

City 95,750 91,840 88,243 84,933 81,889

Suburbs 29,250 33,160 36,757 40,067 43,111

(b)  
City 46,875



Suburbs 78,125

16. Suppose that two competing television stations, station 1 and station 2, each have 50% of the viewer market at some
initial point in time. Assume that over each one-year period station 1 captures 5% of station 2's market share and
station 2 captures 10% of station 1's market share.
(a)  Make a table that shows the market share of each station over a five-year period.
(b)  Over the long term, how will the market share be distributed between the two stations?

17. Suppose that a car rental agency has three locations, numbered 1, 2, and 3. A customer may rent a car from any of
the three locations and return it to any of the three locations. Records show that cars are rented and returned in
accordance with the following probabilities:

  Rented from Location

  1 2 3

 1

Returned to Location 2

 3

(a)  Assuming that a car is rented from location 1, what is the probability that it will be at location 1 after two
rentals?

(b)  Assuming that this dynamical system can be modeled as a Markov chain, find the steady-state vector.
(c)  If the rental agency owns 120 cars, how many parking spaces should it allocate at each location to be

reasonably certain that it will have enough spaces for the cars over the long term? Explain your reasoning.

Answer:

(a)  

(b)  

(c)  35, 50, 35

18. Physical traits are determined by the genes that an offspring receives from its parents. In the simplest case a trait in
the offspring is determined by one pair of genes, one member of the pair inherited from the male parent and the
other from the female parent. Typically, each gene in a pair can assume one of two forms, called alleles, denoted by
A and a. This leads to three possible pairings:

called genotypes (the pairs Aa and aA determine the same trait and hence are not distinguished from one another). It
is shown in the study of heredity that if a parent of known genotype is crossed with a random parent of unknown
genotype, then the offspring will have the genotype probabilities given in the following table, which can be viewed
as a transition matrix for a Markov process:



  Genotype of Parent

  AA Aa aa

 AA 0

Genotype of Offspring Aa

 aa 0

Thus, for example, the offspring of a parent of genotype AA that is crossed at random with a parent of unknown
genotype will have a 50% chance of being AA, a 50% chance of being Aa, and no chance of being aa.
(a)  Show that the transition matrix is regular.
(b)  Find the steady-state vector, and discuss its physical interpretation.

19. Fill in the missing entries of the stochastic matrix

and find its steady-state vector.

Answer:

20. If P is an  stochastic matrix, and if M is a  matrix whose entries are all 1's, then 

21. If P is a regular stochastic matrix with steady-state vector , what can you say about the sequence of products

as ?

Answer:

 for every positive integer k

22. (a)  If P is a regular  stochastic matrix with steady-state vector , and if  are the standard unit
vectors in column form, what can you say about the behavior of the sequence

as  for each ?

(b)  What does this tell you about the behavior of the column vectors of  as ?

23. Prove that the product of two stochastic matrices is a stochastic matrix. [Hint: Write each column of the product as
a linear combination of the columns of the first factor.



24. Prove that if P is a stochastic matrix whose entries are all greater than or equal to , then the entries of  are
greater than or equal to .

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) 

The vector  is a probability vector.

Answer:

True

(b) The matrix  is a regular stochastic matrix.

Answer:

True

(c) The column vectors of a transition matrix are probability vectors.

Answer:

True

(d) A steady-state vector for a Markov chain with transition matrix P is any solution of the linear system .

Answer:

False

(e) The square of every regular stochastic matrix is stochastic.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



Chapter 4 Supplementary Exercises

1. Let V be the set of all ordered pairs of real numbers, and consider the following addition and scalar
multiplication operations on  and :

(a)  Compute  and  for , , and .

(b)  In words, explain why V is closed under addition and scalar multiplication.
(c)  Since the addition operation on V is the standard addition operation on , certain vector space axioms

hold for V because they are known to hold for . Which axioms in Definition 1 of Section 4.1 are
they?

(d)  Show that Axioms 7, 8, and 9 hold.
(e)  Show that Axiom 10 fails for the given operations.

Answer:

(a)  
(c)  Axioms 1–5

2. In each part, the solution space of the system is a subspace of  and so must be a line through the origin,
a plane through the origin, all of , or the origin only. For each system, determine which is the case. If
the subspace is a plane, find an equation for it, and if it is a line, find parametric equations.
(a)  

(b)  

(c)  

(d)  

3. For what values of s is the solution space of

the origin only, a line through the origin, a plane through the origin, or all of ?

Answer:



If  the solution space is the origin. If , the solution space is a plane through the origin. If
, the solution space is a line through the origin.

4. (a)  Express  as a linear combination of  and .

(b)  Express  as a linear combination of  and
.

(c)  Express  as a linear combination of three nonzero vectors.

5. Let W be the space spanned by  and .
(a)  Show that for any value of ,  and  are vectors in W.

(b)  Show that  and  form a basis for W.

6. (a)  Express  as a linear combination of , , and  in two
different ways.

(b)  Explain why this does not violate Theorem 4.4.1.

7. Let A be an  matrix, and let  be linearly independent vectors in  expressed as 
matrices. What must be true about A for  to be linearly independent?

Answer:

A must be invertible

8. Must a basis for  contain a polynomial of degree k for each ? Justify your answer.

9. For the purpose of this exercise, let us define a “checkerboard matrix” to be a square matrix 
such that

Find the rank and nullity of the following checkerboard matrices.
(a)  The  checkerboard matrix.
(b)  The  checkerboard matrix.
(c)  The  checkerboard matrix.

Answer:

(a)  
(b)  
(c)  

10. For the purpose of this exercise, let us define an “X-matrix” to be a square matrix with an odd number of
rows and columns that has 0's everywhere except on the two diagonals where it has 1's. Find the rank and
nullity of the following X-matrices.
(a)  



(b)  

(c)  the X-matrix of size 

11. In each part, show that the stated set of polynomials is a subspace of  and find a basis for it.
(a)  All polynomials in  such that .

(b)  All polynomials in  such that .

Answer:

(a)   where  if n is even and  if n is odd.

(b)  

12. (Calculus required) Show that the set of all polynomials in  that have a horizontal tangent at  is a
subspace of . Find a basis for this subspace.

13. (a)  Find a basis for the vector space of all  symmetric matrices.
(b)  Find a basis for the vector space of all  skew-symmetric matrices.

Answer:

(a)  

(b)  

14. Various advanced texts in linear algebra prove the following determinant criterion for rank: The rank of a
matrix A is r if and only if A has some  submatrix with a nonzero determinant, and all square
submatrices of larger size have determinant zero. [Note: A submatrix of A is any matrix obtained by
deleting rows or columns of A. The matrix A itself is also considered to be a submatrix of A.] In each part,
use this criterion to find the rank of the matrix.
(a)  

(b)  

(c)  



(d)  

15. Use the result in Exercise 14 above to find the possible ranks for matrices of the form

Answer:

Possible ranks are 2, 1, and 0.

16. Prove: If S is a basis for a vector space , then for any vectors  and  in V and any scalar k, the following
relationships hold.
(a)  
(b)  

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



CHAPTER

   5 Eigenvalues and
Eigenvectors

CHAPTER CONTENTS

5.1.  Eigenvalues and Eigenvectors
5.2.  Diagonalization
5.3.  Complex Vector Spaces
5.4.  Differential Equations

INTRODUCTION

In this chapter we will focus on classes of scalars and vectors known as “eigenvalues” and
“eigenvectors,” terms derived from the German word eigen, meaning “own,” “peculiar
to,” “characteristic,” or “individual.” The underlying idea first appeared in the study of
rotational motion but was later used to classify various kinds of surfaces and to describe
solutions of certain differential equations. In the early 1900s it was applied to matrices and
matrix transformations, and today it has applications in such diverse fields as computer
graphics, mechanical vibrations, heat flow, population dynamics, quantum mechanics, and
economics to name just a few.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



5.1  Eigenvalues and Eigenvectors
In this section we will define the notions of “eigenvalue” and “eigenvector” and discuss some of their basic
properties.

Definition of Eigenvalue and Eigenvector

We begin with the main definition in this section.

DEFINITION 1

If A is an  matrix, then a nonzero vector x in  is called an eigenvector of A (or of the matrix
operator ) if  is a scalar multiple of x; that is,

for some scalar . The scalar  is called an eigenvalue of A (or of ), and x is said to be an
eigenvector corresponding to .

The requirement that an eigenvector be
nonzero is imposed to avoid the unimportant
case , which holds for every A and 

In general, the image of a vector x under multiplication by a square matrix A differs from x in both magnitude
and direction. However, in the special case where x is an eigenvector of A, multiplication by A leaves the
direction unchanged. For example, in  or  multiplication by A maps each eigenvector x of A (if any)
along the same line through the origin as x. Depending on the sign and magnitude of the eigenvalue 
corresponding to x, the operation  compresses or stretches x by a factor of , with a reversal of
direction in the case where  is negative (Figure 5.1.1).

Figure 5.1.1   

 EXAMPLE 1    Eigenvector of a 2 × 2 Matrix



The vector  is an eigenvector of

corresponding to the eigenvalue , since

Geometrically, multiplication by A has stretched the vector x by a factor of 3 (Figure 5.1.2).

Figure 5.1.2   

Computing Eigenvalues and Eigenvectors

Our next objective is to obtain a general procedure for finding eigenvalues and eigenvectors of an 
matrix A. We will begin with the problem of finding the eigenvalues of A. Note first that the equation

 can be rewritten as , or equivalently, as

For  to be an eigenvalue of A this equation must have a nonzero solution for x. But it follows from parts (b)
and (g) of Theorem 4.10.4 that this is so if and only if the coefficient matrix  has a zero determinant.
Thus, we have the following result.

THEOREM 5.1.1

If A is an  matrix, then  is an eigenvalue of A if and only if it satisfies the equation

  (1)

This is called the characteristic equation of A.



 EXAMPLE 2    Finding Eigenvalues

In Example 1 we observed that  is an eigenvalue of the matrix

but we did not explain how we found it. Use the characteristic equation to find all eigenvalues
of this matrix.

Solution   It follows from Formula 1 that the eigenvalues of A are the solutions of the equation
, which we can write as

from which we obtain

  (2)

This shows that the eigenvalues of A are  and . Thus, in addition to the
eigenvalue  noted in Example 1, we have discovered a second eigenvalue .

When the determinant  that appears on the left side of 1 is expanded, the result is a polynomial
 of degree n that is called the characteristic polynomial of A. For example, it follows from 2 that the

characteristic polynomial of the  matrix A in Example 2 is

which is a polynomial of degree 2. In general, the characteristic polynomial of an  matrix has the form

in which the coefficient of  is 1 (Exercise 17). Since a polynomial of degree n has at most n distinct roots, it
follows that the equation

  (3)

has at most n distinct solutions and consequently that an  matrix has at most n distinct eigenvalues. Since
some of these solutions may be complex numbers, it is possible for a matrix to have complex eigenvalues,
even if that matrix itself has real entries. We will discuss this issue in more detail later, but for now we will
focus on examples in which the eigenvalues are real numbers.

 EXAMPLE 3    Eigenvalues of a 3 × 3 Matrix

Find the eigenvalues of



Solution   The characteristic polynomial of A is

The eigenvalues of A must therefore satisfy the cubic equation

  (4)

To solve this equation, we will begin by searching for integer solutions. This task can be
simplified by exploiting the fact that all integer solutions (if there are any) of a polynomial
equation with integer coefficients

In applications involving large matrices
it is often not feasible to compute the
characteristic equation directly so other
methods must be used to find
eigenvalues. We will consider such
methods in Chapter 9.

must be divisors of the constant term, . Thus, the only possible integer solutions of 4 are the
divisors of , that is, , , . Successively substituting these values in 4 shows that

 is an integer solution. As a consequence,  must be a factor of the left side of 4.
Dividing  into  shows that 4 can be rewritten as

Thus, the remaining solutions of 4 satisfy the quadratic equation

which can be solved by the quadratic formula. Thus the eigenvalues of A are

 EXAMPLE 4    Eigenvalues of an Upper Triangular Matrix

Find the eigenvalues of the upper triangular matrix



Solution   Recalling that the determinant of a triangular matrix is the product of the entries on
the main diagonal (Theorem 2.1.2), we obtain

Thus, the characteristic equation is

and the eigenvalues are

which are precisely the diagonal entries of A.

The following general theorem should be evident from the computations in the preceding example.

THEOREM 5.1.2

If A is an  triangular matrix (upper triangular, lower triangular, or diagonal), then the eigenvalues
of A are the entries on the main diagonal of A.

 EXAMPLE 5    Eigenvalues of a Lower Triangular Matrix

By inspection, the eigenvalues of the lower triangular matrix

are , , and .

Had Theorem 5.1.2 been available earlier, we
could have anticipated the result obtained in
Example 2.



THEOREM 5.1.3

If A is an  matrix, the following statements are equivalent.
(a)   is an eigenvalue of A.
(b)  The system of equations  has nontrivial solutions.

(c)  There is a nonzero vector x such that 
(d)   is a solution of the characteristic equation 

Finding Eigenvectors and Bases for Eigenspaces

Now that we know how to find the eigenvalues of a matrix, we will consider the problem of finding the
corresponding eigenvectors. Since the eigenvectors corresponding to an eigenvalue  of a matrix A are the
nonzero vectors that satisfy the equation

these eigenvectors are the nonzero vectors in the null space of the matrix . We call this null space the
eigenspace of A corresponding to . Stated another way, the eigenspace of A corresponding to the eigenvalue

 is the solution space of the homogeneous system .

Notice that  is in every eigenspace even
though it is not an eigenvector. Thus, it is the
nonzero vectors in an eigenspace that are the
eigenvectors.

 EXAMPLE 6    Bases for Eigenspaces

Find bases for the eigenspaces of the matrix

Solution   In Example 1 we found the characteristic equation of A to be

from which we obtained the eigenvalues  and . Thus, there are two eigenspaces
of A, one corresponding to each of these eigenvalues.

By definition,



is an eigenvector of A corresponding to an eigenvalue  if and only if x is a nontrivial solution
of , that is, of

If , then this equation becomes

whose general solution is

(verify) or in matrix form,

Thus,

is a basis for the eigenspace corresponding to . We leave it as an exercise for you to
follow the pattern of these computations and show that

is a basis for the eigenspace corresponding to .

Historical Note    Methods of linear algebra are used in the emerging field of computerized face
recognition. Researchers are working with the idea that every human face in a racial group is a
combination of a few dozen primary shapes. For example, by analyzing three-dimensional scans of
many faces, researchers at Rockefeller University have produced both an average head shape in the



Caucasian group—dubbed the meanhead (top row left in the figure to the left)—and a set of
standardized variations from that shape, called eigenheads (15 of which are shown in the picture).
These are so named because they are eigenvectors of a certain matrix that stores digitized facial
information. Face shapes are represented mathematically as linear combinations of the eigenheads.
[Image: Courtesy Dr. Joseph Atick, Dr. Norman Redlich, and Dr. Paul Griffith]

 EXAMPLE 7    Eigenvectors and Bases for Eigenspaces

Find bases for the eigenspaces of

Solution   The characteristic equation of A is , or in factored form,
 (verify). Thus, the distinct eigenvalues of A are  and , so there

are two eigenspaces of A.

By definition,

is an eigenvector of A corresponding to  if and only if x is a nontrivial solution of
, or in matrix form,

  (5)

In the case where , Formula 5 becomes

Solving this system using Gaussian elimination yields (verify)

Thus, the eigenvectors of A corresponding to  are the nonzero vectors of the form

Since



are linearly independent (why?), these vectors form a basis for the eigenspace corresponding to
.

If , then 5 becomes

Solving this system yields (verify)

Thus, the eigenvectors corresponding to  are the nonzero vectors of the form

is a basis for the eigenspace corresponding to .

Powers of a Matrix

Once the eigenvalues and eigenvectors of a matrix A are found, it is a simple matter to find the eigenvalues
and eigenvectors of any positive integer power of A; for example, if  is an eigenvalue of A and x is a
corresponding eigenvector, then

which shows that  is an eigenvalue of  and that x is a corresponding eigenvector. In general, we have the
following result.

THEOREM 5.1.4

If k is a positive integer,  is an eigenvalue of a matrix A, and x is a corresponding eigenvector, then
 is an eigenvalue of  and x is a corresponding eigenvector.

 EXAMPLE 8    Powers of a Matrix



In Example 7 we showed that the eigenvalues of

are  and , so from Theorem 5.1.4 both  and  are eigenvalues of
. We also showed that

are eigenvectors of A corresponding to the eigenvalue , so from Theorem 5.1.4 they are also
eigenvectors of  corresponding to . Similarly, the eigenvector

of A corresponding to the eigenvalue  is also an eigenvector of  corresponding to
.

Eigenvalues and Invertibility

The next theorem establishes a relationship between eigenvalues and the invertibility of a matrix.

THEOREM 5.1.5

A square matrix A is invertible if and only if  is not an eigenvalue of A.

Proof   Assume that A is an  matrix and observe first that  is a solution of the characteristic
equation

if and only if the constant term  is zero. Thus, it suffices to prove that A is invertible if and only if .
But

or, on setting ,



It follows from the last equation that  if and only if , and this in turn implies that A is
invertible if and only if .

 EXAMPLE 9    Eigenvalues and Invertibility

The matrix A in Example 7 is invertible since it has eigenvalues  and , neither of which
is zero. We leave it for you to check this conclusion by showing that .

More on the Equivalence Theorem

As our final result in this section, we will use Theorem 5.1.5 to add one additional part to Theorem 4.10.4.

THEOREM 5.1.6   Equivalent Statements

If A is an  matrix, then the following statements are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A is expressible as a product of elementary matrices.
(e)   is consistent for every  matrix b.
(f)   has exactly one solution for every  matrix b.
(g)  .

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span .

(k)  The row vectors of A span .

(l)  The column vectors of A form a basis for .

(m)  The row vectors of A form a basis for .

(n)  A has .
(o)  A has nullity .
(p)  The orthogonal complement of the null space of A is .

(q)  The orthogonal complement of the row space of A is .

(r)  The range of  is .

(s)   is one-to-one.



(t)   is not an eigenvalue of A.

This theorem relates all of the major topics we have studied thus far.

Concept Review
•  Eigenvector
•  Eigenvalue
•  Characteristic equation
•  Characteristic polynomial
•  Eigenspace
•  Equivalence Theorem

Skills
•  Find the eigenvalues of a matrix.
•  Find bases for the eigenspaces of a matrix.

Exercise Set 5.1

In Exercises 1–2, confirm by multiplication that x is an eigenvector of A, and find the corresponding
eigenvalue.

1. 

Answer:

5

2. 

3. Find the characteristic equations of the following matrices:
(a)  

(b)  



(c)  

(d)  

(e)  

(f)  

Answer:

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

4. Find the eigenvalues of the matrices in Exercise 3

5. Find bases for the eigenspaces of the matrices in Exercise 3

Answer:

(a)  
Basis for eigenspace corresponding to ; basis for eigenspace corresponding to

(b)  
Basis for eigenspace corresponding to 

(c)  
Basis for eigenspace corresponding to ; basis for eigenspace corresponding to

(d)  There are no eigenspaces.
(e)  Basis for eigenspace corresponding to 

(f)  Basis for eigenspace corresponding to 



6. Find the characteristic equations of the following matrices:
(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

7. Find the eigenvalues of the matrices in Exercise 6.

Answer:

(a)  1, 2, 3
(b)  

(c)  
(d)  2
(e)  2
(f)  

8. Find bases for the eigenspaces of the matrices in Exercise 6.

9. Find the characteristic equations of the following matrices:
(a)  

(b)  



Answer:

(a)  

(b)  

10. Find the eigenvalues of the matrices in Exercise 9.

11. Find bases for the eigenspaces of the matrices in Exercise 9.

Answer:

(a)  

(b)  

12. By inspection, find the eigenvalues of the following matrices:
(a)  

(b)  

(c)  

13. Find the eigenvalues of  for

Answer:



14. Find the eigenvalues and bases for the eigenspaces of  for

15. Let A be a  matrix, and call a line through the origin of  invariant under A if Ax lies on the line
when x does. Find equations for all lines in , if any, that are invariant under the given matrix.

(a)  

(b)  

(c)  

Answer:

(a)   and 

(b)  No lines
(c)  

16. Find  given that A has  as its characteristic polynomial.

(a)  

(b)  

[Hint: See the proof of Theorem 5.1.5.]

17. Let A be an  matrix.
(a)  Prove that the characteristic polynomial of A has degree n.
(b)  Prove that the coefficient of  in the characteristic polynomial is 1.

18. Show that the characteristic equation of a  matrix A can be expressed as ,
where  is the trace of A.

19. Use the result in Exercise 18 to show that if

then the solutions of the characteristic equation of A are

Use this result to show that A has
(a)  two distinct real eigenvalues if .

(b)  two repeated real eigenvalues if .

(c)  complex conjugate eigenvalues if .



20. Let A be the matrix in Exercise 19. Show that if , then

are eigenvectors of A that correspond, respectively, to the eigenvalues

and

21. Use the result of Exercise 18 to prove that if  is the characteristic polynomial of a  matrix A,
then .

22. Prove: If a, b, c, and d are integers such that , then

has integer eigenvalues—namely,  and .

23. Prove: If  is an eigenvalue of an invertible matrix A, and x is a corresponding eigenvector, then  is
an eigenvalue of , and x is a corresponding eigenvector.

24. Prove: If  is an eigenvalue of A, x is a corresponding eigenvector, and s is a scalar, then  is an
eigenvalue of , and x is a corresponding eigenvector.

25. Prove: If  is an eigenvalue of A and x is a corresponding eigenvector, then  is an eigenvalue of  for
every scalar s, and x is a corresponding eigenvector.

26. Find the eigenvalues and bases for the eigenspaces of

and then use Exercises 23 and 24 to find the eigenvalues and bases for the eigenspaces of
(a)  

(b)  
(c)  

27. (a)  Prove that if A is a square matrix, then A and  have the same eigenvalues. [Hint: Look at the
characteristic equation .]

(b)  Show that A and  need not have the same eigenspaces. [Hint: Use the result in Exercise 20 to find
a  matrix for which A and  have different eigenspaces.]

28. Suppose that the characteristic polynomial of some matrix A is found to be
. In each part, answer the question and explain your reasoning.

(a)  What is the size of A?
(b)  Is A invertible?
(c)  How many eigenspaces does A have?



29. The eigenvectors that we have been studying are sometimes called right eigenvectors to distinguish them
from left eigenvectors, which are  column matrices x that satisfy the equation  for some
scalar . What is the relationship, if any, between the right eigenvectors and corresponding eigenvalues 
of A and the left eigenvectors and corresponding eigenvalues  of A?

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) If A is a square matrix and  for some nonzero scalar , then x is an eigenvector of A.

Answer:

False

(b) If  is an eigenvalue of a matrix A, then the linear system  has only the trivial solution.

Answer:

False

(c) If the characteristic polynomial of a matrix A is , then A is invertible.

Answer:

True

(d) If  is an eigenvalue of a matrix A, then the eigenspace of A corresponding to  is the set of eigenvectors
of A corresponding to .

Answer:

False

(e) If 0 is an eigenvalue of a matrix A, then  is singular.

Answer:

True

(f) The eigenvalues of a matrix A are the same as the eigenvalues of the reduced row echelon form of A.

Answer:

False

(g) If 0 is an eigenvalue of a matrix A, then the set of columns of A is linearly independent.

Answer:

False
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5.2  Diagonalization
In this section we will be concerned with the problem of finding a basis for  that consists of eigenvectors of an

 matrix A. Such bases can be used to study geometric properties of A and to simplify various numerical
computations. These bases are also of physical significance in a wide variety of applications, some of which will be
considered later in this text.

The Matrix Diagonalization Problem

Our first objective in this section is to show that the following two seemingly different problems are equivalent.

Problem 1   Given an  matrix A, does there exist an invertible matrix P such that  is diagonal?

Problem 2   Given an  matrix A, does A have n linearly independent eigenvectors?

Similarity

The matrix product  that appears in Problem 1 is called a similarity transformation of the matrix A. Such
products are important in the study of eigenvectors and eigenvalues, so we will begin with some terminology about
them.

DEFINITION 1

If A and B are square matrices, then we say that B is similar to A if there is an invertible matrix P such that
.

Note that if B is similar to A, then it is also true that A is similar to B, since we can express B as  by

taking . This being the case, we will usually say that A and B are similar matrices if either is similar to
the other.

Similarity Invariants

Similar matrices have many properties in common. For example, if , then it follows that A and B have
the same determinant, since



In general, any property that is shared by all similar matrices is called a similarity invariant or is said to be
invariant under similarity. Table 1 lists the most important similarity invariants. The proofs of some of these
results are given as exercises.

Table 1 Similarity Invariants

Property Description

Determinant A and  have the same determinant.

Invertibility A is invertible if and only if  is invertible.

Rank A and  have the same rank.

Nullity A and  have the same nullity.

Trace A and  have the same trace.

Characteristic
polynomial

A and  have the same characteristic polynomial.

Eigenvalues A and  have the same eigenvalues.

Eigenspace
dimension

If  is an eigenvalue of A and hence of , then the eigenspace of A
corresponding to  and the eigenspace of  corresponding to  have the same
dimension.

Expressed in the language of similarity, Problem 1 posed above is equivalent to asking whether the matrix A is
similar to a diagonal matrix. If so, the diagonal matrix will have all of the similarity-invariant properties of A, but
will have a simpler form, making it easier to analyze and work with. This important idea has some associated
terminology.

DEFINITION 2

A square matrix A is said to be diagonalizable if it is similar to some diagonal matrix; that is, if there exists
an invertible matrix P such that  is diagonal. In this case the matrix P is said to diagonalize A.

The following theorem shows that Problems 1 and 2 posed above are actually two different forms of the same
mathematical problem.

THEOREM 5.2.1

If A is an  matrix, the following statements are equivalent.



(a)  A is diagonalizable.
(b)  A has n linearly independent eigenvectors.

Part (b) of Theorem 5.2.1 is equivalent to saying
that there is a basis for  consisting of
eigenvectors of A. Why?

Proof (a)⇒⇒(b)   Since A is assumed to be diagonalizable, it follows that there exists an invertible matrix P and a
diagonal matrix D such that  or, equivalently,

  (1)

If we denote the column vectors of P by , and if we assume that the diagonal entries of D are
, then by Formula 6 of Section 1.3 the left side of 1 can be expressed as

and, as noted in the comment following Example 1 of Section 1.7, the right side of 1 can be expressed as

Thus, it follows from 1 that

  (2)

Since P is invertible, we know from Theorem 5.1.6 that its column vectors  are linearly independent
(and hence nonzero). Thus, it follows from 2 that these n column vectors are eigenvectors of A.

Proof (b)⇒⇒(a)   Assume that A has n linearly independent eigenvectors, , and that  are
the corresponding eigenvalues. If we let

and if we let D be the diagonal matrix that has  as its successive diagonal entries, then

Since the column vectors of P are linearly independent, it follows from Theorem 5.1.6 that P is invertible, so that
this last equation can be rewritten as , which shows that A is diagonalizable.

Procedure for Diagonalizing a Matrix

The preceding theorem guarantees that an  matrix A with n linearly independent eigenvectors is
diagonalizable, and the proof suggests the following method for diagonalizing A.



Procedure for Diagonalizing a Matrix

Step 1. Confirm that the matrix is actually diagonalizable by finding n linearly independent eigenvectors.
One way to do this is by finding a basis for each eigenspace and merging these basis vectors into a single
set S. If this set has fewer than n vectors, then the matrix is not diagonalizable.
Step 2. Form the matrix  that has the vectors in S as its column vectors.

Step 3. The matrix  will be diagonal and have the eigenvalues  corresponding to the
eigenvectors  as its successive diagonal entries.

 EXAMPLE 1    Finding a Matrix P That Diagonalizes a Matrix A

Find a matrix P that diagonalizes

Solution   In Example 7 of the preceding section we found the characteristic equation of A to be

and we found the following bases for the eigenspaces:

There are three basis vectors in total, so the matrix

diagonalizes A. As a check, you should verify that

In general, there is no preferred order for the columns of P. Since the ith diagonal entry of  is an eigenvalue
for the ith column vector of P, changing the order of the columns of P just changes the order of the eigenvalues on
the diagonal of . Thus, had we written



in the preceding example, we would have obtained

 EXAMPLE 2    A Matrix That Is Not Diagonalizable

Find a matrix P that diagonalizes

Solution   The characteristic polynomial of A is

so the characteristic equation is

Thus, the distinct eigenvalues of A are  and . We leave it for you to show that bases for
the eigenspaces are

Since A is a  matrix and there are only two basis vectors in total, A is not diagonalizable.

Alternative Solution   If you are concerned only in determining whether a matrix is
diagonalizable and not with actually finding a diagonalizing matrix P, then it is not necessary to
compute bases for the eigenspaces—it suffices to find the dimensions of the eigenspaces. For this
example, the eigenspace corresponding to  is the solution space of the system

Since the coefficient matrix has rank 2 (verify), the nullity of this matrix is 1 by Theorem 4.8.2, and
hence the eigenspace corresponding to  is one-dimensional.

The eigenspace corresponding to  is the solution space of the system

This coefficient matrix also has rank 2 and nullity 1 (verify), so the eigenspace corresponding to
 is also one-dimensional. Since the eigenspaces produce a total of two basis vectors, and since

three are needed, the matrix A is not diagonalizable.



There is an assumption in Example 1 that the column vectors of P, which are made up of basis vectors from the
various eigenspaces of A, are linearly independent. The following theorem, proved at the end of this section, shows
that this is so.

THEOREM 5.2.2

If  are eigenvectors of a matrix A corresponding to distinct eigenvalues, then
 is a linearly independent set.

Remark   Theorem 5.2.2 is a special case of a more general result: Suppose that  are distinct
eigenvalues and that we choose a linearly independent set in each of the corresponding eigenspaces. If we then
merge all these vectors into a single set, the result will still be a linearly independent set. For example, if we choose
three linearly independent vectors from one eigenspace and two linearly independent vectors from another
eigenspace, then the five vectors together form a linearly independent set. We omit the proof.

As a consequence of Theorem 5.2.2, we obtain the following important result.

THEOREM 5.2.3

If an  matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof   If  are eigenvectors corresponding to the distinct eigenvalues , then by Theorem
5.2.2,  are linearly independent. Thus, A is diagonalizable by Theorem 5.2.1.

 EXAMPLE 3    Using Theorem 5.2.3

We saw in Example 3 of the preceding section that

has three distinct eigenvalues: , , and . Therefore, A is diagonalizable
and

for some invertible matrix P. If needed, the matrix P can be found using the method shown in
Example 1 of this section.



 EXAMPLE 4    Diagonalizability of Triangular Matrices

From Theorem 5.1.2, the eigenvalues of a triangular matrix are the entries on its main diagonal.
Thus, a triangular matrix with distinct entries on the main diagonal is diagonalizable. For example,

is a diagonalizable matrix with eigenvalues , , , .

Computing Powers of a Matrix

There are many applications in which it is necessary to compute high powers of a square matrix A. We will show
next that if A happens to be diagonalizable, then the computations can be simplified by diagonalizing A.

To start, suppose that A is a diagonalizable  matrix, that P diagonalizes A, and that

Squaring both sides of this equation yields

We can rewrite the left side of this equation as

from which we obtain the relationship . More generally, if k is a positive integer, then a similar
computation will show that

which we can rewrite as



  (3)

Formula 3 reveals that raising a diagonalizable
matrix A to a positive integer power has the effect
of raising its eigenvalues to that power.

Note that computing the right side of this formula involves only three matrix multiplications and the powers of the
diagonal entries of D. For matrices of large size and high powers of , this involves substantially fewer operations
than computing  directly.

 EXAMPLE 5    Power of a Matrix

Use 3 to find , where

Solution   We showed in Example 1 that the matrix A is diagonalized by

and that

Thus, it follows from 3 that

  (4)

Remark   With the method in the preceding example, most of the work is in diagonalizing A. Once that work is
done, it can be used to compute any power of A. Thus, to compute  we need only change the exponents from
13 to 1000 in 4.



Eigenvalues of Powers of a Matrix

Once the eigenvalues and eigenvectors of any square matrix A are found, it is a simple matter to find the
eigenvalues and eigenvectors of any positive integer power of A. For example, if  is an eigenvalue of A and x is a
corresponding eigenvector, then

which shows not only that  is an eigenvalue of  but that x is a corresponding eigenvector. In general, we have
the following result.

Note that diagonalizability is not a requirement in
Theorem 5.2.4.

THEOREM 5.2.4

If  is an eigenvalue of a square matrix A and x is a corresponding eigenvector, and if k is any positive
integer, then  is an eigenvalue of  and x is a corresponding eigenvector.

Some problems that use this theorem are given in the exercises.

Geometric and Algebraic Multiplicity

Theorem 5.2.3 does not completely settle the diagonalizability question since it only guarantees that a square
matrix with n distinct eigenvalues is diagonalizable, but does not preclude the possibility that there may exist
diagonalizable matrices with fewer than n distinct eigenvalues. The following example shows that this is indeed the
case.

 EXAMPLE 6    The Converse of Theorem 5.2.3 Is False

Consider the matrices

It follows from Theorem 5.1.2 that both of these matrices have only one distinct eigenvalue, namely
, and hence only one eigenspace. We leave it as an exercise for you to solve the characteristic

equations

with  and show that for I the eigenspace is three-dimensional (all of ) and for J it is
one-dimensional, consisting of all scalar multiples of



This shows that the converse of Theorem 5.2.3 is false, since we have produced two  matrices
with fewer than three distinct eigenvalues, one of which is diagonalizable and the other of which is
not.

A full excursion into the study of diagonalizability is left for more advanced courses, but we will touch on one
theorem that is important to a fuller understanding of diagonalizability. It can be proved that if  is an eigenvalue
of A, then the dimension of the eigenspace corresponding to  cannot exceed the number of times that 
appears as a factor of the characteristic polynomial of A. For example, in Example 1 and Example 2 the
characteristic polynomial is

Thus, the eigenspace corresponding to  is at most (hence exactly) one-dimensional, and the eigenspace
corresponding to  is at most two-dimensional. In Example 1 the eigenspace corresponding to  actually
had dimension 2, resulting in diagonalizability, but in Example 2 the eigenspace corresponding to  had only
dimension 1, resulting in nondiagonalizability.

There is some terminology that is related to these ideas. If  is an eigenvalue of an  matrix A, then the
dimension of the eigenspace corresponding to  is called the geometric multiplicity of , and the number of
times that  appears as a factor in the characteristic polynomial of A is called the algebraic multiplicity of .
The following theorem, which we state without proof, summarizes the preceding discussion.

THEOREM 5.2.5   Geometric and Algebraic Multiplicity

If A is a square matrix, then:
(a)  For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.
(b)  A is diagonalizable if and only if the geometric multiplicity of every eigenvalue is equal to the

algebraic multiplicity.

   O P T I O N A L    

We will complete this section with an optional proof of Theorem 5.2.2.

Proof of Theorem 5.2.2   Let  be eigenvectors of A corresponding to distinct eigenvalues
. We will assume that  are linearly dependent and obtain a contradiction. We can then

conclude that  are linearly independent.

Since an eigenvector is nonzero by definition,  is linearly independent. Let r be the largest integer such that
 is linearly independent. Since we are assuming that  is linearly dependent, r

satisfies . Moreover, by the definition of r,  is linearly dependent. Thus, there are
scalars , not all zero, such that



  (5)

Multiplying both sides of 5 by A and using the fact that

we obtain

  (6)

If we now multiply both sides of 5 by  and subtract the resulting equation from 6 we obtain

Since  is a linearly independent set, this equation implies that

and since  are assumed to be distinct, it follows that

  (7)

Substituting these values in 5 yields

Since the eigenvector  is nonzero, it follows that

  (8)

But equations 7 and 8 contradict the fact that  are not all zero so the proof is complete.

Concept Review
•  Similarity transformation
•  Similarity invariant
•  Similar matrices
•  Diagonalizable matrix
•  Geometric multiplicity
•  Algebraic multiplicity

Skills
•  Determine whether a square matrix A is diagonalizable.
•  Diagonalize a square matrix A.
•  Find powers of a matrix using similarity.
•  Find the geometric multiplicity and the algebraic multiplicity of an eigenvalue.



Exercise Set 5.2

In Exercises 1–4, show that A and B are not similar matrices.

1. 

Answer:

Possible reason: Determinants are different.

2. , 

3. 

, 

Answer:

Possible reason: Ranks are different.

4. 
, 

5. Let A be a  matrix with characteristic equation . What are the possible dimensions
for eigenspaces of A?

Answer:

6. Let

(a)  Find the eigenvalues of A.
(b)  For each eigenvalue , find the rank of the matrix .
(c)  Is A diagonalizable? Justify your conclusion.

In Exercises 7–11, use the method of Exercise 6 to determine whether the matrix is diagonalizable.

7. 

Answer:

Not diagonalizable



8. 

9. 

Answer:

Not diagonalizable

10. 

11. 

Answer:

Not diagonalizable

In Exercises 12–15, find a matrix P that diagonalizes A, and compute .

12. 

13. 

Answer:

14. 

15. 

Answer:

In Exercises 16–21, find the geometric and algebraic multiplicity of each eigenvalue of the matrix A, and
determine whether A is diagonalizable. If A is diagonalizable, then find a matrix P that diagonalizes A, and find

.



16. 

17. 

Answer:

18. 

19. 

Answer:

20. 

21. 

Answer:

22. Use the method of Example 5 to compute , where

23. Use the method of Example 5 to compute , where



Answer:

24. In each part, compute the stated power of

25. Find  if n is a positive integer and

Answer:

26. Let

Show that
(a)  A is diagonalizable if .

(b)  A is not diagonalizable if .

[Hint: See Exercise 19 of Section 5.1.]

27. In the case where the matrix A in Exercise 26 is diagonalizable, find a matrix P that diagonalizes A. [Hint: See
Exercise 20 of Section 5.1.]

Answer:

On possibility is  where  and  are as in Exercise 20 of Section 5.1.

28. Prove that similar matrices have the same rank.

29. Prove that similar matrices have the same nullity.



30. Prove that similar matrices have the same trace.

31. Prove that if A is diagonalizable, then so is  for every positive integer k.

32. Prove that if A is a diagonalizable matrix, then the rank of A is the number of nonzero eigenvalues of A.

33. Suppose that the characteristic polynomial of some matrix A is found to be .
In each part, answer the question and explain your reasoning.
(a)  What can you say about the dimensions of the eigenspaces of A?
(b)  What can you say about the dimensions of the eigenspaces if you know that A is diagonalizable?
(c)  If  is a linearly independent set of eigenvectors of A all of which correspond to the same

eigenvalue of A, what can you say about the eigenvalue?

Answer:

(a)  
(b)  Dimensions will be exactly 1, 2, and 3.
(c)  

34. This problem will lead you through a proof of the fact that the algebraic multiplicity of an eigenvalue of an
 matrix A is greater than or equal to the geometric multiplicity. For this purpose, assume that  is an

eigenvalue with geometric multiplicity k.
(a)  Prove that there is a basis  for  in which the first k vectors of B form a basis for the

eigenspace corresponding to .
(b)  Let P be the matrix having the vectors in B as columns. Prove that the product  can be expressed as

[Hint: Compare the first k column vectors on both sides.]
(c)  Use the result in part (b) to prove that A is similar to

and hence that A and C have the same characteristic polynomial.
(d)  By considering  prove that the characteristic polynomial of C (and hence A) contains the

factor  at least k times, thereby proving that the algebraic multiplicity of  is greater than or equal
to the geometric multiplicity k.

True-False Exercises

In parts (a)–(h) determine whether the statement is true or false, and justify your answer.

(a) Every square matrix is similar to itself.

Answer:

True

(b) If A, B, and C are matrices for which A is similar to B and B is similar to C, then A is similar to C.



Answer:

True

(c) If A and B are similar invertible matrices, then  and  are similar.

Answer:

True

(d) If A is diagonalizable, then there is a unique matrix P such that  is diagonal.

Answer:

False

(e) If A is diagonalizable and invertible, then  is diagonalizable.

Answer:

True

(f) If A is diagonalizable, then  is diagonalizable.

Answer:

True

(g) If there is a basis for  consisting of eigenvectors of an  matrix A, then A is diagonalizable.

Answer:

True

(h) If every eigenvalue of a matrix A has algebraic multiplicity 1, then A is diagonalizable.

Answer:

True
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5.3  Complex Vector Spaces
Because the characteristic equation of any square matrix can have complex solutions, the notions of complex eigenvalues and
eigenvectors arise naturally, even within the context of matrices with real entries. In this section we will discuss this idea and
apply our results to study symmetric matrices in more detail. A review of the essentials of complex numbers appears in the
back of this text.

Review of Complex Numbers

Recall that if  is a complex number, then:
•   and  are called the real part of z and the imaginary part of z, respectively,

•   is called the modulus (or absolute value) of z,

•   is called the complex conjugate of z,
•  ,

•  the angle  in Figure 5.3.1 is called an argument of z,
•  
•  
•   is called the polar form of z.

Figure 5.3.1   

Complex Eigenvalues

In Formula 3 of Section 5.1 we observed that the characteristic equation of a general  matrix A has the form

  (1)

in which the highest power of  has a coefficient of 1. Up to now we have limited our discussion to matrices in which the
solutions of 1 are real numbers. However, it is possible for the characteristic equation of a matrix A with real entries to have
imaginary solutions; for example, the characteristic equation of the matrix

is

which has the imaginary solutions  and . To deal with this case we will need to explore the notion of a complex
vector space and some related ideas.



Vectors in Cn

A vector space in which scalars are allowed to be complex numbers is called a complex vector space. In this section we will
be concerned only with the following complex generalization of the real vector space .

DEFINITION 1

If n is a positive integer, then a complex n-tuple is a sequence of n complex numbers . The set of all
complex n-tuples is called complex n-space and is denoted by . Scalars are complex numbers, and the operations
of addition, subtraction, and scalar multiplication are performed componentwise.

The terminology used for n-tuples of real numbers applies to complex n-tuples without change. Thus, if  are
complex numbers, then we call  a vector in  and  its components. Some examples of
vectors in  are

Every vector

in  can be split into real and imaginary parts as

which we also denote as

where

The vector

is called the complex conjugate of v and can be expressed in terms of  and  as

  (2)

It follows that the vectors in  can be viewed as those vectors in  whose imaginary part is zero; or stated another way, a
vector v in  is in  if and only if .

In this section we will also need to consider matrices with complex entries, so henceforth we will call a matrix A a real matrix
if its entries are required to be real numbers and a complex matrix if its entries are allowed to be complex numbers. The
standard operations on real matrices carry over to complex matrices without change, and all of the familiar properties of
matrices continue to hold.

If A is a complex matrix, then Re(A) and Im(A) are the matrices formed from the real and imaginary parts of the entries of A,
and  is the matrix formed by taking the complex conjugate of each entry in A.

 EXAMPLE 1    Real and Imaginary Parts of Vectors and Matrices

Let



Then

Algebraic Properties of the Complex Conjugate

The next two theorems list some properties of complex vectors and matrices that we will need in this section. Some of the
proofs are given as exercises.

THEOREM 5.3.1

If u and v are vectors in , and if k is a scalar, then:

(a)  
(b)  
(c)  
(d)  

THEOREM 5.3.2

If A is an  complex matrix and B is a  complex matrix, then:
(a)  

(b)  

(c)  

The Complex Euclidean Inner Product

The following definition extends the notions of dot product and norm to .

DEFINITION 2

If  and  are vectors in , then the complex Euclidean inner product of of u
and v (also called the complex dot product) is denoted by  and is defined as



  (3)

We also define the Euclidean norm on  to be

  (4)

As in the real case, we call v a unit vector in  if , and we say two vectors u and v are orthogonal if .

The complex conjugates in 3 ensure that  is a real
number, for without them the quantity  in 4 might
be imaginary.

 EXAMPLE 2    Complex Euclidean Inner Product and Norm

Find , , , and  for the vectors

Solution   

Recall from Table 1 of Section 3.2 that if u and v are column vectors in , then their dot product can be expressed as

The analogous formulas in  are (verify)

  (5)

Example 2 reveals a major difference between the dot product on  and the complex dot product on . For the dot product
on  we always have  (the symmetry property), but for the complex dot product the corresponding relationship is
given by , which is called its antisymmetry property. The following theorem is an analog of Theorem 3.2.2.

THEOREM 5.3.3

If u, v, and w are vectors in , and if k is a scalar, then the complex Euclidean inner product has the following
properties:
(a)  
(b)  
(c)  



(d)  
(e)  

Parts (c) and (d) of this theorem state that a scalar multiplying a complex Euclidean inner product can be regrouped with the
first vector, but to regroup it with the second vector you must first take its complex conjugate. We will prove part (d), and
leave the others as exercises.

Proof (d)   

To complete the proof. substitute  for k and use the fact that .

Vector Concepts in Cn

Except for the use of complex scalars, the notions of linear combination, linear independence, subspace, spanning, basis, and
dimension carry over without change to .

Is  a subspace of ? Explain.

Eigenvalues and eigenvectors are defined for complex matrices exactly as for real matrices. If A is an  matrix with
complex entries, then the complex roots of the characteristic equation  are called complex eigenvalues of A.
As in the real case,  is a complex eigenvalue of A if and only if there exists a nonzero vector x in  such that .
Each such x is called a complex eigenvector of A corresponding to λ. The complex eigenvectors of A corresponding to λ are
the nonzero solutions of the linear system , and the set of all such solutions is a subspace of , called the
eigenspace of A corresponding to λ.

The following theorem states that if a real matrix has complex eigenvalues, then those eigenvalues and their corresponding
eigenvectors occur in conjugate pairs.

THEOREM 5.3.4

If λ is an eigenvalue of a real  matrix A, and if x is a corresponding eigenvector, then  is also an eigenvalue of A,
and  is a corresponding eigenvector.

Proof   Since λ is an eigenvalue of A and x is a corresponding eigenvector, we have

  (6)

However, , since A has real entries, so it follows from part (c) of Theorem 5.3.2 that

  (7)

Equations 6 and 7 together imply that



in which  (why?); this tells us that  is an eigenvalue of A and  is a corresponding eigenvector.

 EXAMPLE 3    Complex Eigenvalues and Eigenvectors

Find the eigenvalues and bases for the eigenspaces of

Solution   The characteristic polynomial of A is

so the eigenvalues of A are  and . Note that these eigenvalues are complex conjugates, as
guaranteed by Theorem 5.3.4.

To find the eigenvectors we must solve the system

with  and then with . With , this system becomes

  (8)

We could solve this system by reducing the augmented matrix

  (9)

to reduced row echelon form by Gauss-Jordan elimination, though the complex arithmetic is somewhat tedious.
A simpler procedure here is first to observe that the reduced row echelon form of 9 must have a row of zeros
because 8 has nontrivial solutions. This being the case, each row of 9 must be a scalar multiple of the other, and
hence the first row can be made into a row of zeros by adding a suitable multiple of the second row to it.
Accordingly, we can simply set the entries in the first row to zero, then interchange the rows, and then multiply
the new first row by  to obtain the reduced row echelon form

Thus, a general solution of the system is

This tells us that the eigenspace corresponding to  is one-dimensional and consists of all complex scalar
multiples of the basis vector

  (10)

As a check, let us confirm that . We obtain

We could find a basis for the eigenspace corresponding to  in a similar way, but the work is unnecessary,



since Theorem 5.3.4 implies that

  (11)

must be a basis for this eigenspace. The following computations confirm that  is an eigenvector of A
corresponding to :

Since a number of our subsequent examples will involve  matrices with real entries, it will be useful to discuss some
general results about the eigenvalues of such matrices. Observe first that the characteristic polynomial of the matrix

is

We can express this in terms of the trace and determinant of A as

  (12)

from which it follows that the characteristic equation of A is

  (13)

Now recall from algebra that if  is a quadratic equation with real coefficients, then the discriminant
 determines the nature of the roots:

Applying this to 13 with , , and  yields the following theorem.



Olga Taussky-Todd (1906–1995)

Historical Note    Olga Taussky-Todd was one of the pioneering women in matrix analysis and the first woman
appointed to the faculty at the California Institute of Technology. She worked at the National Physical Laboratory in
London during World War II, where she was assigned to study flutter in supersonic aircraft. While there, she realized
that some results about the eigenvalues of a certain  complex matrix could be used to answer key questions about
the flutter problem that would otherwise have required laborious calculation. After World War II Olga Taussky-Todd
continued her work on matrix-related subjects and helped to draw many known but disparate results about matrices
into the coherent subject that we now call matrix theory.
[Image: Courtesy of the Archives, California Institute of Technology]

THEOREM 5.3.5

If A is a  matrix with real entries, then the characteristic equation of A is  and

(a)  A has two distinct real eigenvalues if ;

(b)  A has one repeated real eigenvalue if ;

(c)  A has two complex conjugate eigenvalues if .

 EXAMPLE 4    Eigenvalues of a 2 × 2 Matrix

In each part, use Formula 13 for the characteristic equation to find the eigenvalues of
(a)  

(b)  

(c)  

Solution   
(a)  We have  and , so the characteristic equation of A is

Factoring yields , so the eigenvalues of A are  and .

(b)  We have  and , so the characteristic equation of A is

Factoring this equation yields , so  is the only eigenvalue of A; it has algebraic
multiplicity 2.

(c)  We have  and , so the characteristic equation of A is

Solving this equation by the quadratic formula yields



Thus, the eigenvalues of A are  and .

Symmetric Matrices Have Real Eigenvalues

Our next result, which is concerned with the eigenvalues of real symmetric matrices, is important in a wide variety of
applications. The key to its proof is to think of a real symmetric matrix as a complex matrix whose entries have an imaginary
part of zero.

THEOREM 5.3.6

If A is a real symmetric matrix, then A has real eigenvalues.

Proof   Suppose that  is an eigenvalue of A and x is a corresponding eigenvector, where we allow for the possibility that λ is
complex and x is in . Thus,

where . If we multiply both sides of this equation by  and use the fact that

then we obtain

Since the denominator in this expression is real, we can prove that λ is real by showing that

  (14)

But, A is symmetric and has real entries, so it follows from the second equality in 14 and properties of the conjugate that

A Geometric Interpretation of Complex Eigenvalues

The following theorem is the key to understanding the geometric significance of complex eigenvalues of real  matrices.

THEOREM 5.3.7

The eigenvalues of the real matrix

  (15)



are . If a and b are not both zero, then this matrix can be factored as

  (16)

where φ is the angle from the positive x-axis to the ray that joins the origin to the point  (Figure 5.3.2).

Figure 5.3.2   

Geometrically, this theorem states that multiplication by a matrix of form 15 can be viewed as a rotation through the angle φ
followed by a scaling with factor  (Figure 5.3.3).

Figure 5.3.3   

Proof   The characteristic equation of C is  (verify), from which it follows that the eigenvalues of C are
. Assuming that a and b are not both zero, let φ be the angle from the positive x-axis to the ray that joins the origin

to the point . The angle φ is an argument of the eigenvalue , so we see from Figure 5.3.2 that

It follows from this that the matrix in 15 can be written as

The following theorem, whose proof is considered in the exercises, shows that every real  matrix with complex
eigenvalues is similar to a matrix of form 15.

THEOREM 5.3.8

Let A be a real  matrix with complex eigenvalues  (where ). If x is an eigenvector of A
corresponding to , then the matrix  is invertible and



  (17)

 EXAMPLE 5    A Matrix Factorization Using Complex Eigenvalues

Factor the matrix in Example 3 into form 17 using the eigenvalue  and the corresponding eigenvector
that was given in 11.

Solution   For consistency with the notation in Theorem 5.3.8, let us denote the eigenvector in 11 that
corresponds to  by x (rather than  as before). For this λ and x we have

Thus,

so A can be factored in form 17 as

You may want to confirm this by multiplying out the right side.

A Geometric Interpretation of Theorem 5.3.8

To clarify what Theorem 5.3.8 says geometrically, let us denote the matrices on the right side of 16 by S and , respectively,
and then use 16 to rewrite 17 as

  (18)

If we now view P as the transition matrix from the basis  to the standard basis, then 18 tells us that
computing a product  can be broken down into a three-step process:
Step 1  Map  from standard coordinates into B-coordinates by forming the product .

Step 2  Rotate and scale the vector  by forming the product .

Step 3  Map the rotated and scaled vector back to standard coordinates to obtain .

Power Sequences

There are many problems in which one is interested in how successive applications of a matrix transformation affect a specific
vector. For example, if A is the standard matrix for an operator on  and  is some fixed vector in , then one might be
interested in the behavior of the power sequence



For example, if

then with the help of a computer or calculator one can show that the first four terms in the power sequence are

With the help of MATLAB or a computer algebra system one can show that if the first 100 terms are plotted as ordered pairs
, then the points move along the elliptical path shown in Figure 5.3.4a.

Figure 5.3.4   

To understand why the points move along an elliptical path, we will need to examine the eigenvalues and eigenvectors of A.
We leave it for you to show that the eigenvalues of A are  and that the corresponding eigenvectors are

If we take  and  in 17 and use the fact that , then we obtain the factorization

  (19)

where  is a rotation about the origin through the angle φ whose tangent is

The matrix P in 19 is the transition matrix from the basis

to the standard basis, and  is the transition matrix from the standard basis to the basis B (Figure 5.3.5). Next, observe that
if n is a positive integer, then 19 implies that

so the product  can be computed by first mapping  into the point  in B-coordinates, then multiplying by  to
rotate this point about the origin through the angle , and then multiplying  by P to map the resulting point back to



standard coordinates. We can now see what is happening geometrically: In B-coordinates each successive multiplication by A
causes the point  to advance through an angle φ, thereby tracing a circular orbit about the origin. However, the basis B
is skewed (not orthogonal), so when the points on the circular orbit are transformed back to standard coordinates, the effect is
to distort the circular orbit into the elliptical orbit traced by  (Figure 5.3.4b). Here are the computations for the first step
(successive steps are illustrated in Figure 5.3.4c):

Figure 5.3.5   

Concept Review
•  Real part of z
•  Imaginary part of z
•  Modulus of z
•  Complex conjugate of z
•  Argument of z
•  Polar form of z
•  Complex vector space
•  Complex n-tuple
•  Complex n-space
•  Real matrix
•  Complex matrix
•  Complex Euclidean inner product
•  Euclidean norm on 



•  Antisymmetry property
•  Complex eigenvalue
•  Complex eigenvector
•  Eigenspace in 

•  Discriminant

Skills
•  Find the real part, imaginary part, and complex conjugate of a complex matrix or vector.
•  Find the determinant of a complex matrix.
•  Find complex inner products and norms of complex vectors.
•  Find the eigenvalues and bases for the eigenspaces of complex matrices.
•  Factor a  real matrix with complex eigenvalues into a product of a scaling matrix and a rotation matrix.

Exercise Set 5.3

In Exercises 1–2, find , , , and .

1. 

Answer:

2. 

In Exercises 3–4, show that u, v, and k satisfy Theorem 5.3.1.

3. 

4. 

5. Solve the equation  for x, where u and v are the vectors in Exercise 3.

Answer:

6. Solve the equation  for x, where u and v are the vectors in Exercise 4.

In Exercises 7–8, find , , , , and .

7. 

Answer:

8. 

9. Let A be the matrix given in Exercise 7, and let B be the matrix



Confirm that these matrices have the properties stated in Theorem 5.3.2.

10. Let A be the matrix given in Exercise 8, and let B be the matrix

Confirm that these matrices have the properties stated in Theorem 5.3.2.

In Exercises 11–12, compute , , and , and show that the vectors satisfy Formula 5 and parts ( a), ( b), and ( c)
of Theorem 5.3.3.

11.    

Answer:

12. 

13. Compute  for the vectors u, v, and w in Exercise 11.

Answer:

14. Compute  for the vectors u, v, and w in Exercise 12.

In Exercises 15–18, find the eigenvalues and bases for the eigenspaces of A.

15. 

Answer:

16. 

17. 

Answer:

18. 

In Exercises 19–22, each matrix C has form 15. Theorem 5.3.7 implies that C is the product of a scaling matrix with factor
 and a rotation matrix with angle φ. Find  and φ for which .

19. 

Answer:

20. 



21. 

Answer:

22. 

In Exercises 23–26, find an invertible matrix P and a matrix C of form 15 such that .

23. 

Answer:

24. 

25. 

Answer:

26. 

27. Find all complex scalars k, if any, for which u and v are orthogonal in .

(a)  
(b)  

Answer:

(a)  

(b)  None

28. Show that if A is a real  matrix and x is a column vector in , then  and .

29. The matrices

called Pauli spin matrices, are used in quantum mechanics to study particle spin. The Dirac matrices, which are also used
in quantum mechanics, are expressed in terms of the Pauli spin matrices and the  identity matrix  as



(a)  Show that .

(b)  Matrices A and B for which  are said to be anticommutative. Show that the Dirac matrices are
anticommutative.

30. If k is a real scalar and v is a vector in , then Theorem 3.2.1 states that . Is this relationship also true if k
is a complex scalar and v is a vector in ? Justify your answer.

31. Prove part ( c) of Theorem 5.3.1.

32. Prove Theorem 5.3.2.

33. Prove that if u and v are vectors in , then

34. It follows from Theorem 5.3.7 that the eigenvalues of the rotation matrix

are . Prove that if x is an eigenvector corresponding to either eigenvalue, then  and  are
orthogonal and have the same length. [Note: This implies that  is a real scalar multiple of an
orthogonal matrix.]

35. The two parts of this exercise lead you through a proof of Theorem 5.3.8.
(a)  For notational simplicity, let

and let  and , so . Show that the relationship  implies that

and then equate real and imaginary parts in this equation to show that

(b)  Show that P is invertible, thereby completing the proof, since the result in part (a) implies that . [Hint: If
P is not invertible, then one of its column vectors is a real scalar multiple of the other, say . Substitute this into
the equations  and  obtained in part (a), and show that . Finally, show
that this leads to a contradiction, thereby proving that P is invertible.]

36. In this problem you will prove the complex analog of the Cauchy-Schwarz inequality.
(a)  Prove: If k is a complex number, and u and v are vectors in , then

(b)  Use the result in part (a) to prove that

(c)  Take  in part (b) to prove that

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) There is a real  matrix with no real eigenvalues.



Answer:

False

(b) The eigenvalues of a  complex matrix are the solutions of the equation .

Answer:

True

(c) Matrices that have the same complex eigenvalues with the same algebraic multiplicities have the same trace.

Answer:

False

(d) If λ is a complex eigenvalue of a real matrix A with a corresponding complex eigenvector v, then  is a complex
eigenvalue of A and  is a complex eigenvector of A corresponding to .

Answer:

True

(e) Every eigenvalue of a complex symmetric matrix is real.

Answer:

False

(f) If a  real matrix A has complex eigenvalues and  is a vector in , then the vectors , ,  lie
on an ellipse.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



5.4  Differential Equations
Many laws of physics, chemistry, biology, engineering, and economics are described in terms of “differential
equations”—that is, equations involving functions and their derivatives. In this section we will illustrate one way in
which linear algebra, eigenvalues and eigenvectors can be applied to solving systems of differential equations.
Calculus is a prerequisite for this section.

Terminology

Recall from calculus that a differential equation is an equation involving unknown functions and their derivatives.
The order of a differential equation is the order of the highest derivative it contains. The simplest differential
equations are the first-order equations of the form

  (1)

where  is an unknown differentiable function to be determined,  is its derivative, and a is a
constant. As with most differential equations, this equation has infinitely many solutions; they are the functions of the
form

  (2)

where c is an arbitrary constant. That every function of this form is a solution of 1 follows from the computation

and that these are the only solution is shown in the exercises. Accordingly, we call 2 the general solution of 1. As an
example, the general solution of the differential equation  is

  (3)

Often, a physical problem that leads to a differential equation imposes some conditions that enable us to isolate one
particular solution from the general solution. For example, if we require that solution 3 of the equation 
satisfy the added condition

  (4)

(that is,  when ), then on substituting these values in 3, we obtain  from which we conclude
that

is the only solution  that satisfies 4.

A condition such as 4, which specifies the value of the general solution at a point is called an initial condition, and
the problem of solving a differential equation subject to an initial condition is called an initial-value problem.

First-Order Linear Systems



In this section we will be concerned with solving systems of differential equations of the form

  (5)

where ,  are functions to be determined, and the 's are constants. In
matrix notation, 5 can be written as

or, more briefly as

A system of differential equations of form 5 is
called a first-order linear system.

  (6)

where the notation  denotes the vector obtained by differentiating each component of y.

 EXAMPLE 1    Solution of a Linear System with Initial Conditions

(a)  Write the following system in matrix form:

  (7)

(b)  Solve the system.
(c)  Find a solution of the system that satisfies the initial conditions , , and

.

Solution   
(a)  

  (8)

or

  (9)



(b)  Because each equation in 7 involves only one unknown function, we can solve the equations
individually. It follows from 2 that these solutions are

or, in matrix notation,

  (10)

(c)  From the given initial conditions, we obtain

so the solution satisfying these conditions is

or, in matrix notation,

Solution by Diagonalization

What made the system in Example 1 easy to solve was the fact that each equation involved only one of the unknown
functions, so its matrix formulation, , had a diagonal coefficient matrix A [Formula 9]. A more complicated
situation occurs when some or all of the equations in the system involve more than one of the unknown functions, for
in this case the coefficient matrix is not diagonal. Let us now consider how we might solve such a system.

The basic idea for solving a system  whose coefficient matrix A is not diagonal is to introduce a new
unknown vector u that is related to the unknown vector y by an equation of the form  in which P is an
invertible matrix that diagonalizes A. Of course, such a matrix may or may not exist, but if it does then we can rewrite
the equation  as

or alternatively as

Since P is assumed to diagonalize A, this equation has the form



where D is diagonal. We can now solve this equation for u using the method of Example 1, and then obtain y by
matrix multiplication using the relationship .

In summary, we have the following procedure for solving a system  in the case were A is diagonalizable.

A Procedure for Solving y′ = Ay if A is Diagonalizable

Step 1. Find a matrix P that diagonalizes A.
Step 2. Make the substitutions  and  to obtain a new “diagonal system” , where

.

Step 3. Solve .
Step 4. Determine y from the equation .

 EXAMPLE 2    Solution Using Diagonalization

(a)  Solve the system

(b)  Find the solution that satisfies the initial conditions , .

Solution   
(a)  The coefficient matrix for the system is

As discussed in Section 5.2, A will be diagonalized by any matrix P whose columns are linearly
independent eigenvectors of A. Since

the eigenvalues of A are  and . By definition,

is an eigenvector of A corresponding to  if and only if x is a nontrivial solution of

If , this system becomes

Solving this system yields  so



Thus,

is a basis for the eigenspace corresponding to . Similarly, you can show that

is a basis for the eigenspace corresponding to . Thus,

diagonalizes A, and

Thus, as noted in Step 2 of the procedure stated above, the substitution

yields the “diagonal system”

From 2 the solution of this system is

so the equation  yields, as the solution for y,

or

  (11)

(b)  If we substitute the given initial conditions in 11, we obtain

Solving this system, we obtain  so it follows from 11 that the solution satisfying
the initial conditions is



Remark   Keep in mind that the method of Example 2 works because the coefficient matrix of the system can be
diagonalized. In cases where this is not so, other methods are required. These are typically discussed in books
devoted to differential equations.

Concept Review
•  Differential equation
•  Order of a differential equation
•  General solution
•  Particular solution
•  Initial condition
•  Initial-value problem
•  First-order linear system

Skills
•  Find the matrix form of a system of linear differential equations.
•  Find the general solution of a system of linear differential equations by diagonalization.
•  Find the particular solution of a system of linear differential equations satisfying an initial condition.

Exercise Set 5.4
1. (a)  Solve the system

(b)  Find the solution that satisfies the initial conditions , .

Answer:

(a)  

(b)  

2. (a)  Solve the system



(b)  Find the solution that satisfies the conditions , .

3. (a)  Solve the system

(b)  Find the solution that satisfies the initial conditions , , .

Answer:

(a)  

(b)  

4. Solve the system

5. Show that every solution of  has the form .

[Hint: Let  be a solution of the equation, and show that  is constant.]

6. Show that if A is diagonalizable and

is a solution of the system , then each  is a linear combination of  where
 are the eigenvalues of A.

7. Sometimes it is possible to solve a single higher-order linear differential equation with constant coefficients by
expressing it as a system and applying the methods of this section. For the differential equation 
, show that the substitutions  and  lead to the system

Solve this system, and use the result to solve the original differential equation.



Answer:

8. Use the procedure in Exercise 7 to solve .

9. Explain how you might use the procedure in Exercise 7 to solve . Use your
procedure to solve the equation.

Answer:

10. (a)  By rewriting 11 in matrix form, show that the solution of the system in Example 2 can be expressed as

This is called the general solution of the system.
(b)  Note that in part (a), the vector in the first term is an eigenvector corresponding to the eigenvalue , and

the vector in the second term is an eigenvector corresponding to the eigenvalue  This is a special
case of the following general result:

Theorem. If the coefficient matrix A of the system  is diagonalizable, then the general
solution of the system can be expressed as

where  are the eigenvalues of A, and  is an eigenvector of A corresponding to 

Prove this result by tracing through the four-step procedure preceding Example 2 with

11. Consider the system of differential equations , where A is a  matrix. For what values of
 do the component solutions  tend to zero as ? In particular, what must be

true about the determinant and the trace of A for this to happen?

12. Solve the nondiagonalizable system

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) Every system of differential equations  has a solution.



Answer:

False

(b) If  and , then .

Answer:

False

(c) If  and , then  for all scalars c and d.

Answer:

True

(d) If A is a square matrix with distinct real eigenvalues, then it is possible to solve  by diagonalization.

Answer:

True

(e) If A and P are similar matrices, then  and  have the same solutions.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



Chapter 5 Supplementary Exercises

1. (a)  Show that if , then

has no eigenvalues and consequently no eigenvectors.
(b)  Give a geometric explanation of the result in part (a).

Answer:

(b)  The transformation rotates vectors through the angle ; therefore, if , then no nonzero vector
is transformed into a vector in the same or opposite direction.

2. Find the eigenvalues of

3. (a)  Show that if D is a diagonal matrix with nonnegative entries on the main diagonal, then there is a
matrix S such that .

(b)  Show that if A is a diagonalizable matrix with nonnegative eigenvalues, then there is a matrix S such
that .

(c)  Find a matrix S such that , given that

Answer:

(c)  

4. Prove: If A is a square matrix, then A and  have the same characteristic polynomial.

5. Prove: If A is a square matrix and  is the characteristic polynomial of A, then the
coefficient of  in  is the negative of the trace of A.

6. Prove: If , then

is not diagonalizable.

7. In advanced linear algebra, one proves the Cayley—Hamilton Theorem, which states that a square matrix



A satisfies its characteristic equation; that is, if

is the characteristic equation of A, then

Verify this result for

In Exercises 8–10, use the Cayley—Hamilton Theorem, stated in Exercise 7.

8. (a)  Use Exercise 18 of Section 5.1 to prove the Cayley—Hamilton Theorem for  matrices.
(b)  Prove the Cayley—Hamilton Theorem for  diagonalizable matrices.

9. The Cayley—Hamilton Theorem provides a method for calculating powers of a matrix. For example, if A
is a  matrix with characteristic equation

then , so

Multiplying through by A yields , which expresses  in terms of  and A, and
multiplying through by  yields , which expresses  in terms of  and .
Continuing in this way, we can calculate successive powers of A by expressing them in terms of lower
powers. Use this procedure to calculate    and  for

Answer:

10. Use the method of the preceding exercise to calculate  and  for

11. Find the eigenvalues of the matrix

Answer:



12. (a)  It was shown in Exercise 17 of Section 5.1 that if A is an  matrix, then the coefficient of  in
the characteristic polynomial of A is 1. (A polynomial with this property is called monic.) Show that
the matrix

has characteristic polynomial

This shows that every monic polynomial is the characteristic polynomial of some matrix. The matrix
in this example is called the companion matrix of . [Hint: Evaluate all determinants in the
problem by adding a multiple of the second row to the first to introduce a zero at the top of the first
column, and then expanding by cofactors along the first column.]

(b)  Find a matrix with characteristic polynomial

13. A square matrix A is called nilpotent if  for some positive integer n. What can you say about the
eigenvalues of a nilpotent matrix?

Answer:

They are all 0.

14. Prove: If A is an  matrix and n is odd, then A has at least one real eigenvalue.

15. Find a  matrix A that has eigenvalues , and  with corresponding eigenvectors

respectively.

Answer:

16. Suppose that a  matrix A has eigenvalues , , , and .
(a)  Use the method of Exercise 16 of Section 5.1 to find .

(b)  Use Exercise 5 above to find .

17. Let A be a square matrix such that . What can you say about the eigenvalues of A?



Answer:

They are all 0, 1, or .

18. (a)  Solve the system

(b)  Find the solution satisfying the initial conditions  and .

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



CHAPTER

   6 Inner Product Spaces

CHAPTER CONTENTS

6.1.  Inner Products
6.2.  Angle and Orthogonality in Inner Product Spaces
6.3.  Gram–Schmidt Process; QR-Decomposition
6.4.  Best Approximation; Least Squares
6.5.  Least Squares Fitting to Data
6.6.  Function Approximation; Fourier Series

INTRODUCTION

In Chapter 3 we defined the dot product of vectors in , and we used that concept to
define notions of length, angle, distance, and orthogonality. In this chapter we will
generalize those ideas so they are applicable in any vector space, not just . We will also
discuss various applications of these ideas.
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6.1  Inner Products
In this section we will use the most important properties of the dot product on  as axioms, which, if satisfied by the vectors
in a vector space V, will enable us to extend the notions of length, distance, angle, and perpendicularity to general vector
spaces.

General Inner Products

In Definition 4 of Section 3.2 we defined the dot product of two vectors in , and in Theorem 3.2.2 we listed four
fundamental properties of such products. Our first goal in this section is to extend the notion of a dot product to general real
vector spaces by using those four properties as axioms. We make the following definition.

Note that Definition 1 applies only to real vector
spaces. A definition of inner products on complex
vector spaces is given in the exercises. Since we will
have little need for complex vector spaces from this
point on, you can assume that all vector spaces under
discussion are real, even though some of the theorems
are also valid in complex vector spaces.

DEFINITION 1

An inner product on a real vector space V is a function that associates a real number  with each pair of vectors in
V in such a way that the following axioms are satisfied for all vectors u, v, and w in V and all scalars k.
1.   [Symmetry axiom]

2.   [Additivity axiom]

3.   [Homogeneity axiom]

4.   and  if and only if  [Positivity axiom]

A real vector space with an inner product is called a real product space.

Because the axioms for a real inner product space are based on properties of the dot product, these inner product space axioms
will be satisfied automatically if we define the inner product of two vectors u and v in  to be

This inner product is commonly called the Euclidean inner product (or the standard inner product) on  to distinguish it
from other possible inner products that might be defined on . We call  with the Euclidean inner product Euclidean
n-space.

Inner products can be used to define notions of norm and distance in a general inner product space just as we did with dot
products in . Recall from Formulas 11 and 19 of Section 3.2 that if u and v are vectors in Euclidean n-space, then norm and
distance can be expressed in terms of the dot product as

Motivated by these formulas we make the following definition.



DEFINITION 2

If V is a real inner product space, then the norm (or length) of a vector v in V is denoted by  and is defined by

and the distance between two vectors is denoted by  and is defined by

A vector of norm 1 is called a unit vector.

The following theorem, which we state without proof, shows that norms and distances in real inner product spaces have many
of the properties that you might expect.

THEOREM 6.1.1

If u and v are vectors in a real inner product space V, and if k is a scalar, then:
(a)   with equality if and only if .
(b)  .

(c)  .

(d)   with equality if and only if .

Although the Euclidean inner product is the most important inner product on , there are various applications in which it is
desirable to modify it by weighting each term differently. More precisely, if

are positive real numbers, which we will call weights, and if  and  are vectors in ,
then it can be shown that the formula

  (1)

defines an inner product on  that we call the weighted Euclidean inner product with weights .

Note that the standard Euclidean inner product is the
special case of the weighted Euclidean inner product in
which all the weights are 1.

 EXAMPLE 1    Weighted Euclidean Inner Product

Let  and  be vectors in . Verify that the weighted Euclidean inner product

  (2)

satisfies the four inner product axioms.

Solution   Axiom 1: Interchanging u and v in Formula 2 does not change the sum on the right side, so



.

Axiom 2: If , then

Axiom 3:

Axiom 4:  with equality if and only if ; that is, if
and only if .

In Example 1, we are using subscripted w's to
denote the components of thevector w, not the
weights. The weights are the numbers 3 and 2 in
Formula 2.

An Application of Weighted Euclidean Inner Products

To illustrate one way in which a weighted Euclidean inner product can arise, suppose that some physical experiment has n
possible numerical outcomes

and that a series of m repetitions of the experiment yields these values with various frequencies. Specifically, suppose that 
occurs  times,  occurs  times, and so forth. Since there are a total of m repetitions of the experiment, it follows that

Thus, the arithmetic average of the observed numerical values (denoted by ) is

  (3)

If we let

then 3 can be expressed as the weighted Euclidean inner product

 EXAMPLE 2    Using a Weighted Euclidean Inner Product



It is important to keep in mind that norm and distance depend on the inner product being used. If the inner product
is changed, then the norms and distances between vectors also change. For example, for the vectors  and

 in  with the Euclidean inner product we have

and

but if we change to the weighted Euclidean inner product

we have

and

Unit Circles and Spheres in Inner Product Spaces

If V is an inner product space, then the set of points in V that satisfy

is called the unit sphere or sometimes the unit circle in V.

 EXAMPLE 3    Unusual Unit Circles in R2

(a)  Sketch the unit circle in an xy-coordinate system in  using the Euclidean inner product
.

(b)  Sketch the unit circle in an xy-coordinate system in  using the weighted Euclidean inner product

.

Solution   
(a)  If , then , so the equation of the unit circle is , or, on

squaring both sides,

As expected, the graph of this equation is a circle of radius 1 centered at the origin (Figure 6.1.1 a).
(b)  If , then , so the equation of the unit circle is

, or, on squaring both sides,

The graph of this equation is the ellipse shown in Figure 6.1.1b.



Figure 6.1.1   

Remark   It may seem odd that the “unit circle” in the second part of the last example turned out to have an elliptical shape.
This will make more sense if you think of circles and spheres in general vector spaces algebraically  rather than
geometrically. The change in geometry occurs because the norm, not being Euclidean, has the effect of distorting the space that
we are used to seeing through “Euclidean eyes.”

Inner Products Generated by Matrices

The Euclidean inner product and the weighted Euclidean inner products are special cases of a general class of inner products
on  called matrix inner products. To define this class of inner products, let u and v be vectors in  that are expressed in
column form, and let A be an nvertible  matrix. It can be shown (Exercise 31) that if  is the Euclidean inner product
on , then the formula

  (4)

also defines an inner product; it is called the inner product on Rn generated by A.

Recall from Table 1 of Section 3.2 that if u and v are in column form, then  can be written as  from which it follows
that 4 can be expressed as

or, equivalently as



  (5)

 EXAMPLE 4    Matrices Generating Weighted Euclidean Inner Products

The standard Euclidean and weighted Euclidean inner products are examples of matrix inner products. The
standard Euclidean inner product on  is generated by the  identity matrix, since setting  in Formula
4 yields

and the weighted Euclidean inner product

  (6)

is generated by the matrix

  (7)

This can be seen by first observing that  is the  diagonal matrix whose diagonal entries are the weights
 and then observing that 5 simplifies to 6 when A is the matrix in Formula 7.

 EXAMPLE 5    Example 1 Revisited

Every diagonal matrix with positive diagonal
entries generates a weighted inner product.
Why?

The weighted Euclidean inner product  discussed in Example 1 is the inner product on
 generated by

Other Examples of Inner Products

So far, we have only considered examples of inner products on . We will now consider examples of inner products on some
of the other kinds of vector spaces that we discussed earlier.

 EXAMPLE 6    An Inner Product on Mnn

If U and V are  matrices, then the formula



  (8)

defines an inner product on the vector space  (see Definition 8 of Section 1.3 for a definition of trace). This
can be proved by confirming that the four inner product space axioms are satisfied, but you can visualize why
this is so by computing 8 for the  matrices

This yields

which is just the dot product of the corresponding entries in the two matrices. For example, if

then

The norm of a matrix U relative to this inner product is

 EXAMPLE 7    The Standard Inner Product on Pn

If

are polynomials in , then the following formula defines an inner product on  (verify) that we will call the
standard inner product on this space:

  (9)

The norm of a polynomial p relative to this inner product is

 EXAMPLE 8    The Evaluation Inner Product on Pn

If

are polynomials in , and if  are distinct real numbers (called sample points), then the formula

  (10)

defines an inner product on  called the evaluation inner product at . Algebraically, this can be
viewed as the dot product in  of the n-tuples

and hence the first three inner product axioms follow from properties of the dot product. The fourth inner
product axiom follows from the fact that



with equality holding if and only if

But a nonzero polynomial of degree n or less can have at most n distinct roots, so it must be that , which
proves that the fourth inner product axiom holds.

The norm of a polynomial p relative to the evaluation inner product is

  (11)

 EXAMPLE 9    Working with the Evaluation Inner Product

Let  have the evaluation inner product at the points

Compute  and  for the polynomials  and .

Solution   It follows from 10 and 11 that

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 10    An Inner Product on C[a, b]

Let  and  be two functions in  and define

  (12)

We will show that this formula defines an inner product on  by verifying the four inner product axioms
for functions , , and  in :

1.  

which proves that Axiom 1 holds.
2.  

which proves that Axiom 2 holds.



3.  

which proves that Axiom 3 holds.
4.  If  is any function in , then

  (13)

since  for all x in the interval . Moreover because f is continuous on , the equality
holds in Formula 13 if and only if the function f is identically zero on , that is, if and only if ; and
this proves that Axiom 4 holds.

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 11    Norm of a Vector in C[a, b]

If  has the inner product that was defined in Example 10, then the norm of a function  relative
to this inner product is

  (14)

and the unit sphere in this space consists of all functions f in  that satisfy the equation

Remark   Note that the vector space  is a subspace of  because polynomials are continuous functions. Thus,
Formula 12 defines an inner product on .

Remark   Recall from calculus that the arc length of a curve  over an interval  is given by the formula

  (15)

Do not confuse this concept of arc length with , which is the length (norm) of f when f is viewed as a vector in .
Formulas 14 and 15 are quite different.

Algebraic Properties of Inner Products

The following theorem lists some of the algebraic properties of inner products that follow from the inner product axioms. This
result is a generalization of Theorem 3.2.3, which applied only to the dot product on .

THEOREM 6.1.2

If u, v, and w are vectors in a real inner product space V, and if k is a scalar, then



(a)  
(b)  
(c)  
(d)  
(e)  

Proof   We will prove part (b) and leave the proofs ofthe remaining parts as exercises.

The following example illustrates how Theorem 6.1.2 and the defining properties of inner products can be used to perform
algebraic computations with inner products. As you read through the example, you will find it instructive to justify the steps.

 EXAMPLE 12    Calculating with Inner Products

Concept Review
•  Inner product axioms
•  Euclidean inner product
•  Euclidean n-space
•  Weighted Euclidean inner product
•  Unit circle (sphere)
•  Matrix inner product
•  Norm in an inner product space
•  Distance between two vectors in an inner product space
•  Examples of inner products
•  Properties of inner products

Skills
•  Compute the inner product of two vectors.
•  Find the norm of a vector.
•  Find the distance between two vectors.



•  Show that a given formula defines an inner product.
•  Show that a given formula does not define an inner product by demonstrating that at least one of the inner product

space axioms fails.

Exercise Set 6.1
1. Let  be the Euclidean inner product on , and let , , , and . Compute the

following.
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

Answer:

(a)  5
(b)  
(c)  
(d)  

(e)  

(f)  

2. Repeat Exercise 1 for the weighted Euclidean inner product .

3. Let  be the Euclidean inner product on , and let , , , and . Verify the
following.
(a)  
(b)  
(c)  
(d)  
(e)  

Answer:

(a)  2
(b)  11
(c)  
(d)  
(e)  0

4. Repeat Exercise 3 for the weighted Euclidean inner product .

5. Let  be the inner product on  generated by , and let , , . Compute the

following.



(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

Answer:

(a)  
(b)  1
(c)  
(d)  1
(e)  1
(f)  1

6. Repeat Exercise 5 for the inner product on  generated by .

7. Compute  using the inner product in Example 6.

(a)  

(b)  

Answer:

(a)  3
(b)  56

8. Compute  using the inner product in Example 7.

(a)  , 

(b)  , 

9. (a)  Use Formula 4 to show that  is the inner product on  generated by

(b)  Use the inner product in part (a) to compute  if  and .

Answer:

(b)  29

10. (a)  Use Formula 4 to show that

is the inner product on  generated by



(b)  Use the inner product in part (a) to compute  if  and .

11. Let  and . In each part, the given expression is an inner product on . Find a matrix that
generates it.
(a)  
(b)  

Answer:

(a)  

(b)  

12. Let  have the inner product in Example 7. In each part, find .
(a)  

(b)  

13. Let  have the inner product in Example 6. In each part, find .
(a)  

(b)  

Answer:

(a)  

(b)  0

14. Let  have the inner product in Example 7. Find .

15. Let  have the inner product in Example 6. Find .

(a)  

(b)  

Answer:

(a)  

(b)  

16. Let  have the inner product of Example 9, and let  and . Compute the following.

(a)  
(b)  
(c)  

17. Let  have the evaluation inner product at the sample points



Find  and  for  and .

Answer:

18. In each part, use the given inner product on  to find , where .

(a)  the Euclidean inner product
(b)  the weighted Euclidean inner product , where  and 

(c)  the inner product generated by the matrix

19. Use the inner products in Exercise 18 to find  for  and .

Answer:

(a)  

(b)  

(c)  

20. Suppose that u, v, and w are vectors such that

Evaluate the given expression.
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

21. Sketch the unit circle in  using the given inner product.

(a)  

(b)  

Answer:

(a)  

(b)  



22. Find a weighted Euclidean inner product on  for which the unit circle is the ellipse shown in the accompanying figure.

Figure Ex-22   

23. Let  and . Show that the following are inner products on  by verifying that the inner product
axioms hold.
(a)  
(b)  

Answer:

For , then , so Axiom 4 fails.

24. Let  and . Determine which of the following are inner products on . For those that are
not, list the axioms that do not hold.
(a)  
(b)  

(c)  
(d)  

25. Show that the following identity holds for vectors in any inner product space.

Answer:

(a)  

(b)  0

26. Show that the following identity holds for vectors in any inner product space.

27. Let  and . Show that  is not an inner product on .

28. Calculus required Let the vector space  have the inner product



(a)  Find  for , , and .

(b)  Find  if  and .

29. Calculus required Use the inner product

on , to compute .

(a)  , 

(b)  , 

30. Calculus required In each part, use the inner product

on  to compute .

(a)  
(b)  

(c)  

31. Prove that Formula 4 defines an inner product on .

32. The definition of a complex vector space was given in the first margin note in Section 4.1. The definition of a complex
inner product on a complex vector space V is identical to Definition 1 except that scalars are allowed to be complex
numbers, and Axiom 1 is replaced by . The remaining axioms are unchanged. A complex vector space with
a complex inner product is called a complex inner product space. Prove that if V is a complex inner product space then

.

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) The dot product on  is an example of a weighted inner product.

Answer:

True

(b) The inner product of two vectors cannot be a negative real number.

Answer:

False

(c) .

Answer:

True

(d) .

Answer:

True



(e) If , then  or .

Answer:

False

(f) If , then .

Answer:

True

(g) If A is an  matrix, then  defines an inner product on .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



6.2  Angle and Orthogonality in Inner Product
Spaces

In Section 3.2 we defined the notion of “angle” between vector in Rn. In this section we will extend this idea
to general vector spaces. This will enable us to extend the notion of orthogonality as well, thereby setting the
groundwork for a variety of new applications.

Cauchy–Schwarz Inequality

Recall from Formula 20 of Section 3.2 that the angle  between two vectors u and v in  is

  (1)

We were assured that this formula was valid because it followed from the Cauchy–Schwarz inequality
(Theorem 3.2.4) that

  (2)

as required for the inverse cosine to be defined. The following generalization of Theorem 3.2.4 will enable us
to define the angle between two vectors in any real inner product space.

THEOREM 6.2.1   Cauchy–Schwarz Inequality

If u and v are vectors in a real inner product space V, then

  (3)

Proof   We warn you in advance that the proof presented here depends on a clever trick that is not easy to
motivate.

In the case where  the two sides of 3 are equal since  and  are both zero. Thus, we need only
consider the case where . Making this assumption, let

and let t be any real number. Since the positivity axiom states that the inner product of any vector with itself is
nonnegative, it follows that



This inequality implies that the quadratic polynomial  has either no real roots or a repeated real
root. Therefore, its discriminant must satisfy the inequality . Expressing the coefficients ,

and c in terms of the vectors u and v gives  or, equivalently,

Taking square roots of both sides and using the fact that  and  are nonnegative yields

which completes the proof.

The following two alternative forms of the Cauchy–Schwarz inequality are useful to know:

  (4)

  (5)

The first of these formulas was obtained in the proof of Theorem 6.2.1, and the second is a variation of the
first.

Angle Between Vectors

Our next goal is to define what is meant by the “angle” between vectors in a real inner product space. As the
first step, we leave it for you to use the Cauchy–Schwarz inequality to show that

  (6)

This being the case, there is a unique angle  in radian measure for which

  (7)

(Figure 6.2.1). This enables us to define the angle θ between u and v to be

  (8)

Figure 6.2.1   



 EXAMPLE 1    Cosine of an Angle Between Two Vectors in R4

Let  have the Euclidean inner product. Find the cosine of the angle  between the vectors
 and .

Solution   We leave it for you to verify that

from which it follows that

Properties of Length and Distance in General Inner Product Spaces

In Section 3.2 we used the dot product to extend the notions of length and distance to , and we showed that
various familiar theorems remained valid (see Theorem 3.2.5, Theorem 3.2.6, and Theorem 3.2.7). By making
only minor adjustments to the proofs of those theorems, we can show that they remain valid in any real inner
product space. For example, here is the generalization of Theorem 3.2.5 (the triangle inequalities).

THEOREM 6.2.2

If u, v, and w are vectors in a real inner product space V, and if k is any scalar, then:
(a)   [Triangle inequality for vectors]
(b)   [Triangle inequality for distances]

Proof (a)   

Taking square roots gives .



Proof (b)   Identical to the proof of part (b) of Theorem 3.2.5.

Orthogonality

Although Example 1 is a useful mathematical exercise, there is only an occasional need to compute angles in
vector spaces other than  and . A problem of more interest in general vector spaces is ascertaining
whether the angle between vectors is . You should be able to see from Formula 8 that if u and v are
nonzero vectors, then the angle between them is  if and only if . Accordingly, we make the
following definition (which is applicable even if one or both of the vectors is zero).

DEFINITION 1

Two vectors u and v in an inner product space are called orthogonal if .

As the following example shows, orthogonality depends on the inner product in the sense that for different
inner products two vectors can be orthogonal with respect to one but not the other.

 EXAMPLE 2    Orthogonality Depends on the Inner Product

The vectors  and  are orthogonal with respect to the Euclidean inner
product on , since

However, they are not orthogonal with respect to the weighted Euclidean inner product
, since

 EXAMPLE 3    Orthogonal Vectors in M22

If  has the inner product of Example 6 in the preceding section, then the matrices

are orthogonal, since

 C A L C U L U S  R E Q U I R E D  



 EXAMPLE 4    Orthogonal Vectors in P2

Let  have the inner product

and let  and . Then

Because , the vectors  and  are orthogonal relative to the given inner
product.

In Section 3.3 we proved the Theorem of Pythagoras for vectors in Euclidean n-space. The following theorem
extends this result to vectors in any real inner product space.

THEOREM 6.2.3   Generalized Theorem of Pythagoras

If u and v are orthogonal vectors in an inner product space, then

Proof   The orthogonality of u and v implies that , so

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 5    Theorem of Pythagoras in P2



In Example 4 we showed that  and  are orthogonal with respect to the inner product

on . It follows from Theorem 6.2.3 that

Thus, from the computations in Example 4, we have

We can check this result by direct integration:

Orthogonal Complements

In Section 4.8 we defined the notion of an orthogonal complement for subspaces of , and we used that
definition to establish a geometric link between the fundamental spaces of a matrix. The following definition
extends that idea to general inner product spaces.

DEFINITION 2

If W is a subspace of an inner product space V, then the set of all vectors in V that are orthogonal to
every vector in W is called the orthogonal complement of W and is denoted by the symbol .

In Theorem 4.8.8 we stated three properties of orthogonal complements in . The following theorem
generalizes parts (a) and (b) of that theorem to general inner product spaces.

THEOREM 6.2.4

If W is a subspace of an inner product space V, then:
(a)   is a subspace of V.

(b)  .



Proof (a)   The set  contains at least the zero vector, since  for every vector w in W. Thus, it
remains to show that  is closed under addition and scalar multiplication. To do this, suppose that u and v
are vectors in , so that for every vector w in W we have  and . It follows from the
additivity and homogeneity axioms of inner products that

which proves that  and  are in .

Proof (b)   If v is any vector in both W and , then v is orthogonal to itself; that is, . It follows
from the positivity axiom for inner products that .

The next theorem, which we state without proof, generalizes part (c) of Theorem 4.8.8. Note, however, that
this theorem applies only to finite-dimensional inner product spaces, whereas Theorem 6.2.5 does not have
this restriction.

THEOREM 6.2.5

Theorem 6.2.5 implies that in a finite-
dimensional inner product space
orthogonal complements occur in pairs,
each being orthogonal to the other (Figure
6.2.2).

Theorem 6.2.5 If W is a subspace of a finite-dimensional inner product space V, then the orthogonal
complement of  is W; that is,

Figure 6.2.2   Each vector in W is orthogonal to each vector in W⊥ and conversely



In our study of the fundamental spaces of a matrix in Section 4.8 we showed that the row space and null space
of a matrix are orthogonal complements with respect to the Euclidean inner product on  (Theorem 4.8.9).
The following example takes advantage of that fact.

 EXAMPLE 6    Basis for an Orthogonal Complement

Let W be the subspace of  spanned by the vectors

Find a basis for the orthogonal complement of W.

Solution   The space W is the same as the row space of the matrix

Since the row space and null space of A are orthogonal complements, our problem reduces to
finding a basis for the null space of this matrix. In Example 4 of Section 4.7 we showed that

form a basis for this null space. Expressing these vectors in comma-delimited form (to match
that of , and ), we obtain the basis vectors

You may want to check that these vectors are orthogonal to , , , and  by computing
the necessary dot products.

Concept Review
•  Cauchy–Schwarz inequality
•  Angle between vectors
•  Orthogonal vectors
•  Orthogonal complement

Skills



•  Find the angle between two vectors in an inner product space.
•  Determine whether two vectors in an inner product space are orthogonal.
•  Find a basis for the orthogonal complement of a subspace of an inner product space.

Exercise Set 6.2
1. Let , , and  have the Euclidean inner product. In each part, find the cosine of the angle between u

and v.
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

Answer:

(a)  

(b)  

(c)  0
(d)  

(e)  

(f)  

2. Let  have the inner product in Example 7 of Section 6.1 . Find the cosine of the angle between pand q.
(a)  

(b)  

3. Let  have the inner product in Example 6 of Section 6.1 . Find the cosine of the angle between A and
B.
(a)  

(b)  



Answer:

(a)  

(b)  0

4. In each part, determine whether the given vectors are orthogonal withrespect to the Euclidean inner
product.
(a)  
(b)  
(c)  
(d)  
(e)  
(f)  

5. Show that  and  are orthogonal with respect to the inner product in Exercise
2.

6. Let

Which of the following matrices are orthogonal to A with respect to the inner product in Exercise 3?
(a)  

(b)  

(c)  

(d)  

7. Do there exist scalars k and l such that the vectors , , and  are
mutually orthogonal with respect to the Euclidean inner product?

Answer:

No

8. Let  have the Euclidean inner product, and suppose that  and . Find a
value of k for which .

9. Let  have the Euclidean inner product. For which values of k are u and v orthogonal?

(a)  
(b)  



Answer:

(a)  
(b)  

10. Let  have the Euclidean inner product. Find two unit vectors that are orthogonal to all three of the
vectors , , and .

11. In each part, verify that the Cauchy–Schwarz inequality holds for the given vectors using the Euclidean
inner product.
(a)  
(b)  
(c)  
(d)  

12. In each part, verify that the Cauchy–Schwarz inequality holds for the given vectors.
(a)   and  using the inner product of Example 1 of Section 6.1 .

(b)   using the inner product in Example 6 of Section 6.1 .

(c)   and  using the inner product given in Example 7 of Section 6.1 .

13. Let  have the Euclidean inner product, and let . Determine whether the vector u is
orthogonal to the subspace spanned by the vectors , , and

.

Answer:

No

In Exercises 14–15, assume that  has the Euclidean inner product.

14. Let W be the line in  with equation . Find an equation for .

15. (a)  Let W be the plane in  with equation . Find parametric equations for .

(b)  Let W be the line in  with parametric equations

Find an equation for .

(c)  Let W be the intersection of the two planes

in . Find an equation for .

Answer:

(a)  



(b)  

(c)  

16. Find a basis for the orthogonal complement of the subspace of  spanned by the vectors.

(a)  , , 

(b)  , 

(c)  , , 

(d)  , , , 

17. Let V be an inner product space. Show that if u and v are orthogonal unit vectors in V, then 
.

18. Let V be an inner product space. Show that if w is orthogonal to both  and , then it is orthogonal to
 for all scalars  and . Interpret this result geometrically in the case where V is  with

the Euclidean inner product.

19. Let V be an inner product space. Show that if w is orthogonal to each of the vectors , then it
is orthogonal to every vector in span .

20. Let  be a basis for an inner product space V. Show that the zero vector is the only vector
in V that is orthogonal to all of the basis vectors.

21. Let  be a basis for a subspace W of V. Show that  consists of all vectors in V that are
orthogonal to every basis vector.

22. Prove the following generalization of Theorem 6.2.3: If  are pairwise orthogonal vectors in
an inner product space V, then

23. Prove: If u and v are  matrices and A is an  matrix, then

24. Use the Cauchy–Schwarz inequality to prove that for all real values of a, b, and ,

25. Prove: If  are positive real numbers, and if  and 
are any two vectors in , then

26. Show that equality holds in the Cauchy–Schwarz inequality if and only if u and v are linearly dependent.

27. Use vector methods to prove that a triangle that is inscribed in a circle so that it has a diameter for a side
must be a right triangle. [Hint: Express the vectors  and  in the accompanying figure in terms of u
andv.]



Figure Ex-27   

28. As illustrated in the accompanying figure, the vectors  and  have norm 2 and

an angle of 60° between them relative to the Euclidean inner product. Find a weighted Euclidean inner
product with respect to which u and v are orthogonal unit vectors.

Figure Ex-28   

29. Calculus required Let  and  be continuous functions on . Prove:

(a)  

(b)  

[Hint: Use the Cauchy–Schwarz inequality.]

30. Calculus required Let  have the inner product

and let  . Show that if , then  and  are orthogonal vectors.

31. (a)  Let W be the line  in an xy-coordinate system in . Describe the subspace .

(b)  Let W be the y-axis in an xyz-coordinate system in . Describe the subspace .

(c)  Let W be the yz-plane of an xyz-coordinate system in . Describe the subspace .

Answer:

(a)  The line 

(b)  The xz-plane
(c)  The x-axis

32. Prove that Formula 4 holds for all nonzero vectors u and v in an inner product space V.



True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) If u is orthogonal to every vector of a subspace W, then .

Answer:

False

(b) If u is a vector in both W and , then .

Answer:

True

(c) If u and v are vectors in , then  is in .

Answer:

True

(d) If u is a vector in  and k is a real number, then  is in .

Answer:

True

(e) If u and v are orthogonal, then .

Answer:

False

(f) If u and v are orthogonal, then .

Answer:

False
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6.3  Gram–Schmidt Process; QR-Decomposition
In many problems involving vector spaces, the problem solver is free to choose any basis for the vector space that
seems appropriate. In inner product spaces, the solution of a problem is often greatly simplified by choosing a basis
in which the vectors are orthogonal to one another. In this section we will show how such bases can be obtained.

Orthogonal and Orthonormal Sets

Recall from Section 6.2 that two vectors in an inner product space are said to be orthogonal if their inner product is
zero. The following definition extends the notion of orthogonality to sets of vectors in an inner product space.

DEFINITION 1

A set of two or more vectors in a real inner product space is said to be orthogonal if all pairs of distinct
vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is said to be
orthogonal.

 EXAMPLE 1    An Orthogonal Set in R3

Let

and assume that  has the Euclidean inner product. It follows that the set of vectors
 is orthogonal since .

If v is a nonzero vector in an inner product space, then it follows from Theorem 6.1.1b with  that

from which we see that multiplying a nonzero vector by the reciprocal of its norm produces a vector of norm 1. This
process is called normalizing v. It follows that any orthogonal set of nonzero vectors can be converted to an
orthonormal set by normalizing each of its vectors.

 EXAMPLE 2    Constructing an Orthonormal Set

The Euclidean norms of the vectors in Example 1 are

Consequently, normalizing , , and  yields



We leave it for you to verify that the set  is orthonormal by showing that

In  any two nonzero perpendicular vectors are linearly independent because neither is a scalar multiple of the
other; and in  any three nonzero mutually perpendicular vectors are linearly independent because no one lies in
the plane of the other two (and hence is not expressible as a linear combination of the other two). The following
theorem generalizes these observations.

THEOREM 6.3.1

If  is an orthogonal set of nonzero vectors in an inner product space, then S is linearly
independent.

Proof   Assume that

  (1)

To demonstrate that  is linearly independent, we must prove that .

For each  in S, it follows from 1 that

or, equivalently,

From the orthogonality of S it follows that  when , so this equation reduces to

Since the vectors in S are assumed to be nonzero, it follows from the positivity axiom for inner products that
. Thus, the preceding equation implies that each  in Equation 1 is zero, which is what we wanted to

prove.

Since an orthonormal set is orthogonal, and since
its vectors are nonzero (norm 1), it follows from
Theorem 6.3.1 that every orthonormal set is
linearly independent.

In an inner product space, a basis consisting of orthonormal vectors is called an orthonormal basis, and a basis



consisting of orthogonal vectors is called an orthogonal basis. A familiar example of an orthonormal basis is the
standard basis for  with the Euclidean inner product:

 EXAMPLE 3    An Orthonormal Basis

In Example 2 we showed that the vectors

form an orthonormal set with respect to the Euclidean inner product on . By Theorem 6.3.1, these
vectors form a linearlyindependent set, and since  is three-dimensional, it follows from Theorem
4.5.4 that  is an orthonormal basis for .

Coordinates Relative to Orthonormal Bases

One way to express a vector u as a linear combination of basis vectors

is to convert the vector equation

to a linear system and solve for the coefficients . However, if the basis happens to be orthogonal or
orthonormal, then the following theorem shows that the coefficients can be obtained more simply by computing
appropriate inner products.

THEOREM 6.3.2

(a)  If  is an orthogonal basis for an inner product space V, and if u is any vector in V,
then

  (2)

(b)  If  is an orthonormal basis for an inner product space V, and if u is any vector in V,
then

  (3)

Proof (a)   Since  is a basis for V, every vector u in V can be expressed in the form



We will complete the proof by showing that

  (4)

for . To do this, observe first that

Since S is an orthogonal set, all of the inner products in the last equality are zero except the ith, so we have

Solving this equation for  yields 4, which completes the proof.

Proof (b)   In this case, , so Formula 2 simplifies to Formula 3.

Using the terminology and notation from Definition 2 of Section 4.4, it follows from Theorem 6.3.2 that the
coordinate vector of a vector u in V relative to an orthogonal basis  is

  (5)

and relative to an orthonormal basis  is

  (6)

 EXAMPLE 4    A Coordinate Vector Relative to an Orthonormal Basis

Let

It is easy to check that  is an orthonormal basis for  with the Euclidean inner product.
Express the vector  as a linear combination of the vectors in S, and find the coordinate vector

.

Solution   We leave it for you to verify that

Therefore, by Theorem 6.3.2 we have

that is,

Thus, the coordinate vector of u relative to S is



 EXAMPLE 5    An Orthonormal Basis from an Orthogonal Basis

(a)  Show that the vectors

form an orthogonal basis for  with the Euclidean inner product, and use that basis to find an
orthonormal basis by normalizing each vector.

(b)  Express the vector  as a linear combination of the orthonormal basis vectors obtained
in part (a).

Solution   
(a)  The given vectors form an orthogonal set since

It follows from Theorem 6.3.1 that these vectors are linearly independent and hence form a basis
for  by Theorem 4.5.4. We leave it for you to calculate the norms of , and  and then
obtain the orthonormal basis

(b)  It follows from Formula 3 that

We leave it for you to confirm that

and hence that

Orthogonal Projections

Many applied problems are best solved by working with orthogonal or orthonormal basis vectors. Such bases are
typically found by starting with some simple basis (say a standard basis) and then converting that basis into an



orthogonal or orthonormal basis. To explain exactly how that is done will require some preliminary ideas about
orthogonal projections.

In Section 3.3 we proved a result called the Prohection Theorem (see Theorem 3.3.2) which dealt with the problem
of decomposing a vector u in  into a sum of two terms,  and , in which  is the orthogonal projection of u
on some nonzero vector a and  is orthogonal to  (Figure 3.3.2). That result is a special case of the following
more general theorem.

THEOREM 6.3.3   Projection Theorem

If W is a finite-dimensional subspace of an inner product space V,then every vector u in V can be expressed
in exactly oneway as

  (7)

where  is in W and  is in .

The vectors  and  in Formula 7 are commonly denoted by

  (8)

They are called the orthogonal projection of u on W and the orthogonal projection of u on , respectively. The
vector  is also called the component of u orthogonal to W. Using the notation in 8, Formula 7 can be expressed
as

  (9)

(Figure 6.3.1). Moreover, since , we can also express Formula 9 as

  (10)

Figure 6.3.1   

The following theorem provides formulas for calculating orthogonal projections.



THEOREM 6.3.4

Let W be a finite-dimensional subspace of an inner product space V.
(a)  If  is an orthogonal basis for W, and u is any vector in V, then

  (11)

(b)  If  is an orthonormal basis for W, and u is any vector in V, then

  (12)

Proof (a)   It follows from Theorem 6.3.3 that the vector u can be expressed in the form , where
 is in W and  is in ; and it follows from Theorem 6.3.2 that the component  can be

expressed in terms of the basis vectors for W as

  (13)

Since  is orthogonal to W, it follows that

so we can rewrite 13 as

or, equivalently, as

Proof (a)   In this case, , so Formula 13 simplifies to Formula 12.

 EXAMPLE 6    Calculating Projections

Let  have the Euclidean inner product, and let W be the subspace spanned by the orthonormal

vectors  and . From Formula 12 the orthogonal projection of

 on W is

The component of u orthogonal to W is



Observe that  is orthogonal to both  and , so this vector is orthogonal to each vector in
the space W spanned by  and , as it should be.

A Geometric Interpretation of Orthogonal Projections

If W is a one-dimensional subspace of an inner product space V, say span , then Formula 11 has only the one
term

In the special case where V is  with the Euclidean inner product, this is exactly Formula 10 of Section 3.3 for the
orthogonal projection of u along a. This suggests that we can think of 11 as the sum of orthogonal projections on
“axes” determined by the basis vectors for the subspace W (Figure 6.3.2).

Figure 6.3.2   

The Gram–Schmidt Process

We have seen that orthonormal bases exhibit a variety of useful properties. Our next theorem, which is the main
result in this section, shows that every nonzero finite-dimensional vector space has an orthonormal basis. The proof
of this result is extremely important, since it provides an algorithm, or method, for converting an arbitrary basis into
an orthonormal basis.

THEOREM 6.3.5

Every nonzero finite-dimensional inner product space has an orthonormal basis.

Proof   Let W be any nonzero finite-dimensional subspace of an inner product space, and suppose that
 is any basis for W. It suffices to show that W has an orthogonal basis, since the vectors in that basis

can be normalized to obtain an orthonormal basis. The following sequence of steps will produce an orthogonal basis
 for W:



Step 1.  Let .
Step 2.  As illustrated in Figure 6.3.3, we can obtain a vector  that is orthogonal to  by computing the

component of  that is orthogonal to the space  spanned by . Using Formula 11 to perform this
computation we obtain

Of course, if , then  is not a basis vector. But this cannot happen, since it would then follow from
the above formula for  that

which implies that  is a multiple of , contradicting the linear independence of the basis
.

Figure 6.3.3   

Step 3.  To construct a vector  that is orthogonal to both  and , we compute the component of  orthogonal
to the space  spanned by  and  (Figure 6.3.4). Using Formula 11 to perform this computation we
obtain

As in Step 2, the linear independence of  ensures that . We leave the details for you.

Figure 6.3.4   

Step 4.  To determine a vector  that is orthogonal to , , and , we compute the component of  orthogonal
to the space  spanned by , , and . From 11,

Continuing in this way we will produce an orthogonal set of vectors  after r steps. Since orthogonal
sets are linearly independent, this set will be an orthogonal basis for the r-dimensional space W. By normalizing
these basis vectors we can obtain an orthonormal basis.



The step-by-step construction of an orthogonal (or orthonormal) basis given in the foregoing proof is called the
Gram–Schmidt process. For reference, we provide the following summary of the steps.

The Gram–Schmidt Process

To convert a basis  into an orthogonal basis , perform the following
computations:
Step 1.  
Step 2.  

Step 3.  

Step 4.  

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis , normalize the
orthogonal basis vectors.

 EXAMPLE 7    Using the Gram–Schmidt Process

Assume that the vector space  has the Euclidean inner product. Apply the Gram–Schmidt process
to transform the basis vectors

into an orthogonal basis , and then normalize the orthogonal basis vectors to obtain an
orthonormal basis .

Solution   
Step 1.  
Step 2.  



Step 3.  

Thus,

form an orthogonal basis for . The norms of these vectors are

so an orthonormal basis for  is

Remark   In the last example we normalized at the end to convert the orthogonal basis into an orthonormal basis.
Alternatively, we could have normalized each orthogonal basis vector as soon as it was obtained, thereby producing
an orthonormal basis step by step. However, that procedure generally has the disadvantage in hand calculation of
producing more square roots to manipulate. A more useful variation is to “scale” the orthogonal basis vectors at
each step to eliminate some of the fractions. For example, after Step 2 above, we could have multiplied by 3 to
produce  as the second orthogonal basis vector, thereby simplifying the calculations in Step 3.

Erhardt Schmidt (1875–1959)

Historical Note    Schmidt wasa German mathematician who studied for his doctoral degree at Göttingen
University under David Hilbert, one of the giants of modern mathematics. For most of his life he taught at
Berlin University where, in addition to making important contributions to many branches of mathematics,
he fashioned some of Hilbert's ideas into a general concept, called a Hilbert space—a fundamental idea in



the study of infinite-dimensional vector spaces.He first described the process that bears his name in a paper
on integral equations that he published in 1907.
[Image: Archives of the Mathematisches Forschungsinst]

Jorgen Pederson Germ (1850–1916)

Historical Note    Gram was a Danish actuary whose early education was at village schools
supplementedby private tutoring. He obtained a doctorate degree in mathematics while working for the
Hafnia Life Insurance Company, where he specialized in the mathematics of accident insurance.It was in his
dissertation that his contributions to the Gram–Schmidt process were formulated. He eventually became
interested in abstract mathematics and received a gold medal from the Royal Danish Society of Sciences
and Letters in recognition of his work. His lifelong interest in applied mathematics never wavered, however,
and he produced a variety of treatises on Danish forest management.
[Image: wikipedia]

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 8    Legendre Polynomials

Let the vector space  have the inner product

Apply the Gram–Schmidt process to transform the standard basis  for  into an

orthogonal basis .

Solution   Take , , and .

Step 1.  
Step 2.  We have



so

Step 3.  We have

so

Thus, we have obtained the orthogonal basis , ,  in which

Remark   The orthogonal basis vectors in the foregoing example are often scaled so all three functions have a value
of 1 at . The resulting polynomials

which are known as the first three Legendre polynomials, play an important role in a variety of applications. The
scaling does not affect the orthogonality.

Extending Orthonormal Sets to Orthonormal Bases

Recall from part (b) of Theorem 4.5.5 that a linearly independent set in a finite-dimensional vector space can be
enlarged to a basis by adding appropriate vectors. The following theorem is an analog of that result for orthogonal
and orthonormal sets in finite-dimensional inner product spaces.

THEOREM 6.3.6

If W is a finite-dimensional inner product space, then:
(a)  Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal basis for W.
(b)  Every orthonormal set in W can be enlarged to an orthonormal basis for W.



We will prove part (b) and leave part (a) as an exercise.

Proof (b)   Suppose that  is an orthonormal set of vectors in W. Part (b) of Theorem 4.5.5 tells
us that we can enlarge S to some basis

for W. If we now apply the Gram–Schmidt process to the set , then the vectors , will not be affected
since they are already orthonormal, and the resulting set

will be an orthonormal basis for W.

   O P T I O N A L    

QR-Decomposition

In recent years a numerical algorithm based on the Gram–Schmidt process, and known as QR-decomposition, has
assumed growing importance as the mathematical foundation for a wide variety of numerical algorithms, including
those for computing eigenvalues of large matrices. The technical aspects of such algorithms are discussed in
textbooks that specialize in the numerical aspects of linear algebra. However, we will discuss some of the
underlying ideas here. We begin by posing the following problem.

Problem

If A is an  matrix with linearly independent column vectors, and if Q is the matrix that results by
applying the Gram–Schmidt process to the column vectors of A, what relationship, if any, exists between A
and Q?

To solve this problem, suppose that the column vectors of A are  and the orthonormal column vectors
of Q are . Thus, A and Q can be written in partitioned form as

It follows from Theorem 6.3.2b that  are expressible in terms of the vectors  as

Recalling from Section 1.3 (Example 9) that the jth column vector of amatrix product is a linear combination of the
column vectors of the first factor with coefficients coming from the jth column of the second factor, it follows that
these relationships can be expressed in matrix form as



or more briefly as

  (14)

where R is the second factor in the product. However, it is a property of the Gram–Schmidt process that for ,
the vector  is orthogonal to . Thus, all entries below the main diagonal of R are zero, and R has the
form

  (15)

We leave it for you to show that R is invertible by showing that its diagonal entries are nonzero. Thus, Equation 14
is a factorization of A into the product of a matrix Q with orthonormal column vectors and an invertible upper
triangular matrix R. We call Equation 14 the QR-decomposition of A. In summary, we have the following theorem.

THEOREM 6.3.7   QR-Decomposition

If A is an  matrix with linearly independent column vectors, then A can be factored as

where Q is an  matrix with orthonormal column vectors, and R is an  invertible upper triangular
matrix.

It is common in numerical linear algebra to say
that a matrix with linearly independent columns
has full column rank.

Recall from Theorem 5.1.6 (the Equivalence Theorem) that a square matrix has linearly independent column
vectors if and only if it is invertible. Thus, it follows from the foregoing theorem that every invertible matrix has a
QR-decomposition.

 EXAMPLE 9    QR-Decomposition of a 3 × 3 Matrix

Find the QR-decomposition of

Solution   The column vectors of A are

Applying the Gram–Schmidt process with normalization to these column vectors yields the



orthonormal vectors (see Example 7)

Thus, it follows from Formula 15 that R is

Show that the matrix Q in Example 9 has
the property , and show that every

 matrix with orthonormal column
vectors has this property.

from which it follows that the -decomposition of A is

Concept Review
•  Orthogonal and orthonormal sets
•  Normalizing a vector
•  Orthogonal projections
•  Gram–Schmidt process
•  QR-decomposition

Skills



•  Determine whether a set of vectors is orthogonal (or orthonormal).
•  Compute the coordinates of a vector with respect to an orthogonal (or orthonormal) basis.
•  Find the orthogonal projection of a vector onto a subspace.
•  Use the Gram–Schmidt process to construct an orthogonal (or orthonormal) basis for an inner product

space.
•  Find the QR-decomposition of an invertible matrix.

Exercise Set 6.3
1. Which of the following sets of vectors are orthogonal with respect to the Euclidean inner product on ?

(a)  
(b)  

, 

(c)  
, 

(d)  

Answer:

(a), (b), (d)

2. Which of the sets in Exercise 1 are orthonormal with respect to the Euclidean inner product on ?

3. Which of the following sets of vectors are orthogonal with respect to the Euclidean inner product on ?

(a)  
, , 

(b)  , , 

(c)  
, 

(d)  
, 

Answer:

(b), (d)

4. Which of the sets in Exercise 3 are orthonormal with respect to the Euclidean inner product on ?

5. Which of the following sets of polynomials are orthonormal with respect to the inner product on  discussed in
Example 7 of Section 6.1 ?
(a)  , 



(b)  

Answer:

(a)

6. Which of the following sets of matrices are orthonormal with respect to the inner product on  discussed in
Example 6 of Section 6.1 ?
(a)  

(b)  

7. Verify that the given vectors form an orthogonal set with respect to the Euclidean inner product; then convert it
to an orthonormal set by normalizing the vectors.
(a)  , 

(b)  , , 

(c)  , , 

Answer:

(a)  

(b)  

(c)  

8. Verify that the set of vectors  is orthogonal with respect to the inner product
 on ; then convert it to an orthonormal set by normalizing the vectors.

9. Verify that the vectors

form an orthonormal basis for  with the Euclidean inner product; then use Theorem 6.3.2b to express each of
the following as linear combinations of , , and .
(a)  
(b)  
(c)  

Answer:



(a)  

(b)  

(c)  

10. Verify that the vectors

form an orthogonal basis for  with the Euclidean inner product; then use Theorem 6.3.2a to express each of
the following as linear combinations of , and .

(a)  
(b)  

(c)  

11. (a)  Show that the vectors

form an orthogonal basis for  with the Euclidean inner product.

(b)  Use Theorem 6.3.2a to express  as a linear combination of the vectors in part (a).

Answer:

(b)  

In Exercises 12–13, an orthonormal basis with respect to the Euclidean inner product is given. Use Theorem 6.3.2b
to find the coordinate vector of w with respect to that basis.

12. (a)  

(b)  ; , , 

13. (a)  , 

(b)  
, ,

Answer:

(a)  



(b)  

In Exercises 14–15, the given vectors are orthogonal with respect to the Euclidean inner product. Find ,
where  and W is the subspace of  spanned by the vectors.

14. (a)  , 

(b)  , 

15. (a)  , , 

(b)  , , 

Answer:

(a)  

(b)  

In Exercises 16–17, the given vectors are orthonormal with respect to the Euclidean inner product. Use Theorem
6.3.4b to find , where  and W is the subspace of  spanned by the vectors.

16. (a)  
, 

(b)  

17. (a)  
, , 

(b)  , , 

Answer:

(a)  

(b)  

18. In Example 6 of Section 4.9 we found the orthogonal projection of the vector  onto the line through
the origin making an angle of  radians with the x-axis. Solve that same problem using Theorem 6.3.4.

19. Find the vectors  in W and  in  such that , where x and W are as given in

(a)  Exercise 14(a).
(b)  Exercise 15(a).

Answer:



(a)  

(b)  

20. Find the vectors  in W and  in  such that , where x and W are as given in

(a)  Exercise 16(a).
(b)  Exercise 17(a).

21. Let  have the Euclidean inner product. Use the Gram–Schmidt process to transform the basis  into
an orthonormal basis. Draw both sets of basis vectors in the xy-plane.
(a)  
(b)  

Answer:

(a)  

(b)  

22. Let  have the Euclidean inner product. Use theGram–Schmidt process to transform the basis 
into an orthonormal basis.
(a)  , , 

(b)  , , 

23. Let  have the Euclidean inner product. Use the Gram–Schmidt process to transform the basis
 into an orthonormal basis.



Answer:

24. Let  have the Euclidean inner product. Find an orthonormal basis for the subspace spanned by ,
, .

25. Let  have the inner product

Use the Gram–Schmidt process to transform , ,  into an orthonormal
basis.

Answer:

26. Let R3 have the Euclidean inner product. The subspace of  spanned by the vectors  and

 is aplane passing through the origin. Express  in the form , where 
lies in the plane and  is perpendicular to the plane.

27. Repeat Exercise 26 with  and .

Answer:

28. Let  have the Euclidean inner product. Express the vector  in the form ,
where  is in the space W spanned by  and , and  is orthogonal to W.

29. Find the -decomposition of the matrix, where possible.

(a)  

(b)  

(c)  

(d)  



(e)  

(f)  

Answer:

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  Columns not linearly independent



30. In Step 3 of the proof of Theorem 6.3.5, it was stated that “the linear independence of  ensures
that .” Prove this statement.

31. Prove that the diagonal entries of R in Formula 15 are nonzero.

32. Calculus required Use Theorem 6.3.2a to express the following polynomials as linear combinations of the first
three Legendre polynomials (see the Remark following Example 8).
(a)  

(b)  

(c)  

33. Calculus required Let  have the inner product

Apply the Gram–Schmidt process to transform the standard basis  into an orthonormal basis.

Answer:

34. Find vectors x and y in  that are orthonormal with respect to the inner product  but
are not orthonormal with respect to the Euclidean inner product.

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) Every linearly independent set of vectors in an inner product space is orthogonal.

Answer:

False

(b) Every orthogonal set of vectors in an inner product space is linearly independent.

Answer:

False

(c) Every nontrivial subspace of  has an orthonormal basis with respect to the Euclidean inner product.

Answer:

True

(d) Every nonzero finite-dimensional inner product space has an orthonormal basis.

Answer:

True

(e)  is orthogonal to every vector of W.

Answer:



False

(f) If A is an  matrix with a nonzero determinant, then A has a QR-decomposition.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



6.4  Best Approximation; Least Squares
In this section we will be concerned with linear systems that cannot be solved exactly and for which an approximate solution is
needed. Such systems commonly occur in applications where measurement errors “perturb” the coefficients of a consistent system
sufficiently to produce inconsistency.

Least Squares Solutions of Linear Systems

Suppose that  is an inconsistent linear system of m equations in n unknowns in which we suspect the inconsistency to be
caused by measurement errors in the coefficients of A. Since no exact solution is possible, we will look for a vector x that comes as
“close as possible” to being a solution in the sense that it minimizes  with respect to the Euclidean inner product on .
You can think of  as an approximation to b and  as the error in that approximation—the smaller the error, the better
the approximation. This leads to the following problem.

Least Squares Problem

Given a linear system  of m equations in n unknowns, find a vector x that minimizes  with respect to the
Euclidean inner product on . We call such an x a least squares solution of the system, we call  the least squares
error vector, and we call  the least squares error.

To clarify the above terminology, suppose that the matrix form of  is

The term “least squares solution” results from the fact that minimizing  also minimizes 

.

Best Approximation

Suppose that b is a fixed vector in  that we would like to approximate by a vector w that is required to lie in some subspace W
of . Unless b happens to be in W, then any such approximation will result in an “error vector”  that cannot be made equal
to 0 no matter how w is chosen (Figure 6.4.1a). However, by choosing

we can make the length of the error vector

as small as possible (Figure 6.4.1b).

Figure 6.4.1   



These geometric ideas suggest the following general theorem.

THEOREM 6.4.1   Best Approximation Theorem

If W is a finite-dimensional subspace of an inner product space V, and if b is a vector in V, then  is the best
approximation to b from W in the sense that

for every vector w in W that is different from .

Proof   For every vector w in W, we can write

  (1)

But  being a difference of vectors in W is itself in W; and since  is orthogonal to W, the two terms on the
right side of 1 are orthogonal. Thus, it follows from the Theorem of Pythagoras (Theorem 6.2.3) that

Since , it follows that the second term in this sum is positive, and hence that

Since norms are nonnegative, it follows (from a property of inequalities) that

Least Squares Solutions of Linear Systems

One way to find a least squares solution of  is to calculate the orthogonal projection  on the column space W of the
matrix A and then solve the equation

  (2)

However, we can avoid the need to calculate the projection by rewriting 2 as

and then multiplying both sides of this equation by  to obtain

  (3)

Since  is the component of b that is orthogonal to the column space of A, it follows from Theorem 4.8.9b that this
vector lies in the null space of , and hence that

Thus, 3 simplifies to

which we can rewrite as

  (4)



This is called the normal equation or the normal system associated with . When viewed as a linear system, the individual
equations are called the normal equations associated with .

In summary, we have established the following result.

THEOREM 6.4.2

For every linear system , the associated normal system

  (5)

is consistent, and all solutions of 5 are least squaressolutions of . Moreover, if W is the column space of A, and x is
any least squares solution of , then the orthogonal projection of b on W is

  (6)

If a linear system is consistent, then its exact solutions are
the same as its least squares solutions, in which case the
error is zero.

 EXAMPLE 1    Least Squares Solution

(a)  Find all least squares solutions of the linear system

(b)  Find the error vector and the error.

Solution   
(a)  It will be convenient to express the system in the matrix form , where

It follows that

so the normal system  is

Solving this system yields a unique least squares solution, namely,



(b)  The error vector is

and the error is

 EXAMPLE 2    Orthogonal Projection on a Subspace

Find the orthogonal projection of the vector  on the subspace of  spanned by the vectors

Solution   We could solve this problem by first using the Gram–Schmidt process to convert  into an
orthonormal basis and then applying the method used in Example 6 of Section 6.3 . However, the following method
is more efficient.

The subspace W of  spanned by , , and  is the column space of the matrix

Thus, if u is expressed as a column vector, we can find the orthogonal projection of u on W by finding a least
squares solution of the system  and then calculating  from the least squares solution. The
computations are as follows: The system  is

so

The normal system  in this case is

Solving this system yields



as the least squares solution of  (verify), so

or, in comma-delimited notation, .

Uniqueness of Least Squares Solutions

In general, least squares solutions of linear systems are not unique. Although the linear system in Example 1 turned out to have a
unique least squares solution, that occurred only because the coefficient matrix of the system happened to satisfy certain conditions
that guarantee uniqueness. Our next theorem will show what those conditions are.

THEOREM 6.4.3

If A is an  matrix, then the following are equivalent.
(a)  A has linearly independent column vectors.
(b)   is invertible.

Proof   We will prove that  and leave the proof that  as an exercise.

  Assume that A has linearly independent column vectors. The matrix  has size , so we can prove that this
matrix is invertible by showing that the linear system  has only the trivial solution. But if x is any solution of this
system, then  is in the null space of  and also in the column space of A. By Theorem 4.8.9b these spaces are orthogonal
complements, so part (b) of Theorem 6.2.4 implies that . But A is assumed to have linearly independent column vectors, so

 by Theorem 1.3.1.

As an exercise, try using Formula 7 to solve the problem
in part (a) of Example 1.

The next theorem, which follows directly from Theorem 6.4.2 and Theorem 6.4.3, gives an explicit formula for the least squares
solution of a linear system in which the coefficient matrix has linearly independent column vectors.

THEOREM 6.4.4

If A is an  matrix with linearly independent column vectors, then for every  matrix b, the linearsystem 
has a unique least squares solution. This solution is given by

  (7)



Moreover, if W is the column space of A, then the orthogonalprojection of b on W is

  (8)

   O P T I O N A L    

The Role of QR-Decomposition in Least Squares Problems

Formulas 7 and 8 have theoretical use but are not well suited for numerical computation. In practice, least squares solutions of
 are typically found by using some variation of Gaussian elimination to solve the normal equations or by using

QR-decomposition and the following theorem.

THEOREM 6.4.5

If A is an  matrix with linearly independent column vectors, and if A = QR is a QR-decomposition of A (see Theorem
6.3.7), then for each b in  the system  has a unique least squares solution given by

  (9)

A proof of this theorem and a discussion of its use can be found in many books on numerical methods of linear algebra. However,
you can obtain Formula 9 by making the substitution  in 7 and using the fact that  to obtain

Orthogonal Projections on Subspaces of Rm

In Section 4.8 we showed how to compute orthogonal projections on the coordinate axes of a rectangular coordinate system in 
and more generally on lines through the origin of . We will now consider the problem of finding orthogonal projections on
subspaces of . We begin with the following definition.

DEFINITION 1

If W is a subspace of , then the linear transformation  that maps each vector x in  into its orthogonal

projection  in W is called the orthogonal projection of Rm on W

It follows from Formula 7 that the standard matrix for the transformation P is



  (10)

where A is constructed using any basis for W as its column vectors.

 EXAMPLE 3    The Standard Matrix for an Orthogonal Projection on a Line

We showed in Formula 16 of Section 4.9 that

is the standard matrix for the orthogonal projection on the line W through the origin of  that makes an angle θ with
the positive x-axis. Derive this result using Formula 10.

Solution   The column vectors of A can be formed from any basis for W. Since W is one-dimensional, we can take
 as the basis vector (Figure 6.4.2), so

We leave it for you to show that  is the  identity matrix. Thus, Formula 10 simplifies to

Figure 6.4.2   

Another View of Least Squares

Recall from Theorem 4.8.9 that the null space and row space of an  matrix A are orthogonal complements, as are the null
space of  and the column space of A. Thus, given a linear system  in which A is an  matrix, the Projection
Theorem (6.3.3) tells us that the vectors x and b can each be decomposed into sums of orthogonal terms as

where  and  are the orthogonal projections of x on the row space of A and the null space of A, and the vectors
 and  are the orthogonal projections of b on the null space of  and the column space of A.

In Figure 6.4.3 we have represented the fundamental spaces of A by perpendicular lines in  and  on which we indicated the
orthogonal projections of x and b. (This, of course, is only pictorial since the fundamental spaces need not be one-dimensional.)
The figure shows  as a point in the column space of A and conveys that  is the point in col(A) that is closest to b. This



illustrates that the least squares solutions of  are the exact solutions of the equation .

Figure 6.4.3   

More on the Equivalence Theorem

As our final result in the main part of this section we will add one additional part to Theorem 5.1.6.

THEOREM 6.4.6   Equivalent Statements

If A is an  matrix, then the following statements are equivalent.
(a)  A is invertible.
(b)   has only the trivial solution.
(c)  The reduced row echelon form of A is .
(d)  A is expressible as a product of elementary matrices.
(e)   is consistent for every  matrix b.
(f)   has exactly one solution for every  matrix b.
(g)  .

(h)  The column vectors of A are linearly independent.
(i)  The row vectors of A are linearly independent.
(j)  The column vectors of A span .

(k)  The row vectors of A span .

(l)  The column vectors of A form a basis for .

(m)  The row vectors of A form a basis for .

(n)  A has .
(o)  A has nullity 0.
(p)  The orthogonal complement of the null space of A is .

(q)  The orthogonal complement of the row space of A is .

(r)  The range of  is .

(s)   is one-to-one.
(t)   is not an eigenvalue of A.
(u)   is invertible.

The proof of part (u) follows from part (h) of this theorem and Theorem 6.4.3 applied to square matrices.



   O P T I O N A L    

We now have all the ingredients needed to prove Theorem 6.3.3 in the special case where V is the vector space .

Proof of Theorem 6.3.3   We will leave the case where  as an exercise, so assume that . Let
 be any basis for W, and form the  matrix M that has these basis vectors as successive columns. This makes

W the column space of M and hence  the null space of . We will complete the proof by showing that every vector u in 
can be written in exactly one way as

where  is in the column space of M and . However, to say that  is in the column space of M is equivalent to saying
 for some vector x in , and to say that  is equivalent to saying that . Thus, if we can

show that the equation

  (11)

has a unique solution for x, then  and  will be uniquely determined vectors with the required properties. To
do this, let us rewrite 11 as

Since the matrix M has linearly independent column vectors, the matrix  is invertible by Theorem 6.4.6 and hence the
equation has a unique solution as required to complete the proof.

Concept Review
•  Least squares problem
•  Least squares solution
•  Least squares error vector
•  Least squares error
•  Best approximation
•  Normal equation
•  Orthogonal projection

Skills
•  Find the least squares solution of a linear system.
•  Find the error and error vector associated with a least squares solution to a linear system.
•  Use the techniques developed in this section to compute orthogonal projections.
•  Find the standard matrix of an orthogonal projection.

Exercise Set 6.4
1. Find the normal system associated with the given linear system.

(a)  



(b)  

Answer:

(a)  

(b)  

In Exercises 2–4, find the least squares solution of the linear equation .

2. (a)  
; 

(b)  
; 

3. (a)  

(b)  

Answer:

(a)  

(b)  

4. (a)  

(b)  

In Exercises 5–6, find the least squares error vector  resulting from the least squares solution x and verify that it is
orthogonal to the column space of A.

5. (a)  A and b are as in Exercise 3(a).
(b)  A and b are as in Exercise 3(b).

Answer:



(a)  

(b)  

6. (a)  A and b are as in Exercise 4(a).
(b)  A and b are as in Exercise 4(b).

7. Find all least squares solutions of  andconfirm that all of the solutions have the same error vector. Compute the least
squares error.
(a)  

; 

(b)  
; 

(c)  
; 

Answer:

(a)  Solution: ; least squares error: 

(b)  Solution:  (t a real number); least squares error: 

(c)  Solution:  (t a real number); least squares error: 

8. Find the orthogonal projection of u on the subspace of  spanned by the vectors  and .

(a)  
(b)  

9. Find the orthogonal projection of u on the subspace of  spanned by the vectors , , and .

(a)  ; , , 

(b)  ; , , 

Answer:

(a)  (7, 2, 9, 5)
(b)  

10. Find the orthogonal projection of  on the solution space of the homogeneous linear system

11. In each part, find , and apply Theorem 6.4.3 to determine whether A has linearly independent column vectors.



(a)  

(b)  

Answer:

(a)   A does not have linearly independent column vectors.

(b)   A does not have linearly independent column vectors.

12. Use Formula 10 and the method of Example 3 to find the standard matrix for the orthogonal projection  onto

(a)  the x-axis.
(b)  the y-axis.
[Note: Compare your results to Table 3 of Section 4.9.]

13. Use Formula 10 and the method of Example 3 to find the standard matrix for the orthogonal projection  onto

(a)  the xz-plane.
(b)  the yz-plane.
[Note: Compare your results to Table 4 of Section 4.9.]

Answer:

(a)  

(b)  

14. Show that if  is a nonzero vector, then the standard matrix for the orthogonal projection of  on the line
 is

15. Let W be the plane with equation .

(a)  Find a basis for W.
(b)  Use Formula 10 to find the standard matrix for the orthogonal projection on W.
(c)  Use the matrix obtained in part (b) to find the orthogonal projection of a point  on W.

(d)  Find the distance between the point  and the plane W, and check your result using Theorem 3.3.4.

Answer:

(a)  
(b)  



(c)  

(d)  

16. Let W be the line with parametric equations

(a)  Find a basis for W.
(b)  Use Formula 10 to find the standard matrix for the orthogonal projection on W.
(c)  Use the matrix obtained in part (b) to find the orthogonalprojection of a point  on W.

(d)  Find the distance between the point  and the line W.

17. In , consider the line l given by the equations

and the line m given by the equations

Let P be a point on l, and let Q be a point on m. Find the values of t and s that minimize the distance between the lines by
minimizing the squared distance .

Answer:

18. Prove: If A has linearly independent column vectors, and if  is consistent, then the least squares solution of  and
the exact solution of  are the same.

19. Prove: If A has linearly independent column vectors, and if b is orthogonal to the column space of A, then the least squares
solution of  is .

20. Let  be the orthogonal projection of  onto a subspace W.

(a)  Prove that .

(b)  What does the result in part (a) imply about the composition ?
(c)  Show that [P] is symmetric.

21. Let A be an  matrix with linearly independent row vectors. Find a standard matrix for the orthogonal projection of 
onto the row space of A. [Hint: Start with Formula 10.]

Answer:

22. Prove the implication  of Theorem 6.4.3.

True-False Exercises

In parts (a)–(h) determine whether the statement is true or false, and justify your answer.

(a) If A is an  matrix, then  is a square matrix.

Answer:

True

(b) If  is invertible, then A is invertible.

Answer:

False



(c) If A is invertible, then  is invertible.

Answer:

True

(d) If  is a consistent linear system, then  is also consistent.

Answer:

True

(e) If  is an inconsistent linear system, then  is also inconsistent.

Answer:

False

(f) Every linear system has a least squares solution.

Answer:

True

(g) Every linear system has a unique least squares solution.

Answer:

False

(h) If A is an  matrix with linearly independent columns and b is in , then  has a unique least squares solution.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



6.5  Least Squares Fitting to Data
In this section we will use results about orthogonal projections in inner product spaces to obtain a technique
for fitting a line or other polynomial curve to a set of experimentally determined points in the plane.

Fitting a Curve to Data

A common problem in experimental work is to obtain a mathematical relationship  between two
variables x and y by “fitting” a curve to points in the plane corresponding to various experimentally
determined values of x and y, say

On the basis of theoretical considerations or simply by observing the pattern of the points, the experimenter
decides on the general form of the curve  to be fitted. Some possibilities are (Figure 6.5.1)

(a)  A straight line: 

(b)  A quadratic polynomial: 

(c)  A cubic polynomial: 

Because the points are obtained experimentally, there is often some measurement “error” in the data, making
it impossible to find a curve of the desired form that passes through all the points. Thus, the idea is to choose
the curve (by determining its coefficients) that “best” fits the data. We begin with the simplest and most
common case: fitting a straight line to data points.

Figure 6.5.1   

Least Squares Fit of a Straight Line

Suppose we want to fit a straight line  to the experimentally determined points

If the data points were collinear, the line would pass through all n points, and the unknown coefficients a and
b would satisfy the equations



We can write this system in matrix form as

or more compactly as

  (1)

where

  (2)

If the data points are not collinear, then it is impossible to find coefficients a and b that satisfy system 1
exactly; that is, the system is inconsistent. In this case we will look for a least squares solution

We call a line  whose coefficients come from a least squares solution a regression line or a
least squares straight line fit to the data. To explain this terminology, recall that a least squares solution of 1
minimizes

  (3)

If we express the square of 3 in terms of components, we obtain

  (4)

If we now let

then 4 can be written as

  (5)

As illustrated in Figure 6.5.2, the number  can be interpreted as the vertical distance between the line
 and the data point . This distance is a measure of the “error” at the point 



resulting from the inexact fit of  to the data points, the assumption being that the  are known
exactly and that all the error is in the measurement of the . Since 3 and 5 are minimized by the same vector

, the least squares straight line fit minimizes the sum of the squares of the estimated errors , hence the
name least squares straight line fit.

Figure 6.5.2    measures the vertical error in the least squares straight line.

Normal Equations

Recall from Theorem 6.4.2 that the least squares solutions of 1 can be obtained by solving the associated
normal system

the equations of which are called the normal equations.

In the exercises it will be shown that the column vectors of M are linearly independent if and only if the n data
points do not lie on a vertical line in the xy-plane. In this case it follows from Theorem 6.4.4 that the least
squares solution is unique and is given by

In summary, we have the following theorem.

THEOREM 6.5.1   Uniqueness of the Least Squares Solution

Let  be a set of two or more data points, not all lying on a vertical
line, and let

Then there is a unique least squares straight line fit

to the data points. Moreover,



is given by the formula

  (6)

which expresses the fact that  is the unique solution of the normal equations

  (7)

 EXAMPLE 1    Least Squares Straight Line Fit

Find the least squares straight line fit to the four points , , , and . (See
Figure 6.5.3.)

Figure 6.5.3   

Solution   We have

so the desired line is .



 EXAMPLE 2    Spring Constant

Hooke's law in physics states that the length x of a uniform spring is a linear function of the
force y applied to it. If we express this relationship as , then the coefficient b is
called the spring constant. Suppose a particular unstretched spring has a measured length of 6.1
inches (i.e.,  when ). Forces of 2 pounds, 4 pounds, and 6 pounds are then applied
to the spring, and the corresponding lengths are found to be 7.6 inches, 8.7 inches, and 10.4
inches (see Figure 6.5.4). Find the spring constant.

Figure 6.5.4   

Solution   We have

and

where the numerical values have been rounded to one decimal place. Thus, the estimated value
of the spring constant is  pounds/inch.



Historical Note    On October 5, 1991 the Magellan spacecraft entered the atmosphere of Venus and
transmitted thetemperature T in kelvins (K) versus the altitude h in kilometers (km) until its signal
was lost at an altitude of about 34 km. Discounting theinitial erratic signal, the data strongly
suggested a linear relationship, so a least squares straight line fit was used on the linear part of the
data to obtain the equation

By setting  in this equation, the surface temperature of Venus was estimated at K.

Least Squares Fit of a Polynomial

The technique described for fitting a straight line to data points can be generalized to fitting a polynomial of
specified degree to data points. Let us attempt to fit a polynomial of fixed degree m

  (8)

to n points

Substituting these n values of x and y into 8 yields the n equations

or, in matrix form,

  (9)

where



  (10)

As before, the solutions of the normal equations

determine the coefficients of the polynomial, and the vector v minimizes

Conditions that guarantee the invertibility of  are discussed in the exercises (Exercise 7). If  is
invertible, then the normal equations have a unique solution , which is given by

  (11)

 EXAMPLE 3    Fitting a Quadratic Curve to Data

According to Newton's second law of motion, a body near the Earth's surface falls vertically
downward according to the equation

  (12)

where
s = vertical displacement downward relative to some fixed point

= initial displacement at time 
= initial velocity at time 

g = acceleration of gravity at the Earth's surface
from Equation 12 by releasing a weight with unknown initial displacement and velocity and
measuring the distance it has fallen at certain times relative to a fixed reference point. Suppose
that a laboratory experiment is performed to evaluate g. Suppose it is found that at times

, and .5 seconds the weight has fallen , and 3.73
feet, respectively, from the reference point. Find an approximate value of g using these data.

Solution   The mathematical problem is to fit a quadratic curve

  (13)

to the five data points:

With the appropriate adjustments in notation, the matrices M and y in 10 are



Thus, from 11,

From 12 and 13, we have , so the estimated value of g is

If desired, we can also estimate the initial displacement and initial velocity of the weight:

In Figure 6.5.5 we have plotted the five data points and the approximating polynomial.

Figure 6.5.5   

Concept Review
•  Least squares straight line fit
•  Regression line
•  Least squares polynomial fit

Skills



•  Find the least squares straight line fit to a set of data points.
•  Find the least squares polynomial fit to a set of data points.
•  Use the techniques of this section to solve applied problems.

Exercise Set 6.5
1. Find the least squares straight line fit to the three points , , and .

Answer:

2. Find the least squares straight line fit to the four points , , , and .

3. Find the quadratic polynomial that best fits the four points , , , and .

Answer:

4. Find the cubic polynomial that best fits the five points , , , , and
.

5. Show that the matrix M in Equation 2 has linearly independent columns if and only if at least two of the
numbers  are distinct.

6. Show that the columns of the  matrix M in Equation 10 are linearly independent if  and
at least  of the numbers  are distinct. [Hint: A nonzero polynomial of degreem has at
most m distinct roots.]

7. Let M be the matrix in Equation 10. Using Exercise 6, show that a sufficient condition for the matrix
 to be invertible is that  and that at least  of the numbers  are distinct.

8. The owner of a rapidly expanding business finds that for the first five months of the year the sales (in
thousands) are , and $8.0. The owner plots these figures on a graph and conjectures
that for the rest of the year, the sales curve can be approximated by a quadratic polynomial. Find the least
squares quadratic polynomial fit to the sales curve, and use it to project the sales for the twelfth month of
the year.

9. A corporation obtains the following data relating the number of sales representatives on its staff to annual
sales:

Explain how you might use least squares methods to estimate the annual sales with 45 representatives, and
discuss the assumptions that you are making. (You need not perform the actual computations.)



10. Pathfinder is an experimental, lightweight,remotely piloted,solar-powered aircraft that was used in aseries
of experiments by NASA to determine the feasibilityof applyingsolar power for long-duration,high-
altitude flight. In August 1997 Pathfinder recordedthe data in the accompanying table relating altitude H
and temperature T. Show that a linear model is reasonable by plotting the data, and then find theleast
squares line  of best fit.

Table Ex-10

11. Find a curve of the form  that best fits the data points , ,  by making the
substitution . Draw the curve and plot the data points in the same coordinate system.

Answer:

True-False Exercises

In parts (a)–(d) determine whether the statement is true or false, and justify your answer.

(a) Every set of data points has a unique least squares straight line fit.

Answer:

False

(b) If the data points  are not collinear, then 1 is an inconsistent system.

Answer:

True

(c) If  is the least squares line fit to the data points , then
 is minimal for every .

Answer:



False

(d) If  is the least squares line fit to the data points , then

 is minimal.

Answer:

True
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6.6  Function Approximation; Fourier Series
In this section we will show orthogonal projections can be used to approximate certain types of functions by
simpler functions that are easier to work with. The ideas explained here have important applications in
engineering and science. Calculus is required.

Best Approximations

All of the problems that we will study in this section will be special cases of the following general problem.

APPROXIMATION PROBLEM

Given a function f that is continuous on an interval , find the “best possible approximation” to f
using only functions from a specified subspace W of .

Here are some examples of such problems:
(a)  Find the best possible approximation to  over  by a polynomial of the form .

(b)  Find the best possible approximation to  over  by a function of the form
.

(c)  Find the best possible approximation to x over  by a function of the form
.

In the first example W is the subspace of  spanned by , and ; in the second example W is the
subspace of  spanned by , , and ; and in the third example W is the subspace of

 spanned by , , , and .

Measurements of Error

To solve approximation problems of the preceding types, we first need to make the phrase “best
approximation over ” mathematically precise. To do this we will need some way of quantifying the
error that results when one continuous function is approximated by another over an interval . If we
were to approximate  by , and if we were concerned only with the error in that approximation at a
single point , then it would be natural to define the error to be

sometimes called the deviation between f and g at  (Figure 6.6.1). However, we are not concerned simply
with measuring the error at a single point but rather with measuring it over the entire interval . The
problem is that an approximation may have small deviations in one part of the interval and large deviations in
another. One possible way of accounting for this is to integrate the deviation  over the interval

 and define the error over the interval to be



  (1)

Geometrically, 1 is the area between the graphs of  and  over the interval  (Figure 6.6.2); the
greater the area, the greater the overall error.

Figure 6.6.1   The deviation between f and g x0

Figure 6.6.2   The area between the graphs of f and g over [a, b] measures the error in approximating f
by g over [a, b]

Although 1 is natural and appealing geometrically, most mathematicians and scientists generally favor the
following alternative measure of error, called the mean square error:

Mean square error emphasizes the effect of larger errors because of the squaring and has the added advantage
that it allows us to bring to bear the theory of inner product spaces. To see how, suppose that f is a continuous
function on  that we want to approximate by a function g from a subspace W of , and suppose
that  is given the inner product

It follows that

so minimizing the mean square error is the same as minimizing . Thus the approximation problem
posed informally at the beginning of this section can be restated more precisely as follows.

Least Squares Approximation



LEAST SQUARES APPROXIMATION PROBLEM

Let f be a function that is continuous on an interval , let  have the inner product

and let W be a finite-dimensional subspace of . Find a function g in W that minimizes

Since  and  are minimized by the same function g, this problem is equivalent to looking for a
function g in W that is closest to f. But we know from Theorem 6.4.1 that  is such a function
(Figure 6.6.3).

Figure 6.6.3   

Thus, we have the following result.

THEOREM 6.6.1

If f is a continuous function on , and W is a finite-dimensional subspace of , then the
function g in W that minimizes the mean square error

is , where the orthogonal projection is relative to the inner product

The function  is called the last squares approximation to f from W.



Fourier Series

A function of the form

  (2)

is called a trigonometric polynomial; if  and  are not both zero, then  is said to have order n. For
example,

is a trigonometric polynomial of order 4 with

It is evident from 2 that the trigonometric polynomials of order n or less are the various possible linear
combinations of

  (3)

It can be shown that these  functions are linearly independent and thus form a basis for a 
-dimensional subspace of .

Let us now consider the problem of finding the least squares approximation of a continuous function 
over the interval  by a trigonometric polynomial of order n or less. As noted above, the least squares
approximation to f from W is the orthogonal projection of f on W. To find this orthogonal projection, we must
find an orthonormal basis  for W, after which we can compute the orthogonal projection on W
from the formula

  (4)

(see Theorem 6.3.4b). An orthonormal basis for W can be obtained by applying the Gram–Schmidt process to
the basis vectors in 3 using the inner product

This yields the orthonormal basis

  (5)

(see Exercise 6). If we introduce the notation



  (6)

then on substituting 5 in 4, we obtain

  (7)

where

In short,

  (8)

The numbers  are called the Fourier coefficients of f.

 EXAMPLE 1    Least Squares Approximations

Find the least squares approximation of  on  by

(a)  a trigonometric polynomial of order 2 or less;
(b)  a trigonometric polynomial of order n or less.

Solution   
(a)  

  (9a)

For , integration by parts yields (verify)



  (9b)

  (9c)

Thus, the least squares approximation to x on  by a trigonometric polynomial of
order 2 or less is

or, from (9a), (9b), and (9c),

(b)  The least squares approximation to x on  by a trigonometric polynomial of order n
or less is

or, from (9a), (9b), and (9c),

The graphs of  and some of these approximations are shown in Figure 6.6.4.

Figure 6.6.4   

It is natural to expect that the mean square error will diminish as the number of terms in the
least squares approximation

increases. It can be proved that for functions f in , the mean square error
approaches zero as ; this is denoted by writing



The right side of this equation is called the Fourier series for f over the interval .
Such series are of major importance in engineering, science, and mathematics.

Jean Baptiste Fourier (1768–1830)

Historical Note    Fourier was a French mathematician and physicist who discovered
the Fourier series and related ideas while working on problems of heat diffusion. This
discovery was one of the most influential in the history of mathematics; it is the
cornerstone of many fields of mathematical research and a basic tool in many branches
of engineering. Fourier, a political activist during the French revolution, spent time in
jail for his defense of many victims during the Terror. He later became a favorite of
Napoleon and was named a baron.
[Image: The Granger Collection, New York]

Concept Review
•  Approximation of functions
•  Mean square error
•  Least squares approximation
•  Trigonometric polynomial
•  Fourier coefficients
•  Fourier series

Skills
•  Find the least squares approximation of a function.
•  Find the mean square error of the least squares approximation of a function.
•  Compute the Fourier series of a function.



Exercise Set 6.6
1. Find the least squares approximation of  over the interval  by

(a)  a trigonometric polynomial of order 2 or less.
(b)  a trigonometric polynomial of order n or less.

Answer:

(a)  
(b)  

2. Find the least squares approximation of  over the interval  by

(a)  a trigonometric polynomial of order 3 or less.
(b)  a trigonometric polynomial of order n or less.

3. (a)  Find the least squares approximation of x over the interval  by a function of the form .

(b)  Find the mean square error of the approximation.

Answer:

(a)  

(b)  

4. (a)  Find the least squares approximation of  over the interval  by a polynomial of the form
.

(b)  Find the mean square error of the approximation.

5. (a)  Find the least squares approximation of  over the interval [−1, 1] by a polynomial of the form
.

(b)  Find the mean square error of the approximation.

Answer:

(a)  

(b)  

6. Use the Gram–Schmidt process to obtain the orthonormal basis 5 from the basis 3.

7. Carry out the integrations indicated in Formulas 9a, 9b, and 9c.

8. Find the Fourier series of  over the interval .



9. Find the Fourier series of  and ,  over the interval .

Answer:

10. What is the Fourier series of ?

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) If a function f in  is approximated by the function g, then the mean square error is the same as the
area between the graphs of  and  over the interval .

Answer:

False

(b) Given a finite-dimensional subspace W of , the function g = projW f minimizes the mean square
error.

Answer:

True

(c)  is an orthogonal subset of the vector space  with respect to the

inner product .

Answer:

True

(d)  is an orthonormal subset of the vector space  with respect to the

inner product .

Answer:

False

(e)  is a linearly independent subset of .

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



Chapter 6 Supplementary Exercises

1. Let  have the Euclidean inner product.

(a)  Find a vector in  that is orthogonal to  and  and makes equal
angles with  and .

(b)  Find a vector  of length 1 that is orthogonal to  and  above and such that the
cosine of the angle between x and  is twice the cosine of the angle between x and .

Answer:

(a)   with 

(b)  

2. Prove: If  is the Euclidean inner product on , and if A is an  matrix, then

[Hint: Use the fact that .]

3. Let  have the inner product  that was defined in Example 6 of

Section 6.1 . Describe the orthogonal complement of
(a)  the subspace of all diagonal matrices.
(b)  the subspace of symmetric matrices.

Answer:

(a)  The subspace of all matrices in  with only zeros on the diagonal.
(b)  The subspace of all skew-symmetric matrices in .

4. Let  be a system of m equations in n unknowns. Show that

is a solution of this system if and only if the vector  is orthogonal to every row vector
of A with respect to the Euclidean inner product on .

5. Use the Cauchy–Schwarz inequality to show that if  are positive real numbers, then

6. Show that if x and y are vectors in an inner product space and c is any scalar, then



7. Let  have the Euclidean inner product. Find two vectors of length 1 that are orthogonal to all three of
the vectors , , and .

Answer:

8. Find a weighted Euclidean inner product on  such that the vectors

form an orthonormal set.

9. Is there a weighted Euclidean inner product on  for which the vectors  and  form an
orthonormal set? Justify your answer.

Answer:

No

10. If u and v are vectors in an inner product space , then u, v, and  can be regarded as sides of a
“triangle” in V (see the accompanying figure). Prove that the law of cosines holds for any such triangle;
that is,

where  is the angle between u and v.

Figure Ex-10   

11. (a)  As shown in Figure 3.2.6, the vectors (k, 0, 0), (0, k, 0), and (0, 0, k) form the edges of a cube in 
with diagonal . Similarly, the vectors

can be regarded as edges of a “cube” in  with diagonal . Show that each of the above
edges makes an angle of θ with the diagonal, where .

(b)  Calculus required  What happens to the angle θ inpart (a) as the dimension of  approaches ?



Answer:

(b)   approaches 

12. Let u and v be vectors in an inner product space.
(a)  Prove that  if and only if  and  are orthogonal.
(b)  Give a geometric interpretation of this result in  with the Euclidean inner product.

13. Let u be a vector in an inner product space V, and let  be an orthonormal basis for V.
Show that if  is the angle between u and , then

14. Prove: If  and  are two inner products on a vector space V, then the quantity
 is also an inner product.

15. Prove Theorem 6.2.5.

16. Prove: If A has linearly independent column vectors, and if b is orthogonal to the column space of A,then
the least squares solution of  is .

17. Is there any value of s for which  and  is the leastsquares solution of the following linear
system?

Explain your reasoning.

Answer:

No

18. Show that if p and q are distinct positive integers, then the functions  and  are
orthogonal with respect to the inner product

19. Show that if p and q are positive integers, then the functions  and  are
orthogonal with respect to the inner product

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



CHAPTER

   7 Diagonalization and
Quadratic Forms

CHAPTER CONTENTS

7.1.  Orthogonal Matrices
7.2.  Orthogonal Diagonalization
7.3.  Quadratic Forms
7.4.  Optimization Using Quadratic Forms
7.5.  Hermitian, Unitary, and Normal Matrices

INTRODUCTION

In Section 5.2 we found conditions that guaranteed the diagonalizability of an 
matrix, but we did not consider what class or classes of matrices might actually satisfy
those conditions. In this chapter we will show that every symmetric matrix is
diagonalizable. This is an extremely important result because many applications utilize it
in some essential way.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



7.1  Orthogonal Matrices
In this section we will discuss the class of matrices whose inverses can be obtained by transposition. Such matrices occur in a variety of
applications and arise as well as transition matrices when one orthonormal basis is changed to another.

Orthogonal Matrices

We begin with the following definition.

DEFINITION 1

A square matrix A is said to be orthogonal if its transpose is the same as its inverse, that is, if

or, equivalently, if

  (1)

Recall from Theorem 1.6.3 that if either product in 1 holds, then
so does the other. Thus, A is orthogonal if either  or

.

 EXAMPLE 1    A 3 × 3 Orthogonal Matrix

The matrix

is orthogonal since

 EXAMPLE 2    Rotation and Reflection Matrices are Orthogonal

Recall from Table Table 5 of Section 4.9 that the standard matrix for the counterclockwise rotation of  through an angle θ is

This matrix is orthogonal for all choices of θ since

We leave it for you to verify that the reflection matrices in Tables Table 1 and Table 2 and the rotation matrices in Table Table 6 of
Section 4.9 are all orthogonal.



Observe that for the orthogonal matrices in Example 1 and Example 2, both the row vectors and the column vectors form orthonormal sets with
respect to the Euclidean inner product. This is a consequence of the following theorem.

THEOREM 7.1.1

The following are equivalent for an  matrix A.
(a)  A is orthogonal
(b)  The row vectors of A form an orthonormal set in  with the Euclidean inner product.

(c)  The column vectors of A form an orthonormal set in  with the Euclidean inner product.

Proof   We will prove the equivalence of (a) and (b) and leave the equivalence of (a) and (c) as an exercise.

(a) ⇔⇔ (b)   The entry in the ith row and jth column of the matrix product  is the dot product of the ith row vector of A and the jth column
vector of  (see Formula 5 of Section 1.3). But except for a difference in form, the jth column vector of  is the jth row vector of A. Thus, if the
row vectors of A are , then the matrix product  can be expressed as

[see Formula 28 of Section 3.2]. Thus, it follows that  if and only if

and

which are true if and only if  is an orthonormal set in .

WARNING

Note that an orthogonal matrix is one with orthonormal rows and columns—not simply orthogonal rows and columns.

The following theorem lists three more fundamental properties of orthogonal matrices. The proofs are all straightforward and are left as exercises.

THEOREM 7.1.2

(a)  The inverse of an orthogonal matrix is orthogonal.
(b)  A product of orthogonal matrices is orthogonal.
(c)  If A is orthogonal, then  or .

 EXAMPLE 3    det(A) = ±1 for an Orthogonal Matrix A

The matrix



is orthogonal since its row (and column) vectors form orthonormal sets in  with the Euclidean inner product. We leave it for you
to verify that  and that interchanging the rows produces an orthogonal matrix whose determinant is .

Orthogonal Matrices as Linear Operators

We observed in Example 2 that the standard matrices for the basic reflection and rotation operators on  and  are orthogonal. The next theorem
will explain why this is so.

THEOREM 7.1.3

If A is an  matrix, then the following are equivalent.
(a)  A is orthogonal.
(b)   for all x in .

(c)   for all x and y in .

Proof   We will prove the sequence of implications (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b)  Assume that A is orthogonal, so that . It follows from Formula 26 of Section 3.2 that

(b) ⇒ (c)  Assume that  for all x in . From Theorem 3.2.7 we have

(c) ⇒ (a)  Assume that  for all x and y in . It follows from Formula 26 of Section 3.2 that

which can be rewritten as  or as

Since this equation holds for all x in , it holds in particular if , so

Thus, it follows from the positivity axiom for inner products that

Since this equation is satisfied by every vector y in , it must be that  is the zero matrix (why?) and hence that . Thus, A is
orthogonal.

Theorem 7.1.3 has a useful geometric interpretation when considered from the viewpoint of matrix transformations: If A is an orthogonal matrix
and  is multiplication by A, then we will call  an orthogonal operator on . It follows from parts (a) and (b) of Theorem 7.1.3
that the orthogonal operators on  are precisely those operators that leave the lengths of all vectors unchanged. This explains why, in Example 2,
we found the standard matrices for the basic reflections and rotations of  and  to be orthogonal.

Parts (a) and (c) of Theorem 7.1.3 imply that orthogonal
operators leave the angle between two vectors unchanged. Why?



Change of Orthonormal Basis

Orthonormal bases for inner product spaces are convenient because, as the following theorem shows, many familiar formulas hold for such bases.
We leave the proof as an exercise.

THEOREM 7.1.4

If S is an orthonormal basis for an n-dimensional inner product space  and if

then:
(a)  

(b)  

(c)  

Remark   Note that the three parts of Theorem 7.1.4 can be expressed as

where the norm, distance, and inner product on the left sides are relative to the inner product on V and on the right sides are relative to the
Euclidean inner product on .

Transitions between orthonormal bases for an inner product space are of special importance in geometry and various applications. The following
theorem, whose proof is deferred to the end of this section, is concerned with transitions of this type.

THEOREM 7.1.5

Let V be a finite-dimensional inner product space. If P is the transition matrix from one orthonormal basis for V to another orthonormal
basis for V, then P is an orthogonal matrix.

 EXAMPLE 4    Rotation of Axes in 2-Space

In many problems a rectangular xy-coordinate system is given, and a new -coordinate system is obtained by rotating the
xy-system counterclockwise about the origin through an angle θ. When this is done, each point Q in the plane has two sets of
coordinates—coordinates  relative to the xy-system and coordinates  relative to the -system (Figure 7.1.1a).

Figure 7.1.1   

By introducing unit vectors  and  along the positive x- and y-axes and unit vectors  and  along the positive - and -axes,
we can regard this rotation as a change from an old basis  to a new basis  (Figure 7.1.1b). Thus, the new

coordinates  and the old coordinates  of a point Q will be related by

  (2)



where P is the transition from B′ to B. To find P we must determine the coordinate matrices of the new basis vectors  and 
relative to the old basis. As indicated in Figure 7.1.1c, the components of  in the old basis are cos θ and sin θ, so

Similarly, from Figure 7.1.1d, we see that the components of  in the old basis are  and
, so

Thus the transition matrix from B′ to B is

  (3)

Observe that P is an orthogonal matrix, as expected, since B and B′ are orthonormal bases. Thus

so 2 yields

  (4)

or, equivalently,

  (5)

These are sometimes called the rotation equations for .

 EXAMPLE 5    Rotation of Axes in 2-Space

Use form 4 of the rotation equations for  to find the new coordinates of the point  if the coordinate axes of a rectangular
coordinate system are rotated through an angle of .

Solution   Since

the equation in 4 becomes

Thus, if the old coordinates of a point Q are , then

so the new coordinates of Q are .

Remark   Observe that the coefficient matrix in 4 is the same as the standard matrix for the linear operator that rotates the vectors of  through
the angle  (see margin note for Table 5 of Section 4.9). This is to be expected since rotating the coordinate axes through the angle θ with the
vectors of  kept fixed has the same effect as rotating the vectors in  through the angle  with the axes kept fixed.



 EXAMPLE 6    Application to Rotation of Axes in 3-Space

Suppose that a rectangular xyz-coordinate system is rotated around its z-axis counterclockwise (looking down the positive z-axis)
through an angle θ (Figure 7.1.2). If we introduce unit vectors , , and  along the positive x-, y-, and z-axes and unit vectors ,

, and  along the positive -, -, and -axes, we can regard the rotation as a change from the old basis  to the
new basis . In light of Example 4, it should be evident that

Moreover, since  extends 1 unit up the positive -axis,

Figure 7.1.2   

It follows that the transition matrix from B′ to B is

and the transition matrix from B to B′ is

(verify). Thus, the new coordinates  of a point Q can be computed from its old coordinates  by

   O P T I O N A L    

We conclude this section with an optional proof of Theorem 7.1.5.

Proof of Theorem 7.1.5   Assume that V is an n-dimensional inner product space and that P is the transition matrix from an orthonormal basis
B′ to an orthonormal basis B. We will denote the norm relative to the inner product on V by the symbol  to distinguish it from the norm
relative to the Euclidean inner product on , which we will denote by .

Recall that  denotes a coordinate vector expressed in
comma-delimited form whereas  denotes a coordinate vector
expressed in column form.

To prove that P is orthogonal, we will use Theorem 7.1.3 and show that  for every vector x in . As a first step in this direction,
recall from Theorem 7.1.4a that for any orthonormal basis for V the norm of any vector u in V is the same as the norm of its coordinate vector with
respect to the Euclidean inner product, that is



or

  (6)

Now let x be any vector in , and let u be the vector in V whose coordinate vector with respect to the basis B′ is x; that is, . Thus, from
6,

which proves that P is orthogonal.

Concept Review
•  Orthogonal matrix
•  Orthogonal operator
•  Properties of orthogonal matrices.
•  Geometric properties of an orthogonal operator
•  Properties of transition matrices from one orthonormal basis to another.

Skills
•  Be able to identify an orthogonal matrix.
•  Know the possible values for the determinant of an orthogonal matrix.
•  Find the new coordinates of a point resulting from a rotation of axes.

Exercise Set 7.1
1. (a)  Show that the matrix

is orthogonal in three ways: by calculating , by using part (b) of Theorem 7.1.1, and by using part (c) of Theorem 7.1.1.

(b)  Find the inverse of the matrix A in part (a).

Answer:

(b)  

2. (a)  Show that the matrix

is orthogonal.



(b)  Let  be multiplication by the matrix A in part (a). Find  for the vector . Using the Euclidean inner product
on , verify that .

3. Determine which of the following matrices are orthogonal. For those that are orthogonal, find the inverse.

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Answer:

(a)  

(b)  

(d)  



(e)  

4. Prove that if A is orthogonal, then  is orthogonal.

5. Verify that the reflection matrices in Tables Table 1 and Table 2 of Section 4.9 are orthogonal.

6. Let a rectangular -coordinate system be obtained by rotating a rectangular xy-coordinate system counterclockwise through the angle
.

(a)  Find the -coordinates of the point whose xy-coordinates are .

(b)  Find the xy-coordinates of the point whose -coordinates are .

7. Repeat Exercise 6 with .

Answer:

(a)  

(b)  

8. Let a rectangular -coordinate system be obtained by rotating a rectangular xyz-coordinate system counterclockwise about the z-axis
(looking down the z-axis) through the angle .
(a)  Find the -coordinates of the point whose xyz-coordinates are .

(b)  Find the xyz-coordinates of the point whose -coordinates are .

9. Repeat Exercise 8 for a rotation of  counterclockwise about the y-axis (looking along the positive y-axis toward the origin).

Answer:

(a)  

(b)  

10. Repeat Exercise 8 for a rotation of  counterclockwise about the x-axis (looking along the positive x-axis toward the origin).

11. (a)  A rectangular -coordinate system is obtained by rotating an xyz-coordinate system counterclockwise about the y-axis through an
angle θ (looking along the positive y-axis toward the origin). Find a matrix A such that

where  and  are the coordinates of the same point in the - and -systems, respectively.

(b)  Repeat part (a) for a rotation about the x-axis.

Answer:

(a)  

(b)  

12. A rectangular -coordinate system is obtained by first rotating a rectangular xyz-coordinate system 60° counterclockwise about the
z-axis (looking down the positive z-axis) to obtain an -coordinate system, and then rotating the -coordinate system 45°



counterclockwise about the -axis (looking along the positive -axis toward the origin). Find a matrix A such that

where  and  are the xyz- and -coordinates of the same point.

13. What conditions must a and b satisfy for the matrix

to be orthogonal?

Answer:

14. Prove that a  orthogonal matrix A has only one of two possible forms:

where . [Hint: Start with a general  matrix , and use the fact that the column vectors form an orthonormal set in .]

15. (a)  Use the result in Exercise 14 to prove that multiplication by a  orthogonal matrix is either a reflection or a reflection followed by a
rotation about the x-axis.

(b)  Prove that multiplication by Ais a rotation if  and that a reflection followed by a rotation if .

16. Use the result in Exercise 15 to determine whether multiplication by A is a reflection or a reflection followed by a rotation about the x-axis.
Find the angle of rotation in either case.
(a)  

(b)  

17. Find a, b, and c for which the matrix

is orthogonal. Are the values of a, b, and c unique? Explain.

Answer:

The only possibilities are  or .

18. The result in Exercise 15 has an analog for  orthogonal matrices: It can be proved that multiplication by a  orthogonal matrix A is a
rotation about some axis if  and is a rotation about some axis followed by a reflection about some coordinate plane if 
. Determine whether multiplication by A is a rotation or a rotation followed by a reflection.
(a)  



(b)  

19. Use the fact stated in Exercise 18 and part (b) of Theorem 7.1.2 to show that a composition of rotations can always be accomplished by a single
rotation about some appropriate axis.

20. Prove the equivalence of statements (a) and (c) in Theorem 7.1.1.

21. A linear operator on  is called rigid if it does not change the lengths of vectors, and it is called angle preserving if it does not change the
angle between nonzero vectors.
(a)  Name two different types of linear operators that are rigid.
(b)  Name two different types of linear operators that are angle preserving.
(c)  Are there any linear operators on  that are rigid and not angle preserving? Angle preserving and not rigid? Justify your answer.

Answer:

(a)  Rotations about the origin, reflections about any line through the origin, and any combination of these
(b)  Rotation about the origin, dilations, contractions, reflections about lines through the origin, and combinations of these
(c)  No; dilations and contractions

True-False Exercises

In parts (a)–(h) determine whether the statement is true or false, and justify your answer.

(a) 
The matrix  is orthogonal.

Answer:

False

(b) The matrix  is orthogonal.

Answer:

False

(c) An  matrix A is orthogonal if .

Answer:

False

(d) A square matrix whose columns form an orthogonal set is orthogonal.

Answer:

False

(e) Every orthogonal matrix is invertible.

Answer:

True

(f) If A is an orthogonal matrix, then  is orthogonal and .

Answer:

True

(g) Every eigenvalue of an orthogonal matrix has absolute value 1.



Answer:

True

(h) If A is a square matrix and  for all unit vectors u, then A is orthogonal.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



7.2  Orthogonal Diagonalization
In this section we will be concerned with the problem of diagonalizing a symmetric matrix A. As we will see, this problem is
closely related to that of finding an orthonormal basis for  that consists of eigenvectors of A. Problems of this type are
important because many of the matrices that arise in applications are symmetric.

The Orthogonal Diagonalization Problem

In Definition 1 of Section 5.2 we defined two square matrices, A and B, to be similar if there is an invertible matrix P such
that . In this section we will be concerned with the special case in which it is possible to find an orthogonal
matrix P for which this relationship holds.

We begin with the following definition.

DEFINITION 1

If A and B are square matrices, then we say that A and B are orthogonally similar if there is an orthogonal matrix P
such that .

If A is orthogonally similar to some diagonal matrix, say

then we say that A is orthogonally diagonalizable and that P orthogonally diagonalizes A.

Our first goal in this section is to determine what conditions a matrix must satisfy to be orthogonally diagonalizable. As a
first step, observe that there is no hope of orthogonally diagonalizing a matrix that is not symmetric. To see why this is so,
suppose that

  (1)

where P is an orthogonal matrix and D is a diagonal matrix. Multiplying the left side of 1 by P, the right side by , and then
using the fact that , we can rewrite this equation as

  (2)

Now transposing both sides of this equation and using the fact that a diagonal matrix is the same as its transpose we obtain

so A must be symmetric.

Conditions for Orthogonal Diagonalizability

The following theorem shows that every symmetric matrix is, in fact, orthogonally diagonalizable. In this theorem, and for
the remainder of this section, orthogonal will mean orthogonal with respect to the Euclidean inner product on .



THEOREM 7.2.1

If A is an  matrix, then the following are equivalent.
(a)  A is orthogonally diagonalizable.
(b)  A has an orthonormal set of n eigenvectors.
(c)  A is symmetric.

Proof   

(a) ⇒ (b)  Since A is orthogonally diagonalizable, there is an orthogonal matrix P such that  is diagonal. As shown in
the proof of Theorem 5.2.1, the n column vectors of P are eigenvectors of A. Since P is orthogonal, these column vectors are
orthonormal, so A has n orthonormal eigenvectors.
(b) ⇒ (a)  Assume that A has an orthonormal set of n eigenvectors . As shown in the proof of Theorem 5.2.1,
the matrix P with these eigenvectors as columns diagonalizes A. Since these eigenvectors are orthonormal, P is orthogonal
and thus orthogonally diagonalizes A.
(a) ⇒ (c)  In the proof that (a) ⇒ (b) we showed that an orthogonally diagonalizable  matrix A is orthogonally
diagonalized by an  matrix P whose columns form an orthonormal set of eigenvectors of A. Let D be the diagonal
matrix

from which it follows that

Thus,

which shows that A is symmetric.
(c) ⇒ (a)  The proof of this part is beyond the scope of this text and will be omitted.

Properties of Symmetric Matrices

Our next goal is to devise a procedure for orthogonally diagonalizing a symmetric matrix, but before we can do so, we need
the following critical theorem about eigenvalues and eigenvectors of symmetric matrices.

THEOREM 7.2.2

If A is a symmetric matrix, then:
(a)  The eigenvalues of A are all real numbers.
(b)  Eigenvectors from different eigenspaces are orthogonal.

Part (a), which requires results about complex vector spaces, will be discussed in Section 7.5.



Proof (b)   Let  and  be eigenvectors corresponding to distinct eigenvalues  and  of the matrix A. We want to show
that . Our proof of this involves the trick of starting with the expression . It follows from Formula 26 of
Section 3.2 and the symmetry of A that

  (3)

But  is an eigenvector of A corresponding to , and  is an eigenvector of A corresponding to , so 3 yields the
relationship

which can be rewritten as

  (4)

But , since  and  were assumed distinct. Thus, it follows from 4 that .

Theorem 7.2.2 yields the following procedure for orthogonally diagonalizing a symmetric matrix.

Orthogonally Diagonalizing an n × n Symmetric Matrix

Step 1  Find a basis for each eigenspace of A.
Step 2  Apply the Gram-Schmidt process to each of these bases to obtain an orthonormal basis for each eigenspace.
Step 3  Form the matrix P whose columns are the vectors constructed in Step 2. This matrix will orthogonally
diagonalize A, and the eigenvalues on the diagonal of  will be in the same order as their corresponding
eigenvectors in P.

Remark   The justification of this procedure should be clear: Theorem 7.2.2 ensures that eigenvectors from different
eigenspaces are orthogonal, and applying the Gram-Schmidt process ensures that the eigenvectors within the same
eigenspace are orthonormal. It follows that the entire set of eigenvectors obtained by this procedure will be orthonormal.

 EXAMPLE 1    Orthogonally Diagonalizing a Symmetric Matrix

Find an orthogonal matrix P that diagonalizes

Solution   We leave it for you to verify that the characteristic equation of A is

Thus, the distinct eigenvalues of A are  and . By the method used in Example 7 of Section 5.1, it
can be shown that



  (5)

form a basis for the eigenspace corresponding to . Applying the Gram-Schmidt process to 
yields the following orthonormal eigenvectors (verify):

  (6)

The eigenspace corresponding to  has

as a basis. Applying the Gram-Schmidt process to  (i.e., normalizing ) yields

Finally, using , , and  as column vectors, we obtain

which orthogonally diagonalizes A. As a check, we leave it for you to confirm that

Spectral Decomposition

If A is a symmetric matrix that is orthogonally diagonalized by



and if  are the eigenvalues of A corresponding to the unit eigenvectors  then we know that
, where D is a diagonal matrix with the eigenvalues in the diagonal positions. It follows from this that the matrix

A can be expressed as

Multiplying out, we obtain the formula

  (7)

which is called a spectral decomposition of A.*

Note that in each term of the spectral decomposition of A has the form , where u is a unit eigenvector of A in column
form, and λ is an eigenvalue of A corresponding to u. Since u has size , it follows that the product  has size . It
can be proved (though we will not do it) that  is the standard matrix for the orthogonal projection of  on the subspace
spanned by the vector u. Accepting this to be so, the spectral decomposition of A tells that the image of a vector x under
multiplication by a symmetric matrix A can be obtained by projecting x orthogonally on the lines (one-dimensional
subspaces) determined by the eigenvectors of A, then scaling those projections by the eigenvalues, and then adding the scaled
projections. Here is an example.

 EXAMPLE 2    A Geometric Interpretation of a Spectral Decomposition

The matrix

has eigenvalues  and  with corresponding eigenvectors

(verify). Normalizing these basis vectors yields

so a spectral decomposition of A is



  (8)

where, as noted above, the  matrices on the right side of 8 are the standard matrices for the orthogonal
projections onto the eigenspaces corresponding to  and , respectively.

Now let us see what this spectral decomposition tells us about the image of the vector  under
multiplication by A. Writing x in column form, it follows that

  (9)

and from 8 that

  (10)

Formulas 9 and 10 provide two different ways of viewing the image of the vector  under multiplication by
A: Formula 9 tells us directly that the image of this vector is , whereas Formula 10 tells us that this image
can also be obtained by projecting (1, 1) onto the eigenspaces corresponding to  and  to obtain
the vectors  and , then scaling by the eigenvalues to obtain  and , and then

adding these vectors (see Figure 7.2.1).

Figure 7.2.1   



The Nondiagonalizable Case

If A is an  matrix that is not orthogonally diagonalizable, it may still be possible to achieve considerable simplification
in the form of  by choosing the orthogonal matrix P appropriately. We will consider two theorems (without proof) that
illustrate this. The first, due to the German mathematician Isaai Schur, states that every square matrix A is orthogonally
similar to an upper triangular matrix that has the eigenvalues of A on the main diagonal.

THEOREM 7.2.3   Schur's Theorem

If A is an  matrix with real entries and real eigenvalues, then there is an orthogonal matrix P such that  is
an upper triangular matrix of the form

  (11)

in which  are the eigenvalues of the matrix A repeated according to multiplicity.

Issai Schur (1875–1941)

Historical Note    The life of the German mathematician Issai Schur is a sad reminder of the effect that Nazi policies
had on Jewish intellectuals during the 1930s. Schur was a brilliant mathematician and a popular lecturer who
attracted many students and researchers to the University of Berlin, where he worked and taught. His lectures
sometimes attracted so many students that opera glasses were needed to see him from the back row. Schur's life
became increasingly difficult under Nazi rule, and in April of 1933 he was forced to “retire” from the university
under a law that prohibited non-Aryans from holding “civil service” positions. There was an outcry from many of his
students and colleagues who respected and liked him, but it did not stave off his complete dismissal in 1935. Schur,
who thought of himself as a loyal German never understood the persecution and humiliation he received at Nazi
hands. He left Germany for Palestine in 1939, a broken man. Lacking in financial resources, he had to sell his
beloved mathematics books and lived in poverty until his death in 1941.
[Image: Courtesy Electronic Publishing Services, Inc., New York City]

It is common to denote the upper triangular matrix in 11 by S (for Schur), in which case that equation can be rewritten as



  (12)

which is called a Schur decomposition of A.

The next theorem, due to the German mathematician and engineer Karl Hessenberg (1904–1959), states that every square
matrix with real entries is orthogonally similar to a matrix in which each entry below the first subdiagonal is zero (Figure
7.2.2). Such a matrix is said to be in upper Hessenberg form.

Figure 7.2.2   

THEOREM 7.2.4   Hessenberg's Theorem

If A is an  matrix, then there is an orthogonal matrix P such that  is a matrix of the form

  (13)

Note that unlike those in 11, the diagonal entries in 13
are usually not the eigenvalues of A.

It is common to denote the upper Hessenberg matrix in 13 by H (for Hessenberg), in which case that equation can be
rewritten as

  (14)

which is called an upper Hessenberg decomposition of A.

Remark   In many numerical algorithms the initial matrix is first converted to upper Hessenberg form to reduce the amount
of computation in subsequent parts of the algorithm. Many computer packages have built-in commands for finding Schur and
Hessenberg decompositions.

Concept Review
•  Orthogonally similar matrices



•  Orthogonally diagonalizable matrix
•  Spectral decomposition (or eigenvalue decomposition)
•  Schur decomposition
•  Subdiagonal
•  Upper Hessenburg form
•  Upper Hessenburg decomposition

Skills
•  Be able to recognize an orthogonally diagonalizable matrix.
•  Know that eigenvalues of symmetric matrices are real numbers.
•  Know that for a symmetric matrix eigenvectors from different eigenspaces are orthogonal.
•  Be able to orthogonally diagonalize a symmetric matrix.
•  Be able to find the spectral decomposition of a symmetric matrix.
•  Know the statement of Schur's Theorem.
•  Know the statement of Hessenburg's Theorem.

Exercise Set 7.2
1. Find the characteristic equation of the given symmetric matrix, and then by inspection determine the dimensions of the

eigenspaces.
(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Answer:

(a)   one-dimensional;  one-dimensional

(b)   one-dimensional;  two-dimensional



(c)   one-dimensional;  two-dimensional

(d)   two-dimensional;  one-dimensional

(e)   three-dimensional;  one-dimensional

(f)   two-dimensional;  two-dimensional

In Exercises 2–9, find a matrix P that orthogonally diagonalizes A, and determine .

2. 

3. 

Answer:

4. 

5. 

Answer:

6. 

7. 

Answer:



8. 

9. 

Answer:

10. Assuming that , find a matrix that orthogonally diagonalizes

11. Prove that if A is any  matrix, then  has an orthonormal set of n eigenvectors.

12. (a)  Show that if v is any  matrix and I is the  identity matrix, then  is orthogonally diagonalizable.

(b)  Find a matrix P that orthogonally diagonalizes  if

13. Use the result in Exercise 19 of Section 5.1 to prove Theorem 7.2.2a for  symmetric matrices.

14. Does there exist a  symmetric matrix with eigenvalues ,  and corresponding eigenvectors

If so, find such a matrix; if not, explain why not.

15. Is the converse of Theorem 7.2.2b true? Explain.

Answer:

No

16. Find the spectral decomposition of each matrix.
(a)  

(b)  

(c)  



(d)  

17. Show that if A is a symmetric orthogonal matrix, then 1 and  are the only possible eigenvalues.

18. (a)  Find a  symmetric matrix whose eigenvalues are ,  and for which the corresponding
eigenvectors are , , .

(b)  Is there a  symmetric matrix with eigenvalues , ,  and corresponding eigenvectors
, , ? Explain your reasoning.

19. Let A be a diagonalizable matrix with the property that eigenvectors from distinct eigenvalues are orthogonal. Must A be
symmetric? Explain you reasoning.

Answer:

Yes

20. Prove: If  is an orthonormal basis for , and if A can be expressed as

then A is symmetric and has eigenvalues .

21. In this exercise we will establish that a matrix A is orthogonally diagonalizable if and only if it is symmetric. We have
shown that an orthogonally diagonalizable matrix is symmetric. The harder part is to prove that a symmetric matrix A is
orthogonally diagonalizable. We will proceed in two steps: first we will show that A is diagonalizable, and then we will
build on that result to show that A is orthogonally diagonalizable.
(a)  Assume that A is a symmetric  matrix. One way to prove that A is diagonalizable is to show that for each

eigenvalue  the geometric multiplicity is equal to the algebraic multiplicity. For this purpose, assume that the
geometric multiplicity of  is k, let  be an orthonormal basis for the eigenspace corresponding
to , extend this to an orthonormal basis  for , and let P be the matrix having the vectors of
B as columns. As shown in Exercise 34(b) of Section 5.2, the product  can be written as

Use the fact that B is an orthonormal basis to prove that  [a zero matrix of size .

(b)  It follows from part (a) and Exercise 34(c) of Section 5.2 that A has the same characteristic polynomial as

Use this fact and Exercise 34(d) of Section 5.2 to prove that the algebraic multiplicity of  is the same as the
geometric multiplicity of . This establishes that A is diagonalizable.

(c)  Use Theorem 7.2.2(b) and the fact that A is diagonalizable to prove that A is orthogonally diagonalizable.

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) If A is a square matrix, then and  are orthogonally diagonalizable.

Answer:

True



(b) If  and  are eigenvectors from distinct eigenspaces of a symmetric matrix, then .

Answer:

True

(c) Every orthogonal matrix is orthogonally diagonalizable.

Answer:

False

(d) If A is both invertible and orthogonally diagonalizable, then  is orthogonally diagonalizable.

Answer:

True

(e) Every eigenvalue of an orthogonal matrix has absolute value 1.

Answer:

True

(f) If A is an  orthogonally diagonalizable matrix, then there exists an orthonormal basis for  consisting of
eigenvectors of A.

Answer:

False

(g) If A is orthogonally diagonalizable, then A has real eigenvalues.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



7.3  Quadratic Forms
In this section we will use matrix methods to study real-valued functions of several variables in which each term is either the
square of a variable or the product of two variables. Such functions arise in a variety of applications, including geometry,
vibrations of mechanical systems, statistics, and electrical engineering.

Definition of a Quadratic Form

Expressions of the form

occurred in our study of linear equations and linear systems. If  are treated as fixed constants, then this expression
is a real-valued function of the n variables  and is called a linear form on . All variables in a linear form occur
to the first power and there are no products of variables. Here we will be concerned with quadratic forms on , which are
functions of the form

The terms of the form  are called cross product terms. It is common to combine the cross product terms involving 
with those involving  to avoid duplication. Thus, a general quadratic form on  would typically be expressed as

  (1)

and a general quadratic form on  as

  (2)

If, as usual, we do not distinguish between the number a and the  matrix [a], and if we let x be the column vector of
variables, then 1 and 2 can be expressed in matrix form as

(verify). Note that the matrix A in these formulas is symmetric, that its diagonal entries are the coefficients of the squared terms,
and its off-diagonal entries are half the coefficients of the cross product terms. In general, if A is a symmetric  matrix and x
is an  column vector of variables, then we call the function

  (3)

the quadratic form associated with A. When convenient, 3 can be expressed in dot product notation as

  (4)

In the case where A is a diagonal matrix, the quadratic form  has no cross product terms; for example, if A has diagonal
entries , then



 EXAMPLE 1    Expressing Quadratic Forms in Matrix Notation

In each part, express the quadratic form in the matrix notation , where A is symmetric.

(a)  

(b)  

Solution   The diagonal entries of A are the coefficients of the squared terms, and the off-diagonal entries are half
the coefficients of the cross product terms, so

Change of Variable in a Quadratic Form

There are three important kinds of problems that occur in applications of quadratic forms:

Problem 1  If  is a quadratic form on  or , what kind of curve or surface is represented by the equation
?

Problem 2  If  is a quadratic form on , what conditions must A satisfy for  to have positive values for
?

Problem 3  If  is a quadratic form on , what are its maximum and minimum values if x is constrained to satisfy
?

We will consider the first two problems in this section and the third problem in the next section.

Many of the techniques for solving these problems are based on simplifying the quadratic form  by making a substitution

  (5)

that expresses the variables  in terms of new variables . If P is invertible, then we call 5 a change of
variable, and if P is orthogonal, then we call 5 an orthogonal change of variable.

If we make the change of variable  in the quadratic form , then we obtain

  (6)

Since the matrix  is symmetric (verify), the effect of the change of variable is to produce a new quadratic form 
in the variables . In particular, if we choose P to orthogonally diagonalize A, then the new quadratic form will be

, where D is a diagonal matrix with the eigenvalues of A on the main diagonal; that is,



Thus, we have the following result, called the principal axes theorem.

THEOREM 7.3.1   The Principal Axes Theorem

If A is a symmetric  matrix, then there is an orthogonal change of variable that transforms the quadratic form 
into a quadratic form  with no cross product terms. Specifically, if P orthogonally diagonalizes A, then making the
change of variable  in the quadratic form  yields the quadratic form

in which  are the eigenvalues of A corresponding to the eigenvectors that form the successive columns of
P.

 EXAMPLE 2    An Illustration of the Principal Axes Theorem

Find an orthogonal change of variable that eliminates the cross product terms in the quadratic form
, and express Q in terms of the new variables.

Solution   The quadratic form can be expressed in matrix notation as

The characteristic equation of the matrix A is

so the eigenvalues are , . We leave it for you to show that orthonormal bases for the three eigenspaces
are

Thus, a substitution  that eliminates the cross product terms is

This produces the new quadratic form



in which there are no cross product terms.

Remark   If A is a symmetric  matrix, then the quadratic form  is a real-valued function whose range is the set of all
possible values for  as x varies over . It can be shown that an orthogonal change of variable  does not alter the
range of a quadratic form; that is, the set of all values for  as x varies over  is the same as the set of all values for

 as y varies over .

Quadratic Forms in Geometry

Recall that a conic section or conic is a curve that results by cutting a double-napped cone with a plane (Figure 7.3.1). The most
important conic sections are ellipses, hyperbolas, and parabolas, which result when the cutting plane does not pass through the
vertex. Circles are special cases of ellipses that result when the cutting plane is perpendicular to the axis of symmetry of the
cone. If the cutting plane passes through the vertex, then the resulting intersection is called a degenerate conic. The possibilities
are a point, a pair of intersecting lines, or a single line.

Figure 7.3.1   

Figure 7.3.2   

Quadratic forms in  arise naturally in the study of conic sections. For example, it is shown in analytic geometry that an



equation of the form

  (7)

in which a, b, and c are not all zero, represents a conic section.* If  in 7, then there are no linear terms, so the equation
becomes

  (8)

and is said to represent a central conic. These include circles, ellipses, and hyperbolas, but not parabolas. Furthermore, if 
in 8, then there is no cross product term (i.e., term involving xy), and the equation

  (9)

is said to represent a central conic in standard position. The most important conics of this type are shown in Table 1.

Table 1

If we take the constant f in Equations 8 and 9 to the right side and let , then we can rewrite these equations in matrix
form as

  (10)

The first of these corresponds to Equation 8 in which there is a cross product term 2bxy, and the second corresponds to Equation
9 in which there is no cross product term. Geometrically, the existence of a cross product term signals that the graph of the
quadratic form is rotated about the origin, as in Figure 7.3.2. The three-dimensional analogs of the equations in 10 are

  (11)

If a, b, and c are not all zero, then the graphs of these equations in  are called central quadrics in standard position.

Identifying Conic Sections

We are now ready to consider the first of the three problems posed earlier, identifying the curve or surface represented by an
equation  in two or three variables. We will focus on the two-variable case. We noted above that an equation of the
form



  (12)

represents a central conic. If , then the conic is in standard position, and if , it is rotated. It is an easy matter to
identify central conics in standard position by matching the equation with one of the standard forms. For example, the equation

can be rewritten as

which, by comparison with Table 1, is the ellipse shown in Figure 7.3.3.

Figure 7.3.3   

If a central conic is rotated out of standard position, then it can be identified by first rotating the coordinate axes to put it in
standard position and then matching the resulting equation with one of the standard forms in Table 1. To find a rotation that
eliminates the cross product term in the equation

  (13)

it will be convenient to express the equation in the matrix form

  (14)

and look for a change of variable

that diagonalizes A and for which . Since we saw in Example 4 of Section 7.1 that the transition matrix

  (15)

has the effect of rotating the xy-axes of a rectangular coordinate system through an angle θ, our problem reduces to finding θ that
diagonalizes A, thereby eliminating the cross product term in 13. If we make this change of variable, then in the -coordinate
system, Equation 14 will become

  (16)

where  and  are the eigenvalues of A.The conic can now be identified by writing 16 in the form

  (17)

and performing the necessary algebra to match it with one of the standard forms in Table 1. For example, if , , and k are
positive, then 17 represents an ellipse with an axis of length  in the -direction and  in the -direction. The



first column vector of P, which is a unit eigenvector corresponding to , is along the positive -axis; and the second column
vector of P, which is a unit eigenvector corresponding to , is a unit vector along the -axis. These are called the principal
axes of the ellipse, which explains why Theorem 7.3.1 is called “the principal axes theorem.” (See Figure 7.3.4.)

Figure 7.3.4   

 EXAMPLE 3    Identifying a Conic by Eliminating the Cross Product Term

(a)  Identify the conic whose equation is  by rotating the xy-axes to put the conic in
standard position.

(b)  Find the angle θ through which you rotated the xy-axes in part (a).

Solution   
(a)  The given equation can be written in the matrix form

where

The characteristic polynomial of A is

so the eigenvalues are  and . We leave it for you to show that orthonormal bases for the eigenspaces
are

Thus, A is orthogonally diagonalized by

  (18)

Had it turned out that , then we
would have interchanged the columns to reverse the
sign.



Moreover, it happens by chance that , so we are assured that the substitution  performs a
rotation of axes. It follows from 16 that the equation of the conic in the -coordinate system is

which we can write as

We can now see from Table 1 that the conic is an ellipse whose axis has length  in the -direction and
length  in the -direction.

(b)  It follows from 15 that

which implies that

Thus,  (Figure 7.3.5).

Figure 7.3.5   

Remark   In the exercises we will ask you to show that if , then the cross product term in the equation

can be eliminated by a rotation through an angle θ that satisfies

  (19)

We leave it for you to confirm that this is consistent with part (b) of the last example.

Positive Definite Quadratic Forms

We will now consider the second of the two problems posed earlier, determining conditions under which  for all
nonzero values of x. We will explain why this is important shortly, but first we introduce some terminology.



The terminology in Definition 1 also applies to the
matrix A; that is, A is positive definite, negative definite,
or indefinite in accordance with whether the associated
quadratic form has that property.

DEFINITION 1

A quadratic form  is said to be

positive definite if  for 

negative definite if  for 

indefinite if  has both positive and negative values

The following theorem, whose proof is deferred to the end of the section, provides a way of using eigenvalues to determine
whether a matrix A and its associated quadratic form  are positive definite, negative definite, or indefinite.

THEOREM 7.3.2

If A is a symmetric matrix, then:
(a)   is positive definite if and only if all eigenvalues of A are positive.

(b)   is negative definite if and only if all eigenvalues of A are negative.

(c)   is indefinite if and only if A has at least one positive eigenvalue and at least one negative eigenvalue.

Remark   The three classifications in Definition 1 do not exhaust all of the possibilities. For example, a quadratic form for
which  if  is called positive semidefinite, and one for which  if  is called negative semidefinite.
Every positive definite form is positive semidefinite, but not conversely, and every negative definite form is negative
semidefinite, but not conversely (why?). By adjusting the proof of Theorem 7.3.2 appropriately, one can prove that  is
positive semidefinite if and only if all eigenvalues of A are nonnegative and is negative semidefinite if and only if all
eigenvalues of A are nonpositive.

 EXAMPLE 4    Positive Definite Quadratic Forms

It is not usually possible to tell from the signs of the entries in a symmetric matrix A whether that matrix is
positive definite, negative definite, or indefinite. For example, the entries of the matrix

are nonnegative, but the matrix is indefinite since its eigenvalues are , 4,  (verify). To see this another
way, let us write out the quadratic form as



Positive definite and negative definite matrices
are invertible. Why?

We can now see, for example, that

and

Classifying Conic Sections Using Eigenvalues

If  is the equation of a conic, and if , then we can divide through by k and rewrite the equation in the form

  (20)

where . If we now rotate the coordinate axes to eliminate the cross product term (if any) in this equation, then the
equation of the conic in the new coordinate system will be of the form

  (21)

in which  and  are the eigenvalues of A. The particular type of conic represented by this equation will depend on the signs
of the eigenvalues  and . For example, you should be able to see from 21 that:
•   represents an ellipse if  and .

•   has no graph if  and .

•   represents a hyperbola if  and  have opposite signs.

In the case of the ellipse, Equation 21 can be rewritten as

  (22)

so the axes of the ellipse have lengths  and  (Figure 7.3.6).

Figure 7.3.6   

The following theorem is an immediate consequence of this discussion and Theorem 7.3.2.



THEOREM 7.3.3

If A is a symmetric  matrix, then:
(a)   represents an ellipse if A is positive definite.

(b)   has no graph if A is negative definite.

(c)   represents a hyperbola if A is indefinite.

In Example we performed a rotation to show that the equation

represents an ellipse with a major axis of length 6 and a minor axis of length 4. This conclusion can also be obtained by
rewriting the equation in the form

and showing that the associated matrix

has eigenvalues  and . These eigenvalues are positive, so the matrix A is positive definite and the equation

represents an ellipse. Moreover, it follows from 21 that the axes of the ellipse have lengths  and , which
is consistent with Example 3.

Identifying Positive Definite Matrices

Positive definite matrices are the most important symmetric matrices in applications, so it will be useful to learn a little more
about them. We already know that a symmetric matrix is positive definite if and only if its eigenvalues are all positive; now we
will give a criterion that can be used to determine whether a symmetric matrix is positive definite without finding the
eigenvalues. For this purpose we define the kth principal submatrix of an  matrix A to be the  submatrix consisting of
the first k rows and columns of A. For example, here are the principal submatrices of a general  matrix:

The following theorem, which we state without proof, provides a determinant test for ascertaining whether a symmetric matrix is
positive definite.

THEOREM 7.3.4

A symmetric matrix A is positive definite if and only if the determinant of every principal submatrix is positive.

 EXAMPLE 5    Working with Principal Submatrices



The matrix

is positive definite since the determinants

are all positive. Thus, we are guaranteed that all eigenvalues of A are positive and  for .

   O P T I O N A L    

We conclude this section with an optional proof of Theorem 7.3.2.

Proofs of Theorem 7.3.2(a) and (b)   It follows from the principal axes theorem (Theorem 7.3.1) that there is an orthogonal
change of variable  for which

  (23)

where the λ's are the eigenvalues of A. Moreover, it follows from the invertibility of P that  if and only if , so the
values of  for  are the same as the values of  for  Thus, it follows from 23 that  for  if and
only if all of the λ's in that equation are positive, and that  for  if and only if all of the λ's are negative. This
proves parts (a) and (b).

Proof (c)   Assume that A has at least one positive eigenvalue and at least one negative eigenvalue, and to be specific, suppose
that  and  in 23. Then

and

which proves that  is indefinite. Conversely, if  for some x, then  for some y, so at least one of the λ's

in 23 must be positive. Similarly, if  for some x, then  for some y, so at least one of the λ's in 23 must be
negative, which completes the proof.

Concept Review
•  Linear form
•  Quadratic form
•  Cross product term
•  Quadratic form associated with a matrix
•  Change of variable
•  Orthogonal change of variable
•  Principal Axes Theorem
•  Conic section



•  Degenerate conic
•  Central conic
•  Standard position of a central conic
•  Standard form of a central conic
•  Central quadric
•  Principal axes of an ellipse
•  Positive definite quadratic form
•  Negative definite quadratic form
•  Indefinite quadratic form
•  Positive semidefinite quadratic form
•  Negative semidefinite quadratic form
•  Principal submatrix

Skills
•  Express a quadratic form in the matrix notation , where A is a symmetric matrix.

•  Find an orthogonal change of variable that eliminates the cross product terms in a quadratic form, and express the
quadratic form in terms of the new variable.

•  Identify a conic section from an equation by rotating axes to place the conic in standard position, and find the angle of
rotation.

•  Identify a conic section using eigenvalues.
•  Classify matrices and quadratic forms as positive definite, negative definite, indefinite, positive semidefinite or

negative semidefinite.

Exercise Set 7.3

In Exercises 1–2, express the quadratic form in the matrix notation , where A is a symmetric matrix.

1. (a)  

(b)  

(c)  

Answer:

(a)  

(b)  

(c)  

2. (a)  

(b)  



(c)  

In Exercises 3–4, find a formula for the quadratic form that does not use matrices.

3. 

Answer:

4. 

In Exercises 5–8, find an orthogonal change of variables that eliminates the cross product terms in the quadratic form Q, and
express Q in terms of the new variables.

5. 

Answer:

6. 

7. 

Answer:

8. 

In Exercises 9–10, express the quadratic equation in the matrix form , where  is the associated
quadratic form and K is an appropriate matrix.

9. (a)  

(b)  

Answer:

(a)  



(b)  

10. (a)  

(b)  

In Exercises 11–12, identify the conic section represented by the equation.

11. (a)  

(b)  

(c)  

(d)  

Answer:

(a)  ellipse
(b)  hyperbola
(c)  parabola
(d)  circle

12. (a)  

(b)  

(c)  

(d)  

In Exercises 13–16, identify the conic section represented by the equation by rotating axes to place the conic in standard
position. Find an equation of the conic in the rotated coordinates, and find the angle of rotation.

13. 

Answer:

Hyperbola: 

14. 

15. 

Answer:

Hyperbola: 

16. 

In Exercises 17–18, determine by inspection whether the matrix is positive definite, negative definite, indefinite, positive
semidefinite, or negative semidefinite.

17. (a)  

(b)  



(c)  

(d)  

(e)  

Answer:

(a)  Positive definite
(b)  Negative definite
(c)  Indefinite
(d)  Positive semidefinite
(e)  Negative semidefinite

18. (a)  

(b)  

(c)  

(d)  

(e)  

In Exercise 19–24, classify the quadratic form as positive definite, negative definite, indefinite, positive semidefinite, or
negative semidefinite.

19. 

Answer:

Positive definite

20. 

21. 

Answer:

Positive semidefinite

22. 

23. 

Answer:

Indefinite

24. 

In Exercises 25–26, show that the matrix A is positive definite first by using Theorem 7.3.2 and second by using Theorem
7.3.4.

25. 



(a)  

(b)  

26. (a)  

(b)  

In Exercises 27–28, find all values of k for which the quadratic form is positive definite.

27. 

Answer:

28. 

29. Let  be a quadratic form in the variables , and define  by .

(a)  Show that .

(b)  Show that 

30. Express the quadratic form  in the matrix notation , where A is symmetric.

31. In statistics, the quantities

and

are called, respectively, the sample mean and sample variance of .

(a)  Express the quadratic form  in the matrix notation , where A is symmetric.

(b)  Is  a positive definite quadratic form? Explain.

Answer:

(a)  

(b)  Yes

32. The graph in an xyz-coordinate system of an equation of form  in which a, b, and c are positive is a
surface called a central ellipsoid in standard position (see the accompanying figure). This is the three-dimensional
generalization of the ellipse  in the xy-plane. The intersections of the ellipsoid  with the



coordinate axes determine three line segments called the axes of the ellipsoid. If a central ellipsoid is rotated about the origin
so two or more of its axes do not coincide with any of the coordinate axes, then the resulting equation will have one or more
cross product terms.
(a)  Show that the equation

represents an ellipsoid, and find the lengths of its axes. [Suggestion: Write the equation in the form  and make
an orthogonal change of variable to eliminate the cross product terms.

(b)  What property must a symmetric  matrix have in order for the equation  to represent an ellipsoid?

Figure Ex-32   

33. What property must a symmetric  matrix A have for  to represent a circle?

Answer:

A must have a positive eigenvalue of multiplicity 2.

34. Prove: If , then the cross product term can be eliminated from the quadratic form  by rotating the
coordinate axes through an angle θ that satisfies the equation

35. Prove that if A is an  symmetric matrix all of whose eigenvalues are nonnegative, then  for all nonzero x in
.

True-False Exercises

In parts (a)–(l) determine whether the statement is true or false, and justify your answer.

(a) A symmetric matrix with positive definite eigenvalues is positive definite.

Answer:

True

(b)  is a quadratic form.

Answer:

False

(c)  is a quadratic form.

Answer:

True

(d) A positive definite matrix is invertible.

Answer:



True

(e) A symmetric matrix is either positive definite, negative definite, or indefinite.

Answer:

False

(f) If A is positive definite, then  is negative definite.

Answer:

True

(g)  is a quadratic form for all x in .

Answer:

True

(h) If  is a positive definite quadratic form, then so is .

Answer:

True

(i) If A is a matrix with only positive eigenvalues, then  is a positive definite quadratic form.

Answer:

False

(j) If A is a  symmetric matrix with positive entries and , then A is positive definite.

Answer:

True

(k) If  is a quadratic form with no cross product terms, then A is a diagonal matrix.

Answer:

False

(l) If  is a positive definitequadratic form in two variables and , then the graph of the equation  is an ellipse.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



7.4  Optimization Using Quadratic Forms
Quadratic forms arise in various problems in which the maximum or minimum value of some quantity is required.
In this section we will discuss some problems of this type.

Constrained Extremum Problems

Our first goal in this section is to consider the problem of finding the maximum and minimum values of a
quadratic form  subject of the constraint . Problems of this type arise in a wide variety of
applications.

To visualize this problem geometrically in the case where  is a quadratic form on , view  as the
equation of some surface in a rectangular xyz-coordinate system and view  as the unit circle centered at
the origin of the xy-plane. Geometrically, the problem of finding the maximum and minimum values of 
subject to the requirement  amounts to finding the highest and lowest points on the intersection of the
surface with the right circular cylinder determined by the circle (Figure 7.4.1).

Figure 7.4.1   

The following theorem, whose proof is deferred to the end of the section, is the key result for solving problems of
this type.

THEOREM 7.4.1   Constrained Extremum Theorem

Let A be a symmetric  matrix whose eigenvalues in order of decreasing size are
. Then:

(a)  the quadratic form  attains a maximum value and a minimum value on the set of vectors for
which ;

(b)  the maximum value attained in part (a) occurs at a unit vector corresponding to the eigenvalue ;
(c)  the minimum value attained in part (a) occurs at a unit vector corresponding to the eigenvalue .

Remark   The condition  in this theorem is called a constraint, and the maximum or minimum value of
 subject to the constraint is called a constrained extremum. This constraint can also be expressed as

 or as , when convenient.



 EXAMPLE 1    Finding Constrained Extrema

Find the maximum and minimum values of the quadratic form

subject to the constraint .

Solution   The quadratic form can be expressed in matrix notation as

We leave it for you to show that the eigenvalues of A are  and  and that corresponding
eigenvectors are

Normalizing these eigenvectors yields

  (1)

Thus, the constrained extrema are

Remark   Since the negatives of the eigenvectors in 1 are also unit eigenvectors, they too produce the maximum
and minimum values of z; that is, the constrained maximum  also occurs at the point

 and the constrained minimum  at .

 EXAMPLE 2    A Constrained Extremum Problem

A rectangle is to be inscribed in the ellipse , as shown in Figure 7.4.2.Use
eigenvalue methods to find nonnegative values of x and y that produce the inscribed rectangle with
maximum area.



Figure 7.4.2   A rectangle inscribed in the ellipse .

Solution   The area z of the inscribed rectangle is given by , so the problem is to maximize
the quadratic form  subject to the constraint . In this problem, the graph of
the constraint equation is an ellipse rather than the unit circle as required in Theorem 7.4.1, but we
can remedy this problem by rewriting the constraint as

and defining new variables,  and , by the equations

This enables us to reformulate the problem as follows:

subject to the constraint

To solve this problem, we will write the quadratic form  as

We now leave it for you to show that the largest eigenvalue of A is  and that the only
corresponding unit eigenvector with nonnegative entries is

Thus, the maximum area is , and this occurs when

Constrained Extrema and Level Curves

A useful way of visualizing the behavior of a function  of two variables is to consider the curves in the
xy-plane along which  is constant. These curves have equations of the form



and are called the level curves of f (Figure 7.4.3).In particular, the level curves of a quadratic form  on 
have equations of the form

  (2)

so the maximum and minimum values of  subject to the constraint  are the largest and smallest
values of k for which the graph of 2 intersects the unit circle. Typically, such values of k produce level curves that
just touch the unit circle (Figure 7.4.4), and the coordinates of the points where the level curves just touch produce
the vectors that maximize or minimize  subject to the constraint .

Figure 7.4.3   

Figure 7.4.4   

 EXAMPLE 3    Example 1 Revisited Using Level Curves

In Example 1 (and its following remark) we found the maximum and minimum values of the
quadratic form

subject to the constraint . We showed that the constrained maximum is , and this is
attained at the points

  (3)

and that the constrained minimum , and this is attained at the points

  (4)



Geometrically, this means that the level curve  should just touch the unit

circle at the points in 3, and the level curve  should just touch it at the points
in 4. All of this is consistent with Figure 7.4.5.

Figure 7.4.5   

 C A L C U L U S  R E Q U I R E D  

Relative Extrema of Functions of Two Variables

We will conclude this section by showing how quadratic forms can be used to study characteristics of real-valued
functions of two variables.

Recall that if a function  has first-order partial derivatives, then its relative maxima and minima, if any,
occur at points where

These are called critical points of f. The specific behavior of f at a critical point  is determined by the sign
of

  (5)

at points  that are close to, but different from, :

•  If  at points  that are sufficiently close to, but different from, , then
 at such points and f is said to have a relative minimum at  (Figure 7.4.6a).

•  If  at points  that are sufficiently close to, but different from, , then
 at such points and f is said to have a relative maximum at  (Figure 7.4.6b).

•  If  has both positive and negative values inside every circle centered at , then there are points
 that are arbitrarily close to  at which  and points  that are

arbitrarily close to  at which . In this case we say that f has a saddle point at
 (Figure 7.4.6c).



Figure 7.4.6   

In general, it can be difficult to determine the sign of 5 directly. However, the following theorem, which is proved
in calculus, makes it possible to analyze critical points using derivatives.

THEOREM 7.4.2   Second Derivative Test

Suppose that  is a critical point of  and that f has continuous second-order partial
derivatives in some circular region centered at . Then:



(a)  f has a relative minimum at  if

(b)  f has a relative maximum at  if

(c)  f has a saddle point at  if

(d)  The test is inconclusive if

Our interest here is in showing how to reformulate this theorem using properties of symmetric matrices. For this
purpose we consider the symmetric matrix

which is called the Hessian or Hessian matrix of f in honor of the German mathematician and scientist Ludwig
Otto Hesse (1811–1874). The notation  emphasizes that the entries in the matrix depend on x and y. The
Hessian is of interest because

is the expression that appears in Theorem 7.4.2. We can now reformulate the second derivative test as follows.

THEOREM 7.4.3   Hessian Form of the Second Derivative Test

Suppose that  is a critical point of  and that f has continuous second-order partial
derivatives in some circular region centered at . If  is the Hessian of f at , then:

(a)  f has a relative minimum at  if  is positive definite.

(b)  f has a relative maximum at  if  is negative definite.

(c)  f has a saddle point at  if  is indefinite.

(d)  The test is inconclusive otherwise.

We will prove part (a). The proofs of the remaining parts will be left as exercises.

Proof (a)   If  is positive definite, then Theorem 7.3.4 implies that the principal submatrices of
 have positive determinants. Thus,



and

so f has a relative minimum at  by part (a) of Theorem 7.4.2.

 EXAMPLE 4    Using the Hessian to Classify Relative Extrema

Find the critical points of the function

and use the eigenvalues of the Hessian matrix at those points to determine which of them, if any, are
relative maxima, relative minima, or saddle points.

Solution   To find both the critical points and the Hessian matrix we will need to calculate the first
and second partial derivatives of f. These derivatives are

Thus, the Hessian matrix is

To find the critical points we set  and  equal to zero. This yields the equations

Solving the second equation yields  or . Substituting  in the first equation and
solving for y yields  or ; and substituting  into the first equation and solving for x
yields  or . Thus, we have four critical points:

Evaluating the Hessian matrix at these points yields

We leave it for you to find the eigenvalues of these matrices and deduce the following classifications
of the stationary points:

Critical Point (x0, y0) λ1 λ2 Classification

(0, 0) 8 −8 Saddle point

(0, 8) 8 −8 Saddle point



Critical Point (x0, y0) λ1 λ2 Classification

(4, 4) 8 8 Relative minimum

(−4, 4) −8 −8 Relative maximum

   O P T I O N A L    

We conclude this section with an optional proof of Theorem 7.4.1.

Proof of Theorem 7.4.1   The first step in the proof is to show that  has constrained maximum and minimum
values for . Since A is symmetric, the principal axes theorem (Theorem 7.3.1) implies that there is an
orthogonal change of variable  such that

  (6)

in which  are the eigenvalues of A. Let us assume that  and that the column vectors of P
(which are unit eigenvectors of A) have been ordered so that

  (7)

Since the matrix P is orthogonal, multiplication by P is length preserving, so that ; that is,

It follows from this equation and 7 that

and hence from 6 that

This shows that all values of  for which  lie between the largest and smallest eigenvalues of A. Now
let x be a unit eigenvector corresponding to . Then

which shows that  has  as a constrained maximum and that this maximum occurs if x is a unit eigenvector
of A corresponding to . Similarly, if x is a unit eigenvector corresponding to , then

so  has  as a constrained minimum and this minimum occurs if x is a unit eigenvector of A corresponding
to . This completes the proof.



Concept Review
•  Constraint
•  Constrained extremum
•  Level curve
•  Critical point
•  Relative minimum
•  Relative maximum
•  Saddle point
•  Second derivative test
•  Hessian matrix

Skills
•  Find the maximum and minimum values of a quadratic form subject to a constraint.
•  Find the critical points of a real-valued function of two variables, and use the eigenvalues of the Hessian

matrix at the critical points to classify them as relative maxima, relative minima, or saddle points.

Exercise Set 7.4

In Exercises 1–4, find the maximum and minimum values of the given quadratic form subject to the constraint
, and determine the values of x and y at which the maximum and minimum occur.

1. 

Answer:

Maximum: 5 at  and ; minimum:  at  and 

2. xy

3. 

Answer:

Maximum: 7 at (0, 1) and (0, −1); minimum: 3 at (1, 0) and (−1, 0)

4. 

In Exercises 5–6, find the maximum and minimum values of the given quadratic form subject to the constraint

and determine the values of x, y, and z at which the maximum and minimum occur.

5. 



Answer:

Maximum: 9 at (1, 0, 0) and (−1, 0, 0); minimum: 3 at (0, 0, 1) and (0, 0, −1)

6. 

7. Use the method of Example 2 to find the maximum and minimum values of xy subject to the constraint
.

Answer:

Maximum:  at  and  minimum:  at

 and 

8. Use the method of Example 2 to find the maximum and minimum values of  subject to the

constraint .

In Exercises 9–10, draw the unit circle and the level curves corresponding to the given quadratic form. Show that
the unit circle intersects each of these curves in exactly two places, label the intersection points, and verify that
the constrained extrema occur at those points.

9. 

Answer:

10. xy

11. (a)  Show that the function  has critical points at (0, 0), (1, 1), and .

(b)  Use the Hessian form of the second derivative test to show f has relative maxima at (1, 1) and 
and a saddle point at (0, 0).

12. (a)  Show that the function  has critical points at (0, 0) and .

(b)  Use the Hessian form of the second derivative test to show f has a relative maximum at  and a
saddle point at (0, 0).

In Exercises 10–13, find the critical points of f, if any, and classify them as relative maxima, relative minima, or
saddle points.



13. 

Answer:

Critical points: (−1, 1), relative maximum; (0, 0), saddle point

14. 

15. 

Answer:

Critical points: (0, 0), relative minimum; (2, 1) and (−2, 1), saddle points

16. 

17. A rectangle whose center is at the origin and whose sides are parallel to the coordinate axes is to be inscribed
in the ellipse . Use the method of Example 2 to find nonnegative values of x and y that
produce the inscribed rectangle with maximum area.

Answer:

Corner points: 

18. Suppose that the temperature at a point  on a metal plate is . An ant, walking

on the plate, traverses a circle of radius 5 centered at the origin. What are the highest and lowest temperatures
encountered by the ant?

19. (a)  Show that the functions

have a critical point at (0, 0) but the second derivative test is inconclusive at that point.
(b)  Give a reasonable argument to show that f has a relative minimum at (0, 0) and g has a saddle point at (0,

0).

20. Suppose that the Hessian matrix of a certain quadratic form  is

What can you say about the location and classification of the critical points of f?

21. Suppose that A is an  symmetric matrix and

where x is a vector in  that is expressed in column form. What can you say about the value of q if x is a unit
eigenvector corresponding to an eigenvalue λ of A?

Answer:



22. Prove: If  is a quadratic form whose minimum and maximum values subject to the constraint 
are m and M, respectively, then for each number c in the interval , there is a unit vector  such that

. [Hint: In the case where , let  and  be unit eigenvectors of A such that 
and , and let

Show that .]

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) A quadratic form must have either a maximum or minimum value.

Answer:

False

(b) The maximum value of a quadratic form  subject to the constraint  occurs at a unit eigenvector
corresponding to the largest eigenvalue of A.

Answer:

True

(c) The Hessian matrix of a function f with continuous second-order partial derivatives is a symmetric matrix.

Answer:

True

(d) If  is a critical point of a function f and the Hessian of f at  is 0, then f has neither a relative
maximum nor a relative minimum at .

Answer:

False

(e) If A is a symmetric matrix and , then the minimum of  subject to the constraint  is
negative.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



7.5  Hermitian, Unitary, and Normal Matrices
We know that every real symmetric matrix is orthogonally diagonalizable and that the real symmetric matrices
are the only orthogonally diagonalizable matrices. In this section we will consider the diagonalization problem
for complex matrices.

Hermitian and Unitary Matrices

The transpose operation is less important for complex matrices than for real matrices. A more useful operation
for complex matrices is given in the following definition.

DEFINITION 1

If A is a complex matrix, then the conjugate transpose of A, denoted by , is defined by

  (1)

Remark   Since part (b) of Theorem 5.3.2 states that , the order in which the transpose and

conjugation operations are performed in computing  does not matter. Moreover, in the case where A

has real entries we have , so  is the same as  for real matrices.

 EXAMPLE 1    Conjugate Transpose

Find the conjugate transpose  of the matrix

Solution   We have

The following theorem, parts of which are given as exercises, shows that the basic algebraic
properties of the conjugate transpose operation are similar to those of the transpose (compare to
Theorem 1.4.8).



THEOREM 7.5.1

If k is a complex scalar, and if A, B, and C are complex matrices whose sizes are such that the stated
operations can be performed, then:
(a)  

(b)  

(c)  

(d)  

(e)  

Remark   Note that the relationship  in Formula 5 of Section 5.3 can be expressed in terms of the
conjugate transpose as

  (2)

We are now ready to define two new classes of matrices that will be important in our study of diagonalization
in .

DEFINITION 2

A square complex matrix A is said to be unitary if

  (3)

and is said to be Hermitian * if

  (4)

Note that a unitary matrix can also be defined



as a square complex matrix A for which

If A is a real matrix, then , in which case 3 becomes  and 4 becomes . Thus, the
unitary matrices are complex generalizations of the real orthogonal matrices and Hermitian matrices are
complex generalizations of the real symmetric matrices.

 EXAMPLE 2    Recognizing Hermitian Matrices

Hermitian matrices are easy to recognize because their diagonal entries are real (why?), and the
entries that are symmetrically positioned across the main diagonal are complex conjugates. Thus,
for example, we can tell by inspection that

is Hermitian.

The fact that real symmetric matrices have real eigenvalues is a special case of the following more general
result about Hermitian matrices, the proof of which is left for the exercises.

THEOREM 7.5.2

The eigenvalues of a Hermitian matrix are real numbers.

The fact that eigenvectors from different eigenspaces of a real symmetric matrix are orthogonal is a special
case of the following more general result about Hermitian matrices.

THEOREM 7.5.3

If A is a Hermitian matrix, then eigenvectors from different eigenspaces are orthogonal.

Proof   Let  and  be eigenvectors of A corresponding to distinct eigenvalues  and . Using Formula 2
and the facts that , and  we can write



This implies that  and hence that .

 EXAMPLE 3    Eigenvalues and Eigenvectors of a Hermitian Matrix

Confirm that the Hermitian matrix

has real eigenvalues and that eigenvectors from different eigenspaces are orthogonal.

Solution   The characteristic polynomial of A is

so the eigenvalues of A are  and , which are real. Bases for the eigenspaces of A can be obtained
by solving the linear system

with  and with . We leave it for you to do this and to show that the general solutions of these
systems are

Thus, bases for these eigenspaces are

The vectors  and  are orthogonal since

and hence all scalar multiples of them are also orthogonal.

Unitary matrices are not usually easy to recognize by inspection. However, the following analog of Theorems
7.1.1 and 7.1.3, part of which is proved in the exercises, provides a way of ascertaining whether a matrix is



unitary without computing its inverse.

THEOREM 7.5.4

If A is an  matrix with complex entries, then the following are equivalent.
(a)  A is unitary.
(b)   for all x in .

(c)   for all x and y in .

(d)  The column vectors of A form an orthonormal set in  with respect to the complex Euclidean
inner product.

(e)  The row vectors of A form an orthonormal set in  with respect to the complex Euclidean inner
product.

 EXAMPLE 4    A Unitary Matrix

Use Theorem 7.5.4 to show that

is unitary, and then find .

Solution   We will show that the row vectors

are orthonormal. The relevant computations are

Since we now know that A is unitary, it follows that



You can confirm the validity of this result by showing that .

Unitary Diagonalizability

Since unitary matrices are the complex analogs of the real orthogonal matrices, the following definition is a
natural generalization of orthogonal diagonalizability for real matrices.

DEFINITION 3

A square complex matrix is said to be unitarily diagonalizable if there is a unitary matrix P such that
 is a complex diagonal matrix. Any such matrix P is said to unitarily diagonalize A.

Recall that a real symmetric  matrix A has an orthonormal set of n eigenvectors and is orthogonally
diagonalized by any  matrix whose column vectors are an orthonormal set of eigenvectors of A. Here is
the complex analog of that result.

THEOREM 7.5.5

Every  Hermitian matrix A has an orthonormal set of n eigenvectors and is unitarily diagonalized
by any  matrix P whose column vectors form an orthonormal set of eigenvectors of A.

The procedure for unitarily diagonalizing a Hermitian matrix A is exactly the same as that for orthogonally
diagonalizing a symmetric matrix:

Unitarily Diagonalizing a Hermitian Matrix

Step 1. Find a basis for each eigenspace of A.
Step 2. Apply the Gram-Schmidt process to each of these bases to obtain orthonormal bases for the
eigenspaces.



Step 3. Form the matrix P whose column vectors are the basis vectors obtained in Step 2. This will
be a unitary matrix (Theorem 7.5.4) and will unitarily diagonalize A.

 EXAMPLE 5    Unitary Diagonalization of a Hermitian Matrix

Find a matrix P that unitarily diagonalizes the Hermitian matrix

Solution   We showed in Example 3 that the eigenvalues of A are  and  and that bases
for the corresponding eigenspaces are

Since each eigenspace has only one basis vector, the Gram-Schmidt process is simply a matter of
normalizing these basis vectors. We leave it for you to show that

Thus, A is unitarily diagonalized by the matrix

Although it is a little tedious, you may want to check this result by showing that

Skew-Symmetric and Skew-Hermitian Matrices

In Exercise 37 of Section 1.7 we defined a square matrix with real entries to be skew-symmetric if .
A skew-symmetric matrix must have zeros on the main diagonal (why?), and each entry off the main diagonal



must be the negative of its mirror image about the main diagonal. Here is an example.

We leave it for you to confirm that .

The complex analogs of the skew-symmetric matrices are the matrices for which . Such matrices are
said to be skew-Hermitian.

Since a skew-Hermitian matrix A has the property

it must be that A has zeros or pure imaginary numbers on the main diagonal (why?), and that the complex
conjugate of each entry off the main diagonal is the negative of its mirror image about the main diagonal. Here
is an example.

Normal Matrices

Hermitian matrices enjoy many, but not all, of the properties of real symmetric matrices. For example, we
know that real symmetric matrices are orthogonally diagonalizable and Hermitian matrices are unitarily
diagonalizable. However, whereas the real symmetric matrices are the only orthogonally diagonalizable
matrices, the Hermitian matrices do not constitute the entire class of unitarily diagonalizable complex matrices;
that is, there exist unitarily diagonalizable matrices that are not Hermitian. Specifically, it can be proved that a
square complex matrix A is unitarily diagonalizable if and only if

Matrices with this property are said to be normal. Normal matrices include the Hermitian, skew-Hermitian,
and unitary matrices in the complex case and the symmetric, skew-symmetric, and orthogonal matrices in the
real case. The nonzero skew-symmetric matrices are particularly interesting because they are examples of real
matrices that are not orthogonally diagonalizable but are unitarily diagonalizable.

A Comparison of Eigenvalues

We have seen that Hermitian matrices have real eigenvalues. In the exercises we will ask you to show that the
eigenvalues of a skew-Hermitian matrix are either zero or purely imaginary (have real part of zero) and that the
eigenvalues of unitary matrices have modulus 1. These ideas are illustrated schematically in Figure 7.5.1.



Figure 7.5.1   

Concept Review
•  Conjugate transpose
•  Unitary matrix
•  Hermitian matrix
•  Unitarily diagonalizable matrix
•  Skew-symmetric matrix
•  Skew-Hermitian matrix
•  Normal matrix

Skills
•  Find the conjugate transpose of a matrix.
•  Be able to identify Hermitian matrices.
•  Find the inverse of a unitary matrix.
•  Find a unitary matrix that diagonalizes a Hermitian matrix.

Exercise Set 7.5

In Exercises 1–2, find .

1. 

Answer:



2. 

In Exercises 3–4, substitute numbers for the ×'s so that A is Hermitian.

3. 

Answer:

4. 

In Exercises 5–6, show that A is not Hermitian for any choice of the ×'s.

5. (a)  

(b)  

Answer:

(a)  
(b)  

6. (a)  

(b)  

In Exercises 7–8, verify that the eigenvalues of the Hermitian matrix A are real and that eigenvectors from
different eigenspaces are orthogonal (see Theorem 7.5.3).

7. 

8. 



In Exercises 9–12, show that A is unitary, and find .

9. 

Answer:

10. 

11. 

Answer:

12. 

In Exercises 13–18, find a unitary matrix P that diagonalizes the Hermitian matrix A, and determine .

13. 

Answer:



14. 

15. 

Answer:

16. 

17. 

Answer:

18. 

In Exercises 19–20, substitute numbers for the ×'s so that A is skew-Hermitian.

19. 

Answer:



20. 

In Exercises 21–22, show that A is not skew-Hermitian for any choice of the ×'s.

21. (a)  

(b)  

Answer:

(a)  
(b)  

22. (a)  

(b)  

In Exercises 23–24, verify that the eigenvalues of the skew-Hermitian matrix A are pure imaginary numbers.

23. 

24. 

In Exercises 25–26, show that A is normal.

25. 

26. 

27. Show that the matrix



is unitary for all real values of θ. [Note: See Formula 17 in Appendix B for the definition of .]

28. Prove that each entry on the main diagonal of a skew-Hermitian matrix is either zero or a pure imaginary
number.

29. Let A be any  matrix with complex entries, and define the matrices B and C to be

(a)  Show that B and C are Hermitian.
(b)  Show that  and .

(c)  What condition must B and C satisfy for A to be normal?

Answer:

(c)  B and C must commute.

30. Show that if A is an  matrix with complex entries, and if u and v are vectors in  that are expressed
in column form, then

31. Show that if A is a unitary matrix, then so is .

32. Show that the eigenvalues of a skew-Hermitian matrix are either zero or purely imaginary.

33. Show that the eigenvalues of a unitary matrix have modulus 1.

34. Show that if u is a nonzero vector in  that is expressed in column form, then  is Hermitian.

35. Show that if u is a unit vector in  that is expressed in column form, then  is Hermitian and
unitary.

36. What can you say about the inverse of a matrix A that is both Hermitian and unitary?

37. Find a  matrix that is both Hermitian and unitary and whose entries are not all real numbers.

Answer:

38. Under what conditions is the following matrix normal?

39. What geometric interpretations might you reasonably give to multiplication by the matrices  and



 in Exercises 34 and 35?

Answer:

Multiplication of x by P corresponds to  times the orthogonal projection of x onto . If
, then multiplications of x by  corresponds to reflection of x about the hyperplane 

.

40. Prove that if A is an invertible matrix, then  is invertible, and .

41. (a)  Prove that .

(b)  Use the result in part (a) and the fact that a square matrix and its transpose have the same determinant
to prove that .

42. Use part (b) of Exercise 41 to prove:
(a)  If A is Hermitian, then det(A) is real.
(b)  If A is unitary, then .

43. Use properties of the transpose and complex conjugate to prove parts (a) and (e) of Theorem 7.5.1.

44. Use properties of the transpose and complex conjugate to prove parts (b) and (d) of Theorem 7.5.1.

45. Prove that an  matrix with complex entries is unitary if and only if the columns of A form an
orthonormal set in .

46. Prove that the eigenvalues of a Hermitian matrix are real.

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) The matrix  is Hermitian.

Answer:

False

(b) 

The matrix  is unitary.

Answer:

False

(c) The conjugate transpose of a unitary matrix is unitary.



Answer:

True

(d) Every unitarily diagonalizable matrix is Hermitian.

Answer:

False

(e) A positive integer power of a skew-Hermitian matrix is skew-Hermitian.

Answer:

False
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Chapter 7 Supplementary Exercises

1. Verify that each matrix is orthogonal, and find its inverse.
(a)  

(b)  

Answer:

(a)  

(b)  

2. Prove: If Q is an orthogonal matrix, then each entry of Q is the same as its cofactor if  and is
the negative of its cofactor if .

3. Prove that if A is a positive definite symmetric matrix, and if u and v vectors in  in column form, then

is an inner product on .

4. Find the characteristic polynomial and the dimensions of the eigenspaces of the symmetric matrix

5. Find a matrix P that orthogonally diagonalizes

and determine the diagonal matrix .



Answer:

6. Express each quadratic form in the matrix notation .

(a)  

(b)  

7. Classify the quadradic form

as positive definite, negative definite, indefinite, positive semidefinite, or negative semidefinite.

Answer:

positive definite

8. Find an orthogonal change of variable that eliminates the cross product terms in each quadratic form, and
express the quadratic form in terms of the new variables.
(a)  

(b)  

9. Identify the type of conic section represented by each equation.
(a)  

(b)  

Answer:

(a)  parabola
(b)  parabola

10. Find a unitary matrix U that diagonalizes

and determine the diagonal matrix .

11. Show that if U is an  unitary matrix and

then the product



is also unitary.

12. Suppose that .

(a)  Show that iA is Hermitian.
(b)  Show that A is unitarily diagonalizable and has pure imaginary eigenvalues.
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CHAPTER

   8 Linear Transformations

CHAPTER CONTENTS

8.1.  General Linear Transformations
8.2.  Isomorphism
8.3.  Compositions and Inverse Transformations
8.4.  Matrices for General Linear Transformations
8.5.  Similarity

INTRODUCTION

In Section 4.9 and Section 4.10 we studied linear transformations from  to . In this
chapter we will define and study linear transformations from a general vector space V to a
general vector space W. The results we obtain here have important applications in physics,
engineering, and various branches of mathematics.
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8.1  General Linear Transformations
Up to now our study of linear transformations has focused on transformations from  to . In this section we
will turn our attention to linear transformations involving general vector spaces. We will illustrate ways in which
such transformations arise, and we will establish a fundamental relationship between general n-dimensional vector
spaces and .

Definitions and Terminology

In Section 4.9 we defined a matrix transformation  to be a mapping of the form

in which A is an  matrix. We subsequently established in Theorem 4.10.2 and Theorem 4.10.3 that the matrix
transformations are precisely the linear transformations from  to , that is, the transformations with the
linearity properties

We will use these two properties as the starting point for defining more general linear transformations.

DEFINITION 1

If  is a function from a vector space V to a vector space W, then T is called a linear
transformation from V to W if the following two properties hold for all vectors u and v in V and for all
scalars k:
(i)   [Homogeneity property]

(ii)   [Additivity property]

In the special case where , the linear transformation T is called a linear operator on the vector space
V.

The homogeneity and additivity properties of a linear transformation  can be used in combination to
show that if  and  are vectors in V and  and  are any scalars, then

More generally, if  are vectors in V and  are any scalars, then

  (1)

The following theorem is an analog of parts (a) and (d) of Theorem 4.9.1.

THEOREM 8.1.1

If  is a linear transformation, then:



(a)  .

(b)   for all u and v in V.

Proof   Let u be any vector in V. Since , it follows from the homogeneity property in Definition 1 that

which proves (a).

We can prove part (b) by rewriting  as

We leave it for you to justify each step.

Use the two parts of Theorem 8.1.1 to prove that

for all v in V.

 EXAMPLE 1    Matrix Transformations

Because we have based the definition of a general linear transformation on the homogeneity and
additivity properties of matrix transformations, it follows that a matrix transformation  is
also a linear transformation in this more general sense with  and .

 EXAMPLE 2    The Zero Transformation

Let V and W be any two vector spaces. The mapping  such that  for every v in V is a
linear transformation called the zero transformation. To see that T is linear, observe that

Therefore,

 EXAMPLE 3    The Identity Operator

Let V be any vector space. The mapping  defined by  is called the identity operator on
V. We will leave it for you to verify that I is linear.

 EXAMPLE 4    Dilation and Contraction Operators



If V is a vector space and k is any scalar, then the mapping  given by  is a linear
operator on V, for if c is any scalar and if u and v are any vectors in V, then

If , then T is called the contraction of V with factor k, and if , it is called the dilation of V
with factor k (Figure 8.1.1).

Figure 8.1.1   

 EXAMPLE 5    A Linear Transformation from Pn to Pn + 1

Let  be a polynomial in , and define the transformation
 by

This transformation is linear because for any scalar k and any polynomials  and  in  we have

and

 EXAMPLE 6    A Linear Transformation Using an Inner Product

Let V be an inner product space, let  be any fixed vector in V, and let  be the transformation

that maps a vector x into its inner product with . This transformation is linear, for if k is any scalar, and
if u and v are any vectors in V, then it follows from properties of inner products that

 EXAMPLE 7    Transformations on Matrix Spaces



Let  be the vector space of  matrices. In each part determine whether the transformation is
linear.
(a)  

(b)  

Solution   
(a)  It follows from parts (b) and (d) of Theorem 1.4.8 that

so  is linear.
(b)  It follows from Formula 1 of Section 2.3 that

Thus,  is not homogeneous and hence not linear if . Note that additivity also fails
because we showed in Example 1 of Section 2.3 that  and  are not
generally equal.

 EXAMPLE 8    Translation Is Not Linear

Part (a) of Theorem 8.1.1 states that a linear transformation maps 0 to 0. This property is useful for
identifying transformations that are not linear. For example, if  is a fixed nonzero vector in , then
the transformation

has the geometric effect of translating each point x in a direction parallel to  through a distance of
 (Figure 8.1.2). This cannot be a linear transformation since , so T does not map 0 to 0.

Figure 8.1.2    translates each point x along a line parallel to  through a distance
.

 EXAMPLE 9    The Evaluation Transformation



Let V be a subspace of , let

be distinct real numbers, and let  be the transformation

  (2)

that associates with f the n-tuple of function values at . We call this the evaluation
transformation on V at . Thus, for example, if

and if , then

The evaluation transformation in 2 is linear, for if k is any scalar, and if f and g are any functions in V,
then

and

Finding Linear Transformations from Images of Basis Vectors

We saw in Formula (12) of Section 4.9 that if  is a matrix transformation, say multiplication by A, and
if  are the standard basis vectors for , then A can be expressed as

It follows from this that the image of any vector  in  under multiplication by A can be
expressed as

This formula tells us that for a matrix transformation the image of any vector is expressible as a linear combination
of the images of the standard basis vectors. This is a special case of the following more general result.

THEOREM 8.1.2

Let  be a linear transformation, where V is finite dimensional. If  is a basis



for V, then the image of any vector v in V can be expressed as

  (3)

where  are the coefficients required to express v as a linear combination of the vectors in S.

Proof   Express v as  and use the linearity of T.

 EXAMPLE 10    Computing with Images of Basis Vectors

Consider the basis  for , where

Let  be the linear transformation for which

Find a formula for , and then use that formula to compute .

Solution   We first need to express  as a linear combination of , , and . If we
write

then on equating corresponding components, we obtain

which yields , , , so

Thus

From this formula, we obtain

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 11    A Linear Transformation from C1(−∞, ∞) to F(−∞, ∞)

Let  be the vector space of functions with continuous first derivatives on , and let

 be the vector space of all real-valued functions defined on . Let  be the
transformation that maps a function  into its derivative—that is,



From the properties of differentiation, we have

Thus, D is a linear transformation.

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 12    An Integral Transformation

Let  be the vector space of continuous functions on the interval , let
 be the vector space of functions with continuous first derivatives on , and

let  be the transformation that maps a function f in V into

For example, if , then

The transformation  is linear, for if k is any constant, and if f and g are any functions in V, then
properties of the integral imply that

Kernel and Range

Recall that if A is an  matrix, then the null space of A consists of all vectors x in  such that , and by
Theorem 4.7.1 the column space of A consists of all vectors b in  for which there is at least one vector x in 
such that . From the viewpoint of matrix transformations, the null space of A consists of all vectors in 
that multiplication by A maps into 0, and the column space of A consists of all vectors in  that are images of at
least one vector in  under multiplication by A. The following definition extends these ideas to general linear
transformations.

DEFINITION 2

If  is a linear transformation, then the set of vectors in V that T maps into 0 is called the kernel of
T and is denoted by . The set of all vectors in W that are images under T of at least one vector in V is
called the range of T and is denoted by .



 EXAMPLE 13    Kernel and Range of a Matrix Transformation

If  is multiplication by the  matrix A, then, as discussed above, the kernel of  is
the null space of A, and the range of  is the column space of A.

 EXAMPLE 14    Kernel and Range of the Zero Transformation

Let  be the zero transformation. Since T maps every vector in V into 0, it follows that
. Moreover, since 0 is the only image under T of vectors in V, it follows that .

 EXAMPLE 15    Kernel and Range of the Identity Operator

Let  be the identity operator. Since  for all vectors in V, every vector in V is the image
of some vector (namely, itself); thus . Since the only vector that I maps into 0 is 0, it follows
that .

 EXAMPLE 16    Kernel and Range of an Orthogonal Projection

As illustrated in Figure 8.1.3a, the points that T maps into  are precisely those on the z-axis,
so  is the set of points of the form . As illustrated in Figure 8.1.3b, T maps the points in 
to the xy-plane, where each point in that plane is the image of each point on the vertical line above it.
Thus,  is the set of points of the form .

Figure 8.1.3   

 EXAMPLE 17    Kernel and Range of a Rotation

Let  be the linear operator that rotates each vector in the xy-plane through the angle  (Figure
8.1.4). Since every vector in the xy-plane can be obtained by rotating some vector through the angle , it
follows that . Moreover, the only vector that rotates into 0 is 0, so .



Figure 8.1.4   

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 18    Kernel of a Differentiation Transformation

Let  be the vector space of functions with continuous first derivatives on ,

let  be the vector space of all real-valued functions defined on , and let
 be the differentiation transformation . The kernel of D is the set of functions in

V with derivative zero. From calculus, this is the set of constant functions on .

Properties of Kernel and Range

In all of the preceding examples,  and  turned out to be subspaces. In Example 14, Example 15, and
Example 17 they were either the zero subspace or the entire vector space. In Example 16 the kernel was a line
through the origin, and the range was a plane through the origin, both of which are subspaces of . All of this is a
consequence of the following general theorem.

THEOREM 8.1.3

If  is a linear transformation, then:
(a)  The kernel of T is a subspace of V.
(b)  The range of T is a subspace of W.

Proof (a)   To show that  is a subspace, we must show that it contains at least one vector and is closed under
addition and scalar multiplication. By part (a) of Theorem 8.1.1, the vector 0 is in , so the kernel contains at
least one vector. Let  and  be vectors in , and let k be any scalar. Then

so  is in . Also,



so  is in .

Proof (b)   To show that  is a subspace of W, we must show that it contains at least one vector and is closed
under addition and scalar multiplication. However, it contains at least the zero vector of W since  by
part (a) of Theorem 8.1.1. To prove that it is closed under addition and scalar multiplication, we must show that if

 and  are vectors in , and if k is any scalar, then there exist vectors a and b in V for which

  (4)

But the fact  and  are in  tells us that there exist vectors  and  in V such that

The following computations complete the proof by showing that the vectors  and  satisfy the
equations in 4:

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 19    Application to Differential Equations

Differential equations of the form

  (5)

arise in the study of vibrations. The set of all solutions of this equation on the interval  is the
kernel of the linear transformation , given by

It is proved in standard textbooks on differential equations that the kernel is a two-dimensional subspace
of , so that if we can find two linearly independent solutions of 5, then all other solutions

can be expressed as linear combinations of those two. We leave it for you to confirm by differentiating
that

are solutions of 5. These functions are linearly independent since neither is a scalar multiple of the other,
and thus

  (6)

is a “general solution” of 5 in the sense that every choice of  and  produces a solution, and every
solution is of this form.



Rank and Nullity of Linear Transformations

In Definition 1 of Section 4.8 we defined the notions of rank and nullity for an  matrix, and in Theorem 4.8.2,
which we called the Dimension Theorem, we proved that the sum of the rank and nullity is n. We will show next
that this result is a special case of a more general result about linear transformations. We start with the following
definition.

DEFINITION 3

Let  be a linear transformation. If the range of T is finite-dimensional, then its dimension is called
the rank of T; and if the kernel of T is finite-dimensional, then its dimension is called the nullity of T. The
rank of T is denoted by  and the nullity of T by .

The following theorem, whose proof is optional, generalizes Theorem 4.8.2.

THEOREM 8.1.4   Dimension Theorem for Linear Transformations

If  is a linear transformation from an n-dimensional vector space V to a vector space W, then

  (7)

In the special case where A is an  matrix and  is multiplication by A, the kernel of  is the null
space of A, and the range of  is the column space of A. Thus, it follows from Theorem 8.1.4 that

 O P T I O N A L  

Proof of Theorem 8.1.4   We must show that

We will give the proof for the case where . The cases where  and
 are left as exercises. Assume , and let  be a basis for the kernel. Since

 is linearly independent, Theorem 4.5.5b states that there are  vectors, , such that the
extended set  is a basis for V. To complete the proof, we will show that the  vectors
in the set  form a basis for the range of T. It will then follow that

First we show that S spans the range of T. If b is any vector in the range of T, then  for some vector v in
V. Since  is a basis for V, the vector v can be written in the form

Since  lie in the kernel of T, we have , so



Thus S spans the range of T.

Finally, we show that S is a linearly independent set and consequently forms a basis for the range of T. Suppose that
some linear combination of the vectors in S is zero; that is,

  (8)

We must show that . Since T is linear, 8 can be rewritten as

which says that  is in the kernel of T. This vector can therefore be written as a linear
combination of the basis vectors , say

Thus,

Since  is linearly independent, all of the k's are zero; in particular, , which
completes the proof.

Concept Review
•  Linear transformation
•  Linear operator
•  Zero transformation
•  Identity operator
•  Contraction
•  Dilation
•  Evaluation transformation
•  Kernel
•  Range
•  Rank
•  Nullity

Skills
•  Determine whether a function is a linear transformation.
•  Find a formula for a linear transformation  given the values of T on a basis for V.
•  Find a basis for the kernel of a linear transformation.
•  Find a basis for the range of a linear transformation.
•  Find the rank of a linear transformation.
•  Find the nullity of a linear transformation.



Exercise Set 8.1

In Exercises 1–8, determine whether the function is a linear transformation. Justify your answer.

1. , where V is an inner product space, and .

Answer:

Nonlinear

2. , where  is a fixed vector in  and .

3. , where B is a fixed  matrix and .

Answer:

Linear

4. , where .

5. , where .

Answer:

Linear

6. , where
(a)  

(b)  

7. , where
(a)  

(b)  

Answer:

(a)  Linear
(b)  Nonlinear

8. , where

(a)  
(b)  

9. Consider the basis  for , where  and , and let  be the linear
operator for which

Find a formula for , and use that formula to find .



Answer:

10. Consider the basis  for , where  and , and let  be the
linear transformation such that

Find a formula for , and use that formula to find .

11. Consider the basis  for , where , , and , and let
 be the linear operator for which

Find a formula for , and use that formula to find .

Answer:

12. Consider the basis  for , where , , and , and let
 be the linear transformation for which

Find a formula for , and use that formula to find .

13. Let , , and  be vectors in a vector space V, and let  be a linear transformation for which

Find .

Answer:

14. Let  be the linear operator given by the formula

Which of the following vectors are in ?

(a)  
(b)  
(c)  

15. Let  be the linear operator in Exercise 14. Which of the following vectors are in ?

(a)  
(b)  
(c)  

Answer:

(a)



16. Let  be the linear transformation given by the formula

Which of the following are in ?

(a)  
(b)  
(c)  

17. Let  be the linear transformation in Exercise 16. Which of the following are in ?

(a)  
(b)  
(c)  

Answer:

(a)

18. Let  be the linear transformation defined by . Which of the following are in
?

(a)  

(b)  
(c)  

19. Let  be the linear transformation in Exercise 18. Which of the following are in ?

(a)  

(b)  
(c)  

Answer:

(a)

20. Find a basis for the kernel of
(a)  the linear operator in Exercise 14.
(b)  the linear transformation in Exercise 16.
(c)  the linear transformation in Exercise 18.

21. Find a basis for the range of
(a)  the linear operator in Exercise 14.
(b)  the linear transformation in Exercise 16.
(c)  the linear transformation in Exercise 18.

Answer:

(a)  
(b)  



(c)  

22. Verify Formula 7 of the dimension theorem for
(a)  the linear operator in Exercise 14.
(b)  the linear transformation in Exercise 16.
(c)  the linear transformation in Exercise 18.

In Exercises 23–26, let T be multiplication by the matrix A. Find
(a)  a basis for the range of T.
(b)  a basis for the kernel of T.
(c)  the rank and nullity of T.
(d)  the rank and nullity of A.

23. 

Answer:

(a)  

(b)  

(c)  Rank  nullity

(d)  Rank  nullity

24. 

25. 

Answer:

(a)  

(b)  

(c)  Rank 

(d)  Rank 



26. 

27. Describe the kernel and range of
(a)  the orthogonal projection on the -plane.
(b)  the orthogonal projection on the -plane.

(c)  the orthogonal projection on the plane defined by the equation .

Answer:

(a)  Kernel: y-axis; range: xz-plane
(b)  Kernel: x-axis; range: yz-plane
(c)  Kernel: the line through the origin perpendicular to the plane ; range: plane 

28. Let V be any vector space, and let  be defined by .

(a)  What is the kernel of T?
(b)  What is the range of T?

29. In each part, use the given information to find the nullity of the linear transformation T.
(a)   has rank 3.

(b)   has rank 1.
(c)  The range of  is .

(d)   has rank 3.

Answer:

(a)  Nullity

(b)  Nullity

(c)  Nullity

(d)  Nullity

30. Let A be a  matrix such that  has only the trivial solution, and let  be multiplication by
A. Find the rank and nullity of T.

31. Let A be a  matrix with rank 4.
(a)  What is the dimension of the solution space of ?
(b)  Is  consistent for all vectors b in ? Explain.

Answer:

(a)  3
(b)  No

32. Let  be a linear transformation from  to any vector space. Give a geometric description of .



33. Let  be a linear transformation from any vector space to . Give a geometric description of .

Answer:

A line through the origin, a plane through the origin, the origin only, or all of 

34. Let  be multiplication by

(a)  Show that the kernel of T is a line through the origin, and find parametric equations for it.
(b)  Show that the range of T is a plane through the origin, and find an equation for it.

35. (a)  Show that if , , , and  are any scalars, then the formula

defines a linear operator on .

(b)  Does the formula  define a linear operator on ? Explain.

Answer:

(b)  No

36. Let  be a basis for a vector space V, and let  be a linear transformation. Show that if

then T is the zero transformation.

37. Let  be a basis for a vector space V, and let  be a linear operator. Show that if

then T is the identity transformation on V.

38. For a positive integer , let  be the linear transformation defined by , where A is
an  matrix with real entries. Determine the dimension of .

39. Prove: If  is a basis for V and  are vectors in W, not necessarily distinct, then
there exists a linear transformation  such that

40. (Calculus required) Let  be the vector space of functions continuous on , and let 
be the transformation defined by

Is T a linear operator?

41. (Calculus required) Let  be the differentiation transformation . What is the kernel of

D?

Answer:

ker(D) consists of all constant polynomials.



42. (Calculus required) Let  be the integration transformation . What is the kernel

of J?

43. (Calculus required) Let V be the vector space of real-valued functions with continuous derivatives of all orders
on the interval , and let  be the vector space of real-valued functions defined on

.

(a)  Find a linear transformation  whose kernel is .
(b)  Find a linear transformation  whose kernel is .

Answer:

(a)  

(b)  

44. If A is an  matrix, and if the linear system  is consistent for every vector b in , what can you
say about the range of ?

True-False Exercises

In parts (a)–(i) determine whether the statement is true or false, and justify your answer.

(a) If  for all vectors  and  in V and all scalars  and , then T is a
linear transformation.

Answer:

True

(b) If v is a nonzero vector in V, then there is exactly one linear transformation  such that
.

Answer:

False

(c) There is exactly one linear transformation  for which  for all vectors u and v in
V.

Answer:

True

(d) If  is a nonzero vector in V, then the formula  defines a linear operator on V.

Answer:

False

(e) The kernel of a linear transformation is a vector space.

Answer:

True



(f) The range of a linear transformation is a vector space.

Answer:

True

(g) If  is a linear transformation, then the nullity of T is 3.

Answer:

False

(h) The function  defined by  is a linear transformation.

Answer:

False

(i) The linear transformation  defined by

has rank 1.

Answer:

False
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8.2  Isomorphism
In this section we will establish a fundamental connection between real finite-dimensional vector spaces and the Euclidean
space . This connection is not only important theoretically, but it has practical applications in that it allows us to perform
vector computations in general vector spaces by working with the vectors in .

One-to-One and Onto

Although many of the theorems in this text have been concerned exclusively with the vector space , this is not as limiting
as it might seem. As we will show, the vector space  is the “mother” of all real n-dimensional vector spaces in the sense
that any such space might differ from  in the notation used to represent vectors, but not in its algebraic structure. To
explain what we mean by this, we will need two definitions, the first of which is a generalization of Definition 1 in Section
4.10. (See Figure 8.2.1).

DEFINITION 1

If  is a linear transformation from a vector space V to a vector space W, then T is said to be one-to-one if
T maps distinct vectors in V into distinct vectors in W.

DEFINITION 2

If  is a linear transformation from a vector space V to a vector space W, then T is said to be onto (or onto
W) if every vector in W is the image of at least one vector in V.

Figure 8.2.1   

The following theorem provides a useful way of telling whether a linear transformation is one-to-one by examining its
kernel.

THEOREM 8.2.1

If  is a linear transformation, then the following statements are equivalent.



(a)  T is one-to-one.
(b)  

Proof (a) ⇒⇒ (b)   Since T is linear, we know that  by Theorem 8.1.1a. Since T is one-to-one, there can be no
other vectors in V that map into 0, so .

(b) ⇒⇒ (a)   Assume that . If u and v are distinct vectors in V, then . This implies that ,
for otherwise  would contain a nonzero vector. Since T is linear, it follows that

so T maps distinct vectors in V into distinct vectors in W and hence is one-to-one.

In the special case where V is finite-dimensional and T is a linear operator on V, then we can add a third statement to those
in Theorem 8.2.1.

THEOREM 8.2.2

If V is a finite-dimensional vector space, and if  is a linear operator, then the following statements are
equivalent.
(a)  T is one-to-one.
(b)  .

(c)  T is onto [i.e., ]

Proof   We already know that (a) and (b) are equivalent by Theorem 8.2.1, so it suffices to show that (b) and (c) are
equivalent. We leave it for you to do this by assuming that  and applying Theorem 8.1.4.

 EXAMPLE 1    Dilations and Contractions Are One-to-One and Onto

Show that if V is a finite-dimensional vector space and c is any nonzero scalar, then the linear operator
 defined by  is one-to-one and onto.

Solution   The operator T is onto (and hence one-to-one) for if v is any vector in V then that vector is the
image of the vector .

 EXAMPLE 2    Matrix Operators

If  is the matrix operator , then it follows from parts (r) and (s) of Theorem 5.1.6 that
 is one-to-one and onto if and only if A is invertible.

 EXAMPLE 3    Shifting Operators



Let  be the sequence space discussed in Example 3 of Section 4.1, and consider the linear “shifting
operators” on V defined by

(a)  Show that  is one-to-one but not onto.
(b)  Show that  is onto but not one to one.

Solution   
(a)  The operator  is one-to-one because distinct sequences in  obviously have distinct images. This

operator is not onto because no vector in  maps into the sequence , for example.

(b)  The operator  is not one-to-one because, for example, the vectors  and
 both map into . This operator is onto because every possible

sequence of real numbers can be obtained with an appropriate choice of the numbers .

Why does Example 3 not violate Theorem 8.2.2?

 EXAMPLE 4    Basic Transformations That Are One-to-One and Onto

The linear transformations  and  defined by

are both one-to-one and onto (verify by showing that their kernels contain only the zero vector).

 EXAMPLE 5    A One-to-One Linear Transformation

Let  be the linear transformation

discussed in Example 5 of Section 8.1. If

are distinct polynomials, then they differ in at least one coefficient. Thus,

also differ in at least one coefficient. It follows that T is one-to-one since it maps distinct polynomials p and q
into distinct polynomials  and .

 C A L C U L U S  R E Q U I R E D  

 EXAMPLE 6    A Transformation That Is Not One-to-One

Let



be the differentiation transformation discussed in Example 11 of Section 8.1. This linear transformation is not
one-to-one because it maps functions that differ by a constant into the same function. For example,

Dimension and Linear Transformations

In the exercises we will ask you to prove the following two important facts about a linear transformation  in the
case where V and W are finite-dimensional:
1.  If , then T cannot be one-to-one.

2.  If , then T cannot be onto.

Stated informally, if a linear transformation maps a “bigger” space to a “smaller” space, then some points in the “bigger”
space must have the same image; and if a linear transformation maps a “smaller” space to a “bigger” space, then there must
be points in the “bigger” space that are not images of any points in the “smaller” space.

Remark   These observations tell us, for example, that any linear transformation from  to  must map some distinct
points of  into the same point in , and it also tells us that there is no linear transformation that maps  onto all of .

Isomorphism

Our next definition paves the way for the main result in this section.

DEFINITION 3

If a linear transformation  is both one-to-one and onto, then T is said to be an isomorphism, and the
vector spaces V and W are said to be isomorphic.

The word isomorphic is derived from the Greek words iso, meaning “identical,” and morphe, meaning “form.” This
terminology is appropriate because, as we will now explain, isomorphic vector spaces have the same “algebraic form,” even
though they may consist of different kinds of objects. To illustrate this idea, examine Table 1 in which we have shown how
the isomorphism

matches up vector operations in  and .

Table 1

Operation in P2 Operation in R3



Operation in P2 Operation in R3

The following theorem, which is one of the most important results in linear algebra, reveals the fundamental importance of
the vector space .

THEOREM 8.2.3

Every real n-dimensional vector space is isomorphic to .

Theorem 8.2.3 tells us that a real n-dimensional vector
space may differ from  in notation, but its algebraic
structure will be the same.

Proof   Let V be a real n-dimensional vector space. To prove that V is isomorphic to  we must find a linear
transformation  that is one-to-one and onto. For this purpose, let

be any basis for V, let

  (1)

be the representation of a vector u in V as a linear combination of the basis vectors, and define the transformation
 by

  (2)

We will show that T is an isomorphism (linear, one-to-one, and onto). To prove the linearity, let u and v be vectors in V, let
c be a scalar, and let

  (3)

be the representations of u and v as linear combinations of the basis vectors. Then it follows from 1 that

and it follows from 2 that

which shows that T is linear. To show that T is one-to-one, we must show that if u and v are distinct vectors in V, then so are
their images in . But if , and if the representations of these vectors in terms of the basis vectors are as in 3, then we



must have  for at least one i. Thus,

which shows that u and v have distinct images under T. Finally, the transformation T is onto, for if

is any vector in , then it follows from 2 that w is the image under T of the vector

Remark   Note that the isomorphism T in Formula 2 of the foregoing proof is the coordinate map

that maps u into its coordinate vector with respect to the basis . Since there are generally many
possible bases for a given vector space V, there are generally many possible isomorphisms between V and , one for each
different basis.

 EXAMPLE 7    The Natural Isomorphism from Pn − 1 to Rn

We leave it for you to verify that the mapping

from  to  is one-to-one, onto, and linear. This is called the natural isomorphism from  to 

because, as the following computations show, it maps the natural basis  for  into the

standard basis for :

 EXAMPLE 8    The Natural Isomorphism from M22 to R4

The matrices

form a basis for the vector space  of  matrices. An isomorphism  can be constructed by
first writing a matrix A in  in terms of the basis vectors as

and then defining T as

Thus, for example,

More generally, this idea can be used to show that the vector space  of  matrices with real entries is
isomorphic to .



 EXAMPLE 9    Differentiation by Matrix Multiplication

Consider the differentiation transformation  on the vector space of polynomials of degree three or
less. If we map  and  into  and , respectively, by the natural isomorphisms, then the transformation D
produces a corresponding matrix transformation from  to . Specifically, the derivative transformation

produces the matrix transformation

Thus, for example, the derivative

can be calculated as the matrix product

This idea is useful for constructing numerical algorithms to perform derivative calculations.

Inner Product Space Isomorphisms

In the case where V is a real n-dimensional inner product space, both V and  have, in addition to their algebraic structure,
a geometric structure arising from their respective inner products. Thus, it is reasonable to inquire if there exists an
isomorphism from V to  that preserves the geometric structure as well as the algebraic structure. For example, we would
want orthogonal vectors in V to have orthogonal counterparts in , and we would want orthonormal sets in V to
correspond to orthonormal sets in .

In order for an isomorphism to preserve geometric structure, it obviously has to preserve inner products, since notions of
length, angle, and orthogonality are all based on the inner product. Thus, if V and W are inner product spaces, then we call
an isomorphism  an inner product space isomorphism if

It can be proved that if V is any real n-dimensional inner product space and  has the Euclidean inner product (the dot
product), then there exists an inner product space isomorphism from V to . Under such an isomorphism, the inner
product space V has the same algebraic and geometric structure as . In this sense, every n-dimensional inner product
space is a “carbon copy” of  with the Euclidean inner product that differs only in the notation used to represent vectors.

 EXAMPLE 10    An Inner Product Space Isomorphism



Let  be the vector space of real n-tuples in comma-delimited form, let  be the vector space of real 
matrices, let  have the Euclidean inner product , and let  have the inner product

 in which u and v are expressed in column form. The mapping  defined by

is an inner product space isomorphism, so the distinction between the inner product space  and the inner
product space  is essentially notational, a fact that we have used many times in this text.

Concept Review
•  One-to-one
•  Onto
•  Isomorphism
•  Isomorphic vector spaces
•  Natural isomorphism
•  Inner product space isomorphism

Skills
•  Determine whether a linear transformation is one-to-one.
•  Determine whether a linear transformation is onto.
•  Determine whether a linear transformation is an isomorphism.

Exercise Set 8.2
1. In each part, find , and determine whether the linear transformation T is one-to-one.

(a)  , where 

(b)  , where 

(c)  , where 

(d)  , where 

(e)  , where 

(f)  , where 

Answer:

(a)   T is one-to-one

(b)   T is not one-to-one

(c)   T is one-to-one



(d)   T is one-to-one

(e)  ; T is not one-to-one

(f)  ; T is not one-to-one

2. Which of the transformations in Exercise 1 are onto?

3. In each part, determine whether multiplication by A is a one-to-one linear transformation.
(a)  

(b)  

(c)  

Answer:

(a)  Not one-to-one
(b)  Not one-to-one
(c)  One-to-one

4. Which of the transformations in Exercise 3 are onto?

5. As indicated in the accompanying figure, let  be the orthogonal projection on the line .

(a)  Find the kernel of T.
(b)  Is T one-to-one? Justify your conclusion.

Figure Ex-5   

Answer:

(a)  ker

(b)  T is not one-to-one since .

6. As indicated in the accompanying figure, let  be the linear operator that reflects each point about the y-axis.

(a)  Find the kernel of T.
(b)  Is T one-to-one? Justify your conclusion.



Figure Ex-6   

7. In each part, use the given information to determine whether the linear transformation T is one-to-one.
(a)  

(b)  

(c)  
(d)  

Answer:

(a)  T is one-to-one
(b)  T is not one-to-one
(c)  T is not one-to-one
(d)  T is one-to-one

8. In each part, determine whether the linear transformation T is one-to-one.
(a)  , where 

(b)  , where 

9. Prove: If V and W are finite-dimensional vector spaces such that , then there is no one-to-one linear
transformation .

10. Prove: There can be an onto linear transformation from V to W only if .

11. (a)  Find an isomorphism between the vector space of all  symmetric matrices and .

(b)  Find two different isomorphisms between the vector space of all  matrices and .

(c)  Find an isomorphism between the vector space of all polynomials of degree at most 3 such that  and .

(d)  Find an isomorphism between the vector spaces  and .

Answer:

(a)  

(b)  

(c)  



(d)  

12. 
(Calculus required) Let  be the integration transformation . Determine whether J is

one-to-one. Justify your conclusion.

13. (Calculus required) Let V be the vector space  and let  be defined by

Verify that T is a linear transformation. Determine whether T is one-to-one, and justify your conclusion.

Answer:

T is not one-to-one since, for example,  is in its kernel.

14. (Calculus required) Devise a method for using matrix multiplication to differentiate functions in the vector space
. Use your method to find the derivative of

.

15. Does the formula  define a one-to-one linear transformation from  to ? Explain your

reasoning.

Answer:

Yes; it is one-to-one

16. Let E be a fixed  elementary matrix. Does the formula  define a one-to-one linear operator on ?
Explain your reasoning.

17. Let a be a fixed vector in . Does the formula  define a one-to-one linear operator on ? Explain your
reasoning.

Answer:

T is not one-to-one since, for example a is in its kernel.

18. Prove that an inner product space isomorphism preserves angles and distances—that is, the angle between u and v in V
is equal to the angle between  and  in W, and .

19. Does an inner product space isomorphism map orthonormal sets to orthonormal sets? Justify your answer.

Answer:

Yes

20. Find an inner product space isomorphism between  and .

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) The vector spaces  and  are isomorphic.

Answer:

False

(b) If the kernel of a linear transformation  is , then T is an isomorphism.



Answer:

True

(c) Every linear transformation from  to  is an isomorphism.

Answer:

False

(d) There is a subspace of  that is isomorphic to .

Answer:

True

(e) There is a  matrix P such that  defined by  is an isomorphism.

Answer:

False

(f) There is a linear transformation  such that the kernel of T is isomorphic to the range of T.

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



8.3  Compositions and Inverse Transformations
In Section 4.10 we discussed compositions and inverses of matrix transformations. In this section we will
extend some of those ideas to general linear transformations.

Composition of Linear Transformations

The following definition extends Formula 1 of Section 4.10 to general linear transformations.

Note that the word “with” establishes the order
of the operations in a composition. The
composition of  with  is

whereas the composition of  with  is

DEFINITION 1

If  and  are linear transformations, then the composition of  with ,
denoted by  (which is read “  circle ”), is the function defined by the formula

  (1)

where u is a vector in U.

Remark   Observe that this definition requires that the domain of  (which is V) contain the range of .
This is essential for the formula  to make sense (Figure 8.3.1).

Figure 8.3.1   The composition of  with .

Our first theorem shows that the composition of two linear transformations is itself a linear transformation.



THEOREM 8.3.1

If  and  are linear transformations, then  is also a linear
transformation.

Proof   If u and v are vectors in U and c is a scalar, then it follows from 1 and the linearity of  and  that

and

Thus,  satisfies the two requirements of a linear transformation.

 EXAMPLE 1    Composition of Linear Transformations

Let  and  be the linear transformations given by the formulas

Then the composition  is given by the formula

In particular, if , then

 EXAMPLE 2    Composition with the Identity Operator

If  is any linear operator, and if  is the identity operator (Example 3 of Section
8.1), then for all vectors v in V, we have

It follows that  and  are the same as T; that is,

  (2)



As illustrated in Figure 8.3.2, compositions can be defined for more than two linear transformations. For
example, if

are linear transformations, then the composition  is defined by

  (3)

Figure 8.3.2   The composition of three linear transformations.

Inverse Linear Transformations

In Theorem 4.10.1 we showed that a matrix operator  is one-to-one if and only if the matrix A is
invertible, in which case the inverse operator is . We then showed that if w is the image of a vector x
under the operator , then x is the image under  of the vector w (see Figure 4.10.8). Our next objective
is to extend the notion of invertibility to general linear transformations.

Recall that if  is a linear transformation, then the range of T, denoted by , is the subspace of W
consisting of all images under T of vectors in V. If T is one-to-one, then each vector w in  is the image of
a unique vector v in V. This uniqueness allows us to define a new function, called the inverse of T and
denoted by , that maps w back into v (Figure 8.3.3).

Figure 8.3.3   The inverse of T maps  back into v.

It can be proved (Exercise 19) that  is a linear transformation. Moreover, it follows from the
definition of  that

  (4)

  (5)



so that T and , when applied in succession in either order, cancel the effect of each other.

Remark   It is important to note that if  is a one-to-one linear transformation, then the domain of
 is the range of T, where the range may or may not be all of W. However, in the special case where

 is a one-to-one linear operator and V is n-dimensional, then it follows from Theorem 8.2.2 that T
must also be onto, so the domain of  is all of V.

 EXAMPLE 3    An Inverse Transformation

In Example 5 of Section 8.2 we showed that the linear transformation  given by

is one-to-one; thus, T has an inverse. In this case the range of T is not all of  but rather the
subspace of  consisting of polynomials with a zero constant term. This is evident from the
formula for T:

It follows that  is given by the formula

For example, in the case where ,

 EXAMPLE 4    An Inverse Transformation

Let  be the linear operator defined by the formula

Determine whether T is one-to-one; if so, find .

Solution   It follows from Formula 12 of Section 4.9 that the standard matrix for T is

(verify). This matrix is invertible, and from Formula 7 of Section 4.10 the standard matrix for
 is

It follows that



Expressing this result in horizontal notation yields

Composition of One-To-One Linear Transformations

The following theorem shows that a composition of one-to-one linear transformations is one-to-one, and it
relates the inverse of a composition to the inverses of its individual linear transformations.

THEOREM 8.3.2

If  and  are one-to-one linear transformations, then
(a)   is one-to-one.
(b)  .

Proof (a)   We want to show that  maps distinct vectors in U into distinct vectors in W. But if u and v
are distinct vectors in U, then  and  are distinct vectors in V since  is one-to-one. This and the
fact that  is one-to-one imply that

are also distinct vectors. But these expressions can also be written as

so  maps u and v into distinct vectors in W.

Proof (b)   We want to show that

for every vector w in the range of . For this purpose, let

  (6)

so our goal is to show that



But it follows from 6 that

or, equivalently,

Now, taking  of each side of this equation, then taking  of each side of the result, and then using 4
yields (verify)

or, equivalently,

In words, part (b) of Theorem 8.3.2 states that the inverse of a composition is the composition of the inverses
in the reverse order. This result can be extended to compositions of three or more linear transformations; for
example,

  (7)

In the case where , , and  are matrix operators on , Formula 7 can be written as

or alternatively as

  (8)

Note the order of the subscripts on the two
sides of Formula 8.

Concept Review
•  Composition of linear transformations
•  Inverse of a linear transformation

Skills
•  Find the domain and range of the composition of two linear transformations.
•  Find the composition of two linear transformations.
•  Determine whether a linear transformation has an inverse.
•  Find the inverse of a linear transformation.



Exercise Set 8.3
1. Find .

(a)  , 

(b)  , 

(c)  , 

(d)  , 

Answer:

(a)  

(b)  

(c)  

(d)  

2. Find .

(a)  , , 

(b)  , ,

3. Let  and  be the linear transformations given by  and
.

(a)  Find , where 

(b)  Can you find ? Explain.

Answer:

(a)  
(b)   does not exist since  is not a  matrix.

4. Let  and  be the linear operators given by  and
. Find  and .

5. Let  be the dilation . Find a linear operator  such that  and
.

Answer:

6. Suppose that the linear transformations  and  are given by the formulas



 and . Find .

7. Let  be a fixed polynomial of degree m, and define a function T with domain  by the formula
. Show that T is a linear transformation.

8. Use the definition of  given by Formula 3 to prove that
(a)   is a linear transformation.
(b)  .

(c)  .

9. Let  be the orthogonal projection of  onto the xy-plane. Show that .

10. In each part, let  be multiplication by A. Determine whether T has an inverse; if so, find

(a)  

(b)  

(c)  

11. In each part, let  be multiplication by A. Determine whether T has an inverse; if so, find

(a)  

(b)  

(c)  

(d)  

Answer:

(a)  T has no inverse.



(b)  

(c)  

(d)  

12. In each part, determine whether the linear operator  is one-to-one; if so, find
.

(a)  
(b)  
(c)  

13. Let  be the linear operator defined by the formula

where  are constants.

(a)  Under what conditions will T have an inverse?
(b)  Assuming that the conditions determined in part (a) are satisfied, find a formula for

.

Answer:

(a)   for 

(b)  

14. Let  and  be the linear operators given by the formulas

(a)  Show that  and  are one-to-one.
(b)  Find formulas for

(c)  Verify that .



15. Let  and  be the linear transformations given by the formulas

(a)  Find formulas for , , and .

(b)  Verify that .

Answer:

(a)  

16. Let , , and  be the reflections about the xy-plane, the -plane, and
the -plane, respectively. Verify Formula 8 for these linear operators.

17. Let  be the function defined by the formula

(a)  Find .

(b)  Show that T is a linear transformation.
(c)  Show that T is one-to-one.
(d)  Find , and sketch its graph.

Answer:

(a)  
(d)  

18. Let  be the linear operator given by the formula . Show that T is
one-to-one and that  for every real value of k.

19. Prove: If  is a one-to-one linear transformation, then  is a one-to-one linear
transformation.

In Exercises 20–21, determine whether .

20. (a)   is the orthogonal projection on the x-axis, and  is the orthogonal projection
on the y-axis.

(b)   is the rotation about the origin through an angle , and  is the rotation
about the origin through an angle .

(c)   is the rotation about the x-axis through an angle , and  is the rotation
about the z-axis through an angle .

21. (a)   is the reflection about the x-axis, and  is the reflection about the y-axis.

(b)   is the orthogonal projection on the x-axis, and  is the counterclockwise
rotation through an angle .



(c)   is a dilation by a factor k, and  is the counterclockwise rotation about the
z-axis through an angle .

Answer:

(a)  
(b)  
(c)  

22. (Calculus required) Let

be the linear transformations in Examples 11 and 12 of Section 8.1. Find  for

(a)  

(b)  
(c)  

23. (Calculus required) The Fundamental Theorem of Calculus implies that integration and differentiation
reverse the actions of each other. Define a transformation  by , and

define  by

(a)  Show that D and J are linear transformations.
(b)  Explain why J is not the inverse transformation of D.
(c)  Can the domains and/or codomains of D and J be restricted so they are inverse linear transformations?

True-False Exercises

In parts (a)–(f) determine whether the statement is true or false, and justify your answer.

(a) The composition of two linear transformations is also a linear transformation.

Answer:

True

(b) If  and  are any two linear operators, then .

Answer:

False

(c) The inverse of a linear transformation is a linear transformation.

Answer:



False

(d) If a linear transformation T has an inverse, then the kernel of T is the zero subspace.

Answer:

True

(e) If  is the orthogonal projection onto the x-axis, then  maps each point on the
x-axis onto a line that is perpendicular to the x-axis.

Answer:

False

(f) If  and  are linear transformations, and if  is not one-to-one, then neither is
.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



8.4  Matrices for General Linear Transformations
In this section we will show that a general linear transformation from any n-dimensional vector space V to any
m-dimensional vector space W can be performed using an appropriate matrix transformation from  to . This idea is
used in computer computations since computers are well suited for performing matrix computations.

Matrices of Linear Transformations

Suppose that V is an n-dimensional vector space, W is an m-dimensional vector space, and that  is a linear
transformation. Suppose further that B is a basis for V, that  is a basis for W, and that for each vector x in V, the
coordinate matrices for x and  are  and , respectively (Figure 8.4.1).

Figure 8.4.1   

It will be our goal to find an  matrix A such that multiplication by A maps the vector  into the vector 
for each x in V (Figure 8.4.2a). If we can do so, then, as illustrated in Figure 8.4.2 b, we will be able to execute the linear
transformation T by using matrix multiplication and the following indirect procedure:

Finding T (x) Indirectly

Step 1.  Compute the coordinate vector .

Step 2.  Multiply  on the left by A to produce .

Step 3.  Reconstruct  from its coordinate vector .

Figure 8.4.2   



The key to executing this plan is to find an  matrix A with the property that

  (1)

For this purpose, let  be a basis for the n-dimensional space V and  a basis for
the m-dimensional space W. Since Equation 1 must hold for all vectors in V, it must hold, in particular, for the basis
vectors in B; that is,

  (2)

But

so

Substituting these results into 2 yields

which shows that the successive columns of A are the coordinate vectors of

with respect to the basis . Thus, the matrix A that completes the link in Figure 8.4.2a is

  (3)



We will call this the matrix for T relative to the bases B and B′ and will denote it by the symbol . Using this
notation, Formula 3 can be written as

  (4)

and from 1, this matrix has the property

  (5)

We leave it as an exercise to show that in the special case where  is multiplication by A, and where B and 
are the standard bases for  and , respectively, then

  (6)

Remark   Observe that in the notation  the right subscript is a basis for the domain of T, and the left subscript is
a basis for the image space of T (Figure 8.4.3). Moreover, observe how the subscript B seems to “cancel out” in Formula
5 (Figure 8.4.4).

Figure 8.4.3   

Figure 8.4.4   

 EXAMPLE 1    Matrix for a Linear Transformation

Let  be the linear transformation defined by

Find the matrix for T with respect to the standard bases

where

Solution   From the given formula for T we obtain

By inspection, the coordinate vectors for  and  relative to  are



Thus, the matrix for T with respect to B and  is

 EXAMPLE 2    The Three-Step Procedure

Let  be the linear transformation in Example 1, and use the three-step procedure described in
the following figure to perform the computation

Solution   
Step 1.  The coordinate matrix for  relative to the basis  is

Step 2.  Multiplying  by the matrix  found in Example 1 we obtain

Step 3.  Reconstructing  from  we obtain

Although Example 2 is simple, the procedure that it
illustrates is applicable to problems of great
complexity.

 EXAMPLE 3    Matrix for a Linear Transformation

Let  be the linear transformation defined by



Find the matrix for the transformation T with respect to the bases  for  and
 for , where

Solution   From the formula for T,

Expressing these vectors as linear combinations of , , and , we obtain (verify)

Thus,

so

Remark   Example 3 illustrates that a fixed linear transformation generally has multiple representations, each depending
on the bases chosen. In this case the matrices

both represent the transformation T, the first relative to the standard bases for  and , the second relative to the bases
B and  stated in the example.

Matrices of Linear Operators

In the special case where  (so that  is a linear operator), it is usual to take  when constructing a
matrix for T. In this case the resulting matrix is called the matrix for T relative to the basis B and is usually denoted by

 rather than . If , then Formulas 4 and 5 become

Phrased informally, Formulas 7 and 8 state that the
matrix for T, when multiplied by the coordinate
vector for x, produces the coordinate vector for 
.



  (7)

  (8)

In the special case where  is a matrix operator, say multiplication by A, and B is the standard basis for ,
then Formula 7 simplifies to

  (9)

Matrices of Identity Operators

Recall that the identity operator  maps every vector in V into itself, that is,  for every vector x in . The
following example shows that if V is n-dimensional, then the matrix for I relative to any basis B for V is the  identity
matrix.

 EXAMPLE 4    Matrices of Identity Operators

If  is a basis for a finite-dimensional vector space , and if  is the identity
operator on , then

Therefore,

 EXAMPLE 5    Linear Operator on P2

Let  be the linear operator defined by

that is, .

(a)  Find  relative to the basis .

(b)  Use the indirect procedure to compute .

(c)  Check the result in (b) by computing  directly.

Solution   



(a)  From the formula for T,

so

Thus,

(b)  Step 1.  The coordinate matrix for  relative to the basis  is

Step 2.  Multiplying  by the matrix  found in part (a) we obtain

Step 3.  Reconstructing  from  we obtain

(c)  By direct computation,

which agrees with the result in (b).

Matrices of Compositions and Inverse Transformations

We will conclude this section by mentioning two theorems without proof that are generalizations of Formulas 4 and 7 of
Section 4.10.

THEOREM 8.4.1

If  and  are linear transformations, and if B, , and  are bases for U,  and W,
respectively, then



  (10)

THEOREM 8.4.2

If  is a linear operator, and if B is a basis for V, then the following are equivalent.
(a)  T is one-to-one.
(b)   is invertible.

Moreover, when these equivalent conditions hold,

  (11)

Remark   In 10, observe how the interior subscript  (the basis for the intermediate space V) seems to “cancel out,”
leaving only the bases for the domain and image space of the composition as subscripts (Figure 8.4.5). This cancellation
of interior subscripts suggests the following extension of Formula 10 to compositions of three linear transformations
(Figure 8.4.6):

  (12)

Figure 8.4.5   

Figure 8.4.6   

The following example illustrates Theorem 8.4.1.

 EXAMPLE 6    Composition

Let  be the linear transformation defined by

and let  be the linear operator defined by

Then the composition  is given by



Thus, if , then

  (13)

In this example,  plays the role of U in Theorem 8.4.1, and  plays the roles of both V and W; thus we can
take  in 10 so that the formula simplifies to

  (14)

Let us choose  to be the basis for  and choose  to be the basis for . We

showed in Examples 1 and 5 that

Thus, it follows from 14 that

  (15)

As a check, we will calculate  directly from Formula 4. Since , it follows from
Formula 4 with  and  that

  (16)

Using 13 yields

From this and the fact that , it follows that

Substituting in 16 yields

which agrees with 15.



Concept Review
•  Matrix for a linear transformation relative to bases
•  Matrix for a linear operator relative to a basis
•  The three-step procedure for finding 

Skills
•  Find the matrix for a linear transformation  relative to bases of V and W.
•  For a linear transformation  find  using the matrix for T relative to bases of V and W.

Exercise Set 8.4
1. Let  be the linear transformation defined by .

(a)  Find the matrix for T relative to the standard bases

where

(b)  Verify that the matrix  obtained in part (a) satisfies Formula 5 for every vector  in 
.

Answer:

(a)  

2. Let  be the linear transformation defined by

(a)  Find the matrix for T relative to the standard bases  and  for  and .

(b)  Verify that the matrix  obtained in part (a) satisfies Formula 5 for every vector  in 
.

3. Let  be the linear operator defined by

(a)  Find the matrix for T relative to the standard basis  for .

(b)  Verify that the matrix  obtained in part (a) satisfies Formula 8 for every vector  in .

Answer:



(a)  

4. Let  be the linear operator defined by

and let  be the basis for which

(a)  Find .

(b)  Verify that Formula 8 holds for every vector x in .

5. Let  be defined by

(a)  Find the matrix  relative to the bases  and , where

(b)  Verify that Formula 5 holds for every vector in .

Answer:

(a)  

6. Let  be the linear operator defined by

(a)  Find the matrix for T with respect to the basis , where

(b)  Verify that Formula 8 holds for every vector  in .

(c)  Is T one-to-one? If so, find the matrix of  with respect to the basis B.

7. Let  be the linear operator defined by , that is,

(a)  Find  with respect to the basis .



(b)  Use the three-step procedure illustrated in Example 2 to compute .

(c)  Check the result obtained in part (b) by computing  directly.

Answer:

(a)  

(b)  

8. Let  be the linear transformation defined by , that is,

(a)  Find  relative to the bases  and .

(b)  Use the three-step procedure illustrated in Example 2 to compute .

(c)  Check the result obtained in part (b) by computing  directly.

9. Let  and  and let

be the matrix for  relative to the basis .

(a)  Find  and .

(b)  Find  and .

(c)  Find a formula for 

(d)  Use the formula obtained in (c) to compute 

Answer:

(a)  

(b)  

(c)  

(d)  



10. 
Let  be the matrix for  relative to the bases  and

, where

(a)  Find , , , and .

(b)  Find , , , and .

(c)  

Find a formula for 

(d)  

Use the formula obtained in (c) to compute 

11. 
Let  be the matrix for  with respect to the basis , where

, , .

Find , , and .

(a)  Find , , and .

(b)  Find a formula for .

(c)  Use the formula obtained in (c) to compute .

Answer:

(a)  

(b)  

(c)  

(d)  

12. Let  be the linear transformation defined by

and let  be the linear operator defined by



Let  and  be the standard bases for  and .

(a)  Find , , and .

(b)  State a formula relating the matrices in part (a).
(c)  Verify that the matrices in part (a) satisfy the formula you stated in part(b).

13. Let  be the linear transformation defined by

and let  be the linear transformation defined by

Let , , and .

(a)  Find , , and .

(b)  State a formula relating the matrices in part (a).
(c)  Verify that the matrices in part (a) satisfy the formula you stated in part(b).

Answer:

(a)  

(b)  

14. Show that if  is the zero transformation, then the matrix for T with respect to any bases for V and W is a zero
matrix.

15. Show that if  is a contraction or a dilation of V (Example 4) of Section 8.1), then the matrix for T relative to
any basis for V is a positive scalar multiple of the identity matrix.

16. Let  be a basis for a vector space V. Find the matrix with respect to B of the linear operator
 defined by , , , .

17. Prove that if B and  are the standard bases for  and , respectively, then the matrix for a linear transformation
 relative to the bases B and  is the standard matrix for T.

18. (Calculus required) Let  be the differentiation operator . In parts (a) and (b), find the

matrix of D relative to the basis .

(a)  

(b)  

(c)  Use the matrix in part (a) to compute .

(d)  Repeat the directions for part (c) for the matrix in part (b).

19. (Calculus required) In each part, suppose that  is a basis for a subspace V of the vector space of
real-valued functions defined on the real line. Find the matrix with respect to B for differentiation operator .
(a)  
(b)  

(c)  



(d)  Use the matrix in part (c) to compute .

Answer:

(a)  

(b)  

(c)  

(d)  
 since 

20. Let V be a four-dimensional vector space with basis B, let W be a seven-dimensional vector space with basis , and let
 be a linear transformation. Identify the four vector spaces that contain the vectors at the corners of the

accompanying diagram.

Figure Ex-20   

21. In each part, fill in the missing part of the equation.
(a)  

(b)  

Answer:

(a)  

(b)  

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) If the matrix of a linear transformation  relative to some bases of V and W is , then there is a nonzero

vector x in V such that .

Answer:

False



(b) If the matrix of a linear transformation  relative to bases for V and W is , then there is a nonzero

vector x in V such that .

Answer:

False

(c) If the matrix of a linear transformation  relative to certain bases for V and W is , then T is one-to-one.

Answer:

True

(d) If  and  are linear operators and B is a basis for V, then the matrix of  relative to B is
.

Answer:

False

(e) If  is an invertible linear operator and B is a basis for V, then the matrix for  relative to B is .

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



8.5  Similarity
The matrix for a linear operator T: V→V depends on the basis selected for V. One of the fundamental problems of linear
algebra is to choose a basis for V that makes the matrix for T as simple as possible—a diagonal or a triangular matrix, for
example. In this section we will study this problem.

Simple Matrices for Linear Operators

Standard bases do not necessarily produce the simplest matrices for linear operators. For example, consider the matrix
operator  whose standard matrix is

  (1)

and view  as the matrix for T relative to the standard basis  for . Let us compare this to the matrix for
T relative to the basis  for  in which

  (2)

Since

it follows that

so the matrix for T relative to the basis  is

This matrix, being diagonal, has a simpler form than  and conveys clearly that the operator T scales  by a factor of 2
and  by a factor of 3, information that is not immediately evident from .

One of the major themes in more advanced linear algebra courses is to determine the “simplest possible form” that can be
obtained for the matrix of a linear operator by choosing the basis appropriately. Sometimes it is possible to obtain a
diagonal matrix (as above, for example), whereas other times one must settle for a triangular matrix or some other form.
We will only be able to touch on this important topic in this text.

The problem of finding a basis that produces the simplest possible matrix for a linear operator  can be attacked by
first finding a matrix for T relative to any basis, typically a standard basis, where applicable, and then changing the basis in
a way that simplifies the matrix. Before pursuing this idea, it will be helpful to revisit some concepts about changing bases.

A New View of Transition Matrices

Recall from Formulas 7 and 8 of Section 4.6 that if  and  are bases for a vector

space V, then the transition matrices from B to  and from  to B are



  (3)

  (4)

where the matrices  and  are inverses of each other. We also showed in Formulas 9 and 10 of that section
that if  is any vector in V, then

  (5)

  (6)

The following theorem shows that transition matrices in Formulas 3 and 4 can be viewed as matrices for identity operators.

THEOREM 8.5.1

If B and  are bases for a finite-dimensional vector space V, and if  is the identity operator on V, then

Proof   Suppose that  and  are bases for V. Using the fact that  for all

 in V, it follows from Formula 4 of Section 8.4 that

The proof that  is similar.

Effect of Changing Bases on Matrices of Linear Operators

We are now ready to consider the main problem in this section.

PROBLEM

If B and  are two bases for a finite-dimensional vector space V, and if  is a linear operator, what
relationship, if any, exists between the matrices  and ?

The answer to this question can be obtained by considering the composition of the three linear operators on V pictured in
Figure 8.5.1.



Figure 8.5.1   

In this figure,  is first mapped into itself by the identity operator, then  is mapped into  by T, and then  is
mapped into itself by the identity operator. All four vector spaces involved in the composition are the same (namely, V), but
the bases for the spaces vary. Since the starting vector is  and the final vector is , the composition produces the same
result as applying T directly; that is,

  (7)

If, as illustrated in Figure 8.5.1, if the first and last vector spaces are assigned the basis  and the middle two spaces are
assigned the basis B, then it follows from 7 and Formula 12 of Section 8.4 (with an appropriate adjustment to the names of
the bases) that

  (8)

or, in simpler notation,

  (9)

We can simplify this formula even further by using Theorem 8.5.1 to rewrite it as

  (10)

In summary, we have the following theorem.

THEOREM 8.5.2

Let  be a linear operator on a finite-dimensional vector space V, and let B and  be bases for V. Then

  (11)

where  and .

Warning   When applying Theorem 8.5.2, it is easy to forget whether  (correct) or  (incorrect). It
may help to use the diagram in Figure 8.5.2 and observe that the exterior subscripts of the transition matrices match the
subscript of the matrix they enclose.

Figure 8.5.2   



In the terminology of Definition 1 of Section 5.2, Theorem 8.5.2 tells us that matrices representing the same linear operator
relative to different bases must be similar. The following theorem is a rephrasing of Theorem 8.5.2 in the language of
similarity.

THEOREM 8.5.3

Two matrices, A and B, are similar if and only if they represent the same linear operator. Moreover, if 
then P is the transition matrix from the basis relative to matrix B to the basis relative to matrix A.

 EXAMPLE 1    Similar Matrices Represent the Same Linear Operator

We showed at the beginning of this section that the matrices

represent the same linear operator . Verify that these matrices are similar by finding a matrix P for
which .

Solution   We need to find the transition matrix

where  is the basis for  given by 2 and  is the standard basis for . We see by

inspection that

from which it follows that

Thus,

We leave it for you to verify that

and hence that



Similarity Invariants

Recall from Section 5.2 that a property of a square matrix is called a similarity invariant if that property is shared by all
similar matrices. In Table 1 of that section (table reproduced below), we listed the most important similarity invariants.
Since we know from Theorem 8.5.3 that two matrices are similar if and only if they represent the same linear operator

, it follows that if B and  are bases for V, then every similarity invariant property of  is also a similarity
invariant property of  for any other basis  for V. For example, for any two bases B and  we must have

It follows from this equation that the value of the determinant depends on T, but not on the particular basis that is used to
obtain the matrix for T. Thus, the determinant can be regarded as a property of the linear operator T; indeed, if V is a finite-
dimensional vector space, then we can define the determinant of the linear operator T to be

  (12)

where B is any basis for V.

Table 1 Similarity Invariants

Property Description

Determinant A and  have the same determinant.

Invertibility A is invertible if and only if  is invertible.

Rank A and  have the same rank.

Nullity A and  have the same nullity.

Trace A and  have the same trace.

Characteristic
polynomial

A and  have the same characteristic polynomial.

Eigenvalues A and  have the same eigenvalues.

Eigenspace
dimension

If  is an eigenvalue of A and , then the eigenspace of A corresponding to  and the
eigenspace of  corresponding to  have the same dimension.

 EXAMPLE 2    Determinant of a Linear Operator

At the beginning of this section we showed that the matrices

represent the same linear operator relative to different bases, the first relative to the standard basis 
for  and the second relative to the basis  for which

This means that  and  must be similar matrices and hence must have the same similarity invariant
properties. In particular, they must have the same determinant. We leave it for you to verify that



 EXAMPLE 3    Eigenvalues and Bases for Eigenspaces

Find the eigenvalues and bases for the eigenspaces of the linear operator  defined by

Solution   We leave it for you to show that the matrix for T with respect to the standard basis
 is

The eigenvalues of T are  and  (Example 7 of Section 5.1). Also from that example, the
eigenspace of  corresponding to  has the basis , where

and the eigenspace of  corresponding to  has the basis , where

The matrices , , and  are the coordinate matrices relative to B of

Thus, the eigenspace of T corresponding to  has the basis

and that corresponding to  has the basis

As a check, you can use the given formula for T to verify that

Concept Review
•  Similarity of matrices representing a linear operator
•  Similarity invariant
•  Determinant of a linear operator

Skills
•  Show that two matrices A and B represent the same linear operator, and find a transition matrix P so that

.



•  Find the eigenvalues and bases for the eigenspaces of a linear operator on a finite-dimensional vector space.

Exercise Set 8.5

In Exercises 1–7, find the matrix for T relative to the basis B, and use Theorem 8.5.2 to compute the matrix for T relative
to the basis .

1.  is defined by

and  and , where

Answer:

2.  is defined by

and  and , where

3.  is the rotation about the origin through an angle of 45°; B and  are the bases in Exercise 1.

Answer:

4.  is defined by

and B is the standard basis for  and , where



5.  is the orthogonal projection on the -plane, and B and  are as in Exercise 4.

Answer:

6.  is defined by , and B and  are the bases in Exercise 2.

7.  is defined by , and  and , where 
, , , .

Answer:

8. Find .

(a)  , where 

(b)  , where 

(c)  , where 

9. Prove that the following are similarity invariants:
(a)  rank
(b)  nullity
(c)  invertibility

10. Let  be the linear operator given by the formula .

(a)  Find a matrix for T relative to some convenient basis, and then use it to find the rank and nullity of T.
(b)  Use the result in part (a) to determine whether T is one-to-one.

11. In each part, find a basis for  relative to which the matrix for T is diagonal.

(a)  

(b)  

Answer:

(a)  

(b)  

12. In each part, find a basis for  relative to which the matrix for T is diagonal.



(a)  

(b)  

(c)  

13. Let  be defined by

(a)  Find the eigenvalues of T.
(b)  Find bases for the eigenspaces of T.

Answer:

(a)  
(b)  Basis for eigenspace corresponding to ; basis for eigenspace corresponding to

14. Let  be defined by

(a)  Find the eigenvalues of T.
(b)  Find bases for the eigenspaces of T.

15. Let  be an eigenvalue of a linear operator . Prove that the eigenvectors of T corresponding to  are the
nonzero vectors in the kernel of .

16. (a)  Prove that if A and B are similar matrices, then  and  are also similar. More generally, prove that  and 
are similar if k is any positive integer.

(b)  If  and  are similar, must A and B be similar? Explain.

17. Let C and D be  matrices, and let  be a basis for a vector space V. Show that if
 for all x in V, then .

18. Find two nonzero  matrices that are not similar, and explain why they are not.

19. Complete the proof below by justifying each step.

Hypothesis: A and B are similar matrices.

Conclusion: A and B have the same characteristic polynomial.

Proof:
1.  



2.  

3.  

4.  

5.  

6.  

20. If A and B are similar matrices, say , then it follows from Exercise 19 that A and B have the same
eigenvalues. Suppose that  is one of the common eigenvalues and x is a corresponding eigenvector of A. See if you can
find an eigenvector of B corresponding to  (expressed in terms of , and P).

21. Since the standard basis for  is so simple, why would one want to represent a linear operator on  in another basis?

Answer:

The choice of an appropriate basis can yield a better understanding of the linear operator.

22. Prove that trace is a similarity invariant.

True-False Exercises

In parts (a)—(h) determine whether the statement is true or false, and justify your answer.

(a) A matrix cannot be similar to itself.

Answer:

False

(b) If A is similar to B, and B is similar to C, then A is similar to C.

Answer:

True

(c) If A and B are similar and B is singular, then A is singular.

Answer:

True

(d) If A and B are invertible and similar, then  and  are similar.

Answer:

True

(e) If  and  are linear operators, and if  with respect to two bases B and 
for  then  for every vector x in 

Answer:

True

(f) If  is a linear operator, and if  with respect to two bases B and  for , then .

Answer:



False

(g) If  is a linear operator, and if  with respect to some basis B for , then T is the identity operator
on .

Answer:

True

(h) If  is a linear operator, and if  with respect to two bases B and  for , then T is the identity
operator on .

Answer:

False

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



Chapter 8 Supplementary Exercises

1. Let A be an  matrix, B a nonzero  matrix, and x a vector in  expressed in matrix notation. Is
 a linear operator on ? Justify your answer.

Answer:

No. , and if , then

2. Let

(a)  Show that

(b)  Based on your answer to part (a), make a guess at the form of the matrix  for any positive integer n.

(c)  By considering the geometric effect of multiplication by A, obtain the result in part (b) geometrically.

3. Let  be defined by . Show that T is not a linear operator on V.

4. Let  be fixed vectors in , and let  be the function defined by
, where  is the Euclidean inner product on .

(a)  Show that T is a linear transformation.
(b)  Show that the matrix with row vectors  is the standard matrix for T.

5. Let  be the standard basis for , and let  be the linear transformation for
which

(a)  Find bases for the range and kernel of T.
(b)  Find the rank and nullity of T.

Answer:

(a)   and any two of , and  form bases for the range;  is a basis
for the kernel.

(b)  

6. Suppose that vectors in  are denoted by  matrices, and define  by



(a)  Find a basis for the kernel of T.
(b)  Find a basis for the range of T.

7. Let  be a basis for a vector space V, and let  be the linear operator for
which

(a)  Find the rank and nullity of T.
(b)  Determine whether T is one-to-one.

Answer:

(a)  
(b)  T is not one-to-one.

8. Let V and W be vector spaces, let T, , and  be linear transformations from V to W, and let k be a scalar.
Define new transformations,  and , by the formulas

(a)  Show that  and  are both linear transformations.

(b)  Show that the set of all linear transformations from V to W with the operations in part (a) is a vector
space.

9. Let A and B be similar matrices. Prove:
(a)   and  are similar.

(b)  If A and B are invertible, then  and  are similar.

10. Fredholm Alternative Theorem Let  be a linear operator on an n-dimensional vector space.
Prove that exactly one of the following statements holds:
(i)  The equation  has a solution for all vectors b in V.

(ii)  Nullity of .

11. Let  be the linear operator defined by

Find the rank and nullity of T.

Answer:

12. Prove: If A and B are similar matrices, and if B and C are also similar matrices, then A and C are similar
matrices.



13. Let  be the linear operator that is defined by . Find the matrix for L with

respect to the standard basis for .

Answer:

14. Let  and  be bases for a vector space V, and let

be the transition matrix from  to B.

(a)  Express , ,  as linear combinations of , , .
(b)  Express , ,  as linear combinations of , , .

15. Let  be a basis for a vector space V, and let  be a linear operator for which

Find , where  is the basis for V defined by

Answer:

16. Show that the matrices

are similar but that

are not.

17. Suppose that  is a linear operator, and B is a basis for V for which

Find .



Answer:

18. Let  be a linear operator. Prove that T is one-to-one if and only if .

19. (Calculus required)
(a)  Show that if is twice differentiable, then the function 

defined by  is a linear transformation.

(b)  Find a basis for the kernel of D.
(c)  Show that the set of functions satisfying the equation  is a two-dimensional subspace of

, and find a basis for this subspace.

Answer:

(b)  
(c)  

20. Let  be the function defined by the formula

(a)  Find .

(b)  Show that T is a linear transformation.
(c)  Show that T is one-to-one.
(d)  Find .

(e)  Sketch the graph of the polynomial in part (d).

21. Let , , and  be distinct real numbers such that

and let  be the function defined by the formula

(a)  Show that T is a linear transformation.
(b)  Show that T is one-to-one.



(c)  Verify that if , , and  are any real numbers, then

where

(d)  What relationship exists between the graph of the function

and the points , , and ?

Answer:

(b)  The points are on the graph.

22. (Calculus required) Let  and  be continuous functions, and let V be the subspace of
 consisting of all twice differentiable functions. Define  by

(a)  Show that L is a linear transformation.
(b)  Consider the special case where  and . Show that the function

is in the kernel of L for all real values of  and .

23. Calculus required Let  be the differentiation operator . Show that the matrix for D

relative to the basis  is

24. Calculus required It can be shown that for any real number c, the vectors

form a basis for . Find the matrix for the differentiation operator of Exercise 23 with respect to this
basis.

25. Calculus required  be the integration transformation defined by



where . Find the matrix for J with respect to the standard bases for  and
.

Answer:
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CHAPTER

   9 Numerical Methods

CHAPTER CONTENTS

9.1.  LU-Decompositions
9.2.  The Power Method
9.3.  Internet Search Engines
9.4.  Comparison of Procedures for Solving Linear Systems
9.5.  Singular Value Decomposition
9.6.  Data Compression Using Singular Value Decomposition

INTRODUCTION

This chapter is concerned with “numerical methods” of linear algebra, an area of study
that encompasses techniques for solving large-scale linear systems and for finding
numerical approximations of various kinds. It is not our objective to discuss algorithms
and technical issues in fine detail, since there are many excellent books on the subject.
Rather, we will be concerned with introducing some of the basic ideas and exploring
important contemporary applications that rely heavily on numerical ideas—singular value
decomposition and data compression. A computing utility such as MATLAB,
Mathematica, or Maple is recommended for Section 9.2 to Section 9.6 .
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9.1  LU-Decompositions
Up to now, we have focused on two methods for solving linear systems, Gaussian elimination (reduction to row
echelon form) and Gauss–Jordan elimination (reduction to reduced row echelon form). While these methods are
fine for the small-scale problems in this text, they are not suitable for large-scale problems in which computer
roundoff error, memory usage, and speed are concerns. In this section we will discuss a method for solving a linear
system of n equations in n unknowns that is based on factoring its coefficient matrix into a product of lower and
upper triangular matrices. This method, called “LU-decomposition,” is the basis for many computer algorithms in
common use.

Solving Linear Systems by Factoring

Our first goal in this section is to show how to solve a linear system  of n equations in n unknowns by
factoring the coefficient matrix A into a product

  (1)

where L is lower triangular and U is upper triangular. Once we understand how to do this, we will discuss how to
obtain the factorization itself.

Assuming that we have somehow obtained the factorization in 1, the linear system  can be solved by the
following procedure, called LU-decomposition.

The Method of LU-Decomposition

Step 1.  Rewrite the system  as

  (2)

Step 2.  Define a new  matrix y by

  (3)

Step 3.  Use 3 to rewrite 2 as  and solve this system for y.

Step 4.  Substitute y in 3 and solve for .

This procedure, which is illustrated in Figure 9.1.1, replaces the single linear system  by a pair of linear
systems

that must be solved in succession. However, since each of these systems has a triangular coefficient matrix, it
generally turns out to involve no more computation to solve the two systems than to solve the original system



directly.

Figure 9.1.1   

 EXAMPLE 1    Solving Ax = b by LU-Decomposition

Later in this section we will derive the factorization

  (4)

Use this result to solve the linear system

From 4 we can rewrite this system as

  (5)

Historical Note    In 1979 an important library of machine-independent linear algebra
programs called LINPACK was developed at Argonne National Laboratories. Many of the
programs in that library use the decomposition methods that we will study in this section.
Variations of the LINPACK routines are used in many computer programs, including
MATLAB, Mathematica, and Maple.

As specified in Step 2 above, let us define , , and  by the equation

  (6)

which allows us to rewrite 5 as



  (7)

or equivalently as

This system can be solved by a procedure that is similar to back substitution, except that we solve the
equations from the top down instead of from the bottom up. This procedure, called forward
substitution, yields

(verify). As indicated in Step 4 above, we substitute these values into 6, which yields the linear
system

or, equivalently,

Solving this system by back substitution yields

(verify).

Alan Mathison Turing (1912–1954)

Historical Note    Although the ideas were known earlier, credit for popularizing the matrix
formulation of the LU-decomposition is often given to the British mathematician Alan
Turing for his work on the subject in 1948. Turing, one of the great geniuses of the twentieth
century, is the founder of the field of artificial intelligence. Among his many
accomplishments in that field, he developed the concept of an internally programmed
computer before the practical technology had reached the point where the construction of



such a machine was possible. During World War II Turing was secretly recruited by the
British government's Code and Cypher School at Bletchley Park to help break the Nazi
Enigma codes; it was Turing's statistical approach that provided the breakthrough. In addition
to being a brilliant mathematician, Turing was a world-class runner who competed
successfully with Olympic-level competition. Sadly, Turing, a homosexual, was tried and
convicted of “gross indecency” in 1952, in violation of the then-existing British statutes.
Depressed, he committed suicide at age 41 by eating an apple laced with cyanide.
[Image: Time & Life Pictures/Getty Images, Inc.]

Finding LU-Decompositions

Example 1 makes it clear that after A is factored into lower and upper triangular matrices, the system  can
be solved by one forward substitution and one back substitution. We will now show how to obtain such
factorizations. We begin with some terminology.

DEFINITION 1

A factorization of a square matrix A as , where L is lower triangular and U is upper triangular is
called an LU-decomposition (or LU-factorization) of A.

Not every square matrix has an LU-decomposition. However, we will see that if it is possible to reduce a square
matrix A to row echelon form by Gaussian elimination without performing any row interchanges, then A will have
an LU-decomposition, though it may not be unique. To see why this is so, assume that A has been reduced to a row
echelon form U using a sequence of row operations that does not include row interchanges. We know from
Theorem 1.5.1 that these operations can be accomplished by multiplying A on the left by an appropriate sequence
of elementary matrices; that is, there exist elementary matrices  such that

  (8)

Since elementary matrices are invertible, we can solve 8 for A as

or more briefly as

  (9)

where

  (10)



We now have all of the ingredients to prove the following result.

THEOREM 9.1.1

If A is a square matrix that can be reduced to a row echelon form U by Gaussian elimination without row
interchanges, then A can be factored as , where L is a lower triangular matrix.

Proof   Let L and U be the matrices in Formulas 10 and 8, respectively. The matrix U is upper triangular because it
is a row echelon form of a square matrix (so all entries below its main diagonal are zero). To prove that L is lower
triangular, it suffices to prove that each factor on the right side of 10 is lower triangular, since Theorem 1.7.1b will
then imply that L itself is lower triangular. Since row interchanges are excluded, each  results either by adding a
scalar multiple of one row of an identity matrix to a row below or by multiplying one row of an identity matrix by a
nonzero scalar. In either case, the resulting matrix  is lower triangular and hence so is  by Theorem 1.7.1d.
This completes the proof.

 EXAMPLE 2    An LU-Decomposition

Find an LU-decomposition of

Solution   To obtain an LU-decomposition, , we will reduce A to a row echelon form U using Gaussian
elimination and then calculate L from 10. The steps are as follows:



and, from 10,



so

is an LU-decomposition of A.

Bookkeeping

As Example 2 shows, most of the work in constructing an LU-decomposition is expended in calculating L.
However, all this work can be eliminated by some careful bookkeeping of the operations used to reduce A to U.

Because we are assuming that no row interchanges are required to reduce A to U, there are only two types of
operations involved—multiplying a row by a nonzero constant, and adding a scalar multiple of one row to another.
The first operation is used to introduce the leading 1's and the second to introduce zeros below the leading 1's.

In Example 2, a multiplier of  was needed in Step 1 to introduce a leading 1 in the first row, and a multiplier of 

was needed in Step 5 to introduce a leading 1 in the third row. No actual multiplier was required to introduce a
leading 1 in the second row because it was already a 1 at the end of Step 2, but for convenience let us say that the
multiplier was 1. Comparing these multipliers with the successive diagonal entries of L, we see that these diagonal
entries are precisely the reciprocals of the multipliers used to construct U:

  (11)

Also observe in Example 2 that to introduce zeros below the leading 1 in the first row, we used the operations

and to introduce the zero below the leading 1 in the second row, we used the operation

Now note in 12 that in each position below the main diagonal of L, the entry is the negative of the multiplier in the
operation that introduced the zero in that position in U:

  (12)

This suggests the following procedure for constructing an LU-decomposition of a square matrix A, assuming that
this matrix can be reduced to row echelon form without row interchanges.



Procedure for Constructing an LU-Decomposition

Step 1.  Reduce A to a row echelon form U by Gaussian elimination without row interchanges, keeping
track of the multipliers used to introduce the leading 1's and the multipliers used to introduce the
zeros below the leading 1's.

Step 2.  In each position along the main diagonal of L, place the reciprocal of the multiplier that introduced
the leading 1 in that position in U.

Step 3.  In each position below the main diagonal of L, place the negative of the multiplier used to
introduce the zero in that position in U.

Step 4.  Form the decomposition .

 EXAMPLE 3    Constructing an LU-Decomposition

Find an LU-decomposition of

Solution   We will reduce A to a row echelon form U and at each step we will fill in an entry of L in
accordance with the four-step procedure above.



Thus, we have constructed the LU-decomposition

We leave it for you to confirm this end result by multiplying the factors.

LU-Decompositions Are Not Unique

In the absence of restrictions, LU-decompositions are not unique. For example, if

and L has nonzero diagonal entries, then we can shift the diagonal entries from the left factor to the right factor by
writing



which is another LU-decomposition of A.

LDU-Decompositions

The method we have described for computing LU-decompositions may result in an “asymmetry” in that the matrix
U has 1's on the main diagonal but L need not. However, if it is preferred to have 1's on the main diagonal of the
lower triangular factor, then we can “shift” the diagonal entries of L to a diagonal matrix D and write L as

where  is a lower triangular matrix with 1's on the main diagonal. For example, a general  lower triangular
matrix with nonzero entries on the main diagonal can be factored as

Note that the columns of  are obtained by dividing each entry in the corresponding column of L by the diagonal
entry in the column. Thus, for example, we can rewrite 4 as

One can prove that if A is a square matrix that can be reduced to row echelon form without row interchanges, then
A can be factored uniquely as

where L is a lower triangular matrix with 1's on the main diagonal, D is a diagonal matrix, and U is an upper
triangular matrix with 1's on the main diagonal. This is called the LDU-decomposition (or LDU-factorization) of
A.

PLU-Decompositions

Many computer algorithms for solving linear systems perform row interchanges to reduce roundoff error, in which



case the existence of an LU-decomposition is not guaranteed. However, it is possible to work around this problem
by “preprocessing” the coefficient matrix A so that the row interchanges are performed prior to computing the
LU-decomposition itself. More specifically, the idea is to create a matrix Q (called a permutation matrix) by
multiplying, in sequence, those elementary matrices that produce the row interchanges and then execute them by
computing the product QA. This product can then be reduced to row echelon form without row interchanges, so it is
assured to have an LU-decomposition

  (13)

Because the matrix Q is invertible (being a product of elementary matrices), the systems  and 
will have the same solutions. But it follows from 13 that the latter system can be rewritten as  and hence
can be solved using LU-decomposition.

It is common to see Equation 13 expressed as

  (14)

in which . This is called a PLU-decomposition or (PLU-factorization) of A.

Concept Review
•  LU-decomposition
•  LDU-decomposition
•  PLU-decomposition

Skills
•  Determine whether a square matrix has an LU-decomposition.
•  Find an LU-decomposition of a square matrix.
•  Use the method of LU-decomposition to solve linear systems.
•  Find the LDU-decomposition of a square matrix.
•  Find a PLU-decomposition of a square matrix.

Exercise Set 9.1
1. Use the method of Example 1 and the LU-decomposition

to solve the system



Answer:

2. Use the method of Example 1 and the LU-decomposition

to solve the system

In Exercises 3–10, find an LU-decomposition of the coefficient matrix, and then use the method of Example 1 to
solve the system.

3. 

Answer:

4. 

5. 

Answer:

6. 

7. 

Answer:

8. 

9. 



Answer:

10. 

11. Let

(a)  Find an LU-decomposition of A.
(b)  Express A in the form , where  is lower triangular with 1's along the main diagonal,  is

upper triangular, and D is a diagonal matrix.
(c)  Express A in the form , where  is lower triangular with 1's along the main diagonal and  is

upper triangular.

Answer:

(a)  

(b)  

(c)  

In Exercises 12–13, find an LDU-decomposition of A

12. 

13. 

Answer:

14. 



(a)  Show that the matrix

has no LU-decomposition.
(b)  Find a PLU-decomposition of this matrix.

In Exercises 15–16, use the given PLU-decomposition of A to solve the linear system  by rewriting it as
 and solving this system by LU-decomposition.

15. 

Answer:

16. 

In Exercises 17–18, find a PLU-decomposition of A, and use it to solve the linear system  by the method
of Exercises 15 and 16.

17. 

Answer:

18. 

19. Let



(a)  Prove: If , then the matrix A has a unique LU-decomposition with 1's along the main diagonal of L.
(b)  Find the LU-decomposition described in part (a).

Answer:

(b)  

20. Let  be a linear system of n equations in n unknowns, and assume that A is an invertible matrix that can
be reduced to row-echelon form without row interchanges. How many additions and multiplications are
required to solve the system by the method of Example 1?

21. Prove: If A is any  matrix, then A can be factored as , where L is lower triangular, U is upper
triangular, and P can be obtained by interchanging the rows of  appropriately. [Hint: Let U be a row echelon
form of A, and let all row interchanges required in the reduction of A to U be performed first.]

True-False Exercises

In parts (a)–(e) determine whether the statement is true or false, and justify your answer.

(a) Every square matrix has an LU-decomposition.

Answer:

False

(b) If a square matrix A is row equivalent to an upper triangular matrix U, then A has an LU-decomposition.

Answer:

False

(c) If  are  lower triangular matrices, then the product  is lower triangular.

Answer:

True

(d) If a square matrix A has an LU-decomposition, then A has a unique LDU-decomposition.

Answer:

True

(e) Every square matrix has a PLU-decomposition.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



9.2  The Power Method
The eigenvalues of a square matrix can, in theory, be found by solving the characteristic equation. However, this
procedure has so many computational difficulties that it is almost never used in applications. In this section we will
discuss an algorithm that can be used to approximate the eigenvalue with greatest absolute value and a corresponding
eigenvector. This particular eigenvalue and its corresponding eigenvectors are important because they arise naturally in
many iterative processes. The methods we will study in this section have recently been used to create Internet search
engines such as Google. We will discuss this application in the next section.

The Power Method

There are many applications in which some vector  in  is multiplied repeatedly by an  matrix A to produce a
sequence

We call a sequence of this form a power sequence generated by A. In this section we will be concerned with the
convergence of power sequences and how such sequences can be used to approximate eigenvalues and eigenvectors.
For this purpose, we make the following definition.

DEFINITION 1

If the distinct eigenvalues of a matrix A are   and if  is larger than  then  is
called a dominant eigenvalue of A. Any eigenvector corresponding to a dominant eigenvalue is called a
dominant eigenvector of A.

 EXAMPLE 1    Dominant Eigenvalues

Some matrices have dominant eigenvalues and some do not. For example, if the distinct eigenvalues of a
matrix are

then  is dominant since  is greater than the absolute values of all the other eigenvalues;
but if the distinct eigenvalues of a matrix are

then  so there is no eigenvalue whose absolute value is greater than the absolute value of
all the other eigenvalues.

The most important theorems about convergence of power sequences apply to  matrices with n linearly
independent eigenvectors (symmetric matrices, for example), so we will limit our discussion to this case in this section.

THEOREM 9.2.1



Let A be a symmetric  matrix with a positive* dominant eigenvalue  If  is a unit vector in  that is
not orthogonal to the eigenspace corresponding to  then the normalized power sequence

  (1)

converges to a unit dominant eigenvector, and the sequence

  (2)

converges to the dominant eigenvalue λ.

Remark   In the exercises we will ask you to show that 1 can also be expressed as

  (3)

This form of the power sequence expresses each iterate in terms of the starting vector  rather than in terms of its
predecessor.

We will not prove Theorem 9.2.1, but we can make it plausible geometrically in the  case where A is a symmetric
matrix with distinct positive eigenvalues,  and  one of which is dominant. To be specific, assume that  is
dominant and

Since we are assuming that A is symmetric and has distinct eigenvalues, it follows from Theorem 7.2.2 that the
eigenspaces corresponding to  and  are perpendicular lines through the origin. Thus, the assumption that  is a
unit vector that is not orthogonal to the eigenspace corresponding to  implies that  does not lie in the eigenspace
corresponding to  To see the geometric effect of multiplying  by A, it will be useful to split  into the sum

  (4)

where  and  are the orthogonal projections of  on the eigenspaces of  and  respectively (Figure 9.2.1a).

Figure 9.2.1   

This enables us to express  as

  (5)



which tells us that multiplying  by A “scales” the terms  and  in 4 by  and  respectively. However,  is
larger than , so the scaling is greater in the direction of  than in the direction of  Thus, multiplying  by A
“pulls”  toward the eigenspace of  and normalizing produces a vector , which is on the unit
circle and is closer to the eigenspace of  than  (Figure 9.2.1b). Similarly, multiplying  by A and normalizing
produces a unit vector  that is closer to the eigenspace of  than . Thus, it seems reasonable that by repeatedly
multiplying by A and normalizing we will produce a sequence of vectors  that lie on the unit circle and converge to a
unit vector  in the eigenspace of  (Figure 9.2.1c). Moreover, if  converges to  then it also seems reasonable that

 will converge to

which is the dominant eigenvalue of A.

The Power Method with Euclidean Scaling

Theorem 9.2.1 provides us with an algorithm for approximating the dominant eigenvalue and a corresponding unit
eigenvector of a symmetric matrix  provided the dominant eigenvalue is positive. This algorithm, called the power
method with Euclidean scaling, is as follows:

The Power Method with Euclidean Scaling

Step 1. Choose an arbitrary nonzero vector and normalize it, if need be, to obtain a unit vector 
Step 2. Compute  and normalize it to obtain the first approximation  to a dominant unit eigenvector.
Compute  to obtain the first approximation to the dominant eigenvalue.
Step 3. Compute  and normalize it to obtain the second approximation  to a dominant unit eigenvector.
Compute  to obtain the second approximation to the dominant eigenvalue.
Step 4. Compute  and normalize it to obtain the third approximation  to a dominant unit eigenvector.
Compute  to obtain the third approximation to the dominant eigenvalue.
Continuing in this way will usually generate a sequence of better and better approximations to the dominant
eigenvalue and a corresponding unit eigenvector.*

 EXAMPLE 2    The Power Method with Euclidean Scaling

Apply the power method with Euclidean scaling to

Stop at  and compare the resulting approximations to the exact values of the dominant eigenvalue and
eigenvector.

Solution   We will leave it for you to show that the eigenvalues of A are  and  and that the
eigenspace corresponding to the dominant eigenvalue  is the line represented by the parametric
equations , , which we can write in vector form as

  (6)



Setting  yields the normalized dominant eigenvector

  (7)

Now let us see what happens when we use the power method, starting with the unit vector .

Thus,  approximates the dominant eigenvalue to five decimal place accuracy and  approximates the
dominant eigenvector in 7 correctly to three decimal place accuracy.

It is accidental that  (the fifth approximation)
produced five decimal place accuracy. In general, n
iterations need not produce n decimal place
accuracy.

The Power Method with Maximum Entry Scaling

There is a variation of the power method in which the iterates, rather than being normalized at each stage, are scaled to
make the maximum entry 1. To describe this method, it will be convenient to denote the maximum absolute value of the
entries in a vector  by . Thus, for example, if



then . We will need the following variation of Theorem 9.2.1.

THEOREM 9.2.2

Let A be a symmetric  matrix with a positive dominant* eigenvalue  If  is a nonzero vector in  that
is not orthogonal to the eigenspace corresponding to  then the sequence

  (8)

converges to an eigenvector corresponding to λ, and the sequence

  (9)

converges to λ.

Remark   In the exercises we will ask you to show that 8 can be written in the alternative form

  (10)

which expresses the iterates in terms of the initial vector 

We will omit the proof of this theorem, but if we accept that 8 converges to an eigenvector of A, then it is not hard to see
why 9 converges to the dominant eigenvalue. For this purpose we note that each term in 9 is of the form

  (11)

which is called a Rayleigh quotient of A. In the case where λ is an eigenvalue of A and  is a corresponding eigenvector,
the Rayleigh quotient is

Thus, if  converges to a dominant eigenvector  then it seems reasonable that

which is the dominant eigenvalue.

Theorem 9.2.2 produces the following algorithm, called the power method with maximum entry scaling.

The Power Method with Maximum Entry Scaling



Step 1. Choose an arbitrary nonzero vector 
Step 2. Compute  and multiply it by the factor  to obtain the first approximation  to a
dominant eigenvector. Compute the Rayleigh quotient of  to obtain the first approximation to the
dominant eigenvalue.
Step 3. Compute  and scale it by the factor  to obtain the second approximation  to a
dominant eigenvector. Compute the Rayleigh quotient of  to obtain the second approximation to the
dominant eigenvalue.
Step 4. Compute  and scale it by the factor  to obtain the third approximation  to a
dominant eigenvector. Compute the Rayleigh quotient of  to obtain the third approximation to the
dominant eigenvalue.
Continuing in this way will generate a sequence of better and better approximations to the dominant
eigenvalue and a corresponding eigenvector.

John William Strutt Rayleigh (1842–1919)

Historical Note    The British mathematical physicist John Rayleigh won the Nobel prize in physics in 1904 for
his discovery of the inert gas argon. Rayleigh also made fundamental discoveries in acoustics and optics, and
his work in wave phenomena enabled him to give the first accurate explanation of why the sky is blue.
[Image: The Granger Collection, New York]

 EXAMPLE 3    Example 2 Revisited Using Maximum Entry Scaling

Apply the power method with maximum entry scaling to

Stop at  and compare the resulting approximations to the exact values and to the approximations
obtained in Example 2.

Solution   We leave it for you to confirm that



Thus,  approximates the dominant eigenvalue correctly to five decimal places and  closely
approximates the dominant eigenvector

that results by taking  in 6.

Whereas the power method with Euclidean scaling
produces a sequence that approaches a unit
dominant eigenvector, maximum entry scaling
produces a sequence that approaches an eigenvector
whose largest component is 1.

Rate of Convergence

If A is a symmetric matrix whose distinct eigenvalues can be arranged so that

then the “rate” at which the Rayleigh quotients converge to the dominant eigenvalue  depends on the ratio ;
that is, the convergence is slow when this ratio is near 1 and rapid when it is large—the greater the ratio, the more rapid
the convergence. For example, if A is a  symmetric matrix, then the greater the ratio  the greater the



disparity between the scaling effects of  and  in Figure 9.2.1, and hence the greater the effect that multiplication by
A has on pulling the iterates toward the eigenspace of . Indeed, the rapid convergence in Example 3 is due to the fact
that  which is considered to be a large ratio. In cases where the ratio is close to 1, the
convergence of the power method may be so slow that other methods must be used.

Stopping Procedures

If λ is the exact value of the dominant eigenvalue, and if a power method produces the approximation  at the kth
iteration, then we call

  (12)

the relative error in . If this is expressed as a percentage, then it is called the percentage error in  For
example, if  and the approximation after three iterations is  then

In applications one usually knows the relative error E that can be tolerated in the dominant eigenvalue, so the goal is to
stop computing iterates once the relative error in the approximation to that eigenvalue is less than E. However, there is a
problem in computing the relative error from 12 in that the eigenvalue λ is unknown. To circumvent this problem, it is
usual to estimate λ by  and stop the computations when

  (13)

The quantity on the left side of 13 is called the estimated relative error in  and its percentage form is called the
estimated percentage error in .

 EXAMPLE 4    Estimated Relative Error

For the computations in Example 3, find the smallest value of k for which the estimated percentage error
in  is less than 0.1%.

Solution   The estimated percentage errors in the approximations in Example 3 are as follows:



Thus,  is the first approximation whose estimated percentage error is less than 0.1%.

Remark   A rule for deciding when to stop an iterative process is called a stopping procedure. In the exercises, we will
discuss stopping procedures for the power method that are based on the dominant eigenvector rather than the dominant
eigenvalue.

Concept Review
•  Power sequence
•  Dominant eigenvalue
•  Dominant eigenvector
•  Power method with Euclidean scaling
•  Rayleigh quotient
•  Power method with maximum entry scaling
•  Relative error
•  Percentage error
•  Estimated relative error
•  Estimated percentage error
•  Stopping procedure

Skills
•  Identify the dominant eigenvalue of a matrix.
•  Use the power methods described in this section to approximate a dominant eigenvector.
•  Find the estimated relative and percentage errors associated with the power methods.

Exercise Set 9.2

In Exercises 1–2, the distinct eigenvalues of a matrix are given. Determine whether A has a dominant eigenvalue, and
if so, find it.

1. (a)     

(b)     

Answer:

(a)   dominant
(b)  No dominant eigenvalue

2. (a)     

(b)     



In Exercises 3–4, apply the power method with Euclidean scaling to the matrix A, starting with  and stopping at .
Compare the resulting approximations to the exact values of the dominant eigenvalue and the corresponding unit
eigenvector.

3. 

Answer:

;

dominant eigenvalue: ;

dominant eigenvector: 

4. 

In Exercises 5–6, apply the power method with maximum entry scaling to the matrix A, starting with  and stopping
at . Compare the resulting approximations to the exact values of the dominant eigenvalue and the corresponding
scaled eigenvector.

5. 

Answer:

dominant eigenvalue: ;

dominant eigenvector: 

6. 

7. Let



(a)  Use the power method with maximum entry scaling to approximate a dominant eigenvector of A. Start with ,
round off all computations to three decimal places, and stop after three iterations.

(b)  Use the result in part (a) and the Rayleigh quotient to approximate the dominant eigenvalue of A.
(c)  Find the exact values of the eigenvector and eigenvalue approximated in parts (a) and (b).
(d)  Find the percentage error in the approximation of the dominant eigenvalue.

Answer:

(a)  

(b)  

(c)  Dominant eigenvalue: ; dominant eigenvector: 

(d)  0.1%

8. Repeat the directions of Exercise 7 with

In Exercises 9–10, a matrix A with a dominant eigenvalue and a sequence ,  are given. Use Formulas
9 and 10 to approximate the dominant eigenvalue and a corresponding eigenvector.

9. 

Answer:

10. 

11. Consider matrices

where  is a unit vector and . Show that even though the matrix A is symmetric and has a dominant
eigenvalue, the power sequence 1 in Theorem 9.2.1 does not converge. This shows that the requirement in that
theorem that the dominant eigenvalue be positive is essential.

12. Use the power method with Euclidean scaling to approximate the dominant eigenvalue and a corresponding
eigenvector of A. Choose your own starting vector, and stop when the estimated percentage error in the eigenvalue
approximation is less than 0.1%.



(a)  

(b)  

13. Repeat Exercise 12, but this time stop when all corresponding entries in two successive eigenvector approximations
differ by less than 0.01 in absolute value.

Answer:

(a)  
Starting with , it takes 8 iterations.

(b)  

Starting with , it takes 8 iterations.

14. Repeat Exercise 12 using maximum entry scaling.

15. Prove: If A is a nonzero  matrix, then  and  have positive dominant eigenvalues.

16. (For readers familiar with proof by induction) Let A be an  matrix, let  be a unit vector in , and define
the sequence  by

Prove by induction that .

17. (For readers familiar with proof by induction) Let A be an  matrix, let  be a nonzero vector in , and
define the sequence  by

Prove by induction that

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



9.3  Internet Search Engines
Early search engines on the Internet worked by examining key words and phrases in pages and titles of posted documents. Today's most popular search engines use algorithms
based on the power method to analyze hyperlinks (references) between documents. In this section we will discuss one of the ways in which this is done.

Google, the most widely used engine for searching the Internet, was developed in 1996 by Larry Page and Sergey Brin while both were graduate students at Stanford University.
Google uses a procedure known as the PageRank algorithm to analyze how documents at relevant sites reference one another. It then assigns to each site a PageRank score,
stores those scores as a matrix, and uses the components of the dominant eigenvector of that matrix to establish the relative importance of the sites to the search.

Google starts by using a standard text-based search engine to find an initial set  of sites containing relevant pages. Since words can have multiple meanings, the set  will
typically contain irrelevant sites and miss others of relevance. To compensate for this, the set  is expanded to a larger set S by adjoining all sites referenced by the pages in the
sites of . The underlying assumption is that S will contain the most important sites relevant to the search. This process is then repeated a number of times to refine the search
information still further.

To be more specific, suppose that the search set S contains n sites, and define the adjacency matrix for S to be the  matrix  in which

We will assume that no site references itself, so the diagonal entries of A will all be zero.

 EXAMPLE 1    Adjacency Matrices

Here is a typical adjacency matrix for a search set with four sites:

  (1)

Thus, Site 1 references Sites 3 and 4, Site 2 references Site 1, and so forth.

There are two basic roles that a site can play in the search process—the site may be a hub, meaning that it references many other sites, or it may be an authority, meaning that it
is referenced by many other sites. A given site will typically have both hub and authority properties in that it will both reference and be referenced.

Historical Note    The term google is a variation of the word googol, which stands for the number  (1 followed by 100 zeros). This term was invented by the
American mathematician Edward Kasner (1878–1955) in 1938, and the story goes that it came about when Kasner asked his eight-year-old nephew to give a name to a
really big number—he responded with “googol.” Kasner then went on to define a googolplex to be  (1 followed by googol zeros).

In general, if A is an adjacency matrix for n sites, then the column sums of A measure the authority aspect of the sites and the row sums of A measure their hub aspect. For
example, the column sums of the matrix in 1 are 3, 1, 2, and 2, which means that Site 1 is referenced by three other sites, Site 2 is referenced by one other site, and so forth.
Similarly, the row sums of the matrix in 1 are 2, 1, 2, and 3, so Site 1 references two other sites, Site 2 references one other site, and so forth.

Accordingly, if A is an adjacency matrix, then we call the vector  of row sums of A the initial hub vector of A, and we call the vector  of column sums of A the initial
authority vector of A. Alternatively, we can think of  as the vector of row sums of , which turns out to be more convenient for computations. The entries in the hub vector
are called hub weights and those in the authority vector authority weights.

 EXAMPLE 2    Initial Hub and Authority Vectors of an Adjacency Matrix

Find the initial hub and authority vectors for the adjacency matrix A in Example 1.

Solution   The row sums of A yield the initial hub vector

  (2)

and the row sums of  (the column sums of A) yield the initial authority vector

  (3)

The link counting in Example 2 suggests that Site 4 is the major hub and Site 1 is the greatest authority. However, counting links does not tell the whole story; for example, it
seems reasonable that if Site 1 is to be considered the greatest authority, then more weight should be given to hubs that link to that site, and if Site 4 is to be considered a major



hub, then more weight should be given to sites to which it links. Thus, there is an interaction between hubs and authorities that needs to be accounted for in the search process.
Accordingly, once the search engine has calculated the initial authority vector , it then uses the information in that vector to create new hub and authority vectors  and 
using the formulas

  (4)

The numerators in these formulas do the weighting, and the normalization serves to control the size of the entries. To understand how the numerators accomplish the weighting,
view the product  as a linear combination of the column vectors of A with coefficients from . For example, with the adjacency matrix in Example 1 and the authority vector
calculated in Example 2 we have

Thus, we see that the links to each referenced site are weighted by the authority values in  To control the size of the entries, the search engine normalizes  to produce the
updated hub vector

The new hub vector  can now be used to update the authority vector using Formula 4. The product  performs the weighting, and the normalization controls the size:

Once the updated hub and authority vectors,  and , are obtained, the search engine repeats the process and computes a succession of hub and authority vectors, thereby
generating the interrelated sequences

  (5)

  (6)

However, each of these is a power sequence in disguise. For example, if we substitute the expression for  into the expression for , then we obtain

which means that we can rewrite 6 as

  (7)

Similarly, we can rewrite 5 as

  (8)

Remark   In Exercise 15 of Section 9.2 you were asked to show that  and  both have positive dominant eigenvalues. That being the case, Theorem 9.2.1 ensures that 7
and 8 converge to the dominant eigenvectors of  and , respectively. The entries in those eigenvectors are the authority and hub weights that Google uses to rank the
search sites in order of importance as hubs and authorities.

 EXAMPLE 3    A Ranking Procedure

Suppose that a search engine produces 10 Internet sites in its search set and that the adjacency matrix for those sites is



Use Formula 7 to rank the sites in decreasing order of authority.

Solution   We will take  to be the normalized vector of column sums of A, and then we will compute the iterates in 7 until the authority vectors seem to
stabilize. We leave it for you to show that

and that

Thus,

Continuing in this way yields the following authority iterates:

The small changes between  and  suggest that the iterates have stabilized near a dominant eigenvector of . From the entries in  we conclude that Sites
1, 6, 7, and 9 are probably irrelevant to the search and that the remaining sites should be searched in order of decreasing importance as



Concept Review
•  Adjacency matrix
•  Hub vector
•  Authority vector
•  Hub weights
•  Authority weights

Skills
•  Find the initial hub and authority vectors of an adjacency matrix.
•  Use the method of Example 3 to rank sites.

Exercise Set 9.3

In Exercises 1–2, find the initial hub and authority vectors for the given adjacency matrix A.

1. 

Answer:

2. 

In Exercises 3–4, find the updated hub and authority vectors  and  for the adjacency matrix A.

3. The matrix in Exercise 1.

Answer:

4. The matrix in Exercise 2.

In Exercises 5–8, the adjacency matrix A of an Internet search engine is given. Use the method of Example 3 to rank the sites in decreasing order of authority.

5. 

Answer:

Sites 1 and 2 (tie); sites 3 and 4 are irrelevant

6. 



7. 

Answer:

Site 2, site 3, site 4; sites 1 and 5 are irrelevant

8. 
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9.4  Comparison of Procedures for Solving Linear
Systems

There is an old saying that “time is money.” This is especially true in industry where the cost of solving a linear
system is generally determined by the time it takes for a computer to perform the required computations. This
typically depends both on the speed of the computer processor and on the number of operations required by the
algorithm. Thus, choosing the right algorithm has important financial implication in an industrial or research setting.
In this section we will discuss some of the factors that affect the choice of algorithms for solving large-scale linear
systems.

Flops and the Cost of Solving a Linear System

In computer jargon, an arithmetic operation (+, −, *, ) on two real numbers is called a flop, which is an acronym
for “floating-point operation.”* The total number of flops required to solve a problem, which is called the cost of the
solution, provides a convenient way of choosing between various algorithms for solving the problem. When needed,
the cost in flops can be converted to units of time or money if the speed of the computer processor and the financial
aspects of its operation are known. For example, many of today's personal computers are capable of performing in
excess of 10 gigaflops per second (1 gigaflop  flops). Thus, an algorithm that costs 1,000,000 flops would be
executed in 0.0001 seconds.

To illustrate how costs (in flops) can be computed, let us count the number of flops required to solve a linear system
of n equations in n unknowns by Gauss–Jordan elimination. For this purpose we will need the following formulas for
the sum of the first n positive integers and the sum of the squares of the first n positive integers:

  (1)

  (2)

Let  be a linear system of n equations in n unknowns to be solved by Gauss–Jordan elimination (or,
equivalently, by Gaussian elimination with back substitution). For simplicity, let us assume that A is invertible and
that no row interchanges are required to reduce the augmented matrix  to row echelon form. The diagrams that
accompany the following analysis provide a convenient way of counting the operations required to introduce a
leading 1 in the first row and then zeros below it. In our operation counts, we will lump divisions and multiplications
together as “multiplications,” and we will lump additions and subtractions together as “additions.”

Step 1.  It requires n flops (multiplications) to introduce the leading 1 in the first row.



Step 2.  It requires n multiplications and n additions to introduce a zero below the leading 1, and there are  rows
below the leading 1, so the number of flops required to introduce zeros below the leading 1 is .

Column 1.  Combining Steps 1 and 2, the number of flops required for column 1 is

Column 2.  The procedure for column 2 is the same as for column 1, except that now we are
dealing with one less row and one less column. Thus, the number of flops
required to introduce the leading 1 in row 2 and the zeros below it can be obtained
by replacing n by  in the flop count for the first column. Thus, the number of
flops required for column 2 is

Column 3.  By the argument for column 2, the number of flops required for column 3 is

Total for all columns.  The pattern should now be clear. The total number of flops required to create the n
leading 1's and the associated zeros is

which we can rewrite as

or on applying Formulas 1 and 2 as

Next, let us count the number of operations required to complete the backward
phase (the back substitution).

Column n.  It requires  multiplications and  additions to introduce zeros above the
leading 1 in the nth column, so the total number of flops required for the column
is .



Column (n − 1).  The procedure is the same as for Step 1, except that now we are dealing with one
less row. Thus, the number of flops required for the st column is 
.

Column (n − 2).  By the argument for column , the number of flops required for column
 is .

Total.  The pattern should now be clear. The total number of flops to complete the
backward phase is

which we can rewrite using Formula 1 as

In summary, we have shown that for Gauss–Jordan elimination the number of flops required for the forward and
backward phases is

  (3)

  (4)

Thus, the total cost of solving a linear system by Gauss–Jordan elimination is

  (5)

Cost Estimates for Solving Large Linear Systems

It is a property of polynomials that for large values of the independent variable the term of highest power makes the
major contribution to the value of the polynomial. Thus, for large linear systems we can use 3 and 4 to approximate
the number of flops in the forward and backward phases as

  (6)

  (7)

This shows that it is more costly to execute the forward phase than the backward phase for large linear systems.



Indeed, the cost difference between the forward and backward phases can be enormous, as the next example shows.

 EXAMPLE 1    Cost of Solving a Large Linear System

Approximate the time required to execute the forward and backward phases of Gauss–Jordan
elimination for a system of 10,000 ( ) equations in 10,000 unknowns using a computer that can
execute 10 gigaflops per second.

Solution   We have  for the given system, so from 6 and 7 the number of gigaflops required
for the forward and backward phases is

Thus, at 10 gigaflops/s the execution times for the forward and backward phases are

We leave it as an exercise for you to confirm the results in Table 1.

Table 1

Approximate Cost for an  Matrix A with Large n

Algorithm Cost in Flops

Gauss-Jordan elimination (forward phase)

Gauss-Jordan elimination (backward phase)

LU-decomposition of A

Forward substitution to solve 

Backward substitution to solve 

 by reducing  to 

Compute 

Considerations in Choosing an Algorithm for Solving a Linear System

For a single linear system  of n equations in n unknowns, the methods of LU-decomposition and Gauss–
Jordan elimination differ in bookkeeping but otherwise involve the same number of flops. Thus, neither method has
a cost advantage over the other. However, LU-decomposition has other advantages that make it the method of
choice:



•  Gauss–Jordan elimination and Gaussian elimination both use the augmented matrix  so b must be known.
In contrast, LU-decomposition uses only the matrix A, so once that decomposition is known it can be used with as
many right-hand sides as are required, one at a time.

•  The LU-decomposition that is computed to solve  can be used to compute  if needed, with little
additional work.

•  For large linear systems in which computer memory is at a premium, one can dispense with the storage of the 1's
and zeros that appear on or below the main diagonal of U, since those entries are known from the form of U. The
space that this opens up can then be used to store the entries of L, thereby reducing the amount of memory
required to solve the system.

•  If A is a large matrix consisting mostly of zeros, and if the nonzero entries are concentrated in a “band” around the
main diagonal, then there are techniques that can be used to reduce the cost of LU-decomposition, giving it an
advantage over Gauss–Jordan elimination.

The cost in flops for Gaussian elimination is the
same as that for the forward phase of Gauss–
Jordan elimination.

Concept Review
•  Flop
•  Formula for the sum of the first n positive integers
•  Formula for the sum of the squares of the first n positive integers
•  Cost in flops for solving large linear systems by various methods
•  Cost in flops for inverting a matrix by row reduction
•  Issues to consider when choosing an algorithm to solve a large linear system

Skills
•  Compute the cost of solving a linear system by Gauss–Jordan elimination.
•  Approximate the time required to execute the forward and backward phases of Gauss–Jordan elimination.
•  Approximate the time required to find an LU-decomposition of a matrix.
•  Approximate the time required to find the inverse of an invertible matrix.

Exercise Set 9.4
1. A certain computer can execute 10 gigaflops per second. Use Formula 5 to find the time required to solve the

system using Gauss–Jordan elimination.
(a)  A system of 1000 equations in 1000 unknowns.
(b)  A system of 10,000 equations in 10,000 unknowns.
(c)  A system of 100,000 equations in 100,000 unknowns.



Answer:

(a)  
(b)  
(c)  , or about 18.5 hours

2. A certain computer can execute 100 gigaflops per second. Use Formula 5 to find the time required to solve the
system using Gauss–Jordan elimination.
(a)  A system of 10,000 equations in 10,000 unknowns.
(b)  A system of 100,000 equations in 100,000 unknowns.
(c)  A system of 1,000,000 equations in 1,000,000 unknowns.

3. Today's personal computers can execute 70 gigaflops per second. Use Table 1 to estimate the time required to
perform the following operations on the invertible 10,000 × 10,000 matrix A.
(a)  Execute the forward phase of Gauss–Jordan elimination.
(b)  Execute the backward phase of Gauss–Jordan elimination.
(c)  -decomposition of A.
(d)  Find  by reducing  to .

Answer:

(a)  
(b)  
(c)  
(d)  

4. The IBM Roadrunner computer can operate at speeds in excess of 1 petaflop per second (1 
flops). Use Table 1 to estimate the time required to perform the following operations of the invertible

 matrix A.

(a)  Execute the forward phase of Gauss–Jordan elimination.
(b)  Execute the backward phase of Gauss–Jordan elimination.
(c)  -decomposition of A.
(d)  Find  by reducing  to .

5. (a)  Approximate the time required to execute the forward phase of Gauss–Jordan elimination for a system of
100,000 equations in 100,000 unknowns using a computer that can execute 1 gigaflop per second. Do the
same for the backward phase. (See Table 1.)

(b)  How many gigaflops per second must a computer be able to execute to find the -decomposition of a
matrix of size 10,000  10,000 in less than 0.5 s? (See Table 1.)

Answer:

(a)   s for forward phase, 10 s for backward phase

(b)  1334



6. About how many teraflops per second must a computer be able to execute to find the inverse of a matrix of size
 in less than 0.5 s? (1  flops.)

In Exercises 7–10, A and B are  matrices and c is a real number.

7. How many flops are required to compute ?

Answer:

8. How many flops are required to compute ?

9. How many flops are required to compute ?

Answer:

10. If A is a diagonal matrix and k is a positive integer, how many flops are required to compute ?

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



9.5  Singular Value Decomposition
In this section we will discuss an extension of the diagonalization theory for  symmetric matrices to general

 matrices. The results that we will develop in this section have applications to compression, storage, and
transmission of digitized information and form the basis for many of the best computational algorithms that are
currently available for solving linear systems.

Decompositions of Square Matrices

We saw in Formula 2 of Section 7.2 that every symmetric matrix A can be expressed as

  (1)

where P is an  orthogonal matrix of eigenvectors of A, and D is the diagonal matrix whose diagonal entries are
the eigenvalues corresponding to the column vectors of P. In this section we will call 1 an eigenvalue
decomposition of A (abbreviated EVD of A).

If an  matrix A is not symmetric, then it does not have an eigenvalue decomposition, but it does have a
Hessenberg decomposition

in which P is an orthogonal matrix and H is in upper Hessenberg form (Theorem 7.2.4).

Moreover, if A has real eigenvalues, then it has a Schur decomposition

in which P is an orthogonal matrix and S is upper triangular (Theorem 7.2.3).

The eigenvalue, Hessenberg, and Schur decompositions are important in numerical algorithms not only because the
matrices D, H, and S have simpler forms than  but also because the orthogonal matrices that appear in these
factorizations do not magnify roundoff error. To see why this is so, suppose that  is a column vector whose entries
are known exactly and that

is the vector that results when roundoff error is present in the entries of 

If P is an orthogonal matrix, then the length-preserving property of orthogonal transformations implies that

which tells us that the error in approximating  by  has the same magnitude as the error in approximating  by
.

There are two main paths that one might follow in looking for other kinds of decompositions of a general square
matrix A: One might look for decompositions of the form

in which P is invertible but not necessarily orthogonal, or one might look for decompositions of the form



in which U and V are orthogonal but not necessarily the same. The first path leads to decompositions in which J is
either diagonal or a certain kind of block diagonal matrix, called a Jordan canonical form in honor of the French
mathematician Camille Jordan (see p. 510). Jordan canonical forms, which we will not consider in this text, are
important theoretically and in certain applications, but they are of lesser importance numerically because of the
roundoff difficulties that result from the lack of orthogonality in P. In this section we will focus on the second path.

Singular Values

Since matrix products of the form  will play an important role in our work, we will begin with two basic
theorems about them.

THEOREM 9.5.1

If A is an  matrix, then:
(a)  A and  have the same null space.

(b)  A and  have the same row space.

(c)   and  have the same column space.

(d)  A and  have the same rank.

We will prove part (a) and leave the remaining proofs for the exercises.

Proof (a)   We must show that every solution of  is a solution of , and conversely. If  is any
solution of , then  is also a solution of  since

Conversely, if  is any solution of , then  is in the null space of  and hence is orthogonal to all
vectors in the row space of  by part (q) of Theorem 4.8.10.

However,  is symmetric, so  is also orthogonal to every vector in the column space of . In particular, 

must be orthogonal to the vector ; that is,

Using the first formula in Table 1 of Section 3.2 and properties of the transpose operation we can rewrite this as

which implies that , thereby proving that  is a solution of .

THEOREM 9.5.2



If A is an  matrix, then:
(a)   is orthogonally diagonalizable.

(b)  The eigenvalues of  are nonnegative.

Proof (a)   The matrix , being symmetric, is orthogonally diagonalizable by Theorem 7.2.1.

Proof (b)   Since  is orthogonally diagonalizable, there is an orthonormal basis for  consisting of
eigenvectors of , say . If we let  be the corresponding eigenvalues, then for

 we have

It follows from this relationship that .

DEFINITION 1

If A is an  matrix, and if  are the eigenvalues of , then the numbers

are called the singular values of A.

We will assume throughout this section that the
eigenvalues of  are named so that

and hence that

 EXAMPLE 1    Singular Values

Find the singular values of the matrix

Solution   The first step is to find the eigenvalues of the matrix



The characteristic polynomial of  is

so the eigenvalues of  are  and  and the singular values of A in order of decreasing
size are

Singular Value Decomposition

Before turning to the main result in this section, we will find it useful to extend the notion of a “main diagonal” to
matrices that are not square. We define the main diagonal of an  matrix to be the line of entries shown in
Figure 9.5.1—it starts at the upper left corner and extends diagonally as far as it can go. We will refer to the entries
on the main diagonal as the diagonal entries.

Figure 9.5.1   

We are now ready to consider the main result in this section, which is concerned with a specific way of factoring a
general  matrix A. This factorization, called singular value decomposition (abbreviated SVD) will be given in
two forms, a brief form that captures the main idea, and an expanded form that spells out the details. The proof is
given at the end of this section.

THEOREM 9.5.3   Singular Value Decomposition

If A is an  matrix, then A can be expressed in the form

where U and V are orthogonal matrices and  is an  matrix whose diagonal entries are the singular
values of A and whose other entries are zero.



Harry Bateman (1882–1946)

Historical Note    The term singular value is apparently due to the British-born mathematician Harry
Bateman, who used it in a research paper published in 1908. Bateman emigrated to the United States in
1910, teaching at Bryn Mawr College, Johns Hopkins University, and finally at the California Institute of
Technology. Interestingly, he was awarded his Ph.D. in 1913 by Johns Hopkins at which point in time he
was already an eminent mathematician with 60 publications to his name.
[Image: Courtesy of the Archives, California Institute of Technology]

THEOREM 9.5.4   Singular Value Decomposition (Expanded Form)

If A is an  matrix of rank k, then A can be factored as

in which U,  and V have sizes   and  respectively, and in which

(a)   orthogonally diagonalizes .

(b)  The nonzero diagonal entries of  are  where  are the
nonzero eigenvalues of  corresponding to the column vectors of V.

(c)  The column vectors of V are ordered so that 
(d)  

(e)   is an orthonormal basis for col(A)}.

(f)   is an extension of  to an ortho-normal basis for .



The vectors  are called the left
singular vectors of A, and the vectors

 are called the right singular vectors
of A.

 EXAMPLE 2    Singular Value Decomposition if A Is Not Square

Find a singular value decomposition of the matrix

Solution   We showed in Example 1 that the eigenvalues of  are  and  and that the
corresponding singular values of A are  and . We leave it for you to verify that

are eigenvectors corresponding to  and , respectively, and that  orthogonally
diagonalizes . From part (d) of Theorem 9.5.4, the vectors

are two of the three column vectors of U. Note that  and  are orthonormal, as expected. We could
extend the set  to an orthonormal basis for . However, the computations will be easier if
we first remove the messy radicals by multiplying  and  by appropriate scalars. Thus, we will look
for a unit vector  that is orthogonal to

To satisfy these two orthogonality conditions, the vector  must be a solution of the homogeneous



linear system

We leave it for you to show that a general solution of this system is

Normalizing the vector on the right yields

Thus, the singular value decomposition of A is

You may want to confirm the validity of this equation by multiplying out the matrices on the right side.

Eugenio Beltrami (1835–1900)



Camille Jordan (1838–1922)

Herman Klaus Weyl (1885–1955)

Gene H. Golub (1932–)

Historical Note    The theory of singular value decompositions can be traced back to the work of five
people: the Italian mathematician Eugenio Beltrami, the French mathematician Camille Jordan, the English
mathematician James Sylvester (see p. 34), and the German mathematicians Erhard Schmidt (see p. 360)
and the mathematician Herman Weyl. More recently, the pioneering efforts of the American mathematician
Gene Golub produced a stable and efficient algorithm for computing it. Beltrami and Jordan were the
progenitors of the decomposition—Beltrami gave a proof of the result for real, invertible matrices with
distinct singular values in 1873. Subsequently, Jordan refined the theory and eliminated the unnecessary
restrictions imposed by Beltrami. Sylvester, apparently unfamiliar with the work of Beltrami and Jordan,
rediscovered the result in 1889 and suggested its importance. Schmidt was the first person to show that the
singular value decomposition could be used to approximate a matrix by another matrix with lower rank,
and, in so doing, he transformed it from a mathematical curiosity to an important practical tool. Weyl
showed how to find the lower rank approximations in the presence of error.
[Images: wikipedia (Beltrami); The Granger Collection, New York (Jordan); Courtesy Electronic Publishing
Services, Inc., New York City (Weyl; wikipedia (Golub)]



   O P T I O N A L    

We conclude this section with an optional proof of Theorem 9.5.4.

Proof of Theorem 9.5.4   For notational simplicity we will prove this theorem in the case where A is an 
matrix. To modify the argument for an  matrix you need only make the notational adjustments required to
account for the possibility that  or .

The matrix  is symmetric, so it has an eigenvalue decomposition

in which the column vectors of

are unit eigenvectors of , and D is a diagonal matrix whose successive diagonal entries  are the
eigenvalues of  corresponding in succession to the column vectors of  Since A is assumed to have rank k, it
follows from Theorem 9.5.1 that  also has rank k. It follows as well that D has rank k, since it is similar to 
and rank is a similarity invariant. Thus, D can be expressed in the form

  (2)

where . Now let us consider the set of image vectors

  (3)

This is an orthogonal set, for if  then the orthogonality of  and  implies that

Moreover, the first k vectors in 3 are nonzero since we showed in the proof of Theorem 9.5.2b that  for
, and we have assumed that the first k diagonal entries in 2 are positive. Thus,

is an orthogonal set of nonzero vectors in the column space of A. But the column space of A has dimension k since

and hence S, being a linearly independent set of k vectors, must be an orthogonal basis for col(A). If we now
normalize the vectors in S, we will obtain an orthonormal basis  for col(A) in which

or, equivalently, in which



  (4)

It follows from Theorem 6.3.6 that we can extend this to an orthonormal basis

for . Now let U be the orthogonal matrix

and let  be the diagonal matrix

It follows from 4, and the fact that  for , that

which we can rewrite using the orthogonality of V as .

Concept Review
•  Eigenvalue decomposition
•  Hessenberg decomposition
•  Schur decomposition
•  Magnification of roundoff error
•  Properties that A and  have in common

•   is orthogonally diagonalizable

•  Eigenvalues of  are nonnegative

•  Singular values
•  Diagonal entries of a matrix that is not square
•  Singular value decomposition

Skills
•  Find the singular values of an  matrix.
•  Find a singular value decomposition of an  matrix.

Exercise Set 9.5



In Exercises 1–4, find the distinct singular values of 

1. 

Answer:

2. 

3. 

Answer:

4. 

In Exercises 5–12, find a singular value decomposition of A.

5. 

Answer:

6. 

7. 

Answer:

8. 

9. 

Answer:



10. 

11. 

Answer:

12. 

13. Prove: If A is an  matrix, then  and  have the same rank.

14. Prove part (d) of Theorem 9.5.1 by using part (a) of the theorem and the fact that A and  have n columns.

15. (a)  Prove part (b) of Theorem 9.5.1 by first showing that row  is a subspace of row(A).

(b)  Prove part (c) of Theorem 9.5.1 by using part (b).

16. Let  be a linear transformation whose standard matrix A has the singular value decomposition
 and let  and  be the column vectors of V and 

respectively. Show that 

17. Show that the singular values of  are the squares of the singular values of 

18. Show that if  is a singular value decomposition of  then U orthogonally diagonalizes .

True-False Exercises

In parts (a)–(g) determine whether the statement is true or false, and justify your answer.

(a) If A is an  matrix, then  is an  matrix

Answer:



False

(b) If A is an  matrix, then  is a symmetric matrix.

Answer:

True

(c) If A is an  matrix, then the eigenvalues of  are positive real numbers.

Answer:

False

(d) If A is an  matrix, then A is orthogonally diagonalizable.

Answer:

False

(e) If A is an  matrix, then  is orthogonally diagonalizable.

Answer:

True

(f) The eigenvalues of  are the singular values of A.

Answer:

False

(g) Every  matrix has a singular value decomposition.

Answer:

True

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



9.6  Data Compression Using Singular Value Decomposition
Efficient transmission and storage of large quantities of digital data has become a major problem in our technological world. In this section
we will discuss the role that singular value decomposition plays in compressing digital data so that it can be transmitted more rapidly and
stored in less space. We assume here that you have read Section 9.5 .

Reduced Singular Value Decomposition

Algebraically, the zero rows and columns of the matrix  in Theorem 9.5.4 are superfluous and can be eliminated by multiplying out the
expression  using block multiplication and the partitioning shown in that formula. The products that involve zero blocks as factors
drop out, leaving

  (1)

which is called a reduced singular value decomposition of A. In this text we will denote the matrices on the right side of 1 by , and
 respectively, and we will write this equation as

  (2)

Note that the sizes of  and  are , , and , respectively, and that the matrix  is invertible, since its diagonal
entries are positive.

If we multiply out on the right side of 1 using the column-row rule, then we obtain

  (3)

which is called a reduced singular value expansion of A. This result applies to all matrices, whereas the spectral decomposition [Formula
7 of Section 7.2] applies only to symmetric matrices.

Remark   It can be proved that an  matrix M has rank 1 if and only if it can be factored as , where  is a column vector in
 and V is a column vector in . Thus, a reduced singular value decomposition expresses a matrix A of rank k as a linear combination

of k rank 1 matrices.

 EXAMPLE 1    Reduced Singular Value Decomposition

Find a reduced singular value decomposition and a reduced singular value expansion of the matrix

Solution   In Example 2 of Section 9.5 we found the singular value decomposition



  (4)

Since A has rank 2 (verify), it follows from 1 with  that the reduced singular value decomposition of A corresponding
to 4 is

This yields the reduced singular value expansion

Note that the matrices in the expansion have rank 1, as expected.

Data Compression and Image Processing

Singular value decompositions can be used to “compress” visual information for the purpose of reducing its required storage space and
speeding up its electronic transmission. The first step in compressing a visual image is to represent it as a numerical matrix from which the
visual image can be recovered when needed.

For example, a black and white photograph might be scanned as a rectangular array of pixels (points) and then stored as a matrix A by
assigning each pixel a numerical value in accordance with its gray level. If 256 different gray levels are used (0 = white to 255 = black),
then the entries in the matrix would be integers between 0 and 255. The image can be recovered from the matrix A by printing or
displaying the pixels with their assigned gray levels.



Historical Note    In 1924 the U.S. Federal Bureau of Investigation (FBI) began collecting fingerprints and handprints and now
has more than 30 million such prints in its files. To reduce the storage cost, the FBI began working with the Los Alamos National
Laboratory, the National Bureau of Standards, and other groups in 1993 to devise rank based compression methods for storing
prints in digital form. The following figure shows an original fingerprint and a reconstruction from digital data that was
compressed at a ratio of 26:1.

If the matrix A has size , then one might store each of its  entries individually. An alternative procedure is to compute the reduced
singular value decomposition

  (5)

in which , and store the , the 's, and the 's.

When needed, the matrix A (and hence the image it represents) can be reconstructed from 5. Since each  has m entries and each  has n
entries, this method requires storage space for

numbers. Suppose, however, that the singular values  are sufficiently small that dropping the corresponding terms in 5
produces an acceptable approximation

  (6)

to A and the image that it represents. We call 6 the rank r approximation of A. This matrix requires storage space for only

numbers, compared to  numbers required for entry-by-entry storage of A. For example, the rank 100 approximation of a 
matrix A requires storage for only

numbers, compared to the 1,000,000 numbers required for entry-by-entry storage of A—a compression of almost 80%.

Figure 9.6.1 shows some approximations of a digitized mandrill image obtained using 6.

Figure 9.6.1   



Concept Review
•  Reduced singular value decomposition
•  Reduced singular value expansion
•  Rank of an approximation

Skills
•  Find the reduced singular value decomposition of an  matrix.
•  Find the reduced singular value expansion of an .

Exercise Set 9.6

In Exercises 1–4, find a reduced singular value decomposition of A. [Note: Each matrix appears in Exercise Set 9.5, where you were
asked to find its (unreduced) singular value decomposition.]

1. 

Answer:

2. 

3. 

Answer:

4. 

In Exercises 5–8, find a reduced singular value expansion of A.

5. The matrix A in Exercise 1.

Answer:



6. The matrix A in Exercise 2.

7. The matrix A in Exercise 3.

Answer:

8. The matrix A in Exercise 4.

9. Suppose A is a  matrix. How many numbers must be stored in the rank 100 approximation of A? Compare this with the
number of entries of A.

Answer:

70,100 numbers must be stored; A has 100,000 entries

True-False Exercises

In parts (a)—(c) determine whether the statement is true or false, and justify your answer. Assume that  is a reduced singular
value decomposition of an  matrix of rank k.

(a)  has size .

Answer:

True

(b)  has size .

Answer:

True

(c)  has size .

Answer:

False
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Chapter 9 Supplementary Exercises

1. Find an LU-decomposition of .

Answer:

2. Find the LDU-decomposition of the matrix A in Exercise 1.

3. 
Find an LU-decomposition of .

Answer:

4. Find the LDU-decomposition of the matrix A in Exercise 3.

5. Let  and .

(a)  Identify the dominant eigenvalue of A and then find the corresponding dominant unit eigenvector 
with positive entries.

(b)  Apply the power method with Euclidean scaling to A and , stopping at . Compare your value of
 to the eigenvector  found in part (a).

(c)  Apply the power method with maximum entry scaling to A and , stopping at . Compare your

result with the eigenvector .

Answer:

(a)  

(b)  

(c)  

6. Consider the symmetric matrix



Discuss the behavior of the power sequence

with Euclidean scaling for a general nonzero vector  What is it about the matrix that causes the
observed behavior?

7. Suppose that a symmetric matrix A has distinct eigenvalues , , , and .
What can you say about the convergence of the Rayleigh quotients?

8. Find a singular value decomposition of .

9. 
Find a singular value decomposition of .

Answer:

10. Find a reduced singular value decomposition and a reduced singular value expansion of the matrix A in
Exercise 9.

11. Find the reduced singular value decomposition of the matrix whose singular value decomposition is

Answer:



12. Do orthogonally similar matrices have the same singular values? Justify your answer.

13. If P is the standard matrix for the orthogonal projection of  onto a subspace W, what can you say about
the singular values of P?
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CHAPTER

   10 Applications of Linear
Algebra
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INTRODUCTION

This chapter consists of 20 applications of linear algebra. With one clearly marked



exception, each application is in its own independent section, so sections can be deleted or
permuted as desired. Each topic begins with a list of linear algebra prerequisites.

Because our primary objective in this chapter is to present applications of linear algebra,
proofs are often omitted. Whenever results from other fields are needed, they are stated
precisely, with motivation where possible, but usually without proof.
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10.1  Constructing Curves and Surfaces Through
Specified Points

In this section we describe a technique that uses determinants to construct lines, circles, and general conic
sections through specified points in the plane. The procedure is also used to pass planes and spheres in 3-space
through fixed points.

Prerequisites

Linear Systems
Determinants
Analytic Geometry

The following theorem follows from Theorem 2.3.8.

THEOREM 10.1.1

A homogeneous linear system with as many equations as unknowns has a nontrivial solution if and only
if the determinant of the coefficient matrix is zero.

We will now show how this result can be used to determine equations of various curves and surfaces through
specified points.

A Line Through Two Points

Suppose that  and  are two distinct points in the plane. There exists a unique line

  (1)

that passes through these two points (Figure 10.1.1). Note that , , and  are not all zero and that these
coefficients are unique only up to a multiplicative constant. Because  and  lie on the line,
substituting them in 1 gives the two equations

  (2)

  (3)



Figure 10.1.1   

The three equations, 1, 2, and 3, can be grouped together and rewritten as

which is a homogeneous linear system of three equations for , , and . Because , , and  are not all
zero, this system has a nontrivial solution, so the determinant of the coefficient matrix of the system must be
zero. That is,

  (4)

Consequently, every point  on the line satisfies 4; conversely, it can be shown that every point  that
satisfies 4 lies on the line.

 EXAMPLE 1    Equation of a Line

Find the equation of the line that passes through the two points  and .

Solution   Substituting the coordinates of the two points into Equation 4 gives

The cofactor expansion of this determinant along the first row then gives

A Circle Through Three Points

Suppose that there are three distinct points in the plane, , , and , not all lying on a
straight line. From analytic geometry we know that there is a unique circle, say,

  (5)



that passes through them (Figure 10.1.2). Substituting the coordinates of the three points into this equation gives

  (6)

  (7)

  (8)

As before, Equations 5 through 8 form a homogeneous linear system with a nontrivial solution for , , ,
and . Thus the determinant of the coefficient matrix is zero:

  (9)

This is a determinant form for the equation of the circle.

Figure 10.1.2   

 EXAMPLE 2    Equation of a Circle

Find the equation of the circle that passes through the three points , , and .

Solution   Substituting the coordinates of the three points into Equation 9 gives

which reduces to

In standard form this is



Thus the circle has center  and radius 5.

A General Conic Section Through Five Points

In his momumental work Principia Mathematica, Issac Newton posed and solved the following problem (Book
I, Proposition 22, Problem 14): “To describe a conic that shall pass through five given points.” Newton solved
this problem geometrically, as shown in Figure 10.1.3, in which he passed an ellipse through the points A, B, D,
P, C; however, the methods of this section can also be applied.

Figure 10.1.3   

The general equation of a conic section in the plane (a parabola, hyperbola, or ellipse, or degenerate forms of
these curves) is given by

This equation contains six coefficients, but we can reduce the number to five if we divide through by any one of
them that is not zero. Thus only five coefficients must be determined, so five distinct points in the plane are
sufficient to determine the equation of the conic section (Figure 10.1.4). As before, the equation can be put in
determinant form (see Exercise 7):

  (10)



Figure 10.1.4   

 EXAMPLE 3    Equation of an Orbit

An astronomer who wants to determine the orbit of an asteroid about the Sun sets up a Cartesian
coordinate system in the plane of the orbit with the Sun at the origin. Astronomical units of
measurement are used along the axes (1 astronomical  distance of Earth to 
million miles). By Kepler's first law, the orbit must be an ellipse, so the astronomer makes five
observations of the asteroid at five different times and finds five points along the orbit to be

Find the equation of the orbit.

Solution   Substituting the coordinates of the five given points into 10 and rounding to three
decimal places give

The cofactor expansion of this determinant along the first row yields

Figure 10.1.5 is an accurate diagram of the orbit, together with the five given points.

Figure 10.1.5   



A Plane Through Three Points

In Exercise 8 we ask you to show the following: The plane in 3-space with equation

that passes through three noncollinear points , , and  is given by the
determinant equation

  (11)

 EXAMPLE 4    Equation of a Plane

The equation of the plane that passes through the three noncollinear points , ,
and  is

which reduces to

A Sphere Through Four Points

In Exercise 9 we ask you to show the following: The sphere in 3-space with equation

that passes through four noncoplanar points , , , and  is given
by the following determinant equation:

  (12)

 EXAMPLE 5    Equation of a Sphere



The equation of the sphere that passes through the four points , , ,
and  is

This reduces to

which in standard form is

Exercise Set 10.1
1. Find the equations of the lines that pass through the following points:

(a)  
(b)  

Answer:

(a)  

(b)  

2. Find the equations of the circles that pass through the following points:
(a)  
(b)  

Answer:

(a)   or 

(b)   or 

3. Find the equation of the conic section that passes through the points , , , , and
.

Answer:

 (a parabola)

4. Find the equations of the planes in 3-space that pass through the following points:
(a)  



(b)  

Answer:

(a)  

(b)  

5. (a)  Alter Equation 11 so that it determines the plane that passes through the origin and is parallel to the plane
that passes through three specified noncollinear points.

(b)  Find the two planes described in part (a) corresponding to the triplets of points in Exercises 4(a) and 4(b).

Answer:

(a)  

(b)  ; 

6. Find the equations of the spheres in 3-space that pass through the following points:
(a)  
(b)  

Answer:

(a)   or 

(b)   or 

7. Show that Equation 10 is the equation of the conic section that passes through five given distinct points in the
plane.

8. Show that Equation 11 is the equation of the plane in 3-space that passes through three given noncollinear
points.

9. Show that Equation 12 is the equation of the sphere in 3-space that passes through four given noncoplanar
points.

10. Find a determinant equation for the parabola of the form

that passes through three given noncollinear points in the plane.

Answer:



11. What does Equation 9 become if the three distinct points are collinear?

Answer:

The equation of the line through the three collinear points

12. What does Equation 11 become if the three distinct points are collinear?

Answer:

13. What does Equation 12 become if the four points are coplanar?

Answer:

The equation of the plane through the four coplanar points

Section 10.1 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal of these exercises is to provide you with a basic
proficiency with your technology utility. Once you have mastered the techniques in these exercises, you will be
able to use your technology utility to solve many of the problems in the regular exercise sets.

T1.  The general equation of a quadric surface is given by

Given nine points on this surface, it may be possible to determine its equation.
(a)  Show that if the nine points  for  lie on this surface, and if they determine uniquely

the equation of this surface, then its equation can be written in determinant form as



(b)  Use the result in part (a) to determine the equation of the quadric surface that passes through the points
, , , , , , , , and

.

T2.  
(a)  A hyperplane in the n-dimensional Euclidean space  has an equation of the form

where , , are constants, not all zero, and , , are variables for
which

A point

lies on this hyperplane if

Given that the n points , , lie on this hyperplane and that they
uniquely determine the equation of the hyperplane, show that the equation of the hyperplane can be written
in determinant form as

(b)  Determine the equation of the hyperplane in  that goes through the following nine points:
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10.2  Geometric Linear Programming
In this section we describe a geometric technique for maximizing or minimizing a linear expression in two
variables subject to a set of linear constraints.

Prerequisites

Linear Systems
Linear Inequalities

Linear Programming

The study of linear programming theory has expanded greatly since the pioneering work of George Dantzig in
the late 1940s. Today, linear programming is applied to a wide variety of problems in industry and science. In
this section we present a geometric approach to the solution of simple linear programming problems. Let us
begin with some examples.

 EXAMPLE 1    Maximizing Sales Revenue

A candy manufacturer has 130 pounds of chocolate-covered cherries and 170 pounds of
chocolate-covered mints in stock. He decides to sell them in the form of two different mixtures.
One mixture will contain half cherries and half mints by weight and will sell for $2.00 per
pound. The other mixture will contain one-third cherries and two-thirds mints by weight and
will sell for $1.25 per pound. How many pounds of each mixture should the candy
manufacturer prepare in order to maximize his sales revenue?

Mathematical Formulation   Let the mixture of half cherries and half mints be called mix A,
and let  be the number of pounds of this mixture to be prepared. Let the mixture of one-third
cherries and two-thirds mints be called mix B, and let  be the number of pounds of this
mixture to be prepared. Since mix A sells for $2.00 per pound and mix B sells for $1.25 per
pound, the total sales z (in dollars) will be

Since each pound of mix A contains  pound of cherries and each pound of mix B contains 

pound of cherries, the total number of pounds of cherries used in both mixtures is

Similarly, since each pound of mix A contains  pound of mints and each pound of mix B

contains  pound of mints, the total number of pounds of mints used in both mixtures is



Because the manufacturer can use at most 130 pounds of cherries and 170 pounds of mints, we
must have

Furthermore, since  and  cannot be negative numbers, we must have

The problem can therefore be formulated mathematically as follows: Find values of  and 
that maximize

subject to

Later in this section we will show how to solve this type of mathematical problem
geometrically.

 EXAMPLE 2    Maximizing Annual Yield

A woman has up to $10,000 to invest. Her broker suggests investing in two bonds, A and B.
Bond A is a rather risky bond with an annual yield of 10%, and bond B is a rather safe bond
with an annual yield of 7%. After some consideration, she decides to invest at most $6000 in
bond A, to invest at least $2000 in bond B, and to invest at least as much in bond A as in bond
B. How should she invest her money in order to maximize her annual yield?

Mathematical Formulation   Let  be the number of dollars to be invested in bond A, and
let  be the number of dollars to be invested in bond B. Since each dollar invested in bond A
earns $.10 per year and each dollar invested in bond B earns $.07 per year, the total dollar
amount z earned each year by both bonds is

The constraints imposed can be formulated mathematically as follows:

We also have the implicit assumption that  and  are nonnegative:



Thus the complete mathematical formulation of the problem is as follows: Find values of 
and  that maximize

subject to

 EXAMPLE 3    Minimizing Cost

A student desires to design a breakfast of cornflakes and milk that is as economical as possible.
On the basis of what he eats during his other meals, he decides that his breakfast should supply
him with at least 9 grams of protein, at least  the recommended daily allowance (RDA) of

vitamin D, and at least  the RDA of calcium. He finds the following nutrition and cost

information on the milk and cornflakes containers:

In order not to have his mixture too soggy or too dry, the student decides to limit himself to
mixtures that contain 1 to 3 ounces of cornflakes per cup of milk, inclusive. What quantities of
milk and cornflakes should he use to minimize the cost of his breakfast?

Mathematical Formulation   Let  be the quantity of milk used (measured in -cup units),

and let  be the quantity of cornflakes used (measured in 1-ounce units). Then if z is the cost
of the breakfast in cents, we may write the following.



As before, we also have the implicit assumption that  and . Thus the complete
mathematical formulation of the problem is as follows: Find values of  and  that minimize

subject to

Geometric Solution of Linear Programming Problems

Each of the preceding three examples is a special case of the following problem.

Problem

Find values of  and  that either maximize or minimize

  (1)

subject to



  (2)

and

  (3)

In each of the m conditions of 2, any one of the symbols , , and  may be used.

The problem above is called the general linear programming problem in two variables. The linear function z
in 1 is called the objective function. Equations 2 and 3 are called the constraints; in particular, the equations
in 3 are called the nonnegativity constraints on the variables  and .

We will now show how to solve a linear programming problem in two variables graphically. A pair of values
 that satisfy all of the constraints is called a feasible solution. The set of all feasible solutions

determines a subset of the -plane called the feasible region. Our desire is to find a feasible solution that
maximizes the objective function. Such a solution is called an optimal solution.

To examine the feasible region of a linear programming problem, let us note that each constraint of the form

defines a line in the -plane, whereas each constraint of the form

defines a half-plane that includes its boundary line

Thus the feasible region is always an intersection of finitely many lines and half-planes. For example, the four
constraints

of Example 1 define the half-planes illustrated in parts (a), (b), (c), and (d) of Figure 10.2.1. The feasible
region of this problem is thus the intersection of these four half-planes, which is illustrated in Figure 10.2.1e.



Figure 10.2.1   

It can be shown that the feasible region of a linear programming problem has a boundary consisting of a finite
number of straight line segments. If the feasible region can be enclosed in a sufficiently large circle, it is
called bounded (Figure 10.2.1e); otherwise, it is called unbounded (see Figure 10.2.5). If the feasible region
is empty (contains no points), then the constraints are inconsistent and the linear programming problem has no
solution (see Figure 10.2.6).

Those boundary points of a feasible region that are intersections of two of the straight line boundary segments
are called extreme points. (They are also called corner points and vertex points.) For example, in Figure
10.2.1e, we see that the feasible region of Example 1 has four extreme points:

  (4)

The importance of the extreme points of a feasible region is shown by the following theorem.

THEOREM 10.2.1   Maximum and Minimum Values

If the feasible region of a linear programming problem is nonempty and bounded, then the objective
function attains both a maximum and a minimum value, and these occur at extreme points of the
feasible region. If the feasible region is unbounded, then the objective function may or may not attain
a maximum or minimum value; however, if it attains a maximum or minimum value, it does so at an
extreme point.



Figure 10.2.2 suggests the idea behind the proof of this theorem. Since the objective function

of a linear programming problem is a linear function of  and , its level curves (the curves along which z
has constant values) are straight lines. As we move in a direction perpendicular to these level curves, the
objective function either increases or decreases monotonically. Within a bounded feasible region, the
maximum and minimum values of z must therefore occur at extreme points, as Figure 10.2.2 indicates.

Figure 10.2.2   

In the next few examples we use Theorem 10.2.1 to solve several linear programming problems and illustrate
the variations in the nature of the solutions that may occur.

 EXAMPLE 4    Example 1 Revisited

Figure 10.2.1e shows that the feasible region of Example 1 is bounded. Consequently, from
Theorem 10.2.1 the objective function

attains both its minimum and maximum values at extreme points. The four extreme points and
the corresponding values of z are given in the following table.

We see that the largest value of z is 520.00 and the corresponding optimal solution is .
Thus the candy manufacturer attains maximum sales of $520 when he produces 260 pounds of
mixture A and none of mixture B.



 EXAMPLE 5    Using Theorem 10.2.1

Find values of  and  that maximize

subject to

Solution   In Figure 10.2.3 we have drawn the feasible region of this problem. Since it is
bounded, the maximum value of z is attained at one of the five extreme points. The values of
the objective function at the five extreme points are given in the following table.

Figure 10.2.3   

From this table, the maximum value of z is 21, which is attained at  and .

 EXAMPLE 6    Using Theorem 10.2.1



Find values of  and  that maximize

subject to

Solution   The constraints in this problem are identical to the constraints in Example 5, so the
feasible region of this problem is also given by Figure 10.2.3. The values of the objective
function at the extreme points are given in the following table.

We see that the objective function attains a maximum value of 48 at two adjacent extreme
points,  and . This shows that an optimal solution to a linear programming problem
need not be unique. As we ask you to show in Exercise 10, if the objective function has the
same value at two adjacent extreme points, it has the same value at all points on the straight line
boundary segment connecting the two extreme points. Thus, in this example the maximum
value of z is attained at all points on the straight line segment connecting the extreme points

 and .

 EXAMPLE 7    The Feasible Region Is a Line Segment

Find values of  and  that minimize

subject to

Solution   In Figure 10.2.4 we have drawn the feasible region of this problem. Because one of
the constraints is an equality constraint, the feasible region is a straight line segment with two
extreme points. The values of z at the two extreme points are given in the following table.



Figure 10.2.4   

The minimum value of z is thus 4 and is attained at  and .

 EXAMPLE 8    Using Theorem 10.2.1

Find values of  and  that maximize

subject to

Solution   The feasible region of this linear programming problem is illustrated in Figure
10.2.5. Since it is unbounded, we are not assured by Theorem 10.2.1 that the objective function
attains a maximum value. In fact, it is easily seen that since the feasible region contains points
for which both  and  are arbitrarily large and positive, the objective function

can be made arbitrarily large and positive. This problem has no optimal solution. Instead, we
say the problem has an unbounded solution.



Figure 10.2.5   

 EXAMPLE 9    Using Theorem 10.2.1

Find values of  and  that maximize

subject to

Solution   The above constraints are the same as those in Example 8, so the feasible region of
this problem is also given by Figure 10.2.5. In Exercise 11 we ask you to show that the
objective function of this problem attains a maximum within the feasible region. By Theorem
10.2.1, this maximum must be attained at an extreme point. The values of z at the two extreme
points of the feasible region are given in the following table.

The maximum value of z is thus 1 and is attained at the extreme point , .

 EXAMPLE 10    Inconsistent Constraints



Find values of  and  that minimize

subject to

Solution   As can be seen from Figure 10.2.6, the intersection of the five half-planes defined
by the five constraints is empty. This linear programming problem has no feasible solutions
since the constraints are inconsistent.

Figure 10.2.6   There are no points common to all five shaded half-planes.

Exercise Set 10.2
1. Find values of  and  that maximize

subject to

Answer:

, ; maximum value of 



2. Find values of  and  that minimize

subject to

Answer:

No feasible solutions

3. Find values of  and  that minimize

subject to

Answer:

Unbounded solution

4. Solve the linear programming problem posed in Example 2.

Answer:

Invest $6000 in bond A and $4000 in bond B; the annual yield is $880.

5. Solve the linear programming problem posed in Example 3.

Answer:

 cup of milk,  ounces of corn flakes; minimum 

6. In Example 5 the constraint  is said to be nonbinding because it can be removed from the
problem without affecting the solution. Likewise, the constraint  is said to be binding because
removing it will change the solution.
(a)  Which of the remaining constraints are nonbinding and which are binding?
(b)  For what values of the right-hand side of the nonbinding constraint  will this constraint

become binding? For what values will the resulting feasible set be empty?
(c)  For what values of the right-hand side of the binding constraints  will this constraint become

nonbinding? For what values will the resulting feasible set be empty?



Answer:

(a)   and  are nonbinding;  is binding
(b)   for  is binding and for  yields the empty set.
(c)   for  is nonbinding and for  yields the empty set.

7. A trucking firm ships the containers of two companies, A and B. Each container from company A weighs
40 pounds and is 2 cubic feet in volume. Each container from company B weighs 50 pounds and is 3 cubic
feet in volume. The trucking firm charges company A $2.20 for each container shipped and charges
company B $3.00 for each container shipped. If one of the firm's trucks cannot carry more than 37,000
pounds and cannot hold more than 2000 cubic feet, how many containers from companies A and B should
a truck carry to maximize the shipping charges?

Answer:

550 containers from company A and 300 containers from company B; maximum shipping

8. Repeat Exercise 7 if the trucking firm raises its price for shipping a container from company A to $2.50.

Answer:

925 containers from company A and no containers from company B; maximum shipping

9. A manufacturer produces sacks of chicken feed from two ingredients, A and B. Each sack is to contain at
least 10 ounces of nutrient , at least 8 ounces of nutrient , and at least 12 ounces of nutrient .
Each pound of ingredient A contains 2 ounces of nutrient , 2 ounces of nutrient , and 6 ounces of
nutrient . Each pound of ingredient B contains 5 ounces of nutrient , 3 ounces of nutrient , and 4
ounces of nutrient . If ingredient A costs 8 cents per pound and ingredient B costs 9 cents per pound,
how much of each ingredient should the manufacturer use in each sack of feed to minimize his costs?

Answer:

0.4 pound of ingredient A and 2.4 pounds of ingredient B; minimum 

10. If the objective function of a linear programming problem has the same value at two adjacent extreme
points, show that it has the same value at all points on the straight line segment connecting the two
extreme points. [Hint: If  and  are any two points in the plane, a point  lies on
the straight line segment connecting them if

and

where t is a number in the interval .]

11. Show that the objective function in Example 9 attains a maximum value in the feasible set. [Hint:
Examine the level curves of the objective function.]



Section 10.2 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the
relevant documentation for the particular utility you are using. The goal of these exercises is to provide you
with a basic proficiency with your technology utility. Once you have mastered the techniques in these
exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.

T1.  Consider the feasible region consisting of ,  along with the set of inequalities

for . Maximize the objective function

assuming that (a) , (b) , (c) , (d) , (e) , (f) , (g) , (h) , (i) ,
(j) , and (k) . (l) Next, maximize this objective function using the nonlinear feasible region,

, , and

(m) Let the results of parts (a) through (k) begin a sequence of values for . Do these values approach the
value determined in part (l)? Explain.

T2.  Repeat Exercise T1 using the objective function .
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10.3  The Earliest Applications of Linear Algebra
Linear systems can be found in the earliest writings of many ancient civilizations. In this section we give
some examples of the types of problems that they used to solve.

Prerequisites

Linear Systems

The practical problems of early civilizations included the measurement of land, the distribution of goods, the
tracking of resources such as wheat and cattle, and taxation and inheritance calculations. In many cases, these
problems led to linear systems of equations since linearity is one of the simplest relationships that can exist
among variables. In this section we present examples from five diverse ancient cultures illustrating how they
used and solved systems of linear equations. We restrict ourselves to examples before A.D. 500. These
examples consequently predate the development of the field of algebra by Islamic/Arab mathematicians, a
field that ultimately led in the nineteenth century to the branch of mathematics now called linear algebra.

 EXAMPLE 1    Egypt (about 1650 B.C.)

Problem 40 of the Ahmes Papyrus

The Ahmes (or Rhind) Papyrus is the source of most of our information about ancient Egyptian
mathematics. This 5-meter-long papyrus contains 84 short mathematical problems, together
with their solutions, and dates from about 1650 B.C. Problem 40 in this papyrus is the following:

Divide 100 hekats of barley among five men in arithmetic progression so that the sum of
the two smallest is one-seventh the sum of the three largest.

Let a be the least amount that any man obtains, and let d be the common difference of the terms
in the arithmetic progression. Then the other four men receive , , , and

 hekats. The two conditions of the problem require that

These equations reduce to the following system of two equations in two unknowns:



  (1)

The solution technique described in the papyrus is known as the method of false position or
false assumption. It begins by assuming some convenient value of a (in our case ),
substituting that value into the second equation, and obtaining . Substituting 
and  into the left-hand side of the first equation gives 60, whereas the right-hand side
is 100. Adjusting the initial guess for a by multiplying it by  leads to the correct value

. Substituting  into the second equation then gives , so the
quantities of barley received by the five men are , , , , and 
hekats. This technique of guessing a value of an unknown and later adjusting it has been used
by many cultures throughout the ages.

 EXAMPLE 2    Babylonia (1900–1600 B.C.)

Babylonian clay tablet Ca MLA 1950

The Old Babylonian Empire flourished in Mesopotamia between 1900 and 1600 B.C. Many clay
tablets containing mathematical tables and problems survive from that period, one of which
(designated Ca MLA 1950) contains the next problem. The statement of the problem is a bit
muddled because of the condition of the tablet, but the diagram and the solution on the tablet
indicate that the problem is as follows:



A trapezoid with an area of 320 square units is cut off from a right triangle by a line
parallel to one of its sides. The other side has length 50 units, and the height of the
trapezoid is 20 units. What are the upper and the lower widths of the trapezoid?

Let x be the lower width of the trapezoid and y its upper width. The area of the trapezoid is its
height times its average width, so . Using similar triangles, we also have

. The solution on the tablet uses these relations to generate the linear system

  (2)

Adding and subtracting these two equations then gives the solution  and .

 EXAMPLE 3    China (A.D. 263)

Chiu Chang Suan Shu in Chinese characters

The most important treatise in the history of Chinese mathematics is the Chiu Chang Suan Shu,
or “The Nine Chapters of the Mathematical Art.” This treatise, which is a collection of 246
problems and their solutions, was assembled in its final form by Liu Hui in A.D. 263. Its
contents, however, go back to at least the beginning of the Han dynasty in the second century
B.C. The eighth of its nine chapters, entitled “The Way of Calculating by Arrays,” contains 18
word problems that lead to linear systems in three to six unknowns. The general solution
procedure described is almost identical to the Gaussian elimination technique developed in



Europe in the nineteenth century by Carl Friedrich Gauss. The first problem in the eighth
chapter is the following:

There are three classes of corn, of which three bundles of the first class, two of the
second, and one of the third make 39 measures. Two of the first, three of the second, and
one of the third make 34 measures. And one of the first, two of the second, and three of
the third make 26 measures. How many measures of grain are contained in one bundle
of each class?

Let x, y, and z be the measures of the first, second, and third classes of corn. Then the
conditions of the problem lead to the following linear system of three equations in three
unknowns:

  (3)

The solution described in the treatise represented the coefficients of each equation by an
appropriate number of rods placed within squares on a counting table. Positive coefficients
were represented by black rods, negative coefficients were represented by red rods, and the
squares corresponding to zero coefficients were left empty. The counting table was laid out as
follows so that the coefficients of each equation appear in columns with the first equation in the
rightmost column:

Next, the numbers of rods within the squares were adjusted to accomplish the following two
steps: (1) two times the numbers of the third column were subtracted from three times the
numbers in the second column and (2) the numbers in the third column were subtracted from
three times the numbers in the first column. The result was the following array:

In this array, four times the numbers in the second column were subtracted from five times the
numbers in the first column, yielding

This last array is equivalent to the linear system



This triangular system was solved by a method equivalent to back substitution to obtain
, , and .

 EXAMPLE 4    Greece (third century B.C.)

Archimedes c. 287–212 B.C.

Perhaps the most famous system of linear equations from antiquity is the one associated with
the first part of Archimedes' celebrated Cattle Problem. This problem supposedly was posed by
Archimedes as a challenge to his colleague Eratosthenes. No solution has come down to us
from ancient times, so that it is not known how, or even whether, either of these two geometers
solved it.

If thou art diligent and wise, O stranger, compute the number of cattle of the Sun, who
once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into four
herds of different colors, one milk white, another glossy black, a third yellow, and the
last dappled. In each herd were bulls, mighty in number according to these proportions:
Understand, stranger, that the white bulls were equal to a half and a third of the black
together with the whole of the yellow, while the black were equal to the fourth part of
the dappled and a fifth, together with, once more, the whole of the yellow. Observe
further that the remaining bulls, the dappled, were equal to a sixth part of the white and
a seventh, together with all of the yellow. These were the proportions of the cows: The
white were precisely equal to the third part and a fourth of the whole herd of the black;
while the black were equal to the fourth part once more of the dappled and with it a



fifth part, when all, including the bulls, went to pasture together. Now the dappled in
four parts were equal in number to a fifth part and a sixth of the yellow herd. Finally
the yellow were in number equal to a sixth part and a seventh of the white herd. If thou
canst accurately tell, O stranger, the number of cattle of the Sun, giving separately the
number of well-fed bulls and again the number of females according to each color, thou
wouldst not be called unskilled or ignorant of numbers, but not yet shalt thou be
numbered among the wise.

The conventional designation of the eight variables in this problem is

The problem can now be stated as the following seven homogeneous equations in eight
unknowns:

1. (The white bulls were equal to a half and a third of the
black [bulls] together with the whole of the yellow
[bulls].)

2. (The black [bulls] were equal to the fourth part of the
dappled [bulls] and a fifth, together with, once more, the
whole of the yellow [bulls].)

3. (The remaining bulls, the dappled, were equal to a sixth
part of the white [bulls] and a seventh, together with all
of the yellow [bulls].)

4. (The white [cows] were precisely equal to the third part
and a fourth of the whole herd of the black.)

5. (The black [cows] were equal to the fourth part once
more of the dappled and with it a fifth part, when all,
including the bulls, went to pasture together.)

6. (The dappled [cows] in four parts [that is, in totality]
were equal in number to a fifth part and a sixth of the
yellow herd.)

7. (The yellow [cows] were in number equal to a sixth part
and a seventh of the white herd.)

As we ask you to show in the exercises, this system has infinitely many solutions of the form



  (4)

where k is any real number. The values  give infinitely many positive integer
solutions to the problem, with  giving the smallest solution.

 EXAMPLE 5    India (fourth century A.D.)

Fragment III-5-3v of the Bakhshali Manuscript

The Bakhshali Manuscript is an ancient work of Indian/Hindu mathematics dating from around
the fourth century A.D., although some of its materials undoubtedly come from many centuries
before. It consists of about 70 leaves or sheets of birch bark containing mathematical problems
and their solutions. Many of its problems are so-called equalization problems that lead to
systems of linear equations. One such problem on the fragment shown is the following:

One merchant has seven asava horses, a second has nine haya horses, and a third has
ten camels. They are equally well off in the value of their animals if each gives two
animals, one to each of the others. Find the price of each animal and the total value of
the animals possessed by each merchant.

Let x be the price of an asava horse, let y be the price of a haya horse, let z be the price of a
camel, and the let K be the total value of the animals possessed by each merchant. Then the
conditions of the problem lead to the following system of equations:

  (5)

The method of solution described in the manuscript begins by subtracting the quantity



 from both sides of the three equations to obtain 
. This shows that if the prices x, y, and z are to be integers, then the quantity 
must be an integer that is divisible by 4, 6, and 7. The manuscript takes the product of these
three numbers, or 168, for the value of , which yields , , and

 for the prices and  for the total value. (See Exercise 6 for more solutions to this
problem.)

Exercise Set 10.3
1. The following lines from Book 12 of Homer's Odyssey relate a precursor of Archimedes' Cattle Problem:

Thou shalt ascend the isle triangular,

Where many oxen of the Sun are fed,

And fatted flocks. Of oxen fifty head

In every herd feed, and their herds are seven;

And of his fat flocks is their number even.

The last line means that there are as many sheep in all the flocks as there are oxen in all the herds. What is
the total number of oxen and sheep that belong to the god of the Sun? (This was a difficult problem in
Homer's day.)

Answer:

700

2. Solve the following problems from the Bakhshali Manuscript.
(a)  B possesses two times as much as A; C has three times as much as A and B together; D has four times

as much as A, B, and C together. Their total possessions are 300. What is the possession of A?
(b)  B gives 2 times as much as A; C gives 3 times as much as B; D gives 4 times as much as C. Their total

gift is 132. What is the gift of A?

Answer:

(a)  5
(b)  4

3. A problem on a Babylonian tablet requires finding the length and width of a rectangle given that the length
and the width add up to 10, while the length and one-fourth of the width add up to 7. The solution
provided on the tablet consists of the following four statements:



Multiply 7 by 4 to obtain 28.

Take away 10 from 28 to obtain 18.

Take one-third of 18 to obtain 6, the length.

Take away 6 from 10 to obtain 4, the width.

Explain how these steps lead to the answer.

4. The following two problems are from “The Nine Chapters of the Mathematical Art.” Solve them using the
array technique described in Example 3.
(a)  Five oxen and two sheep are worth 10 units and two oxen and five sheep are worth 8 units. What is the

value of each ox and sheep?
(b)  There are three kinds of corn. The grains contained in two, three, and four bundles, respectively, of

these three classes of corn, are not sufficient to make a whole measure. However, if we added to them
one bundle of the second, third, and first classes, respectively, then the grains would become on full
measure in each case. How many measures of grain does each bundle of the different classes contain?

Answer:

(a)  Ox,  units; sheep,  unit

(b)  First kind,  measure; second kind,  measure; third kind,  measure

5. This problem in part (a) is known as the “Flower of Thymaridas,” named after a Pythagorean of the fourth
century B.C.

(a)  Given the n numbers , solve for  in the following linear system:

(b)  Identify a problem in this exercise set that fits the pattern in part (a), and solve it using your general
solution.

Answer:

(a)  , , 

(b)  Exercise 7(b); gold,  minae; brass,  minae; tin,  minae; iron,  minae

6. For Example 5 from the Bakhshali Manuscript:
(a)  Express Equations 5 as a homogeneous linear system of three equations in four unknowns (x, y, z, and

K) and show that the solution set has one arbitrary parameter.
(b)  Find the smallest solution for which all four variables are positive integers.



(c)  Show that the solution given in Example 5 is included among your solutions.

Answer:

(a)  

 where t is an arbitrary number

(b)  Take , so that , , , .

(c)  Take , so that , , , .

7. Solve the problems posed in the following three epigrams, which appear in a collection entitled “The
Greek Anthology,” compiled in part by a scholar named Metrodorus around A.D. 500. Some of its 46
mathematical problems are believed to date as far back as 600 B.C. [Note: Before solving parts (a) and (c),
you will have to formulate the question.]
(a)  I desire my two sons to receive the thousand staters of which I am possessed, but let the fifth part of

the legitimate one's share exceed by ten the fourth part of what falls to the illegitimate one.
(b)  Make me a crown weighing sixty minae, mixing gold and brass, and with them tin and much-wrought

iron. Let the gold and brass together form two-thirds, the gold and tin together three-fourths, and the
gold and iron three-fifths. Tell me how much gold you must put in, how much brass, how much tin,
and how much iron, so as to make the whole crown weigh sixty minae.

(c)  First person: I have what the second has and the third of what the third has. Second person: I have
what the third has and the third of what the first has. Third person: And I have ten minae and the third
of what the second has.

Answer:

(a)  Legitimate son,  staters; illegitimate son,  staters

(b)  Gold,  minae; brass,  minae; tin,  minae; iron,  minae

(c)  First person, 45; second person, ; third person, 

Section 10.3 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the
relevant documentation for the particular utility you are using. The goal of these exercises is to provide you
with a basic proficiency with your technology utility. Once you have mastered the techniques in these
exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.



T1.  
(a)  Solve Archimedes' Cattle Problem using a symbolic algebra program.
(b)  The Cattle Problem has a second part in which two additional conditions are imposed. The first of these

states that “When the white bulls mingled their number with the black, they stood firm, equal in depth and
breadth.” This requires that  be a square number, that is, 1, 4, 9, 16, 25, and so on. Show that this
requires that the values of k in Eq. 4 be restricted as follows:

and find the smallest total number of cattle that satisfies this second condition.

Remark  The second condition imposed in the second part of the Cattle Problem states that “When the
yellow and the dappled bulls were gathered into one herd, they stood in such a manner that their number,
beginning from one, grew slowly greater ’til it completed a triangular figure.” This requires that the quantity

 be a triangular number—that is, a number of the form , , , . This
final part of the problem was not completely solved until 1965 when all 206,545 digits of the smallest
number of cattle that satisfies this condition were found using a computer.

T2.  The following problem is from “The Nine Chapters of the Mathematical Art” and determines a
homogeneous linear system of five equations in six unknowns. Show that the system has infinitely many
solutions, and find the one for which the depth of the well and the lengths of the five ropes are the smallest
possible positive integers.

Suppose that five families share a well. Suppose further that
2 of A's ropes are short of the well's depth by one of B's ropes.
3 of B's ropes are short of the well's depth by one of C's ropes.
4 of C's ropes are short of the well's depth by one of D's ropes.
5 of D's ropes are short of the well's depth by one of E's ropes.
6 of E's ropes are short of the well's depth by one of A's ropes.
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10.4  Cubic Spline Interpolation
In this section an artist's drafting aid is used as a physical model for the mathematical problem of finding a curve that passes
through specified points in the plane. The parameters of the curve are determined by solving a linear system of equations.

Prerequisites

Linear Systems
Matrix Algebra
Differential Calculus

Curve Fitting

Fitting a curve through specified points in the plane is a common problem encountered in analyzing experimental data, in
ascertaining the relations among variables, and in design work. A ubiquitous application is in the design and description of
computer and printer fonts, such as PostScript™ and TrueType™ fonts (Figure 10.4.1). In Figure 10.4.2 seven points in the
xy-plane are displayed, and in Figure 10.4.4 a smooth curve has been drawn that passes through them. A curve that passes
through a set of points in the plane is said to interpolate those points, and the curve is called an interpolating curve for those
points. The interpolating curve in Figure 10.4.4 was drawn with the aid of a drafting spline (Figure 10.4.3). This drafting aid
consists of a thin, flexible strip of wood or other material that is bent to pass through the points to be interpolated. Attached
sliding weights hold the spline in position while the artist draws the interpolating curve. The drafting spline will serve as the
physical model for a mathematical theory of interpolation that we will discuss in this section.

Figure 10.4.1   

Figure 10.4.2   



Figure 10.4.3   

Figure 10.4.4   

Statement of the Problem

Suppose that we are given n points in the xy-plane,

which we wish to interpolate with a “well-behaved” curve (Figure 10.4.5). For convenience, we take the points to be equally
spaced in the x-direction, although our results can easily be extended to the case of unequally spaced points. If we let the
common distance between the x-coordinates of the points be h, then we have

Let ,  denote the interpolating curve that we seek. We assume that this curve describes the displacement of
a drafting spline that interpolates the n points when the weights holding down the spline are situated precisely at the n points. It
is known from linear beam theory that for small displacements, the fourth derivative of the displacement of a beam is zero along
any interval of the x-axis that contains no external forces acting on the beam. If we treat our drafting spline as a thin beam and
realize that the only external forces acting on it arise from the weights at the n specified points, then it follows that

  (1)

for values of x lying in the  open intervals

between the n points.

Figure 10.4.5   

We also need the result from linear beam theory that states that for a beam acted upon only by external forces, the displacement
must have two continuous derivatives. In the case of the interpolating curve  constructed by the drafting spline, this
means that , , and  must be continuous for .

The condition that  be continuous is what causes a drafting spline to produce a pleasing curve, as it results in continuous



curvature. The eye can perceive sudden changes in curvature—that is, discontinuities in —but sudden changes in higher
derivatives are not discernible. Thus, the condition that  be continuous is the minimal prerequisite for the interpolating
curve to be perceptible as a single smooth curve, rather than as a series of separate curves pieced together.

To determine the mathematical form of the function , we observe that because  in the intervals between the n
specified points, it follows by integrating this equation four times that  must be a cubic polynomial in x in each such
interval. In general, however,  will be a different cubic polynomial in each interval, so  must have the form

  (2)

where  are cubic polynomials. For convenience, we will write these in the form

  (3)

The 's, 's, 's, and 's constitute a total of  coefficients that we must determine to specify  completely. If we
choose these coefficients so that  interpolates the n specified points in the plane and , , and  are
continuous, then the resulting interpolating curve is called a cubic spline.

Derivation of the Formula of a Cubic Spline

From Equations 2 and 3, we have

  (4)

so

  (5)

and

  (6)

We will now use these equations and the four properties of cubic splines stated below to express the unknown coefficients , 
, , , , in terms of the known coordinates .

1.   interpolates the points , .

Because  interpolates the points , , we have



  (7)

From the first  of these equations and 4, we obtain

  (8)

From the last equation in 7, the last equation in 4, and the fact that , we obtain

  (9)

2.   is continuous on .

Because  is continuous for , it follows that at each point  in the set  we must have

  (10)

Otherwise, the graphs of  and  would not join together to form a continuous curve at . When we apply the
interpolating property , it follows from 10 that , , or from 4 that

  (11)

3.   is continuous on .

Because  is continuous for , it follows that

or, from 5,

  (12)

4.   is continuous on .

Because  is continuous for , it follows that

or, from 6,

  (13)

Equations 8, 9, 11, 12, and 13 constitute a system of  linear equations in the  unknown coefficients , , , ,
. Consequently, we need two more equations to determine these coefficients uniquely. Before obtaining these

additional equations, however, we can simplify our existing system by expressing the unknowns , , , and  in terms of



new unknown quantities

and the known quantities

For example, from 6 it follows that

so

Moreover, we already know from 8 that

We leave it as an exercise for you to derive the expressions for the 's and 's in terms of the 's and 's. The final result is
as follows:

THEOREM 10.4.1   Cubic Spline Interpolation

Given n points  with , , the cubic spline

that interpolates these points has coefficients given by

  (14)

for , where , .

From this result, we see that the quantities  uniquely determine the cubic spline. To find these quantities, we
substitute the expressions for , , and  given in 14 into 12. After some algebraic simplification, we obtain

  (15)

or, in matrix form,



This is a linear system of  equations for the n unknowns . Thus, we still need two additional equations to
determine  uniquely. The reason for this is that there are infinitely many cubic splines that interpolate the
given points, so we simply do not have enough conditions to determine a unique cubic spline passing through the points. We
discuss below three possible ways of specifying the two additional conditions required to obtain a unique cubic spline through
the points. (The exercises present two more.) They are summarized in Table 1.

Table 1

The Natural Spline

The two simplest mathematical conditions we can impose are

These conditions together with 15 result in an  linear system for , which can be written in matrix form as

For numerical calculations it is more convenient to eliminate  and  from this system and write



  (16)

together with

  (17)

  (18)

Thus, the  linear system can be solved for the  coefficients , and  and  are
determined by 17 and 18.

Physically, the natural spline results when the ends of a drafting spline extend freely beyond the interpolating points without
constraint. The end portions of the spline outside the interpolating points will fall on straight line paths, causing  to
vanish at the endpoints  and  and resulting in the mathematical conditions .

The natural spline tends to flatten the interpolating curve at the endpoints, which may be undesirable. Of course, if it is required
that  vanish at the endpoints, then the natural spline must be used.

The Parabolic Runout Spline

The two additional constraints imposed for this type of spline are

  (19)

  (20)

If we use the preceding two equations to eliminate  and  from 15, we obtain the  linear system

  (21)

for . Once these  values have been determined,  and  are determined from 19 and 20.

From 14 we see that  implies that , and  implies that . Thus, from 3 there are no cubic
terms in the formula for the spline over the end intervals  and . Hence, as the name suggests, the parabolic
runout spline reduces to a parabolic curve over these end intervals.

The Cubic Runout Spline



For this type of spline, we impose the two additional conditions

  (22)

  (23)

Using these two equations to eliminate  and  from 15 results in the following  linear system for
:

  (24)

After we solve this linear system for , we can use 22 and 23 to determine  and .

If we rewrite 22 as

it follows from 14 that . Because  on  and  on , we see that  is
constant over the entire interval . Consequently,  consists of a single cubic curve over the interval  rather
than two different cubic curves pieced together at . [To see this, integrate  three times.] A similar analysis shows that

 consists of a single cubic curve over the last two intervals.

Whereas the natural spline tends to produce an interpolating curve that is flat at the endpoints, the cubic runout spline has the
opposite tendency: it produces a curve with pronounced curvature at the endpoints. If neither behavior is desired, the parabolic
runout spline is a reasonable compromise.

 EXAMPLE 1    Using a Parabolic Runout Spline

The density of water is well known to reach a maximum at a temperature slightly above freezing. Table 2, from
the Handbook of Chemistry and Physics (CRC Press, 2009), gives the density of water in grams per cubic
centimeter for five equally spaced temperatures from  to . We will interpolate these five
temperature–density measurements with a parabolic runout spline and attempt to find the maximum density of
water in this range by finding the maximum value on this cubic spline. In the exercises we ask you to perform
similar calculations using a natural spline and a cubic runout spline to interpolate the data points.

Table 2

Set



Then

and the linear system 21 for the parabolic runout spline becomes

Solving this system yields

From 19 and 20, we have

Solving for the 's, 's, 's, and 's in 14, we obtain the following expression for the interpolating parabolic
runout spline:

This spline is plotted in Figure 10.4.6. From that figure we see that the maximum is attained in the interval
. To find this maximum, we set  equal to zero in the interval :

To three significant digits the root of this quadratic in the interval  is , and for this value of x,
. Thus, according to our interpolated estimate, the maximum density of water is

 attained at . This agrees well with the experimental maximum density of

 attained at . (In the original metric system, the gram was defined as the mass of one cubic
centimeter of water at its maximum density.)



Figure 10.4.6   

Closing Remarks

In addition to producing excellent interpolating curves, cubic splines and their generalizations are useful for numerical
integration and differentiation, for the numerical solution of differential and integral equations, and in optimization theory.

Exercise Set 10.4
1. Derive the expressions for  and  in Equations 14 of Theorem 10.4.1.

2. The six points

lie on the graph of , where x is in radians.

(a)  Find the portion of the parabolic runout spline that interpolates these six points for . Maintain an accuracy of
five decimal places in your calculations.

(b)  Calculate  for the spline you found in part (a). What is the percentage error of  with respect to the “exact”
value of ?

Answer:

(a)  

(b)  

3. The following five points

lie on a single cubic curve.
(a)  Which of the three types of cubic splines (natural, parabolic runout, or cubic runout) would agree exactly with the single

cubic curve on which the five points lie?
(b)  Determine the cubic spline you chose in part (a), and verify that it is a single cubic curve that interpolates the five points.

Answer:

(a)  The cubic runout spline



(b)  

4. Repeat the calculations in Example 1 using a natural spline to interpolate the five data points.

Answer:

Maximum at 

5. Repeat the calculations in Example 1 using a cubic runout spline to interpolate the five data points.

Answer:

Maximum at 

6. Consider the five points , , , , and  on the graph of .

(a)  Use a natural spline to interpolate the data points , , and .

(b)  Use a natural spline to interpolate the data points , , and .

(c)  Explain the unusual nature of your result in part (b).

Answer:

(a)  

(b)  

(c)  The three data points are collinear.

7. (The Periodic Spline) If it is known or if it is desired that the n points  to be interpolated lie
on a single cycle of a periodic curve with period , then an interpolating cubic spline  must satisfy

(a)  Show that these three periodicity conditions require that



(b)  Using the three equations in part (a) and Equations 15, construct an  linear system for
 in matrix form.

Answer:

(b)  

8. (The Clamped Spline) Suppose that, in addition to the n points to be interpolated, we are given specific values  and  for
the slopes  and  of the interpolating cubic spline at the endpoints  and .

(a)  Show that

(b)  Using the equations in part (a) and Equations 15, construct an  linear system for  in matrix form.

Remark   The clamped spline described in this exercise is the most accurate type of spline for interpolation work if the
slopes at the endpoints are known or can be estimated.

Answer:

(b)  

Section 10.4 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica,
Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a scientific calculator with some
linear algebra capabilities. For each exercise you will need to read the relevant documentation for the particular utility you are
using. The goal of these exercises is to provide you with a basic proficiency with your technology utility. Once you have
mastered the techniques in these exercises, you will be able to use your technology utility to solve many of the problems in the
regular exercise sets.

T1.  In the solution of the natural cubic spline problem, it is necessary to solve a system of equations having coefficient matrix

If we can present a formula for the inverse of this matrix, then the solution for the natural cubic spline problem can be easily
obtained. In this exercise and the next, we use a computer to discover this formula. Toward this end, we first determine an



expression for the determinant of , denoted by the symbol . Given that

we see that

and

(a)  Use the cofactor expansion of determinants to show that

for . This says, for example, that

and so on. Using a computer, check this result for .
(b)  By writing

and the identity, , in matrix form,

show that

(c)  Use the methods in Section 5.2 and a computer to show that

and hence

for .

(d)  Using a computer, check this result for .

T2.  In this exercise, we determine a formula for calculating  from  for , assuming that  is defined
to be 1.
(a)  Use a computer to compute  for , 2, 3, 4, and 5.

(b)  From your results in part (a), discover the conjecture that

where  and

for .

(c)  Use the result in part (b) to compute  and compare it to the result obtained using the computer.
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10.5  Markov Chains
In this section we describe a general model of a system that changes from state to state. We then apply the model
to several concrete problems.

Prerequisites

Linear Systems
Matrices
Intuitive Understanding of Limits

A Markov Process

Suppose a physical or mathematical system undergoes a process of change such that at any moment it can occupy
one of a finite number of states. For example, the weather in a certain city could be in one of three possible
states: sunny, cloudy, or rainy. Or an individual could be in one of four possible emotional states: happy, sad,
angry, or apprehensive. Suppose that such a system changes with time from one state to another and at scheduled
times the state of the system is observed. If the state of the system at any observation cannot be predicted with
certainty, but the probability that a given state occurs can be predicted by just knowing the state of the system at
the preceding observation, then the process of change is called a Markov chain or Markov process.

DEFINITION 1

If a Markov chain has k possible states, which we label as , then the probability that the system
is in state i at any observation after it was in state j at the preceding observation is denoted by  and is
called the transition probability from state j to state i. The matrix  is called the transition
matrix of the Markov chain.

For example, in a three-state Markov chain, the transition matrix has the form

In this matrix,  is the probability that the system will change from state 2 to state 3,  is the probability that
the system will still be in state 1 if it was previously in state 1, and so forth.



 EXAMPLE 1    Transition Matrix of the Markov Chain

A car rental agency has three rental locations, denoted by 1, 2, and 3. A customer may rent a car
from any of the three locations and return the car to any of the three locations. The manager finds
that customers return the cars to the various locations according to the following probabilities:

This matrix is the transition matrix of the system considered as a Markov chain. From this matrix,
the probability is  that a car rented from location 3 will be returned to location 2, the probability
is  that a car rented from location 1 will be returned to location 1, and so forth.

 EXAMPLE 2    Transition Matrix of the Markov Chain

By reviewing its donation records, the alumni office of a college finds that 80% of its alumni who
contribute to the annual fund one year will also contribute the next year, and 30% of those who do
not contribute one year will contribute the next. This can be viewed as a Markov chain with two
states: state 1 corresponds to an alumnus giving a donation in any one year, and state 2 corresponds
to the alumnus not giving a donation in that year. The transition matrix is

In the examples above, the transition matrices of the Markov chains have the property that the entries in any
column sum to 1. This is not accidental. If  is the transition matrix of any Markov chain with k states,
then for each j we must have

  (1)

because if the system is in state j at one observation, it is certain to be in one of the k possible states at the next
observation.

A matrix with property 1 is called a stochastic matrix, a probability matrix, or a Markov matrix. From the
preceding discussion, it follows that the transition matrix for a Markov chain must be a stochastic matrix.

In a Markov chain, the state of the system at any observation time cannot generally be determined with certainty.
The best one can usually do is specify probabilities for each of the possible states. For example, in a Markov
chain with three states, we might describe the possible state of the system at some observation time by a column
vector



in which  is the probability that the system is in state 1,  the probability that it is in state 2, and  the
probability that it is in state 3. In general we make the following definition.

DEFINITION 2

The state vector for an observation of a Markov chain with k states is a column vector x whose ith
component  is the probability that the system is in the ith state at that time.

Observe that the entries in any state vector for a Markov chain are nonnegative and have a sum of 1. (Why?) A
column vector that has this property is called a probability vector.

Let us suppose now that we know the state vector  for a Markov chain at some initial observation. The
following theorem will enable us to determine the state vectors

at the subsequent observation times.

THEOREM 10.5.1

If P is the transition matrix of a Markov chain and  is the state vector at the nth observation, then
.

The proof of this theorem involves ideas from probability theory and will not be given here. From this theorem,
it follows that

In this way, the initial state vector  and the transition matrix P determine  for .

 EXAMPLE 3    Example 2 Revisited

The transition matrix in Example 2 was

We now construct the probable future donation record of a new graduate who did not give a donation in the



initial year after graduation. For such a graduate the system is initially in state 2 with certainty, so the initial state
vector is

From Theorem 10.5.1 we then have

Thus, after three years the alumnus can be expected to make a donation with probability .525. Beyond three
years, we find the following state vectors (to three decimal places):

For all n beyond 11, we have

to three decimal places. In other words, the state vectors converge to a fixed vector as the number of
observations increases. (We will discuss this further below.)

 EXAMPLE 4    Example 1 Revisited

The transition matrix in Example 1 was

If a car is rented initially from location 2, then the initial state vector is

Using this vector and Theorem 10.5.1, one obtains the later state vectors listed in Table 1.

Table 1



For all values of n greater than 11, all state vectors are equal to  to three decimal places.

Two things should be observed in this example. First, it was not necessary to know how long a customer kept
the car. That is, in a Markov process the time period between observations need not be regular. Second, the
state vectors approach a fixed vector as n increases, just as in the first example.

 EXAMPLE 5    Using Theorem 10.5.1

A traffic officer is assigned to control the traffic at the eight intersections indicated in Figure 10.5.1.
She is instructed to remain at each intersection for an hour and then to either remain at the same
intersection or move to a neighboring intersection. To avoid establishing a pattern, she is told to
choose her new intersection on a random basis, with each possible choice equally likely. For example,
if she is at intersection 5, her next intersection can be 2, 4, 5, or 8, each with probability . Every day

she starts at the location where she stopped the day before. The transition matrix for this Markov chain
is



Figure 10.5.1   

If the traffic officer begins at intersection 5, her probable locations, hour by hour, are given by the
state vectors given in Table 2. For all values of n greater than 22, all state vectors are equal to  to
three decimal places. Thus, as with the first two examples, the state vectors approach a fixed vector as
n increases.

Table 2

Limiting Behavior of the State Vectors

In our examples we saw that the state vectors approached some fixed vector as the number of observations
increased. We now ask whether the state vectors always approach a fixed vector in a Markov chain. A simple
example shows that this is not the case.

 EXAMPLE 6    System Oscillates Between Two State Vectors

Let

Then, because  and , we have that



and

This system oscillates indefinitely between the two state vectors  and , so it does not

approach any fixed vector.

However, if we impose a mild condition on the transition matrix, we can show that a fixed limiting state vector is
approached. This condition is described by the following definition.

DEFINITION 3

A transition matrix is regular if some integer power of it has all positive entries.

Thus, for a regular transition matrix P, there is some positive integer m such that all entries of  are positive.
This is the case with the transition matrices of Examples 1 and 2 for . In Example 5 it turns out that  has
all positive entries. Consequently, in all three examples the transition matrices are regular.

A Markov chain that is governed by a regular transition matrix is called a regular Markov chain. We will see
that every regular Markov chain has a fixed state vector q such that  approaches q as n increases for any
choice of . This result is of major importance in the theory of Markov chains. It is based on the following
theorem.

THEOREM 10.5.2   Behavior of Pn as 

If P is a regular transition matrix, then as ,

where the  are positive numbers such that .

We will not prove this theorem here. We refer you to a more specialized text, such as J. Kemeny and J. Snell,
Finite Markov Chains (New York: Springer-Verlag, 1976).

Let us set



Thus, Q is a transition matrix, all of whose columns are equal to the probability vector q. Q has the property that
if x is any probability vector, then

That is, Q transforms any probability vector x into the fixed probability vector q. This result leads to the
following theorem.

THEOREM 10.5.3   Behavior of Pnx as 

If P is a regular transition matrix and x is any probability vector, then as ,

where q is a fixed probability vector, independent of n, all of whose entries are positive.

This result holds since Theorem 10.5.2 implies that  as . This in turn implies that 
as . Thus, for a regular Markov chain, the system eventually approaches a fixed state vector q. The vector
q is called the steady-state vector of the regular Markov chain.

For systems with many states, usually the most efficient technique of computing the steady-state vector q is
simply to calculate  for some large n. Our examples illustrate this procedure. Each is a regular Markov
process, so that convergence to a steady-state vector is ensured. Another way of computing the steady-state
vector is to make use of the following theorem.

THEOREM 10.5.4   Steady-State Vector

The steady-state vector q of a regular transition matrix P is the unique probability vector that satisfies the
equation .



To see this, consider the matrix identity . By Theorem 10.5.2, both  and  approach Q as
. Thus, we have . Any one column of this matrix equation gives . To show that q is the

only probability vector that satisfies this equation, suppose r is another probability vector such that . Then
also  for . When we let , Theorem 10.5.3 leads to .

Theorem 10.5.4 can also be expressed by the statement that the homogeneous linear system

has a unique solution vector q with nonnegative entries that satisfy the condition . We can
apply this technique to the computation of the steady-state vectors for our examples.

 EXAMPLE 7    Example 2 Revisited

In Example 2 the transition matrix was

so the linear system  is

  (2)

This leads to the single independent equation

or

Thus, when we set , any solution of 2 is of the form

where s is an arbitrary constant. To make the vector q a probability vector, we set
. Consequently,

is the steady-state vector of this regular Markov chain. This means that over the long run, 60% of
the alumni will give a donation in any one year, and 40% will not. Observe that this agrees with the
result obtained numerically in Example 3.

 EXAMPLE 8    Example 1 Revisited

In Example 1 the transition matrix was

so the linear system  is



The reduced row echelon form of the coefficient matrix is (verify)

so the original linear system is equivalent to the system

When we set , any solution of the linear system is of the form

To make this a probability vector, we set

Thus, the steady-state vector of the system is

This agrees with the result obtained numerically in Table 1. The entries of q give the long-run
probabilities that any one car will be returned to location 1, 2, or 3, respectively. If the car rental
agency has a fleet of 1000 cars, it should design its facilities so that there are at least 558 spaces at
location 1, at least 230 spaces at location 2, and at least 214 spaces at location 3.

 EXAMPLE 9    Example 5 Revisited

We will not give the details of the calculations but simply state that the unique probability vector
solution of the linear system  is



The entries in this vector indicate the proportion of time the traffic officer spends at each
intersection over the long term. Thus, if the objective is for her to spend the same proportion of
time at each intersection, then the strategy of random movement with equal probabilities from one
intersection to another is not a good one. (See Exercise 5.)

Exercise Set 10.5
1. Consider the transition matrix

(a)  
Calculate  for  if .

(b)  State why P is regular and find its steady-state vector.

Answer:

(a)  

(b)  

P is regular since all entries of P are positive; 

2. Consider the transition matrix



(a)  Calculate , , and  to three decimal places if

(b)  State why P is regular and find its steady-state vector.

Answer:

(a)  

(b)  

P is regular, since all entries of P are positive: 

3. Find the steady-state vectors of the following regular transition matrices:
(a)  

(b)  

(c)  

Answer:

(a)  

(b)  



(c)  

4. Let P be the transition matrix

(a)  Show that P is not regular.
(b)  Show that as n increases,  approaches  for any initial state vector .

(c)  What conclusion of Theorem 10.5.3 is not valid for the steady state of this transition matrix?

Answer:

(a)  

 Thus, no integer power of P has all positive entries.

(b)  
 as n increases, so  for any  as n increases.

(c)  The entries of the limiting vector  are not all positive.

5. Verify that if P is a  regular transition matrix all of whose row sums are equal to 1, then the entries of its
steady-state vector are all equal to .

6. Show that the transition matrix

is regular, and use Exercise 5 to find its steady-state vector.

Answer:



 has all positive entries; 

7. John is either happy or sad. If he is happy one day, then he is happy the next day four times out of five. If he
is sad one day, then he is sad the next day one time out of three. Over the long term, what are the chances that
John is happy on any given day?

Answer:

8. A country is divided into three demographic regions. It is found that each year 5% of the residents of region 1
move to region 2, and 5% move to region 3. Of the residents of region 2, 15% move to region 1 and 10%
move to region 3. And of the residents of region 3, 10% move to region 1 and 5% move to region 2. What
percentage of the population resides in each of the three regions after a long period of time?

Answer:

 in region 1,  in region 2, and  in region 3

Section 10.5 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal of these exercises is to provide you with a basic
proficiency with your technology utility. Once you have mastered the techniques in these exercises, you will be
able to use your technology utility to solve many of the problems in the regular exercise sets.

T1.  Consider the sequence of transition matrices

with



and so on.
(a)  Use a computer to show that each of these four matrices is regular by computing their squares.
(b)  Verify Theorem 10.5.2 by computing the 100th power of  for . Then make a conjecture as to

the limiting value of  as  for all .

(c)  Verify that the common column  of the limiting matrix you found in part (b) satisfies the equation
, as required by Theorem 10.5.4.

T2.  A mouse is placed in a box with nine rooms as shown in the accompanying figure. Assume that it is equally
likely that the mouse goes through any door in the room or stays in the room.
(a)  Construct the  transition matrix for this problem and show that it is regular.
(b)  Determine the steady-state vector for the matrix.
(c)  Use a symmetry argument to show that this problem may be solved using only a  matrix.

Figure Ex-T2   
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10.6  Graph Theory
In this section we introduce matrix representations of relations among members of a set. We use matrix
arithmetic to analyze these relationships.

Prerequisites

Matrix Addition and Multiplication

Relations Among Members of a Set

There are countless examples of sets with finitely many members in which some relation exists among
members of the set. For example, the set could consist of a collection of people, animals, countries,
companies, sports teams, or cities; and the relation between two members, A and B, of such a set could be that
person A dominates person B, animal A feeds on animal B, country A militarily supports country B, company
A sells its product to company B, sports team A consistently beats sports team B, or city A has a direct airline
flight to city B.

We will now show how the theory of directed graphs can be used to mathematically model relations such as
those in the preceding examples.

Directed Graphs

A directed graph is a finite set of elements, , together with a finite collection of ordered
pairs  of distinct elements of this set, with no ordered pair being repeated. The elements of the set are
called vertices, and the ordered pairs are called directed edges, of the directed graph. We use the notation

 (which is read “  is connected to ”) to indicate that the directed edge  belongs to the
directed graph. Geometrically, we can visualize a directed graph (Figure 10.6.1) by representing the vertices
as points in the plane and representing the directed edge  by drawing a line or arc from vertex  to
vertex , with an arrow pointing from  to . If both  and  hold (denoted , we
draw a single line between  and  with two oppositely pointing arrows (as with  and  in the figure).

Figure 10.6.1   



As in Figure 10.6.1, for example, a directed graph may have separate “components” of vertices that are
connected only among themselves; and some vertices, such as , may not be connected with any other
vertex. Also, because  is not permitted in a directed graph, a vertex cannot be connected with itself by
a single arc that does not pass through any other vertex.

Figure 10.6.2 shows diagrams representing three more examples of directed graphs. With a directed graph
having n vertices, we may associate an  matrix , called the vertex matrix of the directed
graph. Its elements are defined by

for i, . For the three directed graphs in Figure 10.6.2, the corresponding vertex matrices are



Figure 10.6.2   

By their definition, vertex matrices have the following two properties:
(i)  All entries are either 0 or 1.
(ii)  All diagonal entries are 0.
Conversely, any matrix with these two properties determines a unique directed graph having the given matrix
as its vertex matrix. For example, the matrix

determines the directed graph in Figure 10.6.3.



Figure 10.6.3   

 EXAMPLE 1    Influences Within a Family

A certain family consists of a mother, father, daughter, and two sons. The family members have
influence, or power, over each other in the following ways: the mother can influence the
daughter and the oldest son; the father can influence the two sons; the daughter can influence
the father; the oldest son can influence the youngest son; and the youngest son can influence the
mother. We may model this family influence pattern with a directed graph whose vertices are
the five family members. If family member A influences family member B, we write .
Figure 10.6.4 is the resulting directed graph, where we have used obvious letter designations for
the five family members. The vertex matrix of this directed graph is

Figure 10.6.4   

 EXAMPLE 2    Vertex Matrix: Moves on a Chessboard

In chess the knight moves in an “L”-shaped pattern about the chessboard. For the board in
Figure 10.6.5 it may move horizontally two squares and then vertically one square, or it may
move vertically two squares and then horizontally one square. Thus, from the center square in
the figure, the knight may move to any of the eight marked shaded squares. Suppose that the
knight is restricted to the nine numbered squares in Figure 10.6.6. If by  we mean that the
knight may move from square i to square j, the directed graph in Figure 10.6.7 illustrates all



possible moves that the knight may make among these nine squares. In Figure 10.6.8 we have
“unraveled” Figure 10.6.7 to make the pattern of possible moves clearer.

The vertex matrix of this directed graph is given by

Figure 10.6.5   

Figure 10.6.6   

Figure 10.6.7   



Figure 10.6.8   

In Example 1 the father cannot directly influence the mother; that is,  is not true. But he can influence
the youngest son, who can then influence the mother. We write this as  and call it a 2-step
connection from F to M. Analogously, we call  a 1-step connection,  a 3-step
connection, and so forth. Let us now consider a technique for finding the number of all possible r-step
connections  from one vertex  to another vertex  of an arbitrary directed graph. (This will
include the case when  and  are the same vertex.) The number of 1-step connections from  to  is
simply . That is, there is either zero or one 1-step connection from  to , depending on whether  is
zero or one. For the number of 2-step connections, we consider the square of the vertex matrix. If we let 

be the -th element of , we have

  (1)

Now, if , there is a 2-step connection  from  to . But if either  or  is
zero, such a 2-step connection is not possible. Thus  is a 2-step connection if and only if

. Similarly, for any ,  is a 2-step connection from  to  if and
only if the term  on the right side of 1 is one; otherwise, the term is zero. Thus, the right side of1 is
the total number of two 2-step connections from  to .

A similar argument will work for finding the number of -step connections from  to . In
general, we have the following result.

THEOREM 10.6.1

Let M be the vertex matrix of a directed graph and let  be the -th element of . Then 

is equal to the number of r-step connections from  to .

 EXAMPLE 3    Using Theorem 10.6.1



Figure 10.6.9 is the route map of a small airline that services the four cities , , , . As
a directed graph, its vertex matrix is

We have that

If we are interested in connections from city  to city , we may use Theorem 10.6.1 to find
their number. Because , there is one 1-step connection; because , there is one

2-step connection; and because , there are three 3-step connections. To verify this,
from Figure 10.6.9 we find

Figure 10.6.9   

Cliques

In everyday language a “clique” is a closely knit group of people (usually three or more) that tends to
communicate within itself and has no place for outsiders. In graph theory this concept is given a more precise
meaning.



DEFINITION 1

A subset of a directed graph is called a clique if it satisfies the following three conditions:
(i)  The subset contains at least three vertices.
(ii)  For each pair of vertices  and  in the subset, both  and  are true.

(iii)  The subset is as large as possible; that is, it is not possible to add another vertex to the subset and
still satisfy condition (ii).

This definition suggests that cliques are maximal subsets that are in perfect “communication” with each other.
For example, if the vertices represent cities, and  means that there is a direct airline flight from city

 to city , then there is a direct flight between any two cities within a clique in either direction.

 EXAMPLE 4    A Directed Graph with Two Cliques

The directed graph illustrated in Figure 10.6.10 (which might represent the route map of an
airline) has two cliques:

This example shows that a directed graph may contain several cliques and that a vertex may
simultaneously belong to more than one clique.

Figure 10.6.10   

For simple directed graphs, cliques can be found by inspection. But for large directed graphs, it would be
desirable to have a systematic procedure for detecting cliques. For this purpose, it will be helpful to define a
matrix  related to a given directed graph as follows:



The matrix S determines a directed graph that is the same as the given directed graph, with the exception that
the directed edges with only one arrow are deleted. For example, if the original directed graph is given by
Figure 10.6.11a, the directed graph that has S as its vertex matrix is given in Figure 10.6.11b. The matrix S
may be obtained from the vertex matrix M of the original directed graph by setting  if 
and setting  otherwise.

Figure 10.6.11   

The following theorem, which uses the matrix S, is helpful for identifying cliques.

THEOREM 10.6.2   Identifying Cliques

Let  be the -th element of . Then a vertex  belongs to some clique if and only if .

Proof   If , then there is at least one 3-step connection from  to itself in the modified directed graph
determined by S. Suppose it is . In the modified directed graph, all directed relations are
two-way, so we also have the connections . But this means that  is either a
clique or a subset of a clique. In either case,  must belong to some clique. The converse statement, “if 
belongs to a clique, then ,” follows in a similar manner.



 EXAMPLE 5    Using Theorem 10.6.2

Suppose that a directed graph has as its vertex matrix

Then

Because all diagonal entries of  are zero, it follows from Theorem 10.6.2 that the directed
graph has no cliques.

 EXAMPLE 6    Using Theorem 10.6.2

Suppose that a directed graph has as its vertex matrix

Then

The nonzero diagonal entries of  are , , and . Consequently, in the given directed
graph, , , and  belong to cliques. Because a clique must contain at least three vertices,
the directed graph has only one clique, .

Dominance-Directed Graphs

In many groups of individuals or animals, there is a definite “pecking order” or dominance relation between
any two members of the group. That is, given any two individuals A and B, either A dominates B or B



dominates A, but not both. In terms of a directed graph in which  means  dominates , this means
that for all distinct pairs, either  or , but not both. In general, we have the following
definition.

DEFINITION 2

A dominance-directed graph is a directed graph such that for any distinct pair of vertices  and ,
either  or , but not both.

An example of a directed graph satisfying this definition is a league of n sports teams that play each other
exactly one time, as in one round of a round-robin tournament in which no ties are allowed. If  means
that team  beat team  in their single match, it is easy to see that the definition of a dominance-directed
group is satisfied. For this reason, dominance-directed graphs are sometimes called tournaments.

Figure 10.6.12 illustrates some dominance-directed graphs with three, four, and five vertices, respectively. In
these three graphs, the circled vertices have the following interesting property: from each one there is either a
1-step or a 2-step connection to any other vertex in its graph. In a sports tournament, these vertices would
correspond to the most “powerful” teams in the sense that these teams either beat any given team or beat
some other team that beat the given team. We can now state and prove a theorem that guarantees that any
dominance-directed graph has at least one vertex with this property.

THEOREM 10.6.3   Connections in Dominance-Directed Graphs

In any dominance-directed graph, there is at least one vertex from which there is a 1-step or 2-step
connection to any other vertex.

Proof   Consider a vertex (there may be several) with the largest total number of 1-step and 2-step
connections to other vertices in the graph. By renumbering the vertices, we may assume that  is such a
vertex. Suppose there is some vertex  such that there is no 1-step or 2-step connection from  to . Then,
in particular,  is not true, so that by definition of a dominance-directed graph, it must be that

. Next, let  be any vertex such that  is true. Then we cannot have , as then
 would be a 2-step connection from  to . Thus, it must be that . That is,  has

1-step connections to all the vertices to which  has 1-step connections. The vertex  must then also have
2-step connections to all the vertices to which  has 2-step connections. But because, in addition, we have
that , this means that  has more 1-step and 2-step connections to other vertices than does .
However, this contradicts the way in which  was chosen. Hence, there can be no vertex  to which  has
no 1-step or 2-step connection.



Figure 10.6.12   

This proof shows that a vertex with the largest total number of 1-step and 2-step connections to other vertices
has the property stated in the theorem. There is a simple way of finding such vertices using the vertex matrix
M and its square . The sum of the entries in the ith row of M is the total number of 1-step connections
from  to other vertices, and the sum of the entries of the ith row of  is the total number of 2-step
connections from  to other vertices. Consequently, the sum of the entries of the ith row of the matrix

 is the total number of 1-step and 2-step connections from  to other vertices. In other words,
a row of  with the largest row sum identifies a vertex having the property stated in Theorem
10.6.3.

 EXAMPLE 7    Using Theorem 10.6.3

Suppose that five baseball teams play each other exactly once, and the results are as indicated in
the dominance-directed graph of Figure 10.6.13. The vertex matrix of the graph is



so

The row sums of A are

Because the second row has the largest row sum, the vertex  must have a 1-step or 2-step
connection to any other vertex. This is easily verified from Figure 10.6.13.

Figure 10.6.13   

We have informally suggested that a vertex with the largest number of 1-step and 2-step connections to other
vertices is a “powerful” vertex. We can formalize this concept with the following definition.

DEFINITION 3

The power of a vertex of a dominance-directed graph is the total number of 1-step and 2-step
connections from it to other vertices. Alternatively, the power of a vertex  is the sum of the entries
of the ith row of the matrix , where M is the vertex matrix of the directed graph.



 EXAMPLE 8    Example 7 Revisited

Let us rank the five baseball teams in Example 7 according to their powers. From the
calculations for the row sums in that example, we have

Hence, the ranking of the teams according to their powers would be

Exercise Set 10.6
1. Construct the vertex matrix for each of the directed graphs illustrated in Figure Ex-1.

Figure Ex-1   

Answer:



(a)  

(b)  

(c)  

2. Draw a diagram of the directed graph corresponding to each of the following vertex matrices.
(a)  

(b)  

(c)  

Answer:

(a)  



(b)  

(c)  

3. Let M be the following vertex matrix of a directed graph:

(a)  Draw a diagram of the directed graph.
(b)  Use Theorem 10.6.1 to find the number of 1-, 2-,and 3-step connections from the vertex  to the

vertex . Verify your answer by listing the various connections as in Example 3.
(c)  Repeat part (b) for the 1-, 2-, and 3-step connections from  to .

Answer:

(a)  

(b)  

(c)  

4. (a)  Compute the matrix product  for the vertex matrix M in Example 1.



(b)  Verify that the kth diagonal entry of  is the number of family members who influence the kth
family member. Why is this true?

(c)  Find a similar interpretation for the values of the nondiagonal entries of .

Answer:

(a)  

(c)  The th entry is the number of family members who influence both the ith and jth family members.

5. By inspection, locate all cliques in each of the directed graphs illustrated in Figure Ex-5.

Figure Ex-5   

Answer:

(a)  
(b)  
(c)   and 

6. For each of the following vertex matrices, use Theorem 10.6.2 to find all cliques in the corresponding
directed graphs.



(a)  

(b)  

Answer:

(a)  None
(b)  

7. For the dominance-directed graph illustrated in Figure Ex-7 construct the vertex matrix and find the power
of each vertex.

Figure Ex-7   

Answer:

8. Five baseball teams play each other one time with the following results:

Rank the five baseball teams in accordance with the powers of the vertices they correspond to in the
dominance-directed graph representing the outcomes of the games.



Answer:

First, A; second, B and E (tie); fourth, C; fifth, D

Section 10.6 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the
relevant documentation for the particular utility you are using. The goal of these exercises is to provide you
with a basic proficiency with your technology utility. Once you have mastered the techniques in these
exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.

T1.  A graph having n vertices such that every vertex is connected to every other vertex has a vertex matrix
given by

In this problem we develop a formula for  whose -th entry equals the number of k-step connections
from  to .

(a)  Use a computer to compute the eight matrices  for  and for .

(b)  Use the results in part (a) and symmetry arguments to show that  can be written as



(c)  Using the fact that , show that

with

(d)  Using part (c), show that

(e)  Use the methods of Section 5.2 to compute

and thereby obtain expressions for  and , and eventually show that

where  is the  matrix all of whose entries are ones and  is the  identity matrix.
(f)  Show that for , all vertices for these directed graphs belong to cliques.

T2.  Consider a round-robin tournament among n players (labeled , ,  ) where  beats , 
beats ,  beats   beats  and  beats . Compute the “power” of each player, showing that
they all have the same power; then determine that common power.
[Hint: Use a computer to study the cases ; then make a conjecture and prove your conjecture to
be true.]

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.7  Games of Strategy
In this section we discuss a general game in which two competing players choose separate strategies to reach opposing
objectives. The optimal strategy of each player is found in certain cases with the use of matrix techniques.

Prerequisites

Matrix Multiplication
Basic Probability Concepts

Game Theory

To introduce the basic concepts in the theory of games, we will consider the following carnival-type game that two
people agree to play. We will call the participants in the game player R and player C. Each player has a stationary wheel
with a movable pointer on it as in Figure 10.7.1. For reasons that will become clear, we will call player R's wheel the
row-wheel and player C's wheel the column-wheel. The row-wheel is divided into three sectors numbered 1, 2, and 3,
and the column-wheel is divided into four sectors numbered 1, 2, 3, and 4. The fractions of the area occupied by the
various sectors are indicated in the figure. To play the game, each player spins the pointer of his or her wheel and lets it
come to rest at random. The number of the sector in which each pointer comes to rest is called the move of that player.
Thus, player R has three possible moves and player C has four possible moves. Depending on the move each player
makes, player C then makes a payment of money to player R according to Table 1.

Figure 10.7.1   

Table 1



For example, if the row-wheel pointer comes to rest in sector 1 (player R makes move 1), and the column-wheel pointer
comes to rest in sector 2 (player C makes move 2), then player C must pay player R the sum of $5. Some of the entries
in this table are negative, indicating that player C makes a negative payment to player R. By this we mean that player R
makes a positive payment to player C. For example, if the row-wheel shows 2 and the column-wheel shows 4, then
player R pays player C the sum of $4, because the corresponding entry in the table is −$4. In this way the positive entries
of the table are the gains of player R and the losses of player C, and the negative entries are the gains of player C and the
losses of player R.

In this game the players have no control over their moves; each move is determined by chance. However, if each player
can decide whether he or she wants to play, then each would want to know how much he or she can expect to win or lose
over the long term if he or she chooses to play. (Later in the section we will discuss this question and also consider a
more complicated situation in which the players can exercise some control over their moves by varying the sectors of
their wheels.)

Two-Person Zero-Sum Matrix Games

The game described above is an example of a two-person zero-sum matrix game. The term zero-sum means that in each
play of the game, the positive gain of one player is equal to the negative gain (loss) of the other player. That is, the sum
of the two gains is zero. The term matrix game is used to describe a two-person game in which each player has only a
finite number of moves, so that all possible outcomes of each play, and the corresponding gains of the players, can be
displayed in tabular or matrix form, as in Table 1.

In a general game of this type, let player R have m possible moves and let player C have n possible moves. In a play of
the game, each player makes one of his or her possible moves, and then a payoff is made from player C to player R,
depending on the moves. For , and , let us set

This payoff need not be money; it can be any type of commodity to which we can attach a numerical value. As before, if
an entry  is negative, we mean that player C receives a payoff of  from player R. We arrange these mn possible
payoffs in the form of an  matrix

which we will call the payoff matrix of the game.

Each player is to make his or her moves on a probabilistic basis. For example, for the game discussed in the



introduction, the ratio of the area of a sector to the area of the wheel would be the probability that the player makes the
move corresponding to that sector. Thus, from Figure 10.7.1, we see that player R would make move 2 with probability

, and player C would make move 2 with probability . In the general case we make the following definitions:

It follows from these definitions that

and

With the probabilities  and  we form two vectors:

We call the row vector p the strategy of player R and the column vector q the strategy of player C. For example, from
Figure 10.7.1 we have

for the carnival game described earlier.

From the theory of probability, if the probability that player R makes move i is , and independently the probability that
player C makes move j is , then  is the probability that for any one play of the game, player R makes move i and
player C makes move j. The payoff to player R for such a pair of moves is . If we multiply each possible payoff by its
corresponding probability and sum over all possible payoffs, we obtain the expression

  (1)

Equation 1 is a weighted average of the payoffs to player R; each payoff is weighted according to the probability of its
occurrence. In the theory of probability, this weighted average is called the expected payoff to player R. It can be shown
that if the game is played many times, the long-term average payoff per play to player R is given by this expression. We
denote this expected payoff by  to emphasize the fact that it depends on the strategies of the two players. From
the definition of the payoff matrix A and the strategies p and q, it can be verified that we may express the expected
payoff in matrix notation as

  (2)

Because  is the expected payoff to player R, it follows that  is the expected payoff to player C.



 EXAMPLE 1    Expected Payoff to Player R

For the carnival game described earlier, we have

Thus, in the long run, player R can expect to receive an average of about 18 cents from player C in each
play of the game.

So far we have been discussing the situation in which each player has a predetermined strategy. We will now consider
the more difficult situation in which both players can change their strategies independently. For example, in the game
described in the introduction, we would allow both players to alter the areas of the sectors of their wheels and thereby
control the probabilities of their respective moves. This qualitatively changes the nature of the problem and puts us
firmly in the field of true game theory. It is understood that neither player knows what strategy the other will choose. It
is also assumed that each player will make the best possible choice of strategy and that the other player knows this.
Thus, player R attempts to choose a strategy p such that  is as large as possible for the best strategy q that player
C can choose; and similarly, player C attempts to choose a strategy q such that  is as small as possible for the
best strategy p that player R can choose. To see that such choices are actually possible, we will need the following
theorem, called the Fundamental Theorem of Two-Person Zero-Sum Games. (The general proof, which involves ideas
from the theory of linear programming, will be omitted. However, below we will prove this theorem for what are called
strictly determined games and  matrix games.)

THEOREM 10.7.1   Fundamental Theorem of Zero-Sum Games

There exist strategies  and  such that

  (3)

for all strategies p and q.

The strategies  and  in this theorem are the best possible strategies for players R and C, respectively. To see why

this is so, let . The left-hand inequality of Equation 3 then reads

This means that if player R chooses the strategy , then no matter what strategy q player C chooses, the expected
payoff to player R will never be below v. Moreover, it is not possible for player R to achieve an expected payoff greater
than v. To see why, suppose there is some strategy  that player R can choose such that



Then, in particular,

But this contradicts the right-hand inequality of Equation 3, which requires that . Consequently, the best
player R can do is prevent his or her expected payoff from falling below the value v. Similarly, the best player C can do
is ensure that player R's expected payoff does not exceed v, and this can be achieved by using strategy .

On the basis of this discussion, we arrive at the following definitions.

DEFINITION 1

If  and  are strategies such that

  (4)

for all strategies p and q, then
(i)   is called an optimal strategy for player R.

(ii)   is called an optimal strategy for player C.

(iii)   is called the value of the game.

The wording in this definition suggests that optimal strategies are not necessarily unique. This is indeed the case, and in
Exercise 2 we ask you to show this. However, it can be proved that any two sets of optimal strategies always result in
the same value v of the game. That is, if ,  and ,  are optimal strategies, then

  (5)

The value of a game is thus the expected payoff to player R when both players choose any possible optimal strategies.

To find optimal strategies, we must find vectors  and  that satisfy Equation 4. This is generally done by using linear
programming techniques. Next, we discuss special cases for which optimal strategies may be found by more elementary
techniques.

We now introduce the following definition.

DEFINITION 2

An entry  in a payoff matrix A is called a saddle point if
(i)   is the smallest entry in its row, and
(ii)   is the largest entry in its column.
A game whose payoff matrix has a saddle point is called strictly determined.

For example, the shaded element in each of the following payoff matrices is a saddle point:



If a matrix has a saddle point , it turns out that the following strategies are optimal strategies for the two players:

That is, an optimal strategy for player R is to always make the rth move, and an optimal strategy for player C is to
always make the sth move. Such strategies for which only one move is possible are called pure strategies. Strategies for
which more than one move is possible are called mixed strategies. To show that the above pure strategies are optimal,
you can verify the following three equations (see Exercise 6):

  (6)

  (7)

  (8)

Together, these three equations imply that

for all strategies p and q. Because this is exactly Equation 4, it follows that  and  are optimal strategies.

From Equation 6 the value of a strictly determined game is simply the numerical value of a saddle point . It is
possible for a payoff matrix to have several saddle points, but then the uniqueness of the value of a game guarantees that
the numerical values of all saddle points are the same.

 EXAMPLE 2    Optimal Strategies to Maximize a Viewing Audience

Two competing television networks, R and C, are scheduling one-hour programs in the same time period.
Network R can schedule one of three possible programs, and network C can schedule one of four possible
programs. Neither network knows which program the other will schedule. Both networks ask the same
outside polling agency to give them an estimate of how all possible pairings of the programs will divide the
viewing audience. The agency gives them each Table 2, whose -th entry is the percentage of the
viewing audience that will watch network R if network R's program i is paired against network C's program
j. What program should each network schedule in order to maximize its viewing audience?

Table 2



Solution   Subtract 50 from each entry in Table 2 to construct the following matrix:

This is the payoff matrix of the two-person zero-sum game in which each network is considered to start
with 50% of the audience, and the -th entry of the matrix is the percentage of the viewing audience
that network C loses to network R if programs i and j are paired against each other. It is easy to see that the
entry

is a saddle point of the payoff matrix. Hence, the optimal strategy of network R is to schedule program 2,
and the optimal strategy of network C is to schedule program 3. This will result in network R's receiving
45% of the audience and network C's receiving 55% of the audience.

2 × 2 Matrix Games

Another case in which the optimal strategies can be found by elementary means occurs when each player has only two
possible moves. In this case, the payoff matrix is a  matrix

If the game is strictly determined, at least one of the four entries of A is a saddle point, and the techniques discussed
above can then be applied to determine optimal strategies for the two players. If the game is not strictly determined, we
first compute the expected payoff for arbitrary strategies p and q:

  (9)

Because

  (10)

we may substitute  and  into 9 to obtain

  (11)



If we rearrange the terms in Equation 11, we can write

  (12)

By examining the coefficient of the  term in 12, we see that if we set

  (13)

then that coefficient is zero, and 12 reduces to

  (14)

Equation 14 is independent of q; that is, if player R chooses the strategy determined by 13, player C cannot change the
expected payoff by varying his or her strategy.

In a similar manner, it can be verified that if player C chooses the strategy determined by

  (15)

then substituting in 12 gives

  (16)

Equations 14 and 16 show that

  (17)

for all strategies p and q. Thus, the strategies determined by 13, 15, and 10 are optimal strategies for players R and C,
respectively, and so we have the following result.

THEOREM 10.7.2   Optimal Strategies for a 2 × 2 Matrix Game

For a  game that is not strictly determined, optimal strategies for players R and C are

and

The value of the game is

In order to be complete, we must show that the entries in the vectors  and  are numbers strictly between 0 and 1. In
Exercise 8 we ask you to show that this is the case as long as the game is not strictly determined.



Equation 17 is interesting in that it implies that either player can force the expected payoff to be the value of the game
by choosing his or her optimal strategy, regardless of which strategy the other player chooses. This is not true, in
general, for games in which either player has more than two moves.

 EXAMPLE 3    Using Theorem 10.7.2

The federal government desires to inoculate its citizens against a certain flu virus. The virus has two
strains, and the proportions in which the two strains occur in the virus population is not known. Two
vaccines have been developed and each citizen is given only one of them. Vaccine 1 is 85% effective
against strain 1 and 70% effective against strain 2. Vaccine 2 is 60% effective against strain 1 and 90%
effective against strain 2. What inoculation policy should the government adopt?

Solution   We can consider this a two-person game in which player R (the government) desires to make
the payoff (the fraction of citizens resistant to the virus) as large as possible, and player C (the virus)
desires to make the payoff as small as possible. The payoff matrix is

This matrix has no saddle points, so Theorem 10.7.2 is applicable. Consequently,

Thus, the optimal strategy for the government is to inoculate  of the citizens with vaccine 1 and  of the

citizens with vaccine 2. This will guarantee that about 76.7% of the citizens will be resistant to a virus
attack regardless of the distribution of the two strains.

In contrast, a virus distribution of  of strain 1 and  of strain 2 will result in the same 76.7% of resistant

citizens, regardless of the inoculation strategy adopted by the government (see Exercise 7).

Exercise Set 10.7
1. Suppose that a game has a payoff matrix



(a)  If players R and C use strategies

respectively, what is the expected payoff of the game?
(b)  If player C keeps his strategy fixed as in part (a), what strategy should player R choose to maximize his expected

payoff?
(c)  If player R keeps her strategy fixed as in part (a), what strategy should player C choose to minimize the expected

payoff to player R?

Answer:

(a)  
(b)  
(c)  

2. Construct a simple example to show that optimal strategies are not necessarily unique. For example, find a payoff
matrix with several equal saddle points.

Answer:

Let , for example.

3. For the strictly determined games with the following payoff matrices, find optimal strategies for the two players, and
find the values of the games.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  



(b)  

(c)  

(d)  

4. For the  games with the following payoff matrices, find optimal strategies for the two players, and find the
values of the games.
(a)  

(b)  

(c)  

(d)  

(e)  

Answer:

(a)  

(b)  

(c)  

(d)  

(e)  

5. Player R has two playing cards: a black ace and a red four. Player C also has two cards: a black two and a red three.
Each player secretly selects one of his or her cards. If both selected cards are the same color, player C pays player R
the sum of the face values in dollars. If the cards are different colors, player R pays player C the sum of the face
values. What are optimal strategies for both players, and what is the value of the game?

Answer:



6. Verify Equations 6, 7, and 8.

7. Verify the statement in the last paragraph of Example 3.

8. Show that the entries of the optimal strategies  and  given in Theorem 10.7.2 are numbers strictly between zero
and one.

Section 10.7 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a scientific
calculator with some linear algebra capabilities. For each exercise you will need to read the relevant documentation for
the particular utility you are using. The goal of these exercises is to provide you with a basic proficiency with your
technology utility. Once you have mastered the techniques in these exercises, you will be able to use your technology
utility to solve many of the problems in the regular exercise sets.

T1.  Consider a game between two players where each player can make up to n different moves . If the ith move
of player R and the jth move of player C are such that  is even, then C pays R $1. If  is odd, then R pays C $1.
Assume that both players have the same strategy—that is,  and , where

. Use a computer to show that

Using these results as a guide, prove in general that the expected payoff to player R is

which shows that in the long run, player R will not lose in this game.

T2.  Consider a game between two players where each player can make up to n different moves . If both players
make the same move, then player C pays player R . However, if both players make different moves, then
player R pays player C $1. Assume that both players have the same strategy—that is,  and ,
where . Use a computer to show that



Using these results as a guide, prove in general that the expected payoff to player R is

which shows that in the long run, player R will not lose in this game.
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10.8  Leontief Economic Models
In this section we discuss two linear models for economic systems. Some results about nonnegative matrices are applied to determine
equilibrium price structures and outputs necessary to satisfy demand.

Prerequisites

Linear Systems
Matrices

Economic Systems

Matrix theory has been very successful in describing the interrelations among prices, outputs, and demands in economic systems. In
this section we discuss some simple models based on the ideas of Nobel laureate Wassily Leontief. We examine two different but
related models: the closed or input-output model, and the open or production model. In each, we are given certain economic
parameters that describe the interrelations between the “industries” in the economy under consideration. Using matrix theory, we then
evaluate certain other parameters, such as prices or output levels, in order to satisfy a desired economic objective. We begin with the
closed model.

Leontief Closed (Input-Output) Model

First we present a simple example; then we proceed to the general theory of the model.

 EXAMPLE 1    An Input-Output Model

Three homeowners—a carpenter, an electrician, and a plumber—agree to make repairs in their three homes. They agree
to work a total of 10 days each according to the following schedule:

For tax purposes, they must report and pay each other a reasonable daily wage, even for the work each does on his or her
own home. Their normal daily wages are about $100, but they agree to adjust their respective daily wages so that each
homeowner will come out even—that is, so that the total amount paid out by each is the same as the total amount each
receives. We can set

To satisfy the “equilibrium” condition that each homeowner comes out even, we require that

for each of the homeowners for the 10-day period. For example, the carpenter pays a total of  for the



repairs in his own home and receives a total income of  for the repairs that he performs on all three homes.
Equating these two expressions then gives the first of the following three equations:

The remaining two equations are the equilibrium equations for the electrician and the plumber. Dividing these equations
by 10 and rewriting them in matrix form yields

  (1)

Equation 1 can be rewritten as a homogeneous system by subtracting the left side from the right side to obtain

The solution of this homogeneous system is found to be (verify)

where s is an arbitrary constant. This constant is a scale factor, which the homeowners may choose for their
convenience. For example, they can set  so that the corresponding daily wages—$93, $96, and $108—are about
$100.

This example illustrates the salient features of the Leontief input-output model of a closed economy. In the basic Equation 1, each
column sum of the coefficient matrix is 1, corresponding to the fact that each of the homeowners' “output” of labor is completely
distributed among these same homeowners in the proportions given by the entries in the column. Our problem is to determine suitable
“prices” for these outputs so as to put the system in equilibrium—that is, so that each homeowner's total expenditures equal his or her
total income.

In the general model we have an economic system consisting of a finite number of “industries,” which we number as industries
. Over some fixed period of time, each industry produces an “output” of some good or service that is completely utilized in a

predetermined manner by the k industries. An important problem is to find suitable “prices” to be charged for these k outputs so that
for each industry, total expenditures equal total income. Such a price structure represents an equilibrium position for the economy.

For the fixed time period in question, let us set

for . By definition, we have

With these quantities, we form the price vector

and the exchange matrix or input-output matrix



Condition (iii) expresses the fact that all the column sums of the exchange matrix are 1.

As in the example, in order that the expenditures of each industry be equal to its income, the following matrix equation must be
satisfied [see 1]:

  (2)

or

  (3)

Equation 3 is a homogeneous linear system for the price vector p. It will have a nontrivial solution if and only if the determinant of its
coefficient matrix  is zero. In Exercise 7 we ask you to show that this is the case for any exchange matrix E. Thus, 3 always has
nontrivial solutions for the price vector p.

Actually, for our economic model to make sense, we need more than just the fact that 3 has nontrivial solutions for p. We also need the
prices  of the k outputs to be nonnegative numbers. We express this condition as . (In general, if A is any vector or matrix, the
notation  means that every entry of A is nonnegative, and the notation  means that every entry of A is positive. Similarly,

 means , and  means .) To show that 3 has a nontrivial solution for which  is a bit more difficult
than showing merely that some nontrivial solution exists. But it is true, and we state this fact without proof in the following theorem.

THEOREM 10.8.1

If E is an exchange matrix, then  always has a nontrivial solution p whose entries are nonnegative.

Let us consider a few simple examples of this theorem.

 EXAMPLE 2    Using Theorem 10.8.1

Let

Then  is

which has the general solution

where s is an arbitrary constant. We then have nontrivial solutions  for any .

 EXAMPLE 3    Using Theorem 10.8.1



Let

Then  has the general solution

where s and t are independent arbitrary constants. Nontrivial solutions  then result from any  and , not
both zero.

Example 2 indicates that in some situations one of the prices must be zero in order to satisfy the equilibrium condition. Example 3
indicates that there may be several linearly independent price structures available. Neither of these situations describes a truly
interdependent economic structure. The following theorem gives sufficient conditions for both cases to be excluded.

THEOREM 10.8.2

Let E be an exchange matrix such that for some positive integer m all the entries of  are positive. Then there is exactly one
linearly independent solution of  and it may be chosen so that all its entries are positive.

We will not give a proof of this theorem. If you have read Section 10.5 on Markov chains, observe that this theorem is essentially the
same as Theorem 10.5.4. What we are calling exchange matrices in this section were called stochastic or Markov matrices in Section
10.5.

 EXAMPLE 4    Using Theorem 10.8.2

The exchange matrix in Example 1 was

Because , the condition  in Theorem 10.8.2 is satisfied for . Consequently, we are guaranteed that
there is exactly one linearly independent solution of , and it can be chosen so that . In that example,
we found that

is such a solution.

Leontief Open (Production) Model

In contrast with the closed model, in which the outputs of k industries are distributed only among themselves, the open model attempts
to satisfy an outside demand for the outputs. Portions of these outputs can still be distributed among the industries themselves, to keep
them operating, but there is to be some excess, some net production, with which to satisfy the outside demand. In the closed model the
outputs of the industries are fixed, and our objective is to determine prices for these outputs so that the equilibrium condition, that
expenditures equal incomes, is satisfied. In the open model it is the prices that are fixed, and our objective is to determine levels of the
outputs of the industries needed to satisfy the outside demand. We will measure the levels of the outputs in terms of their economic
values using the fixed prices. To be precise, over some fixed period of time, let



With these quantities, we define the production vector

the demand vector

and the consumption matrix

By their nature, we have that

From the definition of  and , it can be seen that the quantity

is the value of the output of the ith industry needed by all k industries to produce a total output specified by the production vector x.
Because this quantity is simply the ith entry of the column vector , we can say further that the ith entry of the column vector

is the value of the excess output of the ith industry available to satisfy the outside demand. The value of the outside demand for the
output of the ith industry is the ith entry of the demand vector d. Consequently, we are led to the following equation

or

  (4)

for the demand to be exactly met, without any surpluses or shortages. Thus, given C and d, our objective is to find a production vector
 that satisfies Equation 4.

 EXAMPLE 5    Production Vector for a Town

A town has three main industries: a coal-mining operation, an electric power-generating plant, and a local railroad. To
mine $1 of coal, the mining operation must purchase $.25 of electricity to run its equipment and $.25 of transportation
for its shipping needs. To produce $1 of electricity, the generating plant requires $.65 of coal for fuel, $.05 of its own
electricity to run auxiliary equipment, and $.05 of transportation. To provide $1 of transportation, the railroad requires
$.55 of coal for fuel and $.10 of electricity for its auxiliary equipment. In a certain week the coal-mining operation
receives orders for $50,000 of coal from outside the town, and the generating plant receives orders for $25,000 of
electricity from outside. There is no outside demand for the local railroad. How much must each of the three industries
produce in that week to exactly satisfy their own demand and the outside demand?

Solution   For the one-week period let

From the information supplied, the consumption matrix of the system is



The linear system  is then

The coefficient matrix on the left is invertible, and the solution is given by

Thus, the total output of the coal-mining operation should be $102,087, the total output of the power-generating plant
should be $56,163, and the total output of the railroad should be $28,330.

Let us reconsider Equation 4:

If the square matrix  is invertible, we can write

  (5)

In addition, if the matrix  has only nonnegative entries, then we are guaranteed that for any , Equation 5 has a unique
nonnegative solution for x. This is a particularly desirable situation, as it means that any outside demand can be met. The terminology
used to describe this case is given in the following definition.

DEFINITION 1

A consumption matrix C is said to be productive if  exists and

We will now consider some simple criteria that guarantee that a consumption matrix is productive. The first is given in the following
theorem.

THEOREM 10.8.3   Productive Consumption Matrix

A consumption matrix C is productive if and only if there is some production vector  such that .

(The proof is outlined in Exercise 9.) The condition  means that there is some production schedule possible such that each
industry produces more than it consumes.

Theorem 10.8.3 has two interesting corollaries. Suppose that all the row sums of C are less than 1. If



then  is a column vector whose entries are these row sums. Therefore, , and the condition of Theorem 10.8.3 is satisfied.
Thus, we arrive at the following corollary:

COROLLARY 10.8.4

A consumption matrix is productive if each of its row sums is less than 1.

As we ask you to show in Exercise 8, this corollary leads to the following:

COROLLARY 10.8.5

A consumption matrix is productive if each of its column sums is less than 1.

Recalling the definition of the entries of the consumption matrix C, we see that the jth column sum of C is the total value of the outputs
of all k industries needed to produce one unit of value of output of the jth industry. The jth industry is thus said to be profitable if that
jth column sum is less than 1. In other words, Corollary 10.8.5 says that a consumption matrix is productive if all k industries in the
economic system are profitable.

 EXAMPLE 6    Using Corollary 10.8.5

The consumption matrix in Example 5 was

All three column sums in this matrix are less than 1, so all three industries are profitable. Consequently, by Corollary
10.8.5, the consumption matrix C is productive. This can also be seen in the calculations in Example 5, as  is
nonnegative.

Exercise Set 10.8
1. For the following exchange matrices, find nonnegative price vectors that satisfy the equilibrium condition 3.

(a)  

(b)  

(c)  

Answer:



(a)  

(b)  

(c)  

2. Using Theorem 10.8.3 and its corollaries, show that each of the following consumption matrices is productive.
(a)  

(b)  

(c)  

Answer:

(a)  Use Corollary 10.8.4; all row sums are less than one.
(b)  Use Corollary 10.8.5; all column sums are less than one.
(c)  

Use Theorem 10.8.3, with .

3. Using Theorem 10.8.2, show that there is only one linearly independent price vector for the closed economic system with exchange
matrix

Answer:

 has all positive entries.

4. Three neighbors have backyard vegetable gardens. Neighbor A grows tomatoes, neighbor B grows corn, and neighbor C grows
lettuce. They agree to divide their crops among themselves as follows: A gets  of the tomatoes,  of the corn, and  of the

lettuce. B gets  of the tomatoes,  of the corn, and  of the lettuce. C gets  of the tomatoes,  of the corn,  of the lettuce.

What prices should the neighbors assign to their respective crops if the equilibrium condition of a closed economy is to be satisfied,
and if the lowest-priced crop is to have a price of $100?

Answer:

Price of tomatoes, $120.00; price of corn, $100.00; price of lettuce, $106.67

5. Three engineers—a civil engineer (CE), an electrical engineer (EE), and a mechanical engineer (ME)—each have a consulting firm.
The consulting they do is of a multidisciplinary nature, so they buy a portion of each others' services. For each $1 of consulting the
CE does, she buys $.10 of the EE's services and $.30 of the ME's services. For each $1 of consulting the EE does, she buys $.20 of
the CE's services and $.40 of the ME's services. And for each $1 of consulting the ME does, she buys $.30 of the CE's services and
$.40 of the EE's services. In a certain week the CE receives outside consulting orders of $500, the EE receives outside consulting
orders of $700, and the ME receives outside consulting orders of $600. What dollar amount of consulting does each engineer
perform in that week?

Answer:



$1256 for the CE, $1448 for the EE, $1556 for the ME

6. (a)  Suppose that the demand  for the output of the ith industry increases by one unit. Explain why the ith column of the matrix
 is the increase that must be made to the production vector x to satisfy this additional demand.

(b)  Referring to Example 5, use the result in part (a) to determine the increase in the value of the output of the coal-mining
operation needed to satisfy a demand of one additional unit in the value of the output of the power-generating plant.

Answer:

(b)  

7. Using the fact that the column sums of an exchange matrix E are all 1, show that the column sums of  are zero. From this,
show that  has zero determinant, and so  has nontrivial solutions for p.

8. Show that Corollary 10.8.5 follows from Corollary 10.8.4.
[Hint: Use the fact that  for any invertible matrix A.]

9. (Calculus required) Prove Theorem 10.8.3 as follows:
(a)  Prove the “only if” part of the theorem; that is, show that if C is a productive consumption matrix, then there is a vector 

such that .
(b)  Prove the “if” part of the theorem as follows:

Step 1  Show that if there is a vector  such that , then .

Step 2  Show that there is a number λ such that  and .

Step 3  Show that  for .

Step 4  Show that  as .

Step 5  By multiplying out, show that

for .

Step 6  By letting  in Step 5, show that the matrix infinite sum

exists and that .

Step 7  Show that  and that .

Step 8  Show that C is a productive consumption matrix.

Section 10.8 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica, Maple,
Derive, or Mathcad, but it may also be some other type of linear algebra software or a scientific calculator with some linear algebra
capabilities. For each exercise you will need to read the relevant documentation for the particular utility you are using. The goal of
these exercises is to provide you with a basic proficiency with your technology utility. Once you have mastered the techniques in
these exercises, you will be able to use your technology utility to solve many of the problems in the regular exercise sets.

T1.  Consider a sequence of exchange matrices  where



and so on. Use a computer to show that , , , , and make the conjecture that although  is true,
 is not true for  . Next, use a computer to determine the vectors  such that  (for , 3, 4,

5, 6), and then see if you can discover a pattern that would allow you to compute  easily from . Test your discovery by first
constructing  from

and then checking to see whether .

T2.  Consider an open production model having n industries with . In order to produce $1 of its own output, the jth industry must
spend  for the output of the ith industry (for all ), but the jth industry (for all ) spends nothing for its own
output. Construct the consumption matrix , show that it is productive, and determine an expression for . In
determining an expression for , use a computer to study the cases when , 3, 4, and 5; then make a conjecture and
prove your conjecture to be true. [Hint: If  (i.e., the  matrix with every entry equal to 1), first show that

and then express your value of  in terms of n, , and .]

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.9  Forest Management
In this section we discuss a matrix model for the management of a forest where trees are grouped into classes according to height.
The optimal sustainable yield of a periodic harvest is calculated when the trees of different height classes can have different
economic values.

Prerequisites

Matrix Operations

Optimal Sustainable Yield

Our objective is to introduce a simplified model for the sustainable harvesting of a forest whose trees are classified by height. The
height of a tree is assumed to determine its economic value when it is cut down and sold. Initially, there is a distribution of trees
of various heights. The forest is then allowed to grow for a certain period of time, after which some of the trees of various heights
are harvested. The trees left unharvested are to be of the same height configuration as the original forest, so that the harvest is
sustainable. As we will see, there are many such sustainable harvesting procedures. We want to find one for which the total
economic value of all the trees removed is as large as possible. This determines the optimal sustainable yield of the forest and is
the largest yield that can be attained continually without depleting the forest.

The Model

Suppose that a harvester has a forest of Douglas fir trees that are to be sold as Christmas trees year after year. Every December
the harvester cuts down some of the trees to be sold. For each tree cut down, a seedling is planted in its place. In this way the total
number of trees in the forest is always the same. (In this simplified model, we will not take into account trees that die between
harvests. We assume that every seedling planted survives and grows until it is harvested.)

In the marketplace, trees of different heights have different economic values. Suppose that there are n different price classes
corresponding to certain height intervals, as shown in Table 1 and Figure 10.9.1.The first class consists of seedlings with heights
in the interval , and these seedlings are of no economic value. The nth class consists of trees with heights greater than or
equal to .

Figure 10.9.1   

Table 1



Let   be the number of trees within the ith class that remain after each harvest. We form a column vector with
the numbers and call it the nonharvest vector:

For a sustainable harvesting policy, the forest is to be returned after each harvest to the fixed configuration given by the
nonharvest vector x. Part of our problem is to find those nonharvest vectors x for which sustainable harvesting is possible.

Because the total number of trees in the forest is fixed, we can set

  (1)

where s is predetermined by the amount of land available and the amount of space each tree requires. Referring to Figure 10.9.2,
we have the following situation. The forest configuration is given by the vector x after each harvest. Between harvests the trees
grow and produce a new forest configuration before each harvest. A certain number of trees are removed from each class at the
harvest. Finally, a seedling is planted in place of each tree removed, to return the forest again to the configuration x.

Figure 10.9.2   

Consider first the growth of the forest between harvests. During this period a tree in the ith class may grow and move up to a



higher height class. Or its growth may be retarded for some reason, and it will remain in the same class. We consequently define
the following growth parameters  for :

For simplicity we assume that a tree can move at most one height class upward in one growth period. With this assumption, we
have

With these  growth parameters, we form the following  growth matrix:

  (2)

Because the entries of the vector x are the numbers of trees in the n classes before the growth period, you can verify that the
entries of the vector

  (3)

are the numbers of trees in the n classes after the growth period.

Suppose that during the harvest we remove   trees from the ith class. We will call the column vector

the harvest vector. Thus, a total of

trees are removed at each harvest. This is also the total number of trees added to the first class (the new seedlings) after each
harvest. If we define the following  replacement matrix

  (4)

then the column vector

  (5)

specifies the configuration of trees planted after each harvest.

At this point we are ready to write the following equation, which characterizes a sustainable harvesting policy:



or mathematically,

This equation can be rewritten as

  (6)

or more comprehensively as

We will refer to Equation 6 as the sustainable harvesting condition. Any vectors x and y with nonnegative entries, and such that
, which satisfy this matrix equation, determine a sustainable harvesting policy for the forest. Note that

if , then the harvester is removing seedlings of no economic value and replacing them with new seedlings. Because there is
no point in doing this, we assume that

  (7)

With this assumption, it can be verified that 6 is the matrix form of the following set of equations:

  (8)

Note that the first equation in 8 is the sum of the remaining  equations.

Because we must have  for , Equations 8 require that

  (9)

Conversely, if x is a column vector with nonnegative entries that satisfy Equation 9, then 7 and 8 define a column vector y with
nonnegative entries. Furthermore, x and y then satisfy the sustainable harvesting condition 6. In other words, a necessary and
sufficient condition for a nonnegative column vector x to determine a forest configuration that is capable of sustainable
harvesting is that its entries satisfy 9.

Optimal Sustainable Yield

Because we remove  trees from the ith class  and each tree in the ith class has an economic value of , the
total yield of the harvest, Yld, is given by

  (10)



Using 8, we may substitute for the 's in 10 to obtain

  (11)

Combining 11, 1, and 9, we can now state the problem of maximizing the yield of the forest over all possible sustainable
harvesting policies as follows:

Problem

Find nonnegative numbers  that maximize

subject to

and

As formulated above, this problem belongs to the field of linear programming. However, we will illustrate the following result,
without linear programming theory, by actually exhibiting a sustainable harvesting policy.

THEOREM 10.9.1   Optimal Sustainable Yield

The optimal sustainable yield is achieved by harvesting all the trees from one particular height class and none of the trees
from any other height class.

Let us first set

The largest value of  for  will then be the optimal sustainable yield, and the corresponding value of k will be
the class that should be completely harvested to attain the optimal sustainable yield. Because no class but the kth is harvested, we
have

  (12)

In addition, because all of the kth class is harvested, no trees are ever present in the height classes above the kth class. Thus,

  (13)

Substituting 12 and 13 into the sustainable harvesting condition 8 gives

  (14)

Equations 14 can also be written as



  (15)

from which it follows that

  (16)

If we substitute Equations 13 and 16 into

[which is Equation 1], we can solve for  and obtain

  (17)

For the yield , we combine 10, 12, 15, and 17 to obtain

  (18)

Equation 18 determines  in terms of the known growth and economic parameters for any . Thus, the optimal
sustainable yield is found as follows.

THEOREM 10.9.2   Finding the Optimal Sustainable Yield

The optimal sustainable yield is the largest value of

for . The corresponding value of k is the number of the class that is completely harvested.

In Exercise 4 we ask you to show that the nonharvest vector x for the optimal sustainable yield is

  (19)

Theorem 10.9.2 implies that it is not necessarily the highest-priced class of trees that should be totally cropped. The growth
parameters  must also be taken into account to determine the optimal sustainable yield.

 EXAMPLE 1    Using Theorem 10.9.2



For a Scots pine forest in Scotland with a growth period of six years, the following growth matrix was found (see
M. B. Usher, “A Matrix Approach to the Management of Renewable Resources, with Special Reference to Selection
Forests,” Journal of Applied Ecology, vol. 3, 1966, pp. 355–367):

Suppose that the prices of trees in the five tallest height classes are

Which class should be completely harvested to obtain the optimal sustainable yield, and what is that yield?

Solution   From matrix G we have that

Equation 18 then gives

We see that  is the largest of these five quantities, so from Theorem 10.9.2 the third class should be completely
harvested every six years to maximize the sustainable yield. The corresponding optimal sustainable yield is $14.7s,
where s is the total number of trees in the forest.

Exercise Set 10.9
1. A certain forest is divided into three height classes and has a growth matrix between harvests given by

If the price of trees in the second class is $30 and the price of trees in the third class is $50, which class should be completely
harvested to attain the optimal sustainable yield? What is the optimal yield if there are 1000 trees in the forest?

Answer:

The second class; $15,000

2. In Example 1, to what level must the price of trees in the fifth class rise so that the fifth class is the one to harvest completely
in order to attain the optimal sustainable yield?

Answer:

$223

3. In Example 1, what must the ratio of the prices  be in order that the yields , , all be the



same? (In this case, any sustainable harvesting policy will produce the same optimal sustainable yield.

Answer:

4. Derive Equation 19 for the nonharvest vector x corresponding to the optimal sustainable harvesting policy described in
Theorem 10.9.2.

5. For the optimal sustainable harvesting policy described in Theorem 10.9.2, how many trees are removed from the forest
during each harvest?

Answer:

6. If all the growth parameters  in the growth matrix G are equal, what should the ratio of the prices
 be in order that any sustainable harvesting policy be an optimal sustainable harvesting policy? (See Exercise 3.)

Answer:

Section 10.9 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica,
Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a scientific calculator with some
linear algebra capabilities. For each exercise you will need to read the relevant documentation for the particular utility you are
using. The goal of these exercises is to provide you with a basic proficiency with your technology utility. Once you have
mastered the techniques in these exercises, you will be able to use your technology utility to solve many of the problems in the
regular exercise sets.

T1.  A particular forest has growth parameters given by

for , where n (the total number of height classes) can be chosen as large as needed. Suppose that the value of
a tree in the kth height interval is given by

where a is a constant (in dollars) and ρ is a parameter satisfying .
(a)  Show that the yield  is given by

(b)  For

use a computer to determine the class number that should be completely harvested, and determine the optimal sustainable
yield in each case. Make sure that you allow k to take on only integer values in your calculations.

(c)  Repeat the calculations in part (b) using

(d)  Show that if , then the optimal sustainable yield can never be larger than 2as.
(e)  Compare the values of k determined in parts (b) and (c) to , and use some calculus to explain why

T2.  A particular forest has growth parameters given by



for , where n (the total number of height classes) can be chosen as large as needed. Suppose that the value of
a tree in the kth height interval is given by

where a is a constant (in dollars) and ρ is a parameter satisfying .
(a)  Show that the yield  is given by

(b)  For

use a computer to determine the class number that should be completely harvested in order to obtain an optimal yield, and
determine the optimal sustainable yield in each case. Make sure that you allow k to take on only integer values in your
calculations.

(c)  Compare the values of k determined in part (b) to  and use some calculus to explain why
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10.10  Computer Graphics
In this section we assume that a view of a three-dimensional object is displayed on a video screen and show
how matrix algebra can be used to obtain new views of the object by rotation, translation, and scaling.

Prerequisites

Matrix Algebra
Analytic Geometry

Visualization of a Three-Dimensional Object

Suppose that we want to visualize a three-dimensional object by displaying various views of it on a video
screen. The object we have in mind to display is to be determined by a finite number of straight line segments.
As an example, consider the truncated right pyramid with hexagonal base illustrated in Figure 10.10.1. We first
introduce an xyz-coordinate system in which to embed the object. As in Figure 10.10.1, we orient the coordinate
system so that its origin is at the center of the video screen and the xy-plane coincides with the plane of the
screen. Consequently, an observer will see only the projection of the view of the three-dimensional object onto
the two-dimensional xy-plane.

Figure 10.10.1   

In the xyz-coordinate system, the endpoints  of the straight line segments that determine the view
of the object will have certain coordinates—say,

These coordinates, together with a specification of which pairs are to be connected by straight line segments,



are to be stored in the memory of the video display system. For example, assume that the 12 vertices of the
truncated pyramid in Figure 10.10.1 have the following coordinates (the screen is 4 units wide by 3 units high):

These 12 vertices are connected pairwise by 18 straight line segments as follows, where  denotes that
point  is connected to point :

In View 1 these 18 straight line segments are shown as they would appear on the video screen. It should be
noticed that only the x- and y-coordinates of the vertices are needed by the video display system to draw the
view, because only the projection of the object onto the xy-plane is displayed. However, we must keep track of
the z-coordinates to carry out certain transformations discussed later.

View 1   

We now show how to form new views of the object by scaling, translating, or rotating the initial view. We first
construct a  matrix P, referred to as the coordinate matrix of the view, whose columns are the coordinates
of the n points of a view:

For example, the coordinate matrix P corresponding to View 1 is the  matrix

We will show below how to transform the coordinate matrix P of a view to a new coordinate matrix P'
corresponding to a new view of the object. The straight line segments connecting the various points move with
the points as they are transformed. In this way, each view is uniquely determined by its coordinate matrix once
we have specified which pairs of points in the original view are to be connected by straight lines.



Scaling

The first type of transformation we consider consists of scaling a view along the x, y, and z directions by factors
of α, β, and γ, respectively. By this we mean that if a point  has coordinates  in the original view, it
is to move to a new point  with coordinates  in the new view. This has the effect of
transforming a unit cube in the original view to a rectangular parallelepiped of dimensions  (Figure
10.10.2). Mathematically, this may be accomplished with matrix multiplication as follows. Define a 
diagonal matrix

Then, if a point  in the original view is represented by the column vector

then the transformed point  is represented by the column vector

Using the coordinate matrix P, which contains the coordinates of all n points of the original view as its columns,
we can transform these n points simultaneously to produce the coordinate matrix  of the scaled view, as
follows:

The new coordinate matrix can then be entered into the video display system to produce the new view of the
object. As an example, View 2 is View 1 scaled by setting , , and . Note that the scaling

 along the z-axis is not visible in View 2, since we see only the projection of the object onto the
xy-plane.



Figure 10.10.2   

View 2   View 1 scaled by , , 

Translation

We next consider the transformation of translating or displacing an object to a new position on the screen.
Referring to Figure 10.10.3, suppose we desire to change an existing view so that each point  with
coordinates  moves to a new point  with coordinates . The vector

is called the translation vector of the transformation. By defining a  matrix T as



we can translate all n points of the view determined by the coordinate matrix P by matrix addition via the
equation

The coordinate matrix  then specifies the new coordinates of the n points. For example, if we wish to
translate View 1 according to the translation vector

the result is View 3. Note, again, that the translation  along the z-axis does not show up explicitly in
View 3.

View 3   View 1 translated by 

Figure 10.10.3   

In Exercise 7, a technique of performing translations by matrix multiplication rather than by matrix addition is
explained.

Rotation

A more complicated type of transformation is a rotation of a view about one of the three coordinate axes. We
begin with a rotation about the z-axis (the axis perpendicular to the screen) through an angle θ. Given a point 
in the original view with coordinates , we wish to compute the new coordinates  of the



rotated point . Referring to Figure 10.10.4 and using a little trigonometry, you should be able to derive the
following:

These equations can be written in matrix form as

If we let R denote the  matrix in this equation, all n points can be rotated by the matrix product  to
yield the coordinate matrix  of the rotated view.

Figure 10.10.4   

Rotations about the x- and y-axes can be accomplished analogously, and the resulting rotation matrices are
given with Views 4, 5, and 6. These three new views of the truncated pyramid correspond to rotations of View 1
about the x-, y-, and z-axes, respectively, each through an angle of .

View 4   View 1 rotated  about the x-axis



View 5   View 1 rotated  about the y-axis.

View 6   View 1 rotated  about the z-axis.

Rotations about three coordinate axes may be combined to give oblique views of an object. For example, View
7 is View 1 rotated first about the x-axis through , then about the y-axis through , and finally about the
z-axis through . Mathematically, these three successive rotations can be embodied in the single
transformation equation , where R is the product of three individual rotation matrices:

in the order



View 7   Oblique view of truncated pyramid.

As a final illustration, in View 8 we have two separate views of the truncated pyramid, which constitute a
stereoscopic pair. They were produced by first rotating View 7 about the y-axis through an angle of  and
translating it to the right, then rotating the same View 7 about the y-axis through an angle of  and
translating it to the left. The translation distances were chosen so that the stereoscopic views are about 

inches apart—the approximate distance between a pair of eyes.

View 8   Stereoscopic figure of truncated pyramid. The three-dimensionality of the diagram can be seen
by holding the book about one foot away and focusing on a distant object. Then by shifting your
gaze to View 8 without refocusing, you can make the two views of the stereoscopic pair merge
together and produce the desired effect.

Exercise Set 10.10
1. View 9 is a view of a square with vertices , , , and .

(a)  What is the coordinate matrix of View 9?
(b)  What is the coordinate matrix of View 9 after it is scaled by a factor  in the x-direction and  in the

y-direction? Draw a sketch of the scaled view.
(c)  What is the coordinate matrix of View 9 after it is translated by the following vector?

Draw a sketch of the translated view.



(d)  What is the coordinate matrix of View 9 after it is rotated through an angle of  about the z-axis?
Draw a sketch of the rotated view.

Ex-View 9   Square with vertices , , , and  (Exercises 1 and 2)

Answer:

(a)  

(b)  

 

(c)  

 

(d)  

 

2. (a)  If the coordinate matrix of View 9 is multiplied by the matrix

the result is the coordinate matrix of View 10. Such a transformation is called a shear in the x-direction
with factor  with respect to the y-coordinate. Show that under such a transformation, a point with

coordinates  has new coordinates .

(b)  What are the coordinates of the four vertices of the shear square in View 10?



(c)  The matrix

determines a shear in the y-direction with factor .6 with respect to the x-coordinate (an example appears
in View 11). Sketch a view of the square in View 9 after such a shearing transformation, and find the
new coordinates of its four vertices.

Ex-View 10   View 9 sheared along the x-axis by  with respect to the y-coordinate (Exercise 2)

Ex-View 11   View 1 sheared along the y-axis by .6 with respect to the x-coordinate (Exercise 2).

Answer:

(b)  

 

(c)  

3. (a)  The reflection about the xz-plane is defined as the transformation that takes a point  to the
point  (e.g., View 12). If P and  are the coordinate matrices of a view and its reflection
about the xz-plane, respectively, find a matrix M such that .

(b)  Analogous to part (a), define the reflection about the yz-plane and construct the corresponding
transformation matrix. Draw a sketch of View 1 reflected about the yz-plane.

(c)  Analogous to part (a), define the reflection about the xy-plane and construct the corresponding
transformation matrix. Draw a sketch of View 1 reflected about the xy-plane.



Ex-View 12   View 1 reflected about the xz-plane (Exercise 3).

Answer:

(a)  

(b)  

 

(c)  

 

4. (a)  View 13 is View 1 subject to the following five transformations:

1.  Scale by a factor of  in the x-direction, 2 in the y-direction, and  in the z-direction.

2.  Translate  unit in the x-direction.

3.  Rotate  about the x-axis.
4.  Rotate  about the y-axis.
5.  Rotate  about the z-axis.

Construct the five matrices , , , , and  associated with these five transformations.
(b)  If P is the coordinate matrix of View 1 and  is the coordinate matrix of View 13, express  in terms

of , , , , , and P.



Ex-View 13   View 1 scaled, translated, and rotated (Exercise 4)

Answer:

(a)  

(b)  

5. (a)  View 14 is View 1 subject to the following seven transformations:

1.  Scale by a factor of .3 in the x-direction and by a factor of .5 in the y-direction.
2.  Rotate 45° about the x-axis.
3.  Translate 1 unit in the x-direction.
4.  Rotate 35° about the y-axis.
5.  Rotate −45° about the z-axis.
6.  Translate 1 unit in the z-direction.
7.  Scale by a factor of 2 in the x-direction.

Construct the matrices  associated with these seven transformations.

(b)  If P is the coordinate matrix of View 1 and  is the coordinate matrix of View 14, express  in terms
of , and P.



Ex-View 14   View 1 scaled, translated, and rotated (Exercise 5).

Answer:

(a)  

(b)  

6. Suppose that a view with coordinate matrix P is to be rotated through an angle θ about an axis through the
origin and specified by two angles α and β (see Figure Ex-6). If  is the coordinate matrix of the rotated
view, find rotation matrices , , , , and  such that

[Hint: The desired rotation can be accomplished in the following five steps:
1.  Rotate through an angle of β about the y-axis.
2.  Rotate through an angle of α about the z-axis.
3.  Rotate through an angle of θ about the y-axis.
4.  Rotate through an angle of −α about the z-axis.
5.  Rotate through an angle of −β about the y-axis.]

Figure Ex-6   

Answer:



7. This exercise illustrates a technique for translating a point with coordinates  to a point with
coordinates  by matrix multiplication rather than matrix addition.

(a)  Let the point  be associated with the column vector

and let the point  be associated with the column vector

Find a  matrix M such that .

(b)  Find the specific  matrix of the above form that will effect the translation of the point 
to the point .

Answer:

(a)  

(b)  

8. For the three rotation matrices given with Views 4, 5, and 6, show that

(A matrix with this property is called an orthogonal matrix. See Section 7.1.)



Section 10.10 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal of these exercises is to provide you with a
basic proficiency with your technology utility. Once you have mastered the techniques in these exercises, you
will be able to use your technology utility to solve many of the problems in the regular exercise sets.

T1.  Let  be a unit vector normal to the plane , and let  be a vector. It
can be shown that the mirror image of the vector r through the above plane has coordinates

 where

with

(a)  Show that  and give a physical reason why this must be so. [Hint: Use the fact that  is a
unit vector to show that .]

(b)  Use a computer to show that .

(c)  The eigenvectors of M satisfy the equation

and therefore correspond to those vectors whose direction is not affected by a reflection through the plane.
Use a computer to determine the eigenvectors and eigenvalues of M, and then give a physical argument to
support your answer.

T2.  A vector  is rotated by an angle θ about an axis having unit vector , thereby forming
the rotated vector . It can be shown that

with



(a)  Use a computer to show that  and then give a physical reason why this must be so.
Depending on the sophistication of the computer you are using, you may have to experiment using different
values of a, b, and

(b)  Show also that  and give a physical reason why this must be so.

(c)  Use a computer to show that .
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10.11  Equilibrium Temperature Distributions
In this section we will see that the equilibrium temperature distribution within a trapezoidal plate can be found
when the temperatures around the edges of the plate are specified. The problem is reduced to solving a system of
linear equations. Also, an iterative technique for solving the problem and a “random walk” approach to the
problem are described.

Prerequisites

Linear Systems
Matrices
Intuitive Understanding of Limits

Boundary Data

Suppose that the two faces of the thin trapezoidal plate shown in Figure 10.11.1a are insulated from heat. Suppose
that we are also given the temperature along the four edges of the plate. For example, let the temperature be
constant on each edge with values of , , , and , as in the figure. After a period of time, the temperature
inside the plate will stabilize. Our objective in this section is to determine this equilibrium temperature distribution
at the points inside the plate. As we will see, the interior equilibrium temperature is completely determined by the
boundary data—that is, the temperature along the edges of the plate.

Figure 10.11.1   

The equilibrium temperature distribution can be visualized by the use of curves that connect points of equal
temperature. Such curves are called isotherms of the temperature distribution. In Figure 10.11.1b we have
sketched a few isotherms, using information we derive later in the chapter.



Although all our calculations will be for the trapezoidal plate illustrated, our techniques generalize easily to a plate
of any practical shape. They also generalize to the problem of finding the temperature within a three-dimensional
body. In fact, our “plate” could be the cross section of some solid object if the flow of heat perpendicular to the
cross section is negligible. For example, Figure 10.11.1 could represent the cross section of a long dam. The dam is
exposed to three different temperatures: the temperature of the ground at its base, the temperature of the water on
one side, and the temperature of the air on the other side. A knowledge of the temperature distribution inside the
dam is necessary to determine the thermal stresses to which it is subjected.

Next we will consider a certain thermodynamic principle that characterizes the temperature distribution we are
seeking.

The Mean-Value Property

There are many different ways to obtain a mathematical model for our problem. The approach we use is based on
the following property of equilibrium temperature distributions.

THEOREM 10.11.1   The Mean-Value Property

Let a plate be in thermal equilibrium and let P be a point inside the plate. Then if C is any circle with
center at P that is completely contained in the plate, the temperature at P is the average value of the
temperature on the circle (Figure 10.11.2).

Figure 10.11.2   

This property is a consequence of certain basic laws of molecular motion, and we will not attempt to derive it.
Basically, this property states that in equilibrium, thermal energy tends to distribute itself as evenly as possible
consistent with the boundary conditions. It can be shown that the mean-value property uniquely determines the
equilibrium temperature distribution of a plate.

Unfortunately, determining the equilibrium temperature distribution from the mean-value property is not an easy
matter. However, if we restrict ourselves to finding the temperature only at a finite set of points within the plate,
the problem can be reduced to solving a linear system. We pursue this idea next.



Discrete Formulation of the Problem

We can overlay our trapezoidal plate with a succession of finer and finer square nets or meshes (Figure 10.11.3). In
(a) we have a rather coarse net; in (b) we have a net with half the spacing as in (a); and in (c) we have a net with
the spacing again reduced by half. The points of intersection of the net lines are called mesh points. We classify
them as boundary mesh points if they fall on the boundary of the plate or as interior mesh points if they lie in the
interior of the plate. For the three net spacings we have chosen, there are 1, 9, and 49 interior mesh points,
respectively.

Figure 10.11.3   

In the discrete formulation of our problem, we try to find the temperature only at the interior mesh points of some
particular net. For a rather fine net, as in (c), this will provide an excellent picture of the temperature distribution
throughout the entire plate.

At the boundary mesh points, the temperature is given by the boundary data. (In Figure 10.11.3 we have labeled all
the boundary mesh points with their corresponding temperatures.) At the interior mesh points, we will apply the
following discrete version of the mean-value property.

THEOREM 10.11.2   Discrete Mean-Value Property

At each interior mesh point, the temperature is approximately the average of the temperatures at the four
neighboring mesh points.

This discrete version is a reasonable approximation to the true mean-value property. But because it is only an
approximation, it will provide only an approximation to the true temperatures at the interior mesh points. However,
the approximations will get better as the mesh spacing decreases. In fact, as the mesh spacing approaches zero, the
approximations approach the exact temperature distribution, a fact proved in advanced courses in numerical
analysis. We will illustrate this convergence by computing the approximate temperatures at the mesh points for the
three mesh spacings given in Figure 10.11.3.

Case (a) of Figure 10.11.3 is simple, for there is only one interior mesh point. If we let  be the temperature at this



mesh point, the discrete mean-value property immediately gives

In case (b) we can label the temperatures at the nine interior mesh points , as in Figure 10.11.3b. (The
particular ordering is not important.) By applying the discrete mean-value property successively to each of these
nine mesh points, we obtain the following nine equations:

  (1)

This is a system of nine linear equations in nine unknowns. We can rewrite it in matrix form as

  (2)

where

To solve Equation 2, we write it as



The solution for t is thus

  (3)

as long as the matrix  is invertible. This is indeed the case, and the solution for t as calculated by 3 is

  (4)

Figure 10.11.4 is a diagram of the plate with the nine interior mesh points labeled with their temperatures as given
by this solution.

Figure 10.11.4   

For case (c) of Figure 10.11.3, we repeat this same procedure. We label the temperatures at the 49 interior mesh
points as  in some manner. For example, we may begin at the top of the plate and proceed from left to
right along each row of mesh points. Applying the discrete mean-value property to each mesh point gives a system
of 49 linear equations in 49 unknowns:



  (5)

In matrix form, Equations 5 are

where t and b are column vectors with 49 entries, and M is a  matrix. As in 3, the solution for t is

  (6)

In Figure 10.11.5 we display the temperatures at the 49 mesh points found by Equation 6. The nine unshaded
temperatures in this figure fall on the mesh points of Figure 10.11.4.



Figure 10.11.5   

In Table 1 we compare the temperatures at these nine common mesh points for the three different mesh spacings
used.

Table 1



Knowing that the temperatures of the discrete problem approach the exact temperatures as the mesh spacing
decreases, we may surmise that the nine temperatures obtained in case (c) are closer to the exact values than those
in case (b).

A Numerical Technique

To obtain the 49 temperatures in case (c) of Figure 10.11.3, it was necessary to solve a linear system with 49
unknowns. A finer net might involve a linear system with hundreds or even thousands of unknowns. Exact
algorithms for the solutions of such large systems are impractical, and for this reason we now discuss a numerical
technique for the practical solution of these systems.

To describe this technique, we look again at Equation 2:

  (7)

The vector t we are seeking appears on both sides of this equation. We consider a way of generating better and
better approximations to the vector solution t. For the initial approximation  we can take  if no better
choice is available. If we substitute  into the right side of 7 and label the resulting left side as , we have

  (8)

If we substitute  into the right side of 7, we generate another approximation, which we label :

  (9)

Continuing in this way, we generate a sequence of approximations as follows:



  (10)

One would hope that this sequence of approximations  converges to the exact solution of 7. We do
not have the space here to go into the theoretical considerations necessary to show this. Suffice it to say that for the
particular problem we are considering, the sequence converges to the exact solution for any mesh size and for any
initial approximation .

This technique of generating successive approximations to the solution of 7 is a variation of a technique called
Jacobi iteration; the approximations themselves are called iterates. As a numerical example, let us apply Jacobi
iteration to the calculation of the nine mesh point temperatures of case (b). Setting , we have, from
Equation 2,

Some additional iterates are



All iterates beginning with the thirtieth are equal to  to four decimal places. Consequently,  is the exact
solution to four decimal places. This agrees with our previous result given in Equation 4.

The Jacobi iteration scheme applied to the linear system 5 with 49 unknowns produces iterates that begin repeating
to four decimal places after 119 iterations. Thus,  would provide the 49 temperatures of case (c) correct to
four decimal places.

A Monte Carlo Technique

In this section we describe a so-called Monte Carlo technique for computing the temperature at a single interior
mesh point of the discrete problem without having to compute the temperatures at the remaining interior mesh
points. First we define a discrete random walk along the net. By this we mean a directed path along the net lines
(Figure 10.11.6) that joins a succession of mesh points such that the direction of departure from each mesh point is
chosen at random. Each of the four possible directions of departure from each mesh point along the path is to be
equally probable.

Figure 10.11.6   

By the use of random walks, we can compute the temperature at a specified interior mesh point on the basis of the
following property.

THEOREM 10.11.3   Random Walk Property



Let  be a succession of random walks, all of which begin at a specified interior mesh point.
Let  be the temperatures at the boundary mesh points first encountered along each of these
random walks. Then the average value  of these boundary temperatures approaches
the temperature at the specified interior mesh point as the number of random walks n increases without
bound.

This property is a consequence of the discrete mean-value property that the mesh point temperatures satisfy. The
proof of the random walk property involves elementary concepts from probability theory, and we will not give it
here.

In Table 2 we display the results of a large number of computer-generated random walks for the evaluation of the
temperature  of the nine-point mesh of case (b) in Figure 10.11.6. The first column lists the number n of the
random walk. The second column lists the temperature  of the boundary point first encountered along the
corresponding random walk. The last column contains the cumulative average of the boundary temperatures
encountered along the n random walks. Thus, after 1000 random walks we have the approximation .
This compares with the exact value  that we had previously evaluated. As can be seen, the convergence
to the exact value is not too rapid.

Table 2

Exercise Set 10.11
1. A plate in the form of a circular disk has boundary temperatures of  on the left of its circumference and  on

the right half of its circumference. A net with four interior mesh points is overlaid on the disk (see Figure
Ex-1).
(a)  Using the discrete mean-value property, write the  linear system  that determines the

approximate temperatures at the four interior mesh points.
(b)  Solve the linear system in part (a).
(c)  Use the Jacobi iteration scheme with  to generate the iterates , and  for the

linear system in part (a). What is the “error vector” , where t is the solution found in part (b)?



(d)  By certain advanced methods, it can be determined that the exact temperatures to four decimal places at the
four mesh points are  and . What are the percentage errors in the values
found in part (b)?

Figure Ex-1   

Answer:

(a)  

(b)  

(c)  

(d)  for  and , %; for  and , %

2. Use Theorem 10.11.1 to find the exact equilibrium temperature at the center of the disk in Exercise 1.

Answer:



3. Calculate the first two iterates  and  for case (b) of Figure 10.11.3 with nine interior mesh points
[Equation 2] when the initial iterate is chosen as

Answer:

4. The random walk illustrated in Figure Ex-4a can be described by six arrows

that specify the directions of departure from the successive mesh points along the path. Figure Ex-4b is an array
of 100 computer-generated, randomly oriented arrows arranged in a  array. Use these arrows to
determine random walks to approximate the temperature , as in Table 2. Proceed as follows:
1.  Take the last two digits of your telephone number. Use the last digit to specify a row and the other to specify

a column.
2.  Go to the arrow in the array with that row and column number.
3.  Using this arrow as a starting point, move through the array of arrows as you would read a book (left to right

and top to bottom). Beginning at the point labeled  in Figure Ex-4a and using this sequence of arrows to
specify a sequence of directions, move from mesh point to mesh point until you reach a boundary mesh
point. This completes your first random walk. Record the temperature at the boundary mesh point. (If you
reach the end of the arrow array, continue with the arrow in the upper left corner.)

4.  Return to the interior mesh point labeled  and begin where you left off in the arrow array; generate your
next random walk. Repeat this process until you have completed 10 random walks and have recorded 10
boundary temperatures.

5.  Calculate the average of the 10 boundary temperatures recorded. (The exact value is .)

Figure Ex-4   



Section 10.11 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal of these exercises is to provide you with a basic
proficiency with your technology utility. Once you have mastered the techniques in these exercises, you will be
able to use your technology utility to solve many of the problems in the regular exercise sets.

T1.  Suppose that we have the square region described by

and suppose that the equilibrium temperature distribution  along the boundary is given by ,
,  and . Suppose next that this region is partitioned into an

 mesh using

for  and . If the temperatures of the interior mesh points are labeled by

then show that

for  and . To handle the boundary points, define

for  and . Next let

be the  matrix with the  identity matrix in the upper right-hand corner, a one in the lower
left-hand corner, and zeros everywhere else. For example,

and so on. By defining the  matrix

show that if  is the  matrix with entries , then the set of equations



for  and  can be written as the matrix equation

where we consider only those elements of  with  and .

T2.  The results of the preceding exercise and the discussion in the text suggest the following algorithm for solving
for the equilibrium temperature in the square region

given the boundary conditions

1.  Choose a value for n, and then choose an initial guess, say

2.  For each value of  compute  using

where  is as defined in Exercise T1 . Then adjust  by replacing all edge entries by the initial edge

entries in . [Note: The edge entries of a matrix are the entries in the first and last columns and first and

last rows.]
3.  Continue this process until  is approximately the zero matrix. This suggests that

Use a computer and this algorithm to solve for  given that

Choose  and compute up to . The exact solution can be expressed as

Use a computer to compute  for i, , 1, 2, 3, 4, 5, 6, and then compare your results to the values
of  in .

T3.  Using the exact solution  for the temperature distribution described in Exercise T2 , use a graphing
program to do the following:
(a)  Plot the surface  in three-dimensional xyz-space in which z is the temperature at the point  in

the square region.
(b)  Plot several isotherms of the temperature distribution (curves in the xy-plane over which the temperature is a

constant).
(c)  Plot several curves of the temperature as a function of x with y held constant.



(d)  Plot several curves of the temperature as a function of y with x held constant.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.12  Computed Tomography
In this section we will see how constructing a cross-sectional view of a human body by analyzing X-ray scans leads to an inconsistent linear
system. We present an iteration technique that provides an “approximate solution” of the linear system.

Prerequisites

Linear Systems
Natural Logarithms
Euclidean Space 

The basic problem of computed tomography is to construct an image of a cross section of the human body using data collected from many
individual beams of X rays that are passed through the cross section. These data are processed by a computer, and the computed cross section is
displayed on a video monitor. Figure 10.12.1 is a diagram of General Electric's CT system showing a patient prepared to have a cross section of
his head scanned by X-ray beams.

Figure 10.12.1   

Such a system is also known as a CAT scanner, for Computer-Aided Tomography scanner. Figure 10.12.2 shows a typical cross section of a
human head produced by the system.

Figure 10.12.2   

The first commercial system of computed tomography for medical use was developed in 1971 by G. N. Hounsfield of EMI, Ltd., in England. In
1979, Houndsfield and A. M. Cormack were awarded the Nobel Prize for their pioneering work in the field. As we will see in this section, the
construction of a cross section, or tomograph, requires the solution of a large linear system of equations. Certain algorithms, called algebraic
reconstruction techniques (ARTs), can be used to solve these linear systems, whose solutions yield the cross sections in digital form.

Scanning Modes

Unlike conventional X-ray pictures that are formed by X rays that are projected perpendicular to the plane of the picture, tomographs are
constructed from thousands of individual, hairline-thin X-ray beams that lie in the plane of the cross section. After they pass through the cross
section, the intensities of the X-ray beams are measured by an X-ray detector, and these measurements are relayed to a computer where they are



processed. Figures 10.12.3 and 10.12.4 illustrate two possible modes of scanning the cross section: the parallel mode and the fan-beam mode.
In the parallel mode a single X-ray source and X-ray detector pair are translated across the field of view containing the cross section, and many
measurements of the parallel beams are recorded. Then the source and detector pair are rotated through a small angle, and another set of
measurements is taken. This is repeated until the desired number of beam measurements is completed. For example, in the original 1971
machine, 160 parallel measurements were taken through 180 angles spaced  apart: a total of  beam measurements. Each
such scan took approximately  minutes.

Figure 10.12.3   

Figure 10.12.4   

In the fan-beam mode of scanning, a single X-ray tube generates a fan of collimated beams whose intensities are measured simultaneously by
an array of detectors on the other side of the field of view. The X-ray tube and detector array are rotated through many angles, and a set of
measurements is taken at each angle until the scan is completed. In the General Electric CT system, which uses the fan-beam mode, each scan
takes 1 second.

Derivation of Equations

To see how the cross section is reconstructed from the many individual beam measurements, refer to Figure 10.12.5. Here the field of view in
which the cross section is situated has been divided into many square pixels (picture elements) numbered 1 through N as indicated. It is our
desire to determine the X-ray density of each pixel. In the EMI system, 6400 pixels were used, arranged in a square  array. The G.E. CT
system uses 262,144 pixels in a  array, each pixel being about 1 mm on a side. After the densities of the pixels are determined by the
method we will describe, they are reproduced on a video monitor, with each pixel shaded a level of gray proportional to its X-ray density.
Because different tissues within the human body have different X-ray densities, the video display clearly distinguishes the various tissues and
organs within the cross section.



Figure 10.12.5   

Figure 10.12.6 shows a single pixel with an X-ray beam of roughly the same width as the pixel passing squarely through it. The photons
constituting the X-ray beam are absorbed by the tissue within the pixel at a rate proportional to the X-ray density of the tissue. Quantitatively,
the X-ray density of the jth pixel is denoted by  and is defined by

where “ln” denotes the natural logarithmic function. Using the logarithm property , we also have

Figure 10.12.6   

If the X-ray beam passes through an entire row of pixels (Figure 10.12.7), then the number of photons leaving one pixel is equal to the number
of photons entering the next pixel in the row. If the pixels are numbered , then the additive property of the logarithmic function gives

  (1)

Thus, to determine the total X-ray density of a row of pixels, we simply sum the individual pixel densities.

Figure 10.12.7   

Next, consider the X-ray beam in Figure 10.12.5. By the beam density of the ith beam of a scan, denoted by , we mean



  (2)

The numerator in the first expression for  is obtained by performing a calibration scan without the cross section in the field of view. The
resulting detector measurements are stored within the computer's memory. Then a clinical scan is performed with the cross section in the field
of view, the 's of all the beams constituting the scan are computed, and the values are stored for further processing.

For each beam that passes squarely through a row of pixels, we must have

Thus, if the ith beam passes squarely through a row of n pixels, then it follows from Equations 1 and 2 that

In this equation,  is known from the clinical and calibration measurements, and  are unknown pixel densities that must be
determined.

More generally, if the ith beam passes squarely through a row (or column) of pixels with numbers , then we have

If we set

then we can write this equation as

  (3)

We will refer to Equation 3 as the ith beam equation.

Referring to Figure 10.12.5, however, we see that the beams of a scan do not necessarily pass through a row or column of pixels squarely.
Instead, a typical beam passes diagonally through each pixel in its path. There are many ways to take this into account. In Figure 10.12.8 we
outline three methods of defining the quantities  that appear in Equation 3, each of which reduces to our previous definition when the beam
passes squarely through a row or column of pixels. Reading down the figure, each method is more exact than its predecessor, but with
successively more computational difficulty.



Figure 10.12.8   

Using any one of the three methods to define the 's in the ith beam equation, we can write the set of M beam equations in a complete scan as

  (4)

In this way we have a linear system of M equations (the M beam equations) in N unknowns (the N pixel densities).

Depending on the number of beams and pixels used, we can have , , or . We will consider only the case , the
so-called overdetermined case, in which there are more beams in the scan than pixels in the field of view. Because of inherent modeling and
experimental errors in the problem, we should not expect our linear system to have an exact mathematical solution for the pixel densities. In the
next section we attempt to find an “approximate” solution to this linear system.

Algebraic Reconstruction Techniques

There have been many mathematical algorithms devised to treat the overdetermined linear system 4. The one we will describe belongs to the
class of so-called Algebraic Reconstruction Techniques (ARTs). This method, which can be traced to an iterative technique originally
introduced by S. Kaczmarz in 1937, was the one used in the first commercial machine. To introduce this technique, consider the following
system of three equations in two unknowns:

  (5)

The lines , ,  determined by these three equations are plotted in the -plane. As shown in Figure 10.12.9a, the three lines do not have
a common intersection, and so the three equations do not have an exact solution. However, the points  on the shaded triangle formed by
the three lines are all situated “near” these three lines and can be thought of as constituting “approximate” solutions to our system. The
following iterative procedure describes a geometric construction for generating points on the boundary of that triangular region (Figure
10.12.9b):
Algorithm 1
Step 0  Choose an arbitrary starting point  in the -plane.

Step 1  Project  orthogonally onto the first line  and call the projection . The superscript 1 indicates that this is the first of several
cycles through the steps.

Step 2  Project  orthogonally onto the second line  and call the projection .



Step 3  Project  orthogonally onto the third line  and call the projection .

Step 4  Take  as the new value of  and cycle through Steps 1 through 3 again. In the second cycle, label the projected points , ,

; in the third cycle, label the projected points , , ; and so forth.

This algorithm generates three sequences of points

that lie on the three lines , , and , respectively. It can be shown that as long as the three lines are not all parallel, then the first sequence
converges to a point  on , the second sequence converges to a point  on , and the third sequence converges to a point  on  (Figure
10.12.9c). These three limit points form what is called the limit cycle of the iterative process. It can be shown that the limit cycle is independent
of the starting point .

Figure 10.12.9   

Next we discuss the specific formulas needed to effect the orthogonal projections in Algorithm 1. First, because the equation of a line in 



-space is

we can express it in vector form as

where

The following theorem gives the necessary projection formula (Exercise 5).

THEOREM 10.12.1   Orthogonal Projection Formula

Let L be a line in  with equation  and let  be any point in  (Figure 10.12.10). Then the orthogonal projection,  of
 onto L is given by

Figure 10.12.10   

 EXAMPLE 1    Using Algorithm 1

We can use Algorithm 1 to find an approximate solution of the linear system given in 5 and illustrated in Figure 10.12.9. If we
write the equations of the three lines as

where

then, using Theorem 10.12.1, we can express the iteration scheme in Algorithm 1 as

where  for the first cycle of iterates,  for the second cycle of iterates, and so forth. After each cycle of iterates (i.e.,
after  is computed), the next cycle of iterates is begun with  set equal to .

Table 1 gives the numerical results of six cycles of iterations starting with the initial point .

Table 1



Using certain techniques that are impractical for large linear systems, we can show the exact values of the points of the limit cycle
in this example to be

It can be seen that the sixth cycle of iterates provides an excellent approximation to the limit cycle. Any one of the three iterates
, ,  can be used as an approximate solution of the linear system. (The large discrepancies in the values of , , and

 are due to the artificial nature of this illustrative example. In practical problems, these discrepancies would be much smaller.

To generalize Algorithm 1 so that it applies to an overdetermined system of M equations in N unknowns,

  (6)

we introduce column vectors x and  as follows:

With these vectors, the M equations constituting our linear system 6 can be written in vector form as

Each of these M equations defines what is called a hyperplane in the N-dimensional Euclidean space . In general these M hyperplanes have
no common intersection, and so we seek instead some point in  that is reasonably “close” to all of them. Such a point will constitute an
approximate solution of the linear system, and its N entries will determine approximate pixel densities with which to form the desired cross
section.



As in the two-dimensional case, we will introduce an iterative process that generates cycles of successive orthogonal projections onto the M
hyperplanes beginning with some arbitrary initial point in . Our notation for these successive iterates is

The algorithm is as follows:
Algorithm 2
Step 0  Choose any point in  and label it .

Step 1  For the first cycle of iterates, set .

Step 2  For , compute

Step 3  Set .

Step 4  Increase the cycle number p by 1 and return to Step 2.

In Step 2 the iterate  is called the orthogonal projection of  onto the hyperplane . Consequently, as in the two-dimensional
case, this algorithm determines a sequence of orthogonal projections from one hyperplane onto the next in which we cycle back to the first
hyperplane after each projection onto the last hyperplane.

It can be shown that if the vectors ,  span , then the iterates , ,  lying on the Mth hyperplane will converge to a

point  on that hyperplane which does not depend on the choice of the initial point . In computed tomography, one of the iterates  for p
sufficiently large is taken as an approximate solution of the linear system for the pixel densities.

Note that for the center-of-pixel method, the scalar quantity  appearing in the equation in Step 2 of the algorithm is simply the number of
pixels in which the kth beam passes through the center. Similarly, note that the scalar quantity

in that same equation can be interpreted as the excess kth beam density that results if the pixel densities are set equal to the entries of . This
provides the following interpretation of our ART iteration scheme for the center-of-pixel method: Generate the pixel densities of each iterate by
distributing the excess beam density of successive beams in the scan evenly among those pixels in which the beam passes through the center.
When the last beam in the scan has been reached, return to the first beam and continue.

 EXAMPLE 2    Using Algorithm 2

We can use Algorithm 2 to find the unknown pixel densities of the 9 pixels arranged in the  array illustrated in Figure
10.12.11. These 9 pixels are scanned using the parallel mode with 12 beams whose measured beam densities are indicated in the
figure. We choose the center-of-pixel method to set up the 12 beam equations. (In Exercises 7 and 8, you are asked to set up the
beam equations using the center line and area methods.) As you can verify, the beam equations are

Table 2 illustrates the results of the iteration scheme starting with an initial . The table gives the values of each of the first
cycle of iterates,  through , but thereafter gives the iterates  only for various values of p. The iterates  start

repeating to two decimal places for , and so we take the entries of  as approximate values of the 9 pixel densities.



Figure 10.12.11   

Table 2

We close this section by noting that the field of computed tomography is presently a very active research area. In fact, the ART scheme
discussed here has been replaced in commercial systems by more sophisticated techniques that are faster and provide a more accurate view of
the cross section. However, all the new techniques address the same basic mathematical problem: finding a good approximate solution of a
large overdetermined inconsistent linear system of equations.

Exercise Set 10.12
1. (a)  Setting , show that the three projection equations



for the three lines in Equation 5 can be written as

where  for .

(b)  Show that the three pairs of equations in part (a) can be combined to produce

where . [Note: Using this pair of equations, we can perform one complete cycle of three orthogonal
projections in a single step.]

(c)  Because  tends to the limit point  as , the equations in part (b) become

as . Solve this linear system for . [Note: The simplifications of the ART formulas described in this exercise are
impractical for the large linear systems that arise in realistic computed tomography problems.]

Answer:

(c)  

2. Use the result of Exercise 1(b) to find  to five decimal places in Example 1 using the following initial points:

(a)  
(b)  
(c)  

Answer:

(a)  

(b)  Same as part (a)



(c)  

3. (a)  Show directly that the points of the limit cycle in Example 1,

form a triangle whose vertices lie on the lines , , and  and whose sides are perpendicular to these lines (Figure 10.12.9c).
(b)  Using the equations derived in Exercise 1(a), show that if , then

[Note: Either part of this exercise shows that successive orthogonal projections of any point on the limit cycle will move around the
limit cycle indefinitely.]

4. The following three lines in the -plane,

do not have a common intersection. Draw an accurate sketch of the three lines and graphically perform several cycles of the orthogonal
projections described in Algorithm 1, beginning with the initial point . On the basis of your sketch, determine the three points of
the limit cycle.

Answer:

, , 

5. Prove Theorem 10.12.1 by verifying that
(a)  the point  as defined in the theorem lies on the line  (i.e., ).

(b)  the vector  is orthogonal to the line  (i.e.,  is parallel to a).

6. As stated in the text, the iterates  defined in Algorithm 2 will converge to a unique limit point  if the vectors
 span . Show that if this is the case and if the center-of-pixel method is used, then the center of each of the N pixels in the

field of view is crossed by at least one of the M beams in the scan.

7. Construct the 12 beam equations in Example 2 using the center line method. Assume that the distance between the center lines of adjacent
beams is equal to the width of a single pixel.

Answer:



8. Construct the 12 beam equations in Example 2 using the area method. Assume that the width of each beam is equal to the width of a single
pixel and that the distance between the center lines of adjacent beams is also equal to the width of a single pixel.

Answer:

Section 10.12 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica, Maple, Derive, or
Mathcad, but it may also be some other type of linear algebra software or a scientific calculator with some linear algebra capabilities. For each
exercise you will need to read the relevant documentation for the particular utility you are using. The goal of these exercises is to provide you
with a basic proficiency with your technology utility. Once you have mastered the techniques in these exercises, you will be able to use your
technology utility to solve many of the problems in the regular exercise sets.

T1.  Given the set of equations

for  (with ), let us consider the following algorithm for obtaining an approximate solution to the system.

1.  Solve all possible pairs of equations

for i,  and  for their unique solutions. This leads to

solutions, which we label as

for i,  and .

2.  Construct the geometric center of these points defined by

and use this as the approximate solution to the original system.



Use this algorithm to approximate the solution to the system

and compare your results to those in this section.

T2.  (Calculus required) Given the set of equations

for  (with ), let us consider the following least squares algorithm for obtaining an approximate solution  to the
system. Given a point  and the line , the distance from this point to the line is given by

If we define a function  by

and then determine the point  that minimizes this function, we will determine the point that is closest to each of these lines in a

summed least squares sense. Show that  and  are solutions to the system

and

Apply this algorithm to the system

and compare your results to those in this section.

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.13  Fractals
In this section we will use certain classes of linear transformations to describe and generate intricate sets in the Euclidean plane. These sets, called fractals, are
currently the focus of much mathematical and scientific research.

Prerequisites

Geometry of Linear Operators on  (Section 4.11)

Euclidean Space 

Natural Logarithms
Intuitive Understanding of Limits

Fractals in the Euclidean Plane

At the end of the nineteenth century and the beginning of the twentieth century, various bizarre and wild sets of points in the Euclidean plane began appearing in
mathematics. Although they were initially mathematical curiosities, these sets, called fractals, are rapidly growing in importance. It is now recognized that they reveal
a regularity in physical and biological phenomena previously dismissed as “random,” “noisy,” or “chaotic.” For example, fractals are all around us in the shapes of
clouds, mountains, coastlines, trees, and ferns.

In this section we give a brief description of certain types of fractals in the Euclidean plane . Much of this description is an outgrowth of the work of two
mathematicians, Benoit B. Mandelbrot and Michael Barnsley, who are both active researchers in the field.

Self-Similar Sets

To begin our study of fractals, we need to introduce some terminology about sets in . We will call a set in  bounded if it can be enclosed by a suitably large
circle (Figure 10.13.1) and closed if it contains all of its boundary points (Figure 10.13.2). Two sets in  will be called congruent if they can be made to coincide
exactly by translating and rotating them appropriately within  (Figure 10.13.3). We will also rely on your intuitive concept of overlapping and nonoverlapping
sets, as illustrated in Figure 10.13.4.

Figure 10.13.1   

Figure 10.13.2   The boundary points (solid color) lie in the set.



Figure 10.13.3   

Figure 10.13.4   

If  is the linear operator that scales by a factor of s (see Table 7 of Section 4.9), and if Q is a set in , then the set  (the set of images of points in Q
under T) is called a dilation of the set Q if  and a contraction of Q if  (Figure 10.13.5). In either case we say that  is the set Q scaled by the factor
s.

Figure 10.13.5   A contraction of Q.

The types of fractals we will consider first are called self-similar. In general, we define a self-similar set in  as follows:

DEFINITION 1

A closed and bounded subset of the Euclidean plane  is said to be self-similar if it can be expressed in the form

  (1)

where  are nonoverlapping sets, each of which is congruent to S scaled by the same factor s .

If S is a self-similar set, then 1 is sometimes called a decomposition of S into nonoverlapping congruent sets.

 EXAMPLE 1    Line Segment

A line segment in  (Figure 10.13.6a) can be expressed as the union of two nonoverlapping congruent line segments (Figure 10.13.6b). In Figure
10.13.6b we have separated the two line segments slightly so that they can be seen more easily. Each of these two smaller line segments is congruent to
the original line segment scaled by a factor of . Hence, a line segment is a self-similar set with  and .

Figure 10.13.6   



 EXAMPLE 2    Square

A square (Figure 10.13.7a) can be expressed as the union of four nonoverlapping congruent squares (Figure 10.13.7b), where we have again separated
the smaller squares slightly. Each of the four smaller squares is congruent to the original square scaled by a factor of . Hence, a square is a self-similar

set with  and .

Figure 10.13.7   

 EXAMPLE 3    Sierpinski Carpet

The set suggested by Figure 10.13.8a, the Sierpinski “carpet,” was first described by the Polish mathematician Waclaw Sierpinski (1882–1969). It can
be expressed as the union of eight nonoverlapping congruent subsets (Figure 10.13.8b), each of which is congruent to the original set scaled by a factor
of . Hence, it is a self-similar set with  and . Note that the intricate square-within-a-square pattern continues forever on a smaller and

smaller scale (although this can only be suggested in a figure such as the one shown).

Figure 10.13.8   

 EXAMPLE 4    Sierpinski Triangle

Figure 10.13.9a illustrates another set described by Sierpinski. It is a self-similar set with  and  (Figure 10.13.9b). As with the Sierpinski

carpet, the intricate triangle-within-a-triangle pattern continues forever on a smaller and smaller scale.

Figure 10.13.9   



The Sierpinski carpet and triangle have a more intricate structure than the line segment and the square in that they exhibit a pattern that is repeated indefinitely. This
difference will be explored later in this section.

Topological Dimension of a Set

In Section 4.5 we defined the dimension of a subspace of a vector space to be the number of vectors in a basis, and we found that definition to coincide with our
intuitive sense of dimension. For example, the origin of  is zero-dimensional, lines through the origin are one-dimensional, and  itself is two-dimensional. This
definition of dimension is a special case of a more general concept called topological dimension, which is applicable to sets in  that are not necessarily subspaces.
A precise definition of this concept is studied in a branch of mathematics called topology. Although that definition is beyond the scope of this text, we can state
informally that
•  a point in  has topological dimension zero;

•  a curve in  has topological dimension one;

•  a region in  has topological dimension two.

It can be proved that the topological dimension of a set in  must be an integer between 0 and n, inclusive. In this text we will denote the topological dimension of a
set S by .

 EXAMPLE 5    Topological Dimensions of Sets

Table 1 gives the topological dimensions of the sets studied in our earlier examples. The first two results in this table are intuitively obvious; however,
the last two are not. Informally stated, the Sierpinski carpet and triangle both contain so many “holes” that those sets resemble web-like networks of
lines rather than regions. Hence they have topological dimension one. The proofs are quite difficult.

Table 1

Hausdorff Dimension of a Self-Similar Set

In 1919 the German mathematician Felix Hausdorff (1868–1942) gave an alternative definition for the dimension of an arbitrary set in . His definition is quite
complicated, but for a self-similar set, it reduces to something rather simple:

DEFINITION 1

The Hausdorff dimension of a self-similar set S of form 1 is denoted by  and is defined by

  (2)

In this definition, “ln” denotes the natural logarithm function. Equation 2 can also be expressed as

  (3)

in which the Hausdorff dimension  appears as an exponent. Formula 3 is more helpful for interpreting the concept of Hausdorff dimension; it states, for

example, that if you scale a self-similar set by a factor of , then its area (or more properly its measure) decreases by a factor of . Thus, scaling a line

segment by a factor of  reduces its measure (length) by a factor of , and scaling a square region by a factor of  reduces its measure (area) by a factor of

.



Before proceeding to some examples, we should note a few facts about the Hausdorff dimension of a set:
•  The topological dimension and Hausdorff dimension of a set need not be the same.
•  The Hausdorff dimension of a set need not be an integer.
•  The topological dimension of a set is less than or equal to its Hausdorff dimension; that is, .

 EXAMPLE 6    Hausdorff Dimensions of Sets

Table 2 lists the Hausdorff dimensions of the sets studied in our earlier examples.

Table 2

Fractals

Comparing Tables 1 and 2, we see that the Hausdorff and topological dimensions are equal for both the line segment and square but are unequal for the Sierpinski
carpet and triangle. In 1977 Benoit B. Mandelbrot suggested that sets for which the topological and Hausdorff dimensions differ must be quite complicated (as
Hausdorff had earlier suggested in 1919). Mandelbrot proposed calling such sets fractals, and he offered the following definition.

DEFINITION 3

A fractal is a subset of a Euclidean space whose Hausdorff dimension and topological dimension are not equal.

According to thisdefinition, the Sierpinski carpet and Sierpinski triangle are fractals, whereas the line segment and square are not.

It follows from the preceding definition that a set whose Hausdorff dimension is not an integer must be a fractal (why?). However, we will see later that the converse
is not true; that is, it is possible for a fractal to have an integer Hausdorff dimension.

Similitudes

We will now show how some techniques from linear algebra can be used to generate fractals. This linear algebra approach also leads to algorithms that can be
exploited to draw fractals on a computer. We begin with a definition.

DEFINITION 4

A similitude with scale factor s is a mapping of  into  of the form

where s, θ, e, and f are scalars.

Geometrically, a similitude is a composition of three simpler mappings: a scaling by a factor of s, a rotation about the origin through an angle θ, and a translation (e
units in the x-direction and f units in the y-direction). Figure 10.13.10 illustrates the effect of a similitude on the unit square U.



Figure 10.13.10   

For our application to fractals, we will need only similitudes that are contractions, by which we mean that the scale factor s is restricted to the range .
Consequently, when we refer to similitudes we will always mean similitudes subject to this restriction.

Similitudes are important in the study of fractals because of the following fact:

If  is a similitude with scale factor s and if S is a closed and bounded set in , then the image  of the set S under T is congruent to S scaled
by s.

Recall from the definition of a self-similar set in  that a closed and bounded set S in  is self-similar if it can be expressed in the form

where  are nonoverlapping sets each of which is congruent to S scaled by the same factor s  [see 1]. In the following examples, we will
find similitudes that produce the sets  from S for the line segment, square, Sierpinski carpet, and Sierpinski triangle.

 EXAMPLE 7    Line Segment

We will take as our line segment the line segment S connecting the points  and  in the xy-plane (Figure 10.13.11a). Consider the two
similitudes

  (4)

both of which have  and . In Figure 10.13.11b we show how these two similitudes map the unit square U. The similitude  maps U onto

the smaller square , and the similitude  maps U onto the smaller square . At the same time,  maps the line segment S onto the
smaller line segment , and  maps S onto the smaller nonoverlapping line segment . The union of these two smaller nonoverlapping line
segments is precisely the original line segment S; that is,

  (5)



Figure 10.13.11   

 EXAMPLE 8    Square

Let us consider the unit square U in the xy-plane (Figure 10.13.12a) and the following four similitudes, all having  and :

  (6)

The images of the unit square U under these four similitudes are the four squares shown in Figure 10.13.12b. Thus,

  (7)

is a decomposition of U into four nonoverlapping squares that are congruent to U scaled by the same scale factor .



Figure 10.13.12   

 EXAMPLE 9    Sierpinski Carpet

Let us consider a Sierpinski carpet S over the unit square U of the xy-plane (Figure 10.13.13a) and the following eight similitudes, all having  and

:

  (8)

where the eight values of  are

The images of S under these eight similitudes are the eight sets shown in Figure 10.13.13b. Thus,

  (9)

is a decomposition of S into eight nonoverlapping sets that are congruent to S scaled by the same scale factor .

Figure 10.13.13   

 EXAMPLE 10    Sierpinski Triangle

Let us consider a Sierpinski triangle S fitted inside the unit square U of the xy-plane, as shown in Figure 10.13.14a, and the following three similitudes,
all having  and :

  (10)

The images of S under these three similitudes are the three sets in Figure 10.13.14b. Thus,

  (11)

is a decomposition of S into three nonoverlapping sets that are congruent to S scaled by the same scale factor .



Figure 10.13.14   

In the preceding examples we started with a specific set S and showed that it was self-similar by finding similitudes  with the same scale factor
such that  were nonoverlapping sets and such that

  (12)

The following theorem addresses the converse problem of determining a self-similar set from a collection of similitudes.

THEOREM 10.13.1

If  are contracting similitudes with the same scale factor, then there is a unique nonempty closed and bounded set S in the Euclidean plane
such that

Furthermore, if the sets  are nonoverlapping, then S is self-similar.

Algorithms for Generating Fractals

In general, there is no simple way to obtain the set S in the preceding theorem directly. We now describe an iterative procedure that will determine S from the
similitudes that define it. We first give an example of the procedure and then give an algorithm for the general case.

 EXAMPLE 11    Sierpinski Carpet

Figure 10.13.15 shows the unit square region  in the xy-plane, which will serve as an “initial” set for an iterative procedure for the construction of the
Sierpinski carpet. The set  in the figure is the result of mapping  with each of the eight similitudes   in 8 that determine the
Sierpinski carpet. It consists of eight square regions, each of side length , surrounding an empty middle square. Next we apply the eight similitudes to

 and arrive at the set . Similarly, applying the eight similitudes to  results in the set . It we continue this process indefinitely, the sequence of
sets  will “converge” to a set S, which is the Sierpinski carpet.

Figure 10.13.15   



Remark   Although we should properly give a definition of what it means for a sequence of sets to “converge” to a given set, an intuitive interpretation will suffice in
this introductory treatment.

Although we started in Figure 10.13.15 with the unit square region to arrive at the Sierpinski carpet, we could have started with any nonempty set . The only
restriction is that the set  be closed and bounded. For example, if we start with the particular set  shown in Figure 10.13.16, then  is the set obtained by
applying each of the eight similitudes in 8. Applying the eight similitudes to  results in the set . As before, applying the eight similitudes indefinitely yields the
Sierpinski carpet S as the limiting set.

Figure 10.13.16   

The general algorithm illustrated in the preceding example is as follows: Let  be contracting similitudes with the same scale factor, and for an
arbitrary set Q in , define the set  by

The following algorithm generates a sequence of sets  that converges to the set S in Theorem 10.13.1.
Algorithm 1
Step 0  Choose an arbitrary nonempty closed and bounded set  in .

Step 1  Compute .

Step 2  Compute .

Step 3  Compute .

Step n  Compute .

 EXAMPLE 12    Sierpinski Triangle

Let us construct the Sierpinski triangle determined by the three similitudes given in 10. The corresponding set mapping is
. Figure 10.13.17 shows an arbitrary closed and bounded set ; the first four iterates , , , ; and the limiting

set S (the Sierpinski triangle).



Figure 10.13.17   

 EXAMPLE 13    Using Algorithm 1

Consider the following two similitudes:

The actions of these two similitudes on the unit square U are illustrated in Figure 10.13.18. Here, the rotation angle θ is a parameter that we will vary to
generate different self-similar sets. The self-similar sets determined by these two similitudes are shown in Figure 10.13.19 for various values of θ. For
simplicity, we have not drawn the xy-axes, but in each case the origin is the lower left point of the set. These sets were generated on a computer using
Algorithm 1 for the various values of θ. Because  and , it follows from 2 that the Hausdorff dimension of these sets for any value of θ is 1. It

can be shown that the topological dimension of these sets is 1 for  and 0 for all other values of θ. It follows that the self-similar set for  is not
a fractal [it is the straight line segment from  to ], while the self-similar sets for all other values of θ are fractals. In particular, they are
examples of fractals with integer Hausdorff dimension.

Figure 10.13.18   

Figure 10.13.19   

A Monte Carlo Approach



The set-mapping approach of constructing self-similar sets described in Algorithm 1 is rather time-consuming on a computer because the similitudes involved must be
applied to each of the many computer screen pixels in the successive iterated sets. In 1985 Michael Barnsley described an alternative, more practical method of
generating a self-similar set defined through its similitudes. It is a so-called Monte Carlo method that takes advantage of probability theory. Barnsley refers to it as
the Random Iteration Algorithm.

Let  be contracting similitudes with the same scale factor. The following algorithm generates a sequence of points

that collectively converge to the set S in Theorem 10.13.1.
Algorithm 2

Step 0  Choose an arbitrary point  in S.

Step 1  Choose one of the k similitudes at random, say , and compute

Step 2  Choose one of the k similitudes at random, say , and compute

Step n  Choose one of the k similitudes at random, say , and compute

On a computer screen the pixels corresponding to the points generated by this algorithm will fill out the pixel representation of the limiting set S.

Figure 10.13.20 shows four stages of the Random Iteration Algorithm that generate the Sierpinski carpet, starting with the initial point .

Remark   Although Step 0 in the preceding algorithm requires the selection of an initial point in the set S, which may not be known in advance, this is not a serious
problem. In practice, one can usually start with any point in  and after a few iterations (say ten or so), the point generated will be sufficiently close to S that the
algorithm will work correctly from that point on.

Figure 10.13.20   

More General Fractals

So far, we have discussed fractals that are self-similar sets according to the definition of a self-similar set in . However, Theorem 10.13.1 remains true if the
similitudes  are replaced by more general transformations, called contracting affine transformations. An affine transformation is defined as follows:

DEFINITION 5

An affine transformation is a mapping of  into  of the form

where a, b, c, d, e, and f are scalars.

Figure 10.13.21 shows how an affine transformation maps the unit square U onto a parallelogram . An affine transformation is said to be contracting if the
Euclidean distance between any two points in the plane is strictly decreased after the two points are mapped by the transformation. It can be shown that any k
contracting affine transformations  determine a unique closed and bounded set S satisfying the equation



  (13)

Equation 13 has the same form as Equation 12, which we used to find self-similar sets. Although Equation 13, which uses contracting affine transformations, does not
determine a self-similar set S, the set it does determine has many of the features of self-similar sets. For example, Figure 10.13.22 shows how a set in the plane
resembling a fern (an example made famous by Barnsley) can be generated through four contracting affine transformations. Note that the middle fern is the slightly
overlapping union of the four smaller affine-image ferns surrounding it. Note also how , because the determinant of its matrix part is zero, maps the entire fern onto
the small straight line segment between the points  and . Figure 10.13.22 contains a wealth of information and should be studied carefully.

Figure 10.13.21   

Figure 10.13.22   

Michael Barnsley has applied the above theory to the field of data compression and transmission. The fern, for example, is completely determined by the four affine
transformations , , , . These four transformations, in turn, are determined by the 24 numbers given in Figure 10.13.22 defining their corresponding values



of a, b, c, d, e, and f. In other words, these 24 numbers completely encode the picture of the fern. Storing these 24 numbers in a computer requires considerably less
memory space than storing a pixel-by-pixel description of the fern. In principle, any picture represented by a pixel map on a computer screen can be described
through a finite number of affine transformations, although it is not easy to determine which transformations to use. Nevertheless, once encoded, the affine
transformations generally require several orders of magnitude less computer memory than a pixel-by-pixel description of the pixel map.

Further Readings

Readers interested in learning more about fractals are referred to the following books, the first of which elaborates on the linear transformation approach of
this section.

1. Michael Barnsley, Fractals Everywhere (New York: Academic Press, 1993).

2. Benoit B. Mandelbrot, The Fractal Geometry of Nature (New York: W. H. Freeman, 1982).

3. Heinz-Otto Peitgen and P. H. Richter, The Beauty of Fractals (New York: Springer-Verlag, 1986).

4. Heinz-Otto Peitgen and Dietmar Saupe, The Science of Fractal Images (New York: Springer-Verlag, 1988).

Exercise Set 10.13
1. The self-similar set in Figure Ex-1 has the sizes indicated. Given that its lower left corner is situated at the origin of the xy-plane, find the similitudes that

determine the set. What is its Hausdorff dimension? Is it a fractal?

Figure Ex-1   

Answer:

2. Find the Hausdorff dimension of the self-similar set shown in Figure Ex-2. Use a ruler to measure the figure and determine an approximate value of the scale factor
s. What are the rotation angles of the similitudes determining this set?

Figure Ex-2   

Answer:

;  Rotation angles:  (upper left);  (upper right);  (lower left);  (lower right)

3. Each of the 12 self-similar sets in Figure Ex-3 results from three similitudes with scale factor of , and so all have Hausdorff dimension . The

rotation angles of the three similitudes are all multiples of . Find these rotation angles for each set and express them as a triplet of integers , where
 is the corresponding integer multiple of  in the order upper right, lower left, lower right. For example, the first set (the Sierpinski triangle) generates the

triplet .



Figure Ex-3   

Answer:

4. For each of the self-similar sets in Figure Ex-4, find:
(i)  the scale factor s of the similitudes describing the set;
(ii)  the rotation angles  of all similitudes describing the set (all rotation angles are multiples of ); and
(iii)  the Hausdorff dimension of the set.
Which of the sets are fractals and why?

Figure Ex-4   

Answer:

(a)  (i) ; (ii) all rotation angles are ; (iii)  This set is a fractal.

(b)  (i) ; (ii) all rotation angles are ; (iii)  This set is a fractal.

(c)  (i) ; (ii) rotation angles:  (top); 1  (lower left);  (lower right); (iii)  This set is a fractal.

(d)  (i) ; (ii) rotation angles:  (upper left);  (upper right);  (lower right); (iii)  This set is a fractal.

5. Show that of the four affine transformations shown in Figure 10.13.22, only the transformation  is a similitude. Determine its scale factor s and rotation angle .

Answer:



6. Find the coordinates of the tip of the fern in Figure 10.13.22. [Hint: The transformation  maps the tip of the fern to itself.]

Answer:

(0.766, 0.996) rounded to three decimal places

7. The square in Figure 10.13.7a was expressed as the union of 4 nonoverlapping squares as in Figure 10.13.7b. Suppose that it is expressed instead as the union of
16 nonoverlapping squares. Verify that its Hausdorff dimension is still 2, as determined by Equation 2.

Answer:

8. Show that the four similitudes

express the unit square as the union of four overlapping squares. Evaluate the right-hand side of Equation 2 for the values of k and s determined by these
similitudes, and show that the result is not the correct value of the Hausdorff dimension of the unit square. [Note: This exercise shows the necessity of the
nonoverlapping condition in the definition of a self-similar set and its Hausdorff dimension.]

Answer:

9. All of the results in this section can be extended to . Compute the Hausdorff dimension of the unit cube in  (see Figure Ex-9). Given that the topological
dimension of the unit cube is 3, determine whether it is a fractal. [Hint: Express the unit cube as the union of eight smaller congruent nonoverlapping cubes.]

Figure Ex-9   

Answer:

; the cube is not a fractal.

10. The set in  in Figure Ex-10 is called the Menger sponge. It is a self-similar set obtained by drilling out certain square holes from the unit cube. Note that each
face of the Menger sponge is a Sierpinski carpet and that the holes in the Sierpinski carpet now run all the way through the Menger sponge. Determine the values
of k and s for the Menger sponge and find its Hausdorff dimension. Is the Menger sponge a fractal?



Figure Ex-10   

Answer:

; ; ; the set is a fractal.

11. The two similitudes

and

determine a fractal known as the Cantor set. Starting with the unit square region U as an initial set, sketch the first four sets that Algorithm 1 determines. Also,
find the Hausdorff dimension of the Cantor set. (This famous set was the first example that Hausdorff gave in his 1919 paper of a set whose Hausdorff dimension
is not equal to its topological dimension.)

Answer:

12. Compute the areas of the sets , , , , and  in Figure 11.13.15.

Answer:

Area of ; area of ; area of ; area of ; area of 

Section 10.13 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica, Maple, Derive, or Mathcad, but it may
also be some other type of linear algebra software or a scientific calculator with some linear algebra capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal of these exercises is to provide you with a basic proficiency with your technology utility. Once you
have mastered the techniques in these exercises, you will be able to use your technology utility to solve many of the problems in the regular exercise sets.



T1.  Use similitudes of the form

to show that the Menger sponge (see Exercise 10) is the set S satisfying

for appropriately chosen similitudes  (for ). Determine these similitudes by determining the collection of  matrices

T2.  Generalize the ideas involved in the Cantor set (in ), the Sierpinski carpet (in ), and the Menger sponge (in ) to  by considering the set S satisfying

with

where each  equals 0, , or , and no two of them ever equal  at the same time. Use a computer to construct the set

thereby determining the value of  for , 3, 4. Then develop an expression for .

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.14  Chaos
In this section we use a map of the unit square in the xy-plane onto itself to describe the concept of a chaotic mapping.

Prerequisites

Geometry of Linear Operators on  (Section 4.11)

Eigenvalues and Eigenvectors
Intuitive Understanding of Limits and Continuity

Chaos

The word chaos was first used in a mathematical sense in 1975 by Tien-Yien Li and James Yorke in a paper entitled “Period
Three Implies Chaos.” The term is now used to describe the behavior of certain mathematical mappings and physical phenomena
that at first glance seem to behave in a random or disorderly fashion but actually have an underlying element of order (examples
include random-number generation, shuffling cards, cardiac arrhythmia, fluttering airplane wings, changes in the red spot of
Jupiter, and deviations in the orbit of Pluto). In this section we discuss a particular chaotic mapping called Arnold's cat map, after
the Russian mathematician Vladimir I. Arnold who first described it using a diagram of a cat.

Arnold's Cat Map

To describe Arnold's cat map, we need a few ideas about modular arithmetic. If x is a real number, then the notation 
denotes the unique number in the interval  that differs from x by an integer. For example,

Note that if x is a nonnegative number, then x mod 1 is simply the fractional part of x. If  is an ordered pair of real numbers,
then the notation  mod 1 denotes (x mod 1, y mod 1). For example,

Observe that for every real number x, the point x mod 1 lies in the unit interval  and that for every ordered pair , the
point  mod 1 lies in the unit square

Also observe that the upper boundary and the right-hand boundary of the square are not included in S.

Arnold's cat map is the transformation  defined by the formula

or, in matrix notation,

  (1)

To understand the geometry of Arnold's cat map, it is helpful to write 1 in the factored form

which expresses Arnold's cat map as the composition of a shear in the x-direction with factor 1, followed by a shear in the
y-direction with factor 1. Because the computations are performed mod 1,  maps all points of  into the unit square S.



We will illustrate the effect of Arnold's cat map on the unit square S, which is shaded in Figure 10.14.1a and contains a picture of
a cat. It can be shown that it does not matter whether the mod 1 computations are carried out after each shear or at the very end.
We will discuss both methods, first performing them at the end. The steps are as follows:
Step 1  Shear in the x-direction with factor 1 (Figure 10.14.1b):

or in matrix notation

Step 2  Shear in the y-direction with factor 1 (Figure 10.14.1c):

or, in matrix notation,

Step 3  Reassembly into S (Figure 10.14.1d):

The geometric effect of the mod 1 arithmetic is to break up the parallelogram in Figure 10.14.1c and reassemble the pieces of S as
shown in Figure 10.14.1d.

Figure 10.14.1   

For computer implementation, it is more convenient to perform the mod 1 arithmetic at each step, rather than at the end. With this
approach there is a reassembly at each step, but the net effect is the same. The steps are as follows:
Step 1  Shear in the x-direction with factor 1, followed by a reassembly into S (Figure 10.14.2b):

Step 2  Shear in the y-direction with factor 1, followed by a reassembly into S (Figure 10.14.2c):

Figure 10.14.2   



Repeated Mappings

Chaotic mappings such as Arnold's cat map usually arise in physical models in which an operation is performed repeatedly. For
example, cards are mixed by repeated shuffles, paint is mixed by repeated stirs, water in a tidal basin is mixed by repeated tidal
changes, and so forth. Thus, we are interested in examining the effect on S of repeated applications (or iterations) of Arnold's cat
map. Figure 10.14.3, which was generated on a computer, shows the effect of 25 iterations of Arnold's cat map on the cat in the
unit square S. Two interesting phenomena occur:
•  The cat returns to its original form at the 25th iteration.
•  At some of the intermediate iterations, the cat is decomposed into streaks that seem to have a specific direction.
Much of the remainder of this section is devoted to explaining these phenomena.

Figure 10.14.3   

Periodic Points

Our first goal is to explain why the cat in Figure 10.14.3 returns to its original configuration at the 25th iteration. For this purpose
it will be helpful to think of a picture in the xy-plane as an assignment of colors to the points in the plane. For pictures generated
on a computer screen or other digital device, hardware limitations require that a picture be broken up into discrete squares, called
pixels. For example, in the computer-generated pictures in Figure 10.14.3 the unit square S is divided into a grid with 101 pixels
on a side for a total of 10,201 pixels, each of which is black or white (Figure 10.14.4). An assignment of colors to pixels to create



a picture is called a pixel map.

Figure 10.14.4   

As shown in Figure 10.14.5, each pixel in S can be assigned a unique pair of coordinates of the form ( ) that
identifies its lower left-hand corner, where m and n are integers in the range . We call these points pixel points
because each such point identifies a unique pixel. Instead of restricting the discussion to the case where S is subdivided into an
array with 101 pixels on a side, let us consider the more general case where there are p pixels per side. Thus, each pixel map in S
consists of  pixels uniformly spaced  units apart in both the x- and the y-directions. The pixel points in S have coordinates
of the form , where m and n are integers ranging from 0 to .

Figure 10.14.5   

Under Arnold's cat map each pixel point of S is transformed into another pixel point of S. To see why this is so, observe that the
image of the pixel point  under  is given in matrix form by

  (2)

The ordered pair  mod 1 is of the form , where  and  lie in the range
. Specifically,  and  are the remainders when  and  are divided by p, respectively.

Consequently, each point in S of the form  is mapped onto another point of the same form.

Because Arnold's cat map transforms every pixel point of S into another pixel point of S, and because there are only  different

pixel points in S, it follows that any given pixel point must return to its original position after at most  iterations of Arnold's cat
map.

 EXAMPLE 1    Using Formula 2

If , then 2 becomes



In this case the successive iterates of the point  are

(verify). Because the point returns to its initial position on the ninth application of Arnold's cat map (but no sooner),
the point is said to have period 9, and the set of nine distinct iterates of the point is called a 9-cycle. Figure 10.14.6
shows this 9-cycle with the initial point labeled 0 and its successive iterates labeled accordingly.

Figure 10.14.6   

In general, a point that returns to its initial position after n applications of Arnold's cat map, but does not return with fewer than n
applications, is said to have period n, and its set of n distinct iterates is called an n-cycle. Arnold's cat map maps  into

, so this point has period 1. Points with period 1 are also called fixed points. We leave it as an exercise (Exercise 11) to
show that  is the only fixed point of Arnold's cat map.

Period Versus Pixel Width

If  and  are points with periods  and , respectively, then  returns to its initial position in  iterations (but no sooner),
and  returns to its initial position in  iterations (but no sooner); thus, both points return to their initial positions in any number
of iterations that is a multiple of both  and . In general, for a pixel map with  pixel points of the form , we let

 denote the least common multiple of the periods of all the pixel points in the map [i.e.,  is the smallest integer that is
divisible by all of the periods]. It follows that the pixel map will return to its initial configuration in  iterations of Arnold's
cat map (but no sooner). For this reason, we call  the period of the pixel map. In Exercise 4 we ask you to show that if

, then all pixel points have period , or 25, so . This explains why the cat in Figure 10.14.3 returned to
its initial configuration in 25 iterations.

Figure 10.14.7 shows how the period of a pixel map varies with p. Although the general tendency is for the period to increase as p
increases, there is a surprising amount of irregularity in the graph. Indeed, there is no simple function that specifies this
relationship (see Exercise 1).



Figure 10.14.7   

Although a pixel map with p pixels on a side does not return to its initial configuration until  iterations have occurred,
various unexpected things can occur at intermediate iterations. For example, Figure 10.14.8 shows a pixel map with  of
the famous Hungarian-American mathematician John von Neumann. It can be shown that ; hence, the pixel map
will return to its initial configuration after 750 iterations of Arnold's cat map (but no sooner). However, after 375 iterations the
pixel map is turned upside down, and after another 375 iterations (for a total of 750) the pixel map is returned to its initial
configuration. Moreover, there are so many pixel points with periods that divide 750 that multiple ghostlike images of the original
likeness occur at intermediate iterations; at 195 iterations numerous miniatures of the original likeness occur in diagonal rows.

Figure 10.14.8   

The Tiled Plane



Our next objective is to explain the cause of the linear streaks that occur in Figure 10.14.3. For this purpose it will be helpful to
view Arnold's cat map another way. As defined, Arnold's cat map is not a linear transformation because of the mod 1 arithmetic.
However, there is an alternative way of defining Arnold's cat map that avoids the mod 1 arithmetic and results in a linear
transformation. For this purpose, imagine that the unit square S with its picture of the cat is a “tile,” and suppose that the entire
plane is covered with such tiles, as in Figure 10.14.9. We say that the xy-plane has been tiled with the unit square. If we apply the
matrix transformation in 1 to the entire tiled plane without performing the mod 1 arithmetic, then it can be shown that the portion
of the image within S will be identical to the image that we obtained using the mod 1 arithmetic (Figure 10.14.9). In short, the
tiling results in the same pixel map in S as the mod 1 arithmetic, but in the tiled case Arnold's cat map is a linear transformation.

Figure 10.14.9   

It is important to understand, however, that tiling and mod 1 arithmetic produce periodicity in different ways. If a pixel map in S
has period n, then in the case of mod 1 arithmetic, each point returns to its original position at the end of n iterations. In the case
of tiling, points need not return to their original positions; rather, each point is replaced by a point of the same color at the end of n
iterations.

Properties of Arnold's Cat Map

To understand the cause of the streaks in Figure 10.14.3, think of Arnold's cat map as a linear transformation on the tiled plane.
Observe that the matrix

that defines Arnold's cat map is symmetric and has a determinant of 1. The fact that the determinant is 1 means that multiplication
by this matrix preserves areas; that is, the area of any figure in the plane and the area of its image are the same. This is also true
for figures in S in the case of mod 1 arithmetic, since the effect of the mod 1 arithmetic is to cut up the figure and reassemble the
pieces without any overlap, as shown in Figure 10.14.1d. Thus, in Figure 10.14.3 the area of the cat (whatever it is) is the same as
the total area of the blotches in each iteration.

The fact that the matrix is symmetric means that its eigenvalues are real and the corresponding eigenvectors are perpendicular. We
leave it for you to show that the eigenvalues and corresponding eigenvectors of C are

For each application of Arnold's cat map, the eigenvalue  causes a stretching in the direction of the eigenvector  by a factor
of  and the eigenvalue  causes a compression in the direction of the eigenvector  by a factor of  Figure
10.14.10 shows a square centered at the origin whose sides are parallel to the two eigenvector directions. Under the above
mapping, this square is deformed into the rectangle whose sides are also parallel to the two eigenvector directions. The area of the



square and rectangle are the same.

Figure 10.14.10   

To explain the cause of the streaks in Figure 10.14.3, consider S to be part of the tiled plane, and let p be a point of S with period
n. Because we are considering tiling, there is a point q in the plane with the same color as p that on successive iterations moves
toward the position initially occupied by p, reaching that position on the nth iteration. This point is , since

Thus, with successive iterations, points of S flow away from their initial positions, while at the same time other points in the plane
(with corresponding colors) flow toward those initial positions, completing their trip on the final iteration of the cycle. Figure
10.14.11 illustrates this in the case where , , and . Note that

, so both points occupy the same positions on their respective tiles. The outgoing point moves in

the general direction of the eigenvector , as indicated by the arrows in Figure 10.14.11, and the incoming point moves in the
general direction of eigenvector . It is the “flow lines” in the general directions of the eigenvectors that form the streaks in
Figure 10.14.3.

Figure 10.14.11   

Nonperiodic Points

Thus far we have considered the effect of Arnold's cat map on pixel points of the form  for an arbitrary positive
integer p. We know that all such points are periodic. We now consider the effect of Arnold's cat map on an arbitrary point 
in S. We classify such points as rational if the coordinates a and b are both rational numbers, and irrational if at least one of the
coordinates is irrational. Every rational point is periodic, since it is a pixel point for a suitable choice of p. For example, the
rational point  can be written as , so it is a pixel point with . It can be shown
(Exercise 13) that the converse is also true: Every periodic point must be a rational point.



It follows from the preceding discussion that the irrational points in S are nonperiodic, so that successive iterates of an irrational
point  in S must all be distinct points in S. Figure 10.14.12, which was computer generated, shows an irrational point and
selected iterates up to 100,000. For the particular irrational point that we selected, the iterates do not seem to cluster in any
particular region of S; rather, they appear to be spread throughout S, becoming denser with successive iterations.

Figure 10.14.12   

The behavior of the iterates in Figure 10.14.12 is sufficiently important that there is some terminology associated with it. We say
that a set D of points in S is dense in S if every circle centered at any point of S encloses points of D, no matter how small the
radius of the circle is taken (Figure 10.14.13). It can be shown that the rational points are dense in S and the iterates of most (but
not all) of the irrational points are dense in S.

Figure 10.14.13   

Definition of Chaos

We know that under Arnold's cat map, the rational points of S are periodic and dense in S and that some but not all of the
irrational points have iterates that are dense in S. These are the basic ingredients of chaos. There are several definitions of chaos in



current use, but the following one, which is an outgrowth of a definition introduced by Robert L. Devaney in 1986 in his book An
Introduction to Chaotic Dynamical Systems (Benjamin/Cummings Publishing Company), is most closely related to our work.

DEFINITION 1

A mapping T of S onto itself is said to be chaotic if:
(i)  S contains a dense set of periodic points of the mapping T.
(ii)  There is a point in S whose iterates under T are dense in S.

Thus Arnold's cat map satisfies the definition of a chaotic mapping. What is noteworthy about this definition is that a chaotic
mapping exhibits an element of order and an element of disorder—the periodic points move regularly in cycles, but the points
with dense iterates move irregularly, often obscuring the regularity of the periodic points. This fusion of order and disorder
characterizes chaotic mappings.

Dynamical Systems

Chaotic mappings arise in the study of dynamical systems. Informally stated, a dynamical system can be viewed as a system that
has a specific state or configuration at each point of time but that changes its state with time. Chemical systems, ecological
systems, electrical systems, biological systems, economic systems, and so forth can be looked at in this way. In a discrete-time
dynamical system, the state changes at discrete points of time rather than at each instant. In a discrete-time chaotic dynamical
system, each state results from a chaotic mapping of the preceding state. For example, if one imagines that Arnold's cat map is
applied at discrete points of time, then the pixel maps in Figure 10.14.3 can be viewed as the evolution of a discrete-time chaotic
dynamical system from some initial set of states (each point of the cat is a single initial state) to successive sets of states.

One of the fundamental problems in the study of dynamical systems is to predict future states of the system from a known initial
state. In practice, however, the exact initial state is rarely known because of errors in the devices used to measure the initial state.
It was believed at one time that if the measuring devices were sufficiently accurate and the computers used to perform the
iteration were sufficiently powerful, then one could predict the future states of the system to any degree of accuracy. But the
discovery of chaotic systems shattered this belief because it was found that for such systems the slightest error in measuring the
initial state or in the computation of the iterates becomes magnified exponentially, thereby preventing an accurate prediction of
future states. Let us demonstrate this sensitivity to initial conditions with Arnold's cat map.

Suppose that  is a point in the xy-plane whose exact coordinates are . A measurement error of 0.00001 is
made in the y-coordinate, such that the point is thought to be located at , which we denote by . Both 
and  are pixel points with  (why?), and thus, since , both return to their initial positions
after 75,000 iterations. In Figure 10.14.14 we show the first 50 iterates of  under Arnold's cat map as crosses and the first 50
iterates of  as circles. Although  and  are close enough that their symbols overlap initially, only their first eight iterates
have overlapping symbols; from the ninth iteration on their iterates follow divergent paths.



Figure 10.14.14   

It is possible to quantify the growth of the error from the eigenvalues and eigenvectors of Arnold's cat map. For this purpose we
will think of Arnold's cat map as a linear transformation on the tiled plane. Recall from Figure 10.14.10 and the related discussion
that the projected distance between two points in S in the direction of the eigenvector  increases by a factor of 
with each iteration (Figure 10.14.15). After nine iterations this projected distance increases by a factor of

 and with an initial error of roughly  in the direction of , this distance is , or

about  the width of the unit square S. After 12 iterations this small initial error grows to 

which is greater than the width of S. Thus, we completely lose track of the true iterates within S after 12 iterations because of the
exponential growth of the initial error.

Figure 10.14.15   

Although sensitivity to initial conditions limits the ability to predict the future evolution of dynamical systems, new techniques
are presently being investigated to describe this future evolution in alternative ways.

Exercise Set 10.14
1. In a journal article [F. J. Dyson and H. Falk, “Period of a Discrete Cat Mapping,” The American Mathematical Monthly, 99

(August–September 1992), pp. 603–614] the following results concerning the nature of the function  were established:

(i)   if and only if  for .

(ii)   if and only if  for  or  for .

(iii)   for all other choices of p.

Find , , , , , , , , and .

Answer:

, , , , , , , ,

2. Find all the n-cycles that are subsets of the 36 points in S of the form  with m and n in the range .
Then find .

Answer:

One 1-cycle: ; one 3-cycle: ; two 4-cycles:  and

; two 12-cycles:

  and



, . 

3. (Fibonacci Shift-Register Random-Number Generator) A well-known method of generating a sequence of “pseudorandom”
integers  in the interval from 0 to  is based on the following algorithm:

(i)  Pick any two integers  and  from the range .

(ii)  Set  mod p for .

Here x mod p denotes the number in the interval from 0 to  that differs from x by a multiple of p. For example, 35 mod
 (because );  (because ); and  (because ).

(a)  Generate the sequence of pseudorandom numbers that results from the choices , , and  until the
sequence starts repeating.

(b)  Show that the following formula is equivalent to step (ii) of the algorithm:

(c)  Use the formula in part (b) to generate the sequence of vectors for the choices , , and  until the
sequence starts repeating.

Answer:

(a)  3, 7, 10, 2, 12, 14, 11, 10, 6, 1, 7, 8, 0, 8, 8, 1, 9, 10, 4, 14, 3, 2, 5, 7, 12, 4, 1, 5, 6, 11, 2, 13, 0, 13, 13, 11, 9, 5, 14, 4, 3, 7,

(c)  (5, 5), (10, 15), (4, 19), (2, 0), (2, 2), (4, 6), (10, 16), (5, 0), (5, 5),

Remark  If we take  and pick  and  from the interval , then the above random-number generator produces
pseudorandom numbers in the interval . The resulting scheme is precisely Arnold's ct map. Furthermore, if we eliminate
the modular arithmetic in the algorithm and take , then the resulting sequence of integers is the famous Fibonacci
sequence,  in which each number after the first two is the sum of the preceding two
numbers.

4. For , it can be verified that

It can also be verified that 12,586,269,025 is divisible by 101 and that when 7,778,742,049 and 20,365,011,074 are divided by
101, the remainder is 1.
(a)  Show that every point in S of the form  returns to its starting position after 25 iterations under Arnold's

cat map.
(b)  Show that every point in S of the form  has period , or 25.

(c)  Show that the point  has period greater than 5 by iterating it five times.

(d)  Show that .

Answer:

(c)  The first five iterates of  are , , , , and .

5. Show that for the mapping  defined by  mod 1, every point in S is a periodic point. Why does

this show that the mapping is not chaotic?

6. An Anosov automorphism on  is a mapping from the unit square S onto S of the form



in which (i) a, b, c, and d are integers, (ii) the determinant of the matrix is , and (iii) the eigenvalues of the matrix do not
have magnitude 1. It can be shown that all Anosov automorphisms are chaotic mappings.
(a)  Show that Arnold's cat map is an Anosov automorphism.
(b)  Which of the following are the matrices of an Anosov automorphism?

(c)  Show that the following mapping of S onto S is not an Anosov automorphism.

What is the geometric effect of this transformation on S? Use your observation to show that the mapping is not a chaotic
mapping by showing that all points in S are periodic points.

Answer:

(b)  The matrices of Anosov automorphisms are  and .

(c)  The transformation affects a rotation of S through  in the clockwise direction.

7. Show that Arnold's cat map is one-to-one over the unit square S and that its range is S.

8. Show that the inverse of Arnold's cat map is given by

9. Show that the unit square S can be partitioned into four triangular regions on each of which Arnold's cat map is a
transformation of the form

where a and b need not be the same for each region. [Hint: Find the regions in S that map onto the four shaded regions of the
parallelogram in Figure 10.14.1d.]

Answer:

  

In region I: ; in region II: ; in region III: ; in region IV: 

10. If  is a point in S and  is its nth iterate under Arnold's cat map, show that

This result implies that the modular arithmetic need only be performed once rather than after each iteration.

11. Show that  is the only fixed point of Arnold's cat map by showing that the only solution of the equation



with  and  is . [Hint: For appropriate nonnegative integers, r and s, we can write

for the preceding equation.]

12. Find all 2-cycles of Arnold's cat map by finding all solutions of the equation

with  and . [Hint: For appropriate nonnegative integers, r and s, we can write

for the preceding equation.]

Answer:

 and  form one 2-cycle, and  and  form another 2-cycle.

13. Show that every periodic point of Arnold's cat map must be a rational point by showing that for all solutions of the equation

the numbers  and  are quotients of integers.

14. Let T be the Arnold's cat map applied five times in a row; that is, . Figure Ex-14 represents four successive mappings
of T on the first image, each image having a resolution of  pixels. The fifth mapping returns to the first image
because this cat map has a period of 25. Explain how you might generate this particular sequence of images.

Figure Ex-14   

Answer:

Begin with a  array of white pixels and add the letter ‘A’ in black pixels to it. Apply the mapping to this image,
which will scatter the black pixels throughout the image. Then superimpose the letter ‘B’ in black pixels onto this image.
Apply the mapping again and then superimpose the letter ‘C’ in black pixels onto the resulting image. Repeat this procedure
with the letters ‘D’ and ‘E’. The next application of the mapping will return you to the letter ‘A’ with the pixels for the letters
‘B’ through ‘E’ scattered in the background.

Section 10.14 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica,
Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a scientific calculator with some
linear algebra capabilities. For each exercise you will need to read the relevant documentation for the particular utility you are
using. The goal of these exercises is to provide you with a basic proficiency with your technology utility. Once you have
mastered the techniques in these exercises, you will be able to use your technology utility to solve many of the problems in the
regular exercise sets.

T1.  The methods of Exercise 4 show that for the cat map,  is the smallest integer satisfying the equation



This suggests that one way to determine  is to compute

starting with  and stopping when this produces the identity matrix. Use this idea to compute  for .
Compare your results to the formulas given in Exercise 1, if they apply. What can you conjecture about

when  is even?

T2.  The eigenvalues and eigenvectors for the cat map matrix

are

Using these eigenvalues and eigenvectors, we can define

and write ; hence, . Use a computer to show that

where

and

How can you use these results and your conclusions in Exercise T1 to simplify the method for computing ?

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.15  Cryptography
In this section we present a method of encoding and decoding messages. We also examine modular arithmetic and show
how Gaussian elimination can sometimes be used to break an opponent's code.

Prerequisites

Matrices
Gaussian Elimination
Matrix Operations
Linear Independence
Linear Transformations (Section 4.9)

Ciphers

The study of encoding and decoding secret messages is called cryptography. Although secret codes date to the earliest days
of written communication, there has been a recent surge of interest in the subject because of the need to maintain the
privacy of information transmitted over public lines of communication. In the language of cryptography, codes are called
ciphers, uncoded messages are called plaintext, and coded messages are called ciphertext. The process of converting from
plaintext to ciphertext is called enciphering, and the reverse process of converting from ciphertext to plaintext is called
deciphering.

The simplest ciphers, called substitution ciphers, are those that replace each letter of the alphabet by a different letter. For
example, in the substitution cipher

Plain A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Cipher D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

the plaintext letter A is replaced by D, the plaintext letter B by E, and so forth. With this cipher the plaintext message

becomes

Hill Ciphers

A disadvantage of substitution ciphers is that they preserve the frequencies of individual letters, making it relatively easy to
break the code by statistical methods. One way to overcome this problem is to divide the plaintext into groups of letters and
encipher the plaintext group by group, rather than one letter at a time. A system of cryptography in which the plaintext is
divided into sets of n letters, each of which is replaced by a set of n cipher letters, is called a polygraphic system. In this
section we will study a class of polygraphic systems based on matrix transformations. [The ciphers that we will discuss are
called Hill ciphers after Lester S. Hill, who introduced them in two papers: “Cryptography in an Algebraic Alphabet,”
American Mathematical Monthly, 36 (June–July 1929), pp. 306–312; and “Concerning Certain Linear Transformation
Apparatus of Cryptography,” American Mathematical Monthly, 38 (March 1931), pp. 135–154.]



In the discussion to follow, we assume that each plaintext and ciphertext letter except Z is assigned the numerical value that
specifies its position in the standard alphabet (Table 1). For reasons that will become clear later, Z is assigned a value of
zero.

Table 1

In the simplest Hill ciphers, successive pairs of plaintext are transformed into ciphertext by the following procedure:
Step 1  Choose a  matrix with integer entries

to perform the encoding. Certain additional conditions on A will be imposed later.
Step 2  Group successive plaintext letters into pairs, adding an arbitrary “dummy” letter to fill out the last pair if the
plaintext has an odd number of letters, and replace each plaintext letter by its numerical value.
Step 3  Successively convert each plaintext pair  into a column vector

and form the product . We will call p a plaintext vector and  the corresponding ciphertext vector.

Step 4  Convert each ciphertext vector into its alphabetic equivalent.

 EXAMPLE 1    Hill Cipher of a Message

Use the matrix

to obtain the Hill cipher for the plaintext message

Solution   If we group the plaintext into pairs and add the dummy letter G to fill out the last pair, we obtain

or, equivalently, from Table 1,

To encipher the pair IA, we form the matrix product

which, from Table 1, yields the ciphertext KC.

To encipher the pair MH, we form the product

However, there is a problem here, because the number 29 has no alphabet equivalent (Table 1). To resolve
this problem, we make the following agreement:



Because the remainder after division by 26 is one of the integers , this procedure will always
yield an integer with an alphabet equivalent.

Thus, in 1 we replace 29 by 3, which is the remainder after dividing 29 by 26. It now follows from Table 1
that the ciphertext for the pair MH is CX.

The computations for the remaining ciphertext vectors are

These correspond to the ciphertext pairs QL, KP, and UU, respectively. In summary, the entire ciphertext
message is

which would usually be transmitted as a single string without spaces:

Because the plaintext was grouped in pairs and enciphered by a  matrix, the Hill cipher in Example 1 is referred to as a
Hill 2-cipher. It is obviously also possible to group the plaintext in triples and encipher by a  matrix with integer
entries; this is called a Hill 3-cipher. In general, for a Hill n-cipher, plaintext is grouped into sets of n letters and
enciphered by an  matrix with integer entries.

Modular Arithmetic

In Example 1, integers greater than 25 were replaced by their remainders after division by 26. This technique of working
with remainders is at the core of a body of mathematics called modular arithmetic. Because of its importance in
cryptography, we will digress for a moment to touch on some of the main ideas in this area.

In modular arithmetic we are given a positive integer m, called the modulus, and any two integers whose difference is an
integer multiple of the modulus are regarded as “equal” or “equivalent” with respect to the modulus. More precisely, we
make the following definition.

DEFINITION 1

If m is a positive integer and a and b are any integers, then we say that a is equivalent to b modulo m, written

if  is an integer multiple of m.



 EXAMPLE 2    Various Equivalences

For any modulus m it can be proved that every integer a is equivalent, modulo m, to exactly one of the integers

We call this integer the residue of a modulo m, and we write

to denote the set of residues modulo m.

If a is a nonnegative integer, then its residue modulo m is simply the remainder that results when a is divided by m. For an
arbitrary integer a, the residue can be found using the following theorem.

THEOREM 10.15.1

For any integer a and modulus m, let

Then the residue r of a modulo m is given by

 EXAMPLE 3    Residues mod 26

Find the residue modulo 26 of (a) 87, (b) , and (c) .

Solution   
(a)  Dividing  by 26 yields a remainder of , so . Thus,

(b)  Dividing  by 26 yields a remainder of , so . Thus,

(c)  Dividing  by 26 yields a remainder of . Thus,

In ordinary arithmetic every nonzero number a has a reciprocal or multiplicative inverse, denoted by , such that



In modular arithmetic we have the following corresponding concept:

DEFINITION 2

If a is a number in , then a number  in  is called a reciprocal or multiplicative inverse of a modulo m if
.

It can be proved that if a and m have no common prime factors, then a has a unique reciprocal modulo m; conversely, if a
and m have a common prime factor, then a has no reciprocal modulo m.

 EXAMPLE 4    Reciprocal of 3 mod 26

The number 3 has a reciprocal modulo 26 because 3 and 26 have no common prime factors. This reciprocal
can be obtained by finding the number x in  that satisfies the modular equation

Although there are general methods for solving such modular equations, it would take us too far afield to
study them. However, because 26 is relatively small, this equation can be solved by trying the possible
solutions, 0 to 25, one at a time. With this approach we find that  is the solution, because

Thus,

 EXAMPLE 5    A Number with No Reciprocal mod 26

The number 4 has no reciprocal modulo 26, because 4 and 26 have 2 as a common prime factor (see Exercise
8).

For future reference, in Table 2 we provide the following reciprocals modulo 26:

Table 2 Reciprocals Modulo 26

Deciphering

Every useful cipher must have a procedure for decipherment. In the case of a Hill cipher, decipherment uses the inverse
(mod 26) of the enciphering matrix. To be precise, if m is a positive integer, then a square matrix A with entries in  is
said to be invertible modulo m if there is a matrix B with entries in  such that



Suppose now that

is invertible modulo 26 and this matrix is used in a Hill 2-cipher. If

  (1)

is a plaintext vector, then

is the corresponding ciphertext vector and

Thus, each plaintext vector can be recovered from the corresponding ciphertext vector by multiplying it on the left by
.

In cryptography it is important to know which matrices are invertible modulo 26 and how to obtain their inverses. We now
investigate these questions.

In ordinary arithmetic, a square matrix A is invertible if and only if , or, equivalently, if and only if  has a
reciprocal. The following theorem is the analog of this result in modular arithmetic.

THEOREM 10.15.2

A square matrix A with entries in  is invertible modulo m if and only if the residue of  modulo m has a
reciprocal modulo m.

Because the residue of  modulo m will have a reciprocal modulo m if and only if this residue and m have no common
prime factors, we have the following corollary.

COROLLARY 10.15.3

A square matrix A with entries in  is invertible modulo m if and only if m and the residue of  modulo m
have no common prime factors.

Because the only prime factors of  are 2 and 13, we have the following corollary, which is useful in cryptography.

COROLLARY 10.15.4

A square matrix A with entries in  is invertible modulo 26 if and only if the residue of  modulo 26 is not
divisible by 2 or 13.



We leave it for you to verify that if

has entries in  and the residue of  modulo 26 is not divisible by 2 or 13, then the inverse of A (mod
26) is given by

  (2)

where  is the reciprocal of the residue of  (mod 26).

 EXAMPLE 6    Inverse of a Matrix mod 26

Find the inverse of

modulo 26.

Solution   

so from Table 2,

Thus, from 2,

As a check,

Similarly, .

 EXAMPLE 7    Decoding a Hill 2-Cipher

Decode the following Hill 2-cipher, which was enciphered by the matrix in Example 6:

Solution   From Table 1 the numerical equivalent of this ciphertext is

To obtain the plaintext pairs, we multiply each ciphertext vector by the inverse of A (obtained in Example 6):



From Table 1, the alphabet equivalents of these vectors are

which yields the message

Breaking a Hill Cipher

Because the purpose of enciphering messages and information is to prevent “opponents” from learning their contents,
cryptographers are concerned with the security of their ciphers—that is, how readily they can be broken (deciphered by
their opponents). We will conclude this section by discussing one technique for breaking Hill ciphers.

Suppose that you are able to obtain some corresponding plaintext and ciphertext from an opponent's message. For example,
on examining some intercepted ciphertext, you may be able to deduce that the message is a letter that begins DEAR SIR. We
will show that with a small amount of such data, it may be possible to determine the deciphering matrix of a Hill code and
consequently obtain access to the rest of the message.

It is a basic result in linear algebra that a linear transformation is completely determined by its values at a basis. This
principle suggests that if we have a Hill n-cipher, and if

are linearly independent plaintext vectors whose corresponding ciphertext vectors

are known, then there is enough information available to determine the matrix A and hence .

The following theorem, whose proof is discussed in the exercises, provides a way to do this.

THEOREM 10.15.5   Determining the Deciphering Matrix

Let  be linearly independent plaintext vectors, and let  be the corresponding ciphertext
vectors in a Hill n-cipher. If



is the  matrix with row vectors  and if

is the  matrix with row vectors  then the sequence of elementary row operations that reduces C

to I transforms P to .

This theorem tells us that to find the transpose of the deciphering matrix , we must find a sequence of row operations
that reduces C to I and then perform this same sequence of operations on P. The following example illustrates a simple
algorithm for doing this.

 EXAMPLE 8    Using Theorem 10.15.5

The following Hill 2-cipher is intercepted:

Decipher the message, given that it starts with the word DEAR.

Solution   From Table 1, the numerical equivalent of the known plaintext is

and the numerical equivalent of the corresponding ciphertext is

so the corresponding plaintext and ciphertext vectors are

We want to reduce

to I by elementary row operations and simultaneously apply these operations to



to obtain  (the transpose of the deciphering matrix). This can be accomplished by adjoining P to the

right of C and applying row operations to the resulting matrix  until the left side is reduced to I. The

final matrix will then have the form . The computations can be carried out as follows:

Thus,

so the deciphering matrix is

To decipher the message, we first group the ciphertext into pairs and find the numerical equivalent of each
letter:

Next, we multiply successive ciphertext vectors on the left by  and find the alphabet equivalents of the
resulting plaintext pairs:



Finally, we construct the message from the plaintext pairs:

Further Readings

Readers interested in learning more about mathematical cryptography are referred to the following books, the first
of which is elementary and the second more advanced.

1. Abraham Sinkov, Elementary Cryptanalysis, a Mathematical Approach (Mathematical Association of America, 2009).

2. Alan G. Konheim, Cryptography, a Primer (New York: Wiley-Interscience, 1981).

Exercise Set 10.15
1. Obtain the Hill cipher of the message

for each of the following enciphering matrices:
(a)  

(b)  

Answer:



(a)  GIYUOKEVBH
(b)  SFANEFZWJH

2. In each part determine whether the matrix is invertible modulo 26. If so, find its inverse modulo 26 and check your work
by verifying that  (mod 26).

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

Answer:

(a)  

(b)  Not invertible
(c)  

(d)  Not invertible
(e)  Not invertible
(f)  

3. Decode the message

given that it is a Hill cipher with enciphering matrix

Answer:

WE LOVE MATH

4. A Hill 2-cipher is intercepted that starts with the pairs

Find the deciphering and enciphering matrices, given that the plaintext is known to start with the word ARMY.

Answer:

5. Decode the following Hill 2-cipher if the last four plaintext letters are known to be ATOM.



Answer:

THEY SPLIT THE ATOM

6. Decode the following Hill 3-cipher if the first nine plaintext letters are IHAVECOME:

Answer:

I HAVE COME TO BURY CAESAR

7. All of the results of this section can be generalized to the case where the plaintext is a binary message; that is, it is a
sequence of 0's and 1's. In this case we do all of our modular arithmetic using modulus 2 rather than modulus 26. Thus,
for example,  (mod 2). Suppose we want to encrypt the message 110101111. Let us first break it into triplets to

form the three vectors , , , and let us take  as our enciphering matrix.

(a)  Find the encoded message.
(b)  Find the inverse modulo 2 of the enciphering matrix, and verify that it decodes your encoded message.

Answer:

(a)  010110001
(b)  

8. If, in addition to the standard alphabet, a period, comma, and question mark were allowed, then 29 plaintext and
ciphertext symbols would be available and all matrix arithmetic would be done modulo 29. Under what conditions
would a matrix with entries in  be invertible modulo 29?

Answer:

A is invertible modulo 29 if and only if  (mod 29).

9. Show that the modular equation  has no solution in  by successively substituting the values
.

10. (a)  Let P and C be the matrices in Theorem 10.15.5. Show that .

(b)  To prove Theorem 10.15.5, let  be the elementary matrices that correspond to the row operations that
reduce C to I, so

Show that

from which it follows that the same sequence of row operations that reduces C to I converts P to .

11. (a)  If A is the enciphering matrix of a Hill n-cipher, show that

where C and P are the matrices defined in Theorem 10.15.5.



(b)  Instead of using Theorem 10.15.5 as in the text, find the deciphering matrix  of Example 8 by using the result in
part (a) and Equation 2 to compute . [Note: Although this method is practical for Hill 2-ciphers, Theorem
10.15.5 is more efficient for Hill n-ciphers with .]

Section 10.15 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB, Mathematica,
Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a scientific calculator with
some linear algebra capabilities. For each exercise you will need to read the relevant documentation for the particular
utility you are using. The goal of these exercises is to provide you with a basic proficiency with your technology utility.
Once you have mastered the techniques in these exercises, you will be able to use your technology utility to solve many of
the problems in the regular exercise sets.

T1.  Two integers that have no common factors (except 1) are said to be relatively prime. Given a positive integer n, let
, where , be the set of all positive integers less than n and relatively

prime to n. For example, if , then

(a)  Construct a table consisting of n and  for , and then compute

in each case. Draw a conjecture for  and prove your conjecture to be true. [Hint: Use the fact that if a is
relatively prime to n, then  is also relatively prime to n.]

(b)  Given a positive integer n and the set , let  be the  matrix

so that, for example,

Use a computer to compute  and  for , and then use these results to construct a
conjecture.

(c)  Use the results of part (a) to prove your conjecture to be true. [Hint: Add the first  rows of  to its last row and
then use Theorem 2.2.3.] What do these results imply about the inverse of ?

T2.  Given a positive integer n greater than 1, the number of positive integers less than n and relatively prime to n is called
the Euler phi function of n and is denoted by . For example,  since only two positive integers (1 and 5) are
less than 6 and have no common factor with 6.
(a)  Using a computer, for each value of  compute and print out all positive integers that are less than n and

relatively prime to n. Then use these integers to determine the values of  for . Can you discover a
pattern in the results?



(b)  It can be shown that if  are all the distinct prime factors of n, then

For example, since  are the distinct prime factors of 12, we have

which agrees with the fact that  are the only positive integers less than 12 and relatively prime to 12.
Using a computer, print out all the prime factors of n for . Then compute  using the formula above
and compare it to your results in part (a).

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.16  Genetics
In this section we investigate the propagation of an inherited trait in successive generations by computing
powers of a matrix.

Prerequisites

Eigenvalues and Eigenvectors
Diagonalization of a Matrix
Intuitive Understanding of Limits

Inheritance Traits

In this section we examine the inheritance of traits in animals or plants. The inherited trait under consideration
is assumed to be governed by a set of two genes, which we designate by A and a. Under autosomal
inheritance each individual in the population of either gender possesses two of these genes, the possible
pairings being designated AA, Aa, and aa. This pair of genes is called the individual's genotype, and it
determines how the trait controlled by the genes is manifested in the individual. For example, in snapdragons
a set of two genes determines the color of the flower. Genotype AA produces red flowers, genotype Aa
produces pink flowers, and genotype aa produces white flowers. In humans, eye coloration is controlled
through autosomal inheritance. Genotypes AA and aa have brown eyes, and genotype Aa has blue eyes. In this
case we say that gene A dominates gene a, or that gene a is recessive to gene A, because genotype Aa has the
same outward trait as genotype AA.

In addition to autosomal inheritance we will also discuss X-linked inheritance. In this type of inheritance, the
male of the species possesses only one of the two possible genes (A or a), and the female possesses a pair of
the two genes (AA, aa, or Aa). In humans, color blindness, hereditary baldness, hemophilia, and muscular
dystrophy, to name a few, are traits controlled by X-linked inheritance.

Below we explain the manner in which the genes of the parents are passed on to their offspring for the two
types of inheritance. We construct matrix models that give the probable genotypes of the offspring in terms of
the genotypes of the parents, and we use these matrix models to follow the genotype distribution of a
population through successive generations.

Autosomal Inheritance

In autosomal inheritance an individual inherits one gene from each of its parents' pairs of genes to form its
own particular pair. As far as we know, it is a matter of chance which of the two genes a parent passes on to
the offspring. Thus, if one parent is of genotype Aa, it is equally likely that the offspring will inherit the A



gene or the a gene from that parent. If one parent is of genotype aa and the other parent is of genotype Aa, the
offspring will always receive an a gene from the aa parent and will receive either an A gene or an a gene, with
equal probability, from the Aa parent. Consequently, each of the offspring has equal probability of being
genotype aa or Aa. In Table 1 we list the probabilities of the possible genotypes of the offspring for all
possible combinations of the genotypes of the parents.

Table 1

 EXAMPLE 1    Distribution of Genotypes in a Population

Suppose that a farmer has a large population of plants consisting of some distribution of all
three possible genotypes AA, Aa, and aa. The farmer desires to undertake a breeding program in
which each plant in the population is always fertilized with a plant of genotype AA and is then
replaced by one of its offspring. We want to derive an expression for the distribution of the
three possible genotypes in the population after any number of generations.

For  let us set

Thus , , and  specify the initial distribution of the genotypes. We also have that

From Table 1 we can determine the genotype distribution of each generation from the genotype
distribution of the preceding generation by the following equations:

  (1)

For example, the first of these three equations states that all the offspring of a plant of genotype
AA will be of genotype AA under this breeding program and that half of the offspring of a plant
of genotype Aa will be of genotype AA.



Equations 1 can be written in matrix notation as

  (2)

where

Note that the three columns of the matrix M are the same as the first three columns of Table 1.

From Equation 2 it follows that

  (3)

Consequently, if we can find an explicit expression for , we can use 3 to obtain an explicit
expression for . To find an explicit expression for , we first diagonalize M. That is, we
find an invertible matrix P and a diagonal matrix D such that

  (4)

With such a diagonalization, we then have (see Exercise 1)

where

The diagonalization of M is accomplished by finding its eigenvalues and corresponding
eigenvectors. These are as follows (verify):

Thus, in Equation 4 we have

and



Therefore,

or

Using the fact that , we thus have

  (5)

These are explicit formulas for the fractions of the three genotypes in the nth generation of
plants in terms of the initial genotype fractions.

Because  tends to zero as n approaches infinity, it follows from these equations that

as n approaches infinity. That is, in the limit all plants in the population will be genotype AA.

 EXAMPLE 2    Modifying Example 1



We can modify Example 1 so that instead of each plant being fertilized with one of genotype
AA, each plant is fertilized with a plant of its own genotype. Using the same notation as in
Example 1, we then find

where

The columns of this new matrix M are the same as the columns of Table 1 corresponding to
parents with genotypes AA–AA, Aa–Aa, and aa–aa.

The eigenvalues of M are (verify)

The eigenvalue  has multiplicity two and its corresponding eigenspace is
two-dimensional. Picking two linearly independent eigenvectors  and  in that eigenspace,
and a single eigenvector  for the simple eigenvalue , we have (verify)

The calculations for  are then

Thus,



  (6)

In the limit, as n tends to infinity,  and , so

Thus, fertilization of each plant with one of its own genotype produces a population that in the
limit contains only genotypes AA and aa.

Autosomal Recessive Diseases

There are many genetic diseases governed by autosomal inheritance in which a normal gene A dominates an
abnormal gene a. Genotype AA is a normal individual; genotype Aa is a carrier of the disease but is not
afflicted with the disease; and genotype aa is afflicted with the disease. In humans such genetic diseases are
often associated with a particular racial group—for instance, cystic fibrosis (predominant among Caucasians),
sickle-cell anemia (predominant among people of African origin), Cooley's anemia (predominant among
people of Mediterranean origin), and Tay-Sachs disease (predominant among Eastern European Jews).

Suppose that an animal breeder has a population of animals that carries an autosomal recessive disease.
Suppose further that those animals afflicted with the disease do not survive to maturity. One possible way to
control such a disease is for the breeder to always mate a female, regardless of her genotype, with a normal
male. In this way, all future offspring will either have a normal father and a normal mother (AA–AA matings)
or a normal father and a carrier mother (AA–Aa matings). There can be no AA–aa matings since animals of
genotype aa do not survive to maturity. Under this type of mating program no future offspring will be
afflicted with the disease, although there will still be carriers in future generations. Let us now determine the
fraction of carriers in future generations. We set

where

Because each offspring has at least one normal parent, we may consider the controlled mating program as one



of continual mating with genotype Aa, as in Example 1. Thus, the transition of genotype distributions from
one generation to the next is governed by the equation

where

Because we know the initial distribution , the distribution of genotypes in the nth generation is thus given
by

The diagonalization of M is easily carried out (see Exercise 4) and leads to

Because , we have

  (7)

Thus, as n tends to infinity, we have

so in the limit there will be no carriers in the population.

From 7 we see that

  (8)

That is, the fraction of carriers in each generation is one-half the fraction of carriers in the preceding
generation. It would be of interest also to investigate the propagation of carriers under random mating, when
two animals mate without regard to their genotypes. Unfortunately, such random mating leads to nonlinear
equations, and the techniques of this section are not applicable. However, by other techniques it can be shown
that under random mating, Equation 8 is replaced by

  (9)



As a numerical example, suppose that the breeder starts with a population in which 10% of the animals are
carriers. Under the controlled-mating program governed by Equation 8, the percentage of carriers can be
reduced to 5% in one generation. But under random mating, Equation 9 predicts that 9.5% of the population
will be carriers after one generation (  if ). In addition, under controlled mating no
offspring will ever be afflicted with the disease, but with random mating it can be shown that about 1 in 400
offspring will be born with the disease when 10% of the population are carriers.

X-Linked Inheritance

As mentioned in the introduction, in X-linked inheritance the male possesses one gene (A or a) and the female
possesses two genes (AA, Aa, or aa). The term X-linked is used because such genes are found on the
X-chromosome, of which the male has one and the female has two. The inheritance of such genes is as
follows: A male offspring receives one of his mother's two genes with equal probability, and a female
offspring receives the one gene of her father and one of her mother's two genes with equal probability.
Readers familiar with basic probability can verify that this type of inheritance leads to the genotype
probabilities in Table 2.

Table 2

We will discuss a program of inbreeding in connection with X-linked inheritance. We begin with a male and
female; select two of their offspring at random, one of each gender, and mate them; select two of the resulting
offspring and mate them; and so forth. Such inbreeding is commonly performed with animals. (Among
humans, such brother-sister marriages were used by the rulers of ancient Egypt to keep the royal line pure.)

The original male-female pair can be one of the six types, corresponding to the six columns of Table 2:

The sibling pairs mated in each successive generation have certain probabilities of being one of these six
types. To compute these probabilities, for  let us set



With these probabilities we form a column vector

From Table 2 it follows that

  (10)

where

For example, suppose that in the -st generation, the sibling pair mated is type . Then their
male offspring will be genotype A or a with equal probability, and their female offspring will be genotype AA
or Aa with equal probability. Because one of the male offspring and one of the female offspring are chosen at
random for mating, the next sibling pair will be one of type , , , or  with
equal probability. Thus, the second column of M contains “ ” in each of the four rows corresponding to these

four sibling pairs. (See Exercise 9 for the remaining columns.)

As in our previous examples, it follows from 10 that

  (11)



After lengthy calculations, the eigenvalues and eigenvectors of M turn out to be

The diagonalization of M then leads to

  (12)

where



We will not write out the matrix product in 12, as it is rather unwieldy. However, if a specific vector  is
given, the calculation for  is not too cumbersome (see Exercise 6).

Because the absolute values of the last four diagonal entries of D are less than 1, we see that as n tends to
infinity,



And so, from Equation 12,

Performing the matrix multiplication on the right, we obtain (verify)

  (13)

That is, in the limit all sibling pairs will be either type (A, AA) or type . For example, if the initial
parents are type  (that is,  and ), then as n tends to infinity,

Thus, in the limit there is probability  that the sibling pairs will be , and probability  that they will

be .

Exercise Set 10.16
1. Show that if , then  for 

2. In Example 1 suppose that the plants are always fertilized with a plant of genotype Aa rather than one of
genotype AA. Derive formulas for the fractions of the plants of genotypes AA, Aa, and aa in the nth
generation. Also, find the limiting genotype distribution as n tends to infinity.

Answer:



3. In Example 1 suppose that the initial plants are fertilized with genotype AA, the first generation is
fertilized with genotype Aa, the second generation is fertilized with genotype AA, and this alternating
pattern of fertilization is kept up. Find formulas for the fractions of the plants of genotypes AA, Aa, and aa
in the nth generation.

Answer:

4. In the section on autosomal recessive diseases, find the eigenvalues and eigenvectors of the matrix M and
verify Equation 7.

Answer:

Eigenvalues: , ; eigenvectors: 

5. Suppose that a breeder has an animal population in which 25% of the population are carriers of an
autosomal recessive disease. If the breeder allows the animals to mate irrespective of their genotype, use
Equation 9 to calculate the number of generations required for the percentage of carriers to fall from 25%
to 10%. If the breeder instead implements the controlled-mating program determined by Equation 8, what
will the percentage of carriers be after the same number of generations?

Answer:

12 generations; .006%

6. In the section on X-linked inheritance, suppose that the initial parents are equally likely to be of any of the
six possible genotype parents; that is,



Using Equation 12, calculate  and also calculate the limit of  as n tends to infinity.

Answer:

;

7. From 13 show that under X-linked inheritance with inbreeding, the probability that the limiting sibling
pairs will be of type  is the same as the proportion of A genes in the initial population.

8. In X-linked inheritance suppose that none of the females of genotype Aa survive to maturity. Under
inbreeding the possible sibling pairs are then

Find the transition matrix that describes how the genotype distribution changes in one generation.

Answer:



9. Derive the matrix M in Equation 10 from Table 2.

Section 10.16 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be
MATLAB, Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra
software or a scientific calculator with some linear algebra capabilities. For each exercise you will need to
read the relevant documentation for the particular utility you are using. The goal of these exercises is to
provide you with a basic proficiency with your technology utility. Once you have mastered the techniques in
these exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.

T1.  
(a)  Use a computer to verify that the eigenvalues and eigenvectors of

as given in the text are correct.
(b)  Starting with  and the assumption that

exists, we must have

This suggests that x can be solved directly using the equation . Use a computer to solve the
equation , where



and ; compare your results to Equation 13. Explain why the solution to
 along with  is not specific enough to determine .

T2.  
(a)  Given

from Equation 12 and

use a computer to show that

(b)  Use a computer to calculate  for , 20, 30, 40, 50, 60, 70, and then compare your results to the
limit in part (a).

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.17  Age-Specific Population Growth
In this section we investigate, using the Leslie matrix model, the growth over time of a female population that
is divided into age classes. We then determine the limiting age distribution and growth rate of the population.

Prerequisites

Eigenvalues and Eigenvectors
Diagonalization of a Matrix
Intuitive Understanding of Limits

One of the most common models of population growth used by demographers is the so-called Leslie model
developed in the 1940s. This model describes the growth of the female portion of a human or animal
population. In this model the females are divided into age classes of equal duration. To be specific, suppose
that the maximum age attained by any female in the population is L years (or some other time unit) and we
divide the population into n age classes. Then each class is  years in duration. We label the age classes
according to Table 1.

Table 1

Suppose that we know the number of females in each of the n classes at time . In particular, let there be
 females in the first class,  females in the second class, and so forth. With these n numbers we form a

column vector:

We call this vector the initial age distribution vector.



As time progresses, the number of females within each of the n classes changes because of three biological
processes: birth, death, and aging. By describing these three processes quantitatively, we will see how to
project the initial age distribution vector into the future.

The easiest way to study the aging process is to observe the population at discrete times—say,
 The Leslie model requires that the duration between any two successive observation

times be the same as the duration of the age intervals. Therefore, we set

With this assumption, all females in the -st class at time  were in the ith class at time .

The birth and death processes between two successive observation times can be described by means of the
following demographic parameters:

By their definitions, we have that

Note that we do not allow any  to equal zero, because then no females would survive beyond the ith age
class. We also assume that at least one  is positive so that some births occur. Any age class for which the
corresponding value of  is positive is called a fertile age class.

We next define the age distribution vector  at time  by

where  is the number of females in the ith age class at time . Now, at time , the females in the first age
class are just those daughters born between times  and . Thus, we can write



or, mathematically,

  (1)

The females in the -st age class  at time  are those females in the ith class at
time  who are still alive at time . Thus,

or, mathematically,

  (2)

Using matrix notation, we can write Equations 1 and 2 as

or more compactly as

  (3)

where L is the Leslie matrix

  (4)



From Equation 3 it follows that

  (5)

Thus, if we know the initial age distribution  and the Leslie matrix L, we can determine the female age
distribution at any later time.

 EXAMPLE 1    Female Age Distribution for Animals

Suppose that the oldest age attained by the females in a certain animal population is 15 years
and we divide the population into three age classes with equal durations of five years. Let the
Leslie matrix for this population be

If there are initially 1000 females in each of the three age classes, then from Equation 3 we
have

Thus, after 15 years there are 14,375 females between 0 and 5 years of age, 1375 females
between 5 and 10 years of age, and 875 females between 10 and 15 years of age.



Limiting Behavior

Although Equation 5 gives the age distribution of the population at any time, it does not immediately give a
general picture of the dynamics of the growth process. For this we need to investigate the eigenvalues and
eigenvectors of the Leslie matrix. The eigenvalues of L are the roots of its characteristic polynomial. As we
ask you to verify in Exercise 2, this characteristic polynomial is

To analyze the roots of this polynomial, it will be convenient to introduce the function

  (6)

Using this function, the characteristic equation  can be written (verify)

  (7)

Because all the  and  are nonnegative, we see that  is monotonically decreasing for  greater than
zero. Furthermore,  has a vertical asymptote at  and approaches zero as . Consequently, as
Figure 10.17.1 indicates, there is a unique , say , such that . That is, the matrix L has a
unique positive eigenvalue. It can also be shown (see Exercise 3) that  has multiplicity 1; that is,  is not a
repeated root of the characteristic equation. Although we omit the computational details, you can verify that
an eigenvector corresponding to  is

  (8)

Because  has multiplicity 1, its corresponding eigenspace has dimension 1 (Exercise 3), and so any
eigenvector corresponding to it is some multiple of . We can summarize these results in the following
theorem.



Figure 10.17.1   

THEOREM 10.17.1   Existence of a Positive Eigenvalue

A Leslie matrix L has a unique positive eigenvalue . This eigenvalue has multiplicity 1 and an
eigenvector  all of whose entries are positive.

We will now show that the long-term behavior of the age distribution of the population is determined by the
positive eigenvalue  and its eigenvector . In Exercise 9 we ask you to prove the following result.

THEOREM 10.17.2   Eigenvalues of a Leslie Matrix

If  is the unique positive eigenvalue of a Leslie matrix  and  is any other real or complex
eigenvalue of  then .

For our purposes the conclusion in Theorem 10.17.2 is not strong enough; we need  to satisfy . In
this case  would be called the dominant eigenvalue of L. However, as the following example shows, not all
Leslie matrices satisfy this condition.

 EXAMPLE 2    Leslie Matrix with No Dominant Eigenvalue

Let

Then the characteristic polynomial of L is

The eigenvalues of L are thus the solutions of —namely,

All three eigenvalues have absolute value 1, so the unique positive eigenvalue  is not
dominant. Note that this matrix has the property that . This means that for any choice of the
initial age distribution , we have

The age distribution vector thus oscillates with a period of three time units. Such oscillations (or



population waves, as they are called) could not occur if  were dominant, as we will see below.

It is beyond the scope of this book to discuss necessary and sufficient conditions for  to be a dominant
eigenvalue. However, we will state the following sufficient condition without proof.

THEOREM 10.17.3   Dominant Eigenvalue

If two successive entries  and  in the first row of a Leslie matrix L are nonzero, then the
positive eigenvalue of L is dominant.

Thus, if the female population has two successive fertile age classes, then its Leslie matrix has a dominant
eigenvalue. This is always the case for realistic populations if the duration of the age classes is sufficiently
small. Note that in Example 2 there is only one fertile age class (the third), so the condition of Theorem
10.17.3 is not satisfied. In what follows, we always assume that the condition of Theorem 10.17.3 is satisfied.

Let us assume that L is diagonalizable. This is not really necessary for the conclusions we will draw, but it
does simplify the arguments. In this case, L has n eigenvalues, , not necessarily distinct, and n
linearly independent eigenvectors, , corresponding to them. In this listing we place the dominant
eigenvalue  first. We construct a matrix P whose columns are the eigenvectors of L:

The diagonalization of L is then given by the equation

From this it follows that

for  For any initial age distribution vector , we then have

for . Dividing both sides of this equation by  and using the fact that , we have



  (9)

Because  is the dominant eigenvalue, we have  for . It follows that

Using this fact, we can take the limit of both sides of 9 to obtain

  (10)

Let us denote the first entry of the column vector  by the constant c. As we ask you to show in
Exercise 4, the right side of 10 can be written as , where c is a positive constant that depends only on the
initial age distribution vector . Thus, 10 becomes

  (11)

Equation 11 gives us the approximation

  (12)

for large values of k. From 12 we also have

  (13)

Comparing Equations 12 and 13, we see that

  (14)

for large values of k. This means that for large values of time, each age distribution vector is a scalar multiple
of the preceding age distribution vector, the scalar being the positive eigenvalue of the Leslie matrix.
Consequently, the proportion of females in each of the age classes becomes constant. As we will see in the
following example, these limiting proportions can be determined from the eigenvector .

 EXAMPLE 3    Example 1 Revisited

The Leslie matrix in Example 1 was



Its characteristic polynomial is , and you can verify that the positive

eigenvalue is . From 8 the corresponding eigenvector  is

From 14 we have

for large values of k. Hence, every five years the number of females in each of the three classes
will increase by about 50%, as will the total number of females in the population.

From 12 we have

Consequently, eventually the females will be distributed among the three age classes in the ratios
. This corresponds to a distribution of 72% of the females in the first age class, 24% of the

females in the second age class, and 4% of the females in the third age class.

 EXAMPLE 4    Female Age Distribution for Humans

In this example we use birth and death parameters from the year 1965 for Canadian females.
Because few women over 50 years of age bear children, we restrict ourselves to the portion of the
female population between 0 and 50 years of age. The data are for 5-year age classes, so there are a
total of 10 age classes. Rather than writing out the  Leslie matrix in full, we list the birth
and death parameters as follows:



Using numerical techniques, we can approximate the positive eigenvalue and corresponding
eigenvector by

Thus, if Canadian women continued to reproduce and die as they did in 1965, eventually every 5
years their numbers would increase by 7.622%. From the eigenvector , we see that, in the limit,
for every 100,000 females between 0 and 5 years of age, there will be 92,594 females between 5
and 10 years of age, 85,881 females between 10 and 15 years of age, and so forth.

Let us look again at Equation 12, which gives the age distribution vector of the population for large times:

  (15)

Three cases arise according to the value of the positive eigenvalue :

The case  is particularly interesting because it determines a population that has zero population
growth. For any initial age distribution, the population approaches a limiting age distribution that is some
multiple of the eigenvector . From Equations 6 and 7, we see that  is an eigenvalue if and only if



  (16)

The expression

  (17)

is called the net reproduction rate of the population. (See Exercise 5 for a demographic interpretation of R.)
Thus, we can say that a population has zero population growth if and only if its net reproduction rate is 1.

Exercise Set 10.17
1. Suppose that a certain animal population is divided into two age classes and has a Leslie matrix

(a)  Calculate the positive eigenvalue  of L and the corresponding eigenvector .
(b)  Beginning with the initial age distribution vector

calculate , , , , and , rounding off to the nearest integer when necessary.

(c)  Calculate  using the exact formula  and using the approximation formula 
.

Answer:

(a)  

(b)  

(c)  

2. Find the characteristic polynomial of a general Leslie matrix given by Equation 4.

3. (a)  Show that the positive eigenvalue  of a Leslie matrix is always simple. Recall that a root  of a
polynomial  is simple if and only if .

(b)  Show that the eigenspace corresponding to  has dimension 1.

4. Show that the right side of Equation 10 is , where c is the first entry of the column vector .

5. Show that the net reproduction rate R, defined by 17, can be interpreted as the average number of
daughters born to a single female during her expected lifetime.



6. Show that a population is eventually decreasing if and only if its net reproduction rate is less than 1.
Similarly, show that a population is eventually increasing if and only if its net reproduction rate is greater
than 1.

7. Calculate the net reproduction rate of the animal population in Example 1.

Answer:

2.375

8. (For readers with a hand calculator) Calculate the net reproduction rate of the Canadian female
population in Example 4.

Answer:

1.49611

9. (For readers who have read Section 10.1–Section 10.3) Prove Theorem 10.17.2. [Hint: Write ,
substitute into 7, take the real parts of both sides, and show that .

Section 10.17 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be
MATLAB, Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra
software or a scientific calculator with some linear algebra capabilities. For each exercise you will need to
read the relevant documentation for the particular utility you are using. The goal of these exercises is to
provide you with a basic proficiency with your technology utility. Once you have mastered the techniques in
these exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.

T1.  Consider the sequence of Leslie matrices

(a)  Use a computer to show that

for a suitable choice of a in terms of , .

(b)  From your results in part (a), conjecture a relationship between a and ,  that will make
, where



(c)  Determine an expression for  and use it to show that all eigenvalues of  satisfy
 when a and ,  are related by the equation determined in part (b).

T2.  Consider the sequence of Leslie matrices

where ,  and .

(a)  Choose a value for n (say, ). For various values of a, b, and p, use a computer to determine the
dominant eigenvalue of , and then compare your results to the value of .

(b)  Show that

which means that the eigenvalues of  must satisfy

(c)  Can you now provide a rough proof to explain the fact that ?

T3.  Suppose that a population of mice has a Leslie matrix L over a 1-month period and an initial age



distribution vector  given by

(a)  Compute the net reproduction rate of the population.
(b)  Compute the age distribution vector after 100 months and 101 months, and show that the vector after 101

weeks is approximately a scalar multiple of the vector after 100 months.
(c)  Compute the dominant eigenvalue of L and its corresponding eigenvector. How are they related to your

results in part (b)?
(d)  Suppose you wish to control the mouse population by feeding it a substance that decreases its age-specific

birthrates (the entries in the first row of L) by a constant fraction. What range of fractions would cause the
population eventually to decrease?

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.18  Harvesting of Animal Populations
In this section we employ the Leslie matrix model of population growth to model the sustainable harvesting
of an animal population. We also examine the effect of harvesting different fractions of different age groups.

Prerequisites

Age-Specific Population Growth (Section 10.17)

Harvesting

In Section 10.17 we used the Leslie matrix model to examine the growth of a female population that was
divided into discrete age classes. In this section, we investigate the effects of harvesting an animal population
growing according to such a model. By harvesting we mean the removal of animals from the population.
(The word harvesting is not necessarily a euphemism for “slaughtering”; the animals may be removed from
the population for other purposes.)

In this section we restrict ourselves to sustainable harvesting policies. By this we mean the following:

DEFINITION 1

A harvesting policy in which an animal population is periodically harvested is said to be sustainable
if the yield of each harvest is the same and the age distribution of the population remaining after each
harvest is the same.

Thus, the animal population is not depleted by a sustainable harvesting policy; only the excess growth is
removed.

As in Section 10.17, we will discuss only the females of the population. If the number of males in each age
class is equal to the number of females—a reasonable assumption for many populations—then our harvesting
policies will also apply to the male portion of the population.

The Harvesting Model

Figure 10.18.1 illustrates the basic idea of the model. We begin with a population having a particular age
distribution. It undergoes a growth period that will be described by the Leslie matrix. At the end of the growth
period, a certain fraction of each age class is harvested in such a way that the unharvested population has the



same age distribution as the original population. This cycle repeats after each harvest so that the yield is
sustainable. The duration of the harvest is assumed to be short in comparison with the growth period so that
any growth or change in the population during the harvest period can be neglected.

Figure 10.18.1   

To describe this harvesting model mathematically, let

be the age distribution vector of the population at the beginning of the growth period. Thus  is the number
of females in the ith class left unharvested. As in Section 10.17, we require that the duration of each age class
be identical with the duration of the growth period. For example, if the population is harvested once a year,
then the population is divided into 1-year age classes.

If L is the Leslie matrix describing the growth of the population, then the vector  is the age distribution
vector of the population at the end of the growth period, immediately before the periodic harvest. Let , for

, be the fraction of females from the ith class that is harvested. We use these n numbers to form
an  diagonal matrix

which we will call the harvesting matrix. By definition, we have

That is, we can harvest none , all , or some fraction  of each of the n classes.
Because the number of females in the ith class immediately before each harvest is the ith entry  of the
vector , the ith entry of the column vector



is the number of females harvested from the ith class.

From the definition of a sustainable harvesting policy, we have

or, mathematically,

  (1)

If we write Equation 1 in the form

  (2)

we see that x must be an eigenvector of the matrix  corresponding to the eigen- value 1. As we will
now show, this places certain restrictions on the values of  and x.

Suppose that the Leslie matrix of the population is

  (3)

Then the matrix  is (verify)

Thus, we see that  is a matrix with the same mathematical form as a Leslie matrix. In Section 10.17
we showed that a necessary and sufficient condition for a Leslie matrix to have 1 as an eigenvalue is that its
net reproduction rate also be 1 [see Eq. 16 of Section 10.17]. Calculating the net reproduction rate of

 and setting it equal to 1, we obtain (verify)

  (4)

This equation places a restriction on the allowable harvesting fractions. Only those values of 



that satisfy 4 and that lie in the interval  can produce a sustainable yield.

If  do satisfy 4, then the matrix  has the desired eigenvalue . Furthermore, this
eigenvalue has multiplicity 1, because the positive eigenvalue of a Leslie matrix always has multiplicity 1
(Theorem 10.17.1). This means that there is only one linearly independent eigenvector x satisfying Equation
2. [See Exercise 3(b) of Section 10.17.] One possible choice for x is the following normalized eigenvector:

  (5)

Any other solution x of 2 is a multiple of . Thus, the vector  determines the proportion of females within
each of the n classes after a harvest under a sustainable harvesting policy. But there is an ambiguity in the
total number of females in the population after each harvest. This can be determined by some auxiliary
condition, such as an ecological or economic constraint. For example, for a population economically
supported by the harvester, the largest population the harvester can afford to raise between harvests would
determine the particular constant that  is multiplied by to produce the appropriate vector x in Equation 2.
For a wild population, the natural habitat of the population would determine how large the total population
could be between harvests.

Summarizing our results so far, we see that there is a wide choice in the values of  that will
produce a sustainable yield. But once these values are selected, the proportional age distribution of the
population after each harvest is uniquely determined by the normalized eigenvector  defined by Equation 5.
We now consider a few particular harvesting strategies of this type.

Uniform Harvesting

With many populations it is difficult to distinguish or catch animals of specific ages. If animals are caught at
random, we can reasonably assume that the same fraction of each age class is harvested. We therefore set

Equation 2 then reduces to (verify)

Hence,  must be the unique positive eigenvalue  of the Leslie growth matrix L. That is,

Solving for the harvesting fraction h, we obtain

  (6)

The vector , in this case, is the same as the eigenvector of L corresponding to the eigenvalue . From



Equation 8 of Section 10.17, this is

  (7)

From 6 we can see that the larger  is, the larger is the fraction of animals we can harvest without depleting
the population. Note that we need  in order for the harvesting fraction h to lie in the interval .
This is to be expected, because  is the condition that the population be increasing.

 EXAMPLE 1    Harvesting Sheep

For a certain species of domestic sheep in New Zealand with a growth period of 1 year, the
following Leslie matrix was found (see G. Caughley, “Parameters for Seasonally Breeding
Populations,” Ecology, 48, 1967, pp. 834–839).

The sheep have a lifespan of 12 years, so they are divided into 12 age classes of duration 1 year
each. By the use of numerical techniques, the unique positive eigenvalue of L can be found to
be

From Equation 6, the harvesting fraction h is

Thus, the uniform harvesting policy is one in which 15.0 % of the sheep from each of the 12
age classes is harvested every year. From 7 the age distribution vector of the sheep after each
harvest is proportional to



  (8)

From 8 we see that for every 1000 sheep between 0 and 1 year of age that are not harvested,
there are 719 sheep between 1 and 2 years of age, 596 sheep between 2 and 3 years of age, and
so forth.

Harvesting Only the Youngest Age Class

In some populations only the youngest females are of any economic value, so the harvester seeks to harvest
only the females from the youngest age class. Accordingly, let us set

Equation 4 then reduces to

or

where R is the net reproduction rate of the population. [See Equation 17 of Section 10.17.] Solving for h, we
obtain

  (9)

Note from this equation that a sustainable harvesting policy is possible only if . This is reasonable
because only if  is the population increasing. From Equation 5, the age distribution vector after each
harvest is proportional to the vector



  (10)

 EXAMPLE 2    Sustainable Harvesting Policy

Let us apply this type of sustainable harvesting policy to the sheep population in Example 1.
For the net reproduction rate of the population we find

From Equation 9, the fraction of the first age class harvested is

From Equation 10, the age distribution of the sheep population after the harvest is proportional
to the vector

  (11)

A direct calculation gives us the following (see also Exercise 3):



  (12)

The vector  is the age distribution vector immediately before the harvest. The total of all
entries in  is 8.520, so the first entry 2.514 is 29.5% of the total. This means that
immediately before each harvest, 29.5% of the population is in the youngest age class. Since
60.2% of this class is harvested, it follows that 17.8% (= 60.2% of 29.5%) of the entire sheep
population is harvested each year. This can be compared with the uniform harvesting policy of
Example 1, in which 15.0% of the sheep population is harvested each year.

Optimal Sustainable Yield

We saw in Example 1 that a sustainable harvesting policy in which the same fraction of each age class is
harvested produces a yield of 15.0 % of the sheep population. In Example 2 we saw that if only the youngest
age class is harvested, the resulting yield is 17.8 % of the population. There are many other possible
sustainable harvesting policies, and each generally provides a different yield. It would be of interest to find a
sustainable harvesting policy that produces the largest possible yield. Such a policy is called an optimal
sustainable harvesting policy, and the resulting yield is called the optimal sustainable yield. However,
determining the optimal sustainable yield requires linear programming theory, which we will not discuss here.
We refer you to the following result, which appears in J. R. Beddington and D. B. Taylor, “Optimum Age
Specific Harvesting of a Population,” Biometrics, 29, 1973, pp. 801–809.

THEOREM 10.18.1   Optimal Sustainable Yield

An optimal sustainable harvesting policy is one in which either one or two age classes are harvested.
If two age classes are harvested, then the older age class is completely harvested.

As an illustration, it can be shown that the optimal sustainable yield of the sheep population is attained when



  (13)

and all other values of  are zero. Thus, 52.2 % of the sheep between 0 and 1 year of age and all the sheep
between 8 and 9 years of age are harvested. As we ask you to show in Exercise 2, the resulting optimal
sustainable yield is 19.9 % of the population.

Exercise Set 10.18
1. Let a certain animal population be divided into three 1-year age classes and have as its Leslie matrix

(a)  Find the yield and the age distribution vector after each harvest if the same fraction of each of the
three age classes is harvested every year.

(b)  Find the yield and the age distribution vector after each harvest if only the youngest age class is
harvested every year. Also, find the fraction of the youngest age class that is harvested.

Answer:

(a)  

 of population; 

(b)  

 of population; ; harvest 57.9% of youngest age class

2. For the optimal sustainable harvesting policy described by Equations 13, find the vector  that specifies
the age distribution of the population after each harvest. Also calculate the vector  and verify that the
optimal sustainable yield is 19.9 % of the population.

Answer:



3. Use Equation 10 to show that if only the first age class of an animal population is harvested

where R is the net reproduction rate of the population.

4. If only the ith class of an animal population is to be periodically harvested , find the
corresponding harvesting fraction .

Answer:

5. Suppose that all of the Jth class and a certain fraction  of the Ith class of an animal population is to be
periodically harvested . Calculate .

Answer:

Section 10.18 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the
relevant documentation for the particular utility you are using. The goal of these exercises is to provide you
with a basic proficiency with your technology utility. Once you have mastered the techniques in these
exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.

T1.  The results of Theorem 10.18.1 suggest the following algorithm for determining the optimal sustainable
yield.



1.  For each value of , set  and  for  and calculate the respective yields. These
n calculations give the one-age-class results. Of course, any calculation leading to a value of h not between
0 and 1 is rejected.

2.  For each value of  and , set ,  and  for 
j and calculate the respective yields. These  calculations give the two-age-class results. Of

course, any calculation leading to a value of h not between 0 and 1 is again rejected.
3.  Of the yields calculated in parts (i) and (ii), the largest is the optimal sustainable yield. Note that there will

be at most

calculations in all. Once again, some of these may lead to a value of h not between 0 and 1 and must
therefore be rejected.

If we use this algorithm for the sheep example in the text, there will be at most 

calculations to consider. Use a computer to do the two-age-class calculations for ,  and 
for  or j for  Construct a summary table consisting of the values of  and the
percentage yields using  which will show that the largest of these yields occurs when .

T2.  Using the algorithm in Exercise T1 , do the one-age-class calculations for  and  for  for
 Construct a summary table consisting of the values of  and the percentage yields using

, which will show that the largest of these yields occurs when .

T3.  Referring to the mouse population in Exercise T3 of Section 10.17, suppose that reducing the birthrates
is not practical, so you instead decide to control the population by uniformly harvesting all of the age classes
monthly.
(a)  What fraction of the population must be harvested monthly to bring the mouse population to equilibrium

eventually?
(b)  What is the equilibrium age distribution vector under this uniform harvesting policy?
(c)  The total number of mice in the original mouse population was 155. What would be the total number of

mice after 5, 10, and 200 months under your uniform harvesting policy?

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.19  A Least Squares Model for Human Hearing
In this section we apply the method of least squares approximation to a model for human hearing. The use of this
method is motivated by energy considerations.

Prerequisites

Inner Product Spaces
Orthogonal Projection
Fourier Series (Section 6.6)

Anatomy of the Ear

We begin with a brief discussion of the nature of sound and human hearing. Figure 10.19.1 is a schematic diagram
of the ear showing its three main components: the outer ear, middle ear, and inner ear. Sound waves enter the outer
ear where they are channeled to the eardrum, causing it to vibrate. Three tiny bones in the middle ear mechanically
link the eardrum with the snail-shaped cochlea within the inner ear. These bones pass on the vibrations of the
eardrum to a fluid within the cochlea. The cochlea contains thousands of minute hairs that oscillate with the fluid.
Those near the entrance of the cochlea are stimulated by high frequencies, and those near the tip are stimulated by
low frequencies. The movements of these hairs activate nerve cells that send signals along various neural pathways
to the brain, where the signals are interpreted as sound.

Figure 10.19.1   

The sound waves themselves are variations in time of the air pressure. For the auditory system, the most
elementary type of sound wave is a sinusoidal variation in the air pressure. This type of sound wave stimulates the
hairs within the cochlea in such a way that a nerve impulse along a single neural pathway is produced (Figure
10.19.2). A sinusoidal sound wave can be described by a function of time



  (1)

where  is the atmospheric pressure at the eardrum,  is the normal atmospheric pres-sure, A is the maximum
deviation of the pressure from the normal atmospheric pressure,  is the frequency of the wave in cycles per
second, and  is the phase angle of the wave. To be perceived as sound, such sinusoidal waves must have
frequencies within a certain range. For humans this range is roughly 20 cycles per second (cps) to 20,000 cps.
Frequencies outside this range will not stimulate the hairs within the cochlea enough to produce nerve signals.

Figure 10.19.2   

To a reasonable degree of accuracy, the ear is a linear system. This means that if a complex sound wave is a finite
sum of sinusoidal components of different amplitudes, frequencies, and phase angles, say,

  (2)

then the response of the ear consists of nerve impulses along the same neural pathways that would be stimulated by
the individual components (Figure 10.19.3).

Figure 10.19.3   

Let us now consider some periodic sound wave  with period T [i.e., ] that is not a finite sum
of sinusoidal waves. If we examine the response of the ear to such a periodic wave, we find that it is the same as
the response to some wave that is the sum of sinusoidal waves. That is, there is some sound wave  as given by
Equation 2 that produces the same response as , even though  and  are different functions of time.

We now want to determine the frequencies, amplitudes, and phase angles of the sinusoidal components of .
Because  produces the same response as the periodic wave , it is reasonable to expect that  has the
same period T as . This requires that each sinusoidal term in  have period T. Consequently, the frequencies



of the sinusoidal components must be integer multiples of the basic frequency  of the function . Thus, the
 in Equation 2 must be of the form

But because the ear cannot perceive sinusoidal waves with frequencies greater than 20,000 cps, we may omit those
values of k for which  is greater than 20,000. Thus,  is of the form

  (3)

where n is the largest integer such that  is not greater than 20,000.

We now turn our attention to the values of the amplitudes  and the phase angles  that
appear in Equation 3. There is some criterion by which the auditory system “picks” these values so that 
produces the same response as . To examine this criterion, let us set

If we consider  as an approximation to , then  is the error in this approximation, an error that the ear
cannot perceive. In terms of , the criterion for the determination of the amplitudes and the phase angles is that
the quantity

  (4)

be as small as possible. We cannot go into the physiological reasons for this, but we note that this expression is
proportional to the acoustic energy of the error wave  over one period. In other words, it is the energy of the
difference between the two sound waves  and  that determines whether the ear perceives any difference
between them. If this energy is as small as possible, then the two waves produce the same sensation of sound.
Mathematically, the function  in 4 is the least squares approximation to  from the vector space  of
continuous functions on the interval . (See Section 6.6.)

Least squares approximations by continuous functions arise in a wide variety of engineering and scientific
approximation problems. Apart from the acoustics problem just discussed, some other examples follow.
1.  Let  be the axial strain distribution in a uniform rod lying along the x-axis from  to  (Figure

10.19.4). The strain energy in the rod is proportional to the integral

The closeness of an approximation  to  can be judged according to the strain energy of the difference
of the two strain distributions. That energy is proportional to

which is a least squares criterion.
2.  Let  be a periodic voltage across a resistor in an electrical circuit (Figure 10.19.5). The electrical energy

transferred to the resistor during one period T is proportional to

If  has the same period as  and is to be an approximation to , then the criterion of closeness might
be taken as the energy of the difference voltage. This is proportional to



which is again a least squares criterion.
3.  Let  be the vertical displacement of a uniform flexible string whose equilibrium position is along the x-axis

from  to  (Figure 10.19.6). The elastic potential energy of the string is proportional to

If  is to be an approximation to the displacement, then as before, the energy integral

determines a least squares criterion for the closeness of the approximation.

Figure 10.19.4   

Figure 10.19.5   

Figure 10.19.6   

Least squares approximation is also used in situations where there is no a priori justification for its use, such as for
approximating business cycles, population growth curves, sales curves, and so forth. It is used in these cases
because of its mathematical simplicity. In general, if no other error criterion is immediately apparent for an
approximation problem, the least squares criterion is the one most often chosen.

The following result was obtained in Section 6.6.



THEOREM 10.19.1   Minimizing Mean Square Error on [0, 2π]

If  is continuous on  then the trigonometric function  of the form

that minimizes the mean square error

has coefficients

If the original function  is defined over the interval  instead of , a change of scale will yield the
following result (see Exercise 8):

THEOREM 10.19.2   Minimizing Mean Square Error on [0, T]

If  is continuous on  then the trigonometric function  of the form

that minimizes the mean square error

has coefficients

 EXAMPLE 1    Least Squares Approximation to a Sound Wave

Let a sound wave  have a saw-tooth pattern with a basic frequency of 5000 cps (Figure 10.19.7).
Assume units are chosen so that the normal atmospheric pressure is at the zero level and the
maximum amplitude of the wave is A. The basic period of the wave is  second.
From  to , the function  has the equation



Theorem 10.19.2 then yields the following (verify):

We can now investigate how the sound wave  is perceived by the human ear. We note that
, so we need only go up to  in the formulas above. The least squares

approximation to  is then

The four sinusoidal terms have frequencies of 5000, 10,000, 15,000, and 20,000 cps, respectively. In
Figure 10.19.8 we have plotted  and  over one period. Although  is not a very good
point-by-point approximation to , to the ear, both  and  produce the same sensation of
sound.

Figure 10.19.7   

Figure 10.19.8   

As discussed in Section 6.6, the least squares approximation becomes better as the number of terms in the
approximating trigonometric polynomial becomes larger. More precisely,



tends to zero as n approaches infinity. We denote this by writing

where the right side of this equation is the Fourier series of . Whether the Fourier series of  converges to
 for each t is another question, and a more difficult one. For most continuous functions encountered in

applications, the Fourier series does indeed converge to its corresponding function for each value of t.

Exercise Set 10.19
1. Find the trigonometric polynomial of order 3 that is the least squares approximation to the function

 over the interval .

Answer:

2. Find the trigonometric polynomial of order 4 that is the least squares approximation to the function 
over the interval .

Answer:

3. Find the trigonometric polynomial of order 4 that is the least squares approximation to the function  over
the interval , where

Answer:

4. Find the trigonometric polynomial of arbitrary order n that is the least squares approximation to the function
 over the interval .

Answer:

5. Find the trigonometric polynomial of arbitrary order n that is the least squares approximation to the function
 over the interval , where



Answer:

6. For the inner product

show that
(a)  

(b)  

(c)  

7. Show that the  functions

are orthogonal over the interval  relative to the inner product  defined in Exercise 6.

8. If  is defined and continuous on the interval , show that  is defined and continuous for 
in the interval . Use this fact to show how Theorem 10.19.2 follows from Theorem 10.19.1.

Section 10.19 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be MATLAB,
Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra software or a
scientific calculator with some linear algebra capabilities. For each exercise you will need to read the relevant
documentation for the particular utility you are using. The goal of these exercises is to provide you with a basic
proficiency with your technology utility. Once you have mastered the techniques in these exercises, you will be
able to use your technology utility to solve many of the problems in the regular exercise sets.

T1.  Let g be the function

for . Use a computer to determine the Fourier coefficients

for k = 0, 1, 2, 3, 4, 5. From your results, make a conjecture about the general expressions for  and . Test your
conjecture by calculating

on the computer and see whether it converges to .

T2.  Let g be the function



for . Use a computer to determine the Fourier coefficients

for k = 0, 1, 2, 3, 4, 5. From your results, make a conjecture about the general expressions for  and . Test your
conjecture by calculating

on the computer and see whether it converges to g(t).

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



10.20  Warps and Morphs
Among the more interesting image-manipulation techniques available for computer graphics are warps and
morphs. In this section we show how linear transformations can be used to distort a single picture to produce
a warp, or to distort and blend two pictures to produce a morph.

Prerequisites

Geometry of Linear Operators on  (Section 4.11)

Linear Independence
Bases in 

Computer graphics software enables you to manipulate an image in various ways, such as by scaling, rotating,
or slanting the image. Distorting an image by separately moving the corners of a rectangle containing the
image is another basic image-manipulation technique. Distorting various pieces of an image in different ways
is a more complicated procedure that results in a warp of the picture. In addition, warping two different
images in complementary ways and blending the warps results in a morph of the two pictures (from the Greek
root meaning “shape” or “form”). An example is Figure 10.20.1 in which four photographs of a woman taken
over a 50-year period (the four diagonal pictures from top left to bottom right) have been pairwise morphed
by different amounts to suggest the gradual aging of the woman.



Figure 10.20.1   

The most visible application of warping and morphing images has been the production of special effects in
motion pictures and television. However, many scientific and technological applications of such techniques
have also arisen—for example, studying the evolution, growth, and development of living organisms,
assisting in reconstructive and cosmetic surgery, exploring various designs of a product, and “aging”
photographs of missing persons or police suspects.

Warps

We begin by describing a simple warp of a triangular region in the plane. Let the three vertices of a triangle be
given by the three noncollinear points , , and  (Figure 10.20.2a). We will call this triangle the begin-
triangle. If v is any point in the begin-triangle, then there are unique constants  and  such that

  (1)



Equation 1 expresses the vector  as a (unique) linear combination of the two linearly independent
vectors  and  with respect to an origin at . If we set , then we can rewrite 1
as

  (2)

where

  (3)

from the definition of . We say that v is a convex combination of the vectors , , and  if 2 and 3 are
satisfied and, in addition, the coefficients , , and  are nonnegative. It can be shown (Exercise 6) that v
lies in the triangle determined by , , and  if and only if it is a convex combination of those three
vectors.

Figure 10.20.2   

Next, given three noncollinear points , , and  of an end-triangle (Figure 10.20.2b), there is a unique
affine transformation that maps  to ,  to , and  to . That is, there is a unique  invertible
matrix M and a unique vector b such that

  (4)

(See Exercise 5 for the evaluation of M and b.) Moreover, it can be shown (Exercise 3) that the image w of the
vector v in 2 under this affine transformation is



  (5)

This is a basic property of affine transformations: They map a convex combination of vectors to the same
convex combination of the images of the vectors.

Now suppose that the begin-triangle contains a picture within it (Figure 10.20.3a). That is, to each point in the
begin-triangle we assign a gray level, say 0 for white and 100 for black, with any other gray level lying
between 0 and 100. In particular, let a scalar-valued function , called the picture-density of the begin-
triangle, be defined so that  is the gray level at the point v in the begin-triangle. We can now define a
picture in the end-triangle, called a warp of the original picture, with a picture-density  by defining the gray
level at the point w within the end-triangle to be the gray level of the point v in the begin-triangle that maps
onto w. In equation form, the picture-density  is determined by

  (6)

In this way, as , , and  vary over all nonnegative values that add to one, 5 generates all points w in the
end-triangle, and 6 generates the gray levels  of the warped picture at those points (Figure 10.20.3b).

Figure 10.20.3   

Equation 6 determines a very simple warp of a picture within a single triangle. More generally, we can break
up a picture into many triangular regions and warp each triangular region differently. This gives us much
freedom in designing a warp through our choice of triangular regions and how we change them. To this end,
suppose we are given a picture contained within some rectangular region of the plane. We choose n points ,



 within the rectangle, which we call vertex points, so that they fall on key elements or features of
the picture we wish to warp (Figure 10.20.4a). Once the vertex points are chosen, we complete a
triangulation of the rectangular region; that is, we draw line segments between the vertex points in such a
way that we have the following conditions (Figure 10.20.4b):
1.  The line segments form the sides of a set of triangles.
2.  The line segments do not intersect.
3.  Each vertex point is the vertex of at least one triangle.
4.  The union of the triangles is the rectangle.
5.  The set of triangles is maximal (i.e., no more vertices can be connected).
Note that condition 4 requires that each corner of the rectangle containing the picture be a vertex point.

Figure 10.20.4   

One can always form a triangulation from any n vertex points, but the triangulation is not necessarily unique.



For example, Figures 10.20.4b and 10.20.4c are two different triangulations of the set of vertex points in
Figure 10.20.4a. Since there are various computer algorithms that perform triangulations very quickly, it is
not necessary to perform the tiresome triangulation task by hand; one need only specify the desired vertex
points and let a computer generate a triangulation from them. If n is the number of vertex points chosen, it can
be shown that the number of triangles m of any triangulation of those points is given by

  (7)

where k is the number of vertex points lying on the boundary of the rectangle, including the four situated at
the corner points.

The warp is specified by moving the n vertex points ,  to new locations ,  according
to the changes we desire in the picture (Figures 10.20.5a and 10.20.5b). However, we impose two restrictions
on the movements of the vertex points:
1.  The four vertex points at the corners of the rectangle are to remain fixed, and any vertex point on a side of

the rectangle is to remain fixed or move to another point on the same side of the rectangle. All other vertex
points are to remain in the interior of the rectangle.

2.  The triangles determined by the triangulation are not to overlap after their vertices have been moved.
The first restriction guarantees that the rectangular shape of the begin-picture is preserved. The second
restriction guarantees that the displaced vertex points still form a triangulation of the rectangle and that the
new triangulation is similar to the original one. For example, Figure 10.20.5c is not an allowable movement
of the vertex points shown in Figure 10.20.5a. Although a violation of this condition can be handled
mathematically without too much additional effort, the resulting warps usually produce unnatural results and
we will not consider them here.

Figure 10.20.5   

Figure 10.20.6 is a warp of a photograph of a woman using a triangulation with 94 vertex points and 179
triangles. Note that the vertex points in the begin-triangulation are chosen to lie along key features of the
picture (hairline, eyes, lips, etc.). These vertex points were moved to final positions corresponding to those
same features in a picture of the woman taken 20 years after the begin-picture. Thus, the warped picture
represents the woman forced into her older shape but using her younger gray levels.



Figure 10.20.6   

Time-Varying Warps

A time-varying warp is the set of warps generated when the vertex points of the begin-picture are moved
continually in time from their original positions to specified final positions. This gives us a motion picture in
which the begin-picture is continually warped to a final warp. Let us choose time units so that 
corresponds to our begin-picture and  corresponds to our final warp. The simplest way of moving the
vertex points from time 0 to time 1 is with constant velocity along straight-line paths from their initial



positions to their final positions.

To describe such a motion, let  denote the position of the ith vertex point at any time t between 0 and 1.
Thus  (its given position in the begin-picture) and  (its given position in the final warp).
In between, we determine its position by

  (8)

Note that 8 expresses  as a convex combination of  and  for each t in [0, 1]. Figure 10.20.7
illustrates a time-varying triangulation of a plain rectangular region with six vertex points. The lines
connecting the vertex points at the different times are the space-time paths of these vertex points in this
space-time diagram.

Figure 10.20.7   

Once the positions of the vertex points are computed at time t, a warp is performed between the begin-picture
and the triangulation at time t determined by the displaced vertex points at that time. Figure 10.20.8 shows a
time-varying warp at five values of t generated from the warp between  and  shown in Figure
10.20.6.

Figure 10.20.8   



Morphs

A time-varying morph can be described as a blending of two time-varying warps of two different pictures
using two triangulations that match corresponding features in the two pictures. One of the two pictures is
designated as the begin-picture and the other as the end-picture. First, a time-varying warp from  to

 is generated in which the begin-picture is warped into the shape of the end-picture. Then a time-varying
warp from  to  is generated in which the end-picture is warped into the shape of the begin-picture.
Finally, a weighted average of the gray levels of the two warps at each time t is produced to generate the
morph of the two images at time t.

Figure 10.20.9 shows two photographs of a woman taken 20 years apart. Below the pictures are two
corresponding triangulations in which corresponding features of the two photographs are matched. The
time-varying morph between these two pictures for five values of t between 0 and 1 is shown in Figure
10.20.10.

Figure 10.20.9   

Figure 10.20.10   



The procedure for producing such a morph is outlined in the following nine steps (Figure 10.20.11):
Step 1  Given a begin-picture with picture-density  and an end-picture with picture-density , position n

vertex points ,  in the begin-picture at key features of that picture.

Step 2  Position n corresponding vertex points ,  in the end-picture at the corresponding key
features of that picture.

Step 3  Triangulate the begin- and end-pictures in similar ways by drawing lines between corresponding
vertex points in both pictures.

Step 4  For any time t between 0 and 1, find the vertex points ,  in the morph picture at
that time, using the formula

  (9)

Step 5  Triangulate the morph picture at time t similar to the begin- and end-picture triangulations.
Step 6  For any point u in the morph picture at time t, find the triangle in the triangulation of the morph

picture in which it lies and the vertices , , and  of that triangle. (See Exercise 1 to
determine whether a given point lies in a given triangle.)

Step 7  Express u as a convex combination of , , and  by finding the constants , , and
 such that

  (10)

and

  (11)

Step 8  Determine the locations of the point u in the begin- and end-pictures using

  (12)

and

  (13)

Step 9  Finally, determine the picture-density  of the morph-picture at the point u using

  (14)

Step 9 is the key step in distinguishing a warp from a morph. Equation 14 takes weighted averages of the gray
levels of the begin- and end-pictures to produce the gray levels of the morph-picture. The weights depend on
the fraction of the distances that the vertex points have moved from their beginning positions to their ending
positions. For example, if the vertex points have moved one-fourth of the way to their destinations (i.e., if

), then we use one-fourth of the gray levels of the end-picture and three-fourths of the gray levels of



the begin-picture. Thus, as time progresses, not only does the shape of the begin-picture gradually change into
the shape of the end-picture (as in a warp) but the gray levels of the begin-picture also gradually change into
the gray levels of the end-picture.

Figure 10.20.11   

The procedure described above to generate a morph is cumbersome to perform by hand, but it is the kind of
dull, repetitive procedure at which computers excel. A successful morph demands good preparation and
requires more artistic ability than mathematical ability. (The software designer is required to have the
mathematical ability.) The two photographs to be morphed should be carefully chosen so that they have
matching features, and the vertex points in the two photographs also should be carefully chosen so that the
triangles in the two resulting triangulations contain similar features of the two pictures. When the procedure is
done correctly, each frame of the morph should look just as “real” as the begin- and end-pictures.

The techniques we have discussed in this section can be generalized in numerous ways to produce much more
elaborate warps and morphs. For example:
1.  If the pictures are in color, the three components of the picture colors (red, green, and blue) can be

morphed separately to produce a color morph.
2.  Rather than following straight-line paths to their destinations, the vertices of a triangulation can be directed

separately along more complicated paths to produce a variety of results.
3.  Rather than travel with constant speeds along their paths, the vertices of a triangulation can be directed to

have different speeds at different times. For example, in a morph between two faces, the hairline can be
made to change first, then the nose, and so forth.

4.  Similarly, the gray-level mixing of the begin-picture and end-picture at different times and different
vertices can be varied in a more complicated way than that in Equation 14.

5.  One can morph two surfaces in three-dimensional space (representing two complete heads, for example)
by triangulating the surfaces and using the techniques in this section.



6.  One can morph two solids in three-dimensional space (for example, two three-dimensional tomographs of
a beating human heart at two different times) by dividing the two solids into corresponding tetrahedral
regions.

7.  Two film strips can be morphed frame by frame by different amounts between each pair of frames to
produce a morphed film strip in which, say, an actor walking along a set is gradually morphed into an ape
walking along the set.

8.  Instead of using straight lines to triangulate two pictures to be morphed, more complicated curves, such as
spline curves, can be matched between the two pictures.

9.  Three or more pictures can be morphed together by generalizing the formulas given in this section.
These and other generalizations have made warping and morphing two of the most active areas in computer
graphics.

Exercise Set 10.20
1. Determine whether the vector v is a convex combination of the vectors , , and . Do this by solving

Equations 1 and 3 for , , and  and ascertaining whether these coefficients are nonnegative.
(a)  

(b)  

(c)  

(d)  

Answer:

(a)  Yes; 

(b)  No; 

(c)  Yes; 

(d)  Yes; 

2. Verify Equation 7 for the two triangulations given in Figure 10.20.4.

Answer:

 number of triangles  number of vertex points ,  number of boundary vertex points
; Equation 7) is .

3. Let an affine transformation be given by a 2 × 2 matrix M and a two-dimensional vector b. Let
, where ; let ; and let  for i = 1, 2, 3.

Show that . (This shows that an affine transformation maps a convex
combination of vectors to the same convex combination of the images of the vectors.)



Answer:

4. (a)  Exhibit a triangulation of the points in Figure 10.20.4 in which the points , , and  form the
vertices of a single triangle.

(b)  Exhibit a triangulation of the points in Figure 10.20.4 in which the points , , and  do not form
the vertices of a single triangle.

Answer:

(a)  

(b)  

5. Find the  matrix M and two-dimensional vector b that define the affine transformation that maps the
three vectors , , and  to the three vectors , , and . Do this by setting up a system of six
linear equations for the four entries of the matrix M and the two entries of the vector b.
(a)  

(b)  

(c)  

(d)  

Answer:



(a)  

(b)  

(c)  

(d)  

6. (a)  Let a and b be linearly independent vectors in the plane. Show that if  and  are nonnegative
numbers such that , then the vector  lies on the line segment connecting the tips
of the vectors a and b.

(b)  Let a and b be linearly independent vectors in the plane. Show that if  and  are nonnegative
numbers such that , then the vector  lies in the triangle connecting the origin
and the tips of the vectors a and b. [Hint: First examine the vector  multiplied by the scale
factor .]

(c)  Let , , and  be noncollinear points in the plane. Show that if , , and  are nonnegative
numbers such that , then the vector  lies in the triangle
connecting the tips of the three vectors. [Hint: Let  and , and then use
Equation 1 and part (b) of this exercise.]

7. (a)  What can you say about the coefficients , , and  that determine a convex combination
 if v lies on one of the three vertices of the triangle determined by the three

vectors , , and ?
(b)  What can you say about the coefficients , , and  that determine a convex combination

 if v lies on one of the three sides of the triangle determined by the three
vectors , , and ?

(c)  What can you say about the coefficients , , and  that determine a convex combination
 if v lies in the interior of the triangle determined by the three vectors , ,

and ?

Answer:

(a)  Two of the coefficients are zero.
(b)  At least one of the coefficients is zero.
(c)  None of the coefficients are zero.

8. (a)  The centroid of a triangle lies on the line segment connecting any one of the three vertices of the
triangle with the midpoint of the opposite side. Its location on this line segment is two-thirds of the
distance from the vertex. If the three vertices are given by the vectors , , and , write the
centroid as a convex combination of these three vectors.

(b)  Use your result in part (a) to find the vector defining the centroid of the triangle with the three vertices

, , and .



Answer:

(a)  

(b)  

Section 10.20 Technology Exercises

The following exercises are designed to be solved using a technology utility. Typically, this will be
MATLAB, Mathematica, Maple, Derive, or Mathcad, but it may also be some other type of linear algebra
software or a scientific calculator with some linear algebra capabilities. For each exercise you will need to
read the relevant documentation for the particular utility you are using. The goal of these exercises is to
provide you with a basic proficiency with your technology utility. Once you have mastered the techniques in
these exercises, you will be able to use your technology utility to solve many of the problems in the regular
exercise sets.

T1.  To warp or morph a surface in  we must be able to triangulate the surface. Let ,

, and  be three noncollinear vectors on the surface. Then a vector  lies in the

triangle formed by these three vectors if and only if v is a convex combination of the three vectors; that is,
 for some nonnegative coefficients , , and  whose sum is 1.

(a)  Show that in this case, , , and  are solutions of the following linear system:

In parts (b)–(d) determine whether the vector v is a convex combination of the vectors ,

, and .

(b)  

(c)  



(d)  

T2.  To warp or morph a solid object in  we first partition the object into disjoint tetrahedrons. Let

, , , and  be four noncoplanar vectors. Then a vector

 lies in the solid tetrahedron formed by these four vectors if and only if v is a convex combination of

the three vectors; that is,  for some nonnegative coefficients , , , and
 whose sum is one.

(a)  Show that in this case, , , , and  are solutions of the following linear system:

In parts (b)–(d) determine whether the vector v is a convex combination of the vectors ,

, , and .

(b)  

(c)  

(d)  
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APPENDIX

   A How to Read Theorems

Since many of the most important concepts in linear algebra occur as theorem statements, it is important to be
familiar with the various ways in which theorems can be structured. This appendix will help you to do that.

Contrapositive Form of a Theorem

The simplest theorems are of the form

  (1)

where H is a statement, called the hypothesis, and C is a statement, called the conclusion. The theorem is true
if the conclusion is true whenever the hypothesis is true, and the theorem is false if there is some case where
the hypothesis is true but the conclusion is false. It is common to denote a theorem of form 1 as

  (2)

(read, “H implies C”). As an example, the theorem

  (3)

is of form 2, where

  (4)

  (5)

Sometimes it is desirable to phrase theorems in a negative way. For example, the theorem in 3 can be
rephrased equivalently as

  (6)

If we write  to mean that 4 is false and  to mean that 5 is false, then the structure of the theorem in 6
is



  (7)

In general, any theorem of form 2 can be rephrased in form 7, which is called the contrapositive of 2. If a
theorem is true, then so is its contrapositive, and vice versa.

Converse of a Theorem

The converse of a theorem is the statement that results when the hypothesis and conclusion are interchanged.
Thus, the converse of the theorem  is the statement . Whereas the contrapositive of a true
theorem must itself be a true theorem, the converse of a true theorem may or may not be true. For example,
the converse of 3 is the false statement

but the converse of the true theorem

  (8)

is the true theorem

  (9)

Equivalent Statements

If a theorem  and its converse  are both true, then we say that H and C are equivalent
statements, which we denote by writing

  (10)

(read, “H and C are equivalent”). There are various ways of phrasing equivalent statements as a single
theorem. Here are three ways in which 8 and 9 can be combined into a single theorem.

Form 1

If , then , and conversely, if , then .



Form 2

 if and only if .

Form 3

The following statements are equivalent.
(i)  
(ii)  

Theorems Involving Three or More Statements

Sometimes two true theorems will give you a third true theorem for free. Specifically, if  is a true
theorem, and  is a true theorem, then  must also be a true theorem. For example, the theorems

and

imply the third theorem

Sometimes three theorems yield equivalent statements for free. For example, if

  (11)

then we have the implication loop in Figure A.1 from which we can conclude that

  (12)

Combining this with 11 we obtain

  (13)

In summary, if you want to prove the three equivalences in 13, you need only prove the three implications in
11.



Figure A.1   

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



APPENDIX

   B Complex Numbers

Complex numbers arise naturally in the course of solving polynomial equations. For example, the solutions of
the quadratic equation , which are given by the quadratic formula

are complex numbers if the expression inside the radical is negative. In this appendix we will review some of
the basic ideas about complex numbers that are used in this text.

Complex Numbers

To deal with the problem that the equation  has no real solutions, mathematicians of the eighteenth
century invented the “imaginary” number

which is assumed to have the property

but which otherwise has the algebraic properties of a real number. An expression of the form

in which a and b are real numbers is called a complex number. Sometimes it will be convenient to use a
single letter, typically z, to denote a complex number, in which case we write

The number a is called the real part of z and is denoted by Re , and the number b is called the imaginary
part of z and is denoted by Im . Thus,

Two complex numbers are considered equal if and only if their real parts are equal and their imaginary parts
are equal; that is,

A complex number  whose real part is zero is said to be pure imaginary. A complex number 
whose imaginary part is zero is a real number, so the real numbers can be viewed as a subset of the complex



numbers.

Complex numbers are added, subtracted, and multiplied in accordance with the standard rules of algebra but
with :

  (1)

  (2)

  (3)

The multiplication formula is obtained by expanding the left side and using the fact that . Also note
that if , then the multiplication formula simplifies to

  (4)

The set of complex numbers with these operations is commonly denoted by the symbol C and is called the
complex number system.

 EXAMPLE 1    Multiplying Complex Numbers

As a practical matter, it is usually more convenient to compute products of complex numbers by
expansion, rather than substituting in 3. For example,

The Complex Plane

A complex number  can be associated with the ordered pair  of real numbers and represented
geometrically by a point or a vector in the xy-plane (Figure B.1). We call this the complex plane. Points on
the x-axis have an imaginary part of zero and hence correspond to real numbers, whereas points on the y-axis
have a real part of zero and correspond to pure imaginary numbers. Accordingly, we call the x-axis the real
axis and the y-axis the imaginary axis (Figure B.2).



Figure B.1   

Figure B.2   

Complex numbers can be added, subtracted, or multiplied by real numbers geometrically by performing these
operations on their associated vectors (Figure B.3, for example). In this sense the complex number system C
is closely related to , the main difference being that complex numbers can be multiplied to produce other
complex numbers, whereas there is no multiplication operation on  that produces other vectors in  (the
dot product produces a scalar, not a vector in ).

Figure B.3   

If  is a complex number, then the complex conjugate of z, or more simply, the conjugate of z, is
denoted by  (read, “z bar”) and is defined by

  (5)

Numerically,  is obtained from z by reversing the sign of the imaginary part, and geometrically it is obtained
by reflecting the vector for z about the real axis (Figure B.4).



Figure B.4   

 EXAMPLE 2    Some Complex Conjugates

Remark   The last computation in this example illustrates the fact that a real number is equal to its complex
conjugate. More generally,  if and only if z is a real number.

The following computation shows that the product of a complex number  and its conjugate
 is a nonnegative real number:

  (6)

You will recognize that

is the length of the vector corresponding to z (Figure B.5); we call this length the modulus (or absolute value
of z) and denote it by . Thus,

  (7)

Note that if , then  is a real number and , which tells us that the modulus of a real

number is the same as its absolute value as defined in beginning algebra.



Figure B.5   

 EXAMPLE 3    Some Modulus Computations

Reciprocals and Division

If , then the reciprocal (or multiplicative inverse) of z is denoted by  (or ) and is defined by the
property

This equation has a unique solution for , which we can obtain by multiplying both sides by  and using
the fact that  [see 7]. This yields

  (8)

If , then the quotient  is defined to be the product of  and . This yields the formula

  (9)

Observe that the expression on the right side of 9 results if the numerator and denominator of  are
multiplied by . As a practical matter, this is often the best way to perform divisions of complex numbers.



 EXAMPLE 4    Division of Complex Numbers

Let  and . Express  in the form .

Solution   We will multiply the numerator and denominator of  by . This yields

The following theorems list some useful properties of the modulus and conjugate operations.

THEOREM B.1

The following results hold for any complex numbers   and .

(a)  
(b)  
(c)  
(d)  
(e)  

THEOREM B.2

The following results hold for any complex numbers   and .

(a)  
(b)  
(c)  
(d)  



Polar Form of a Complex Number

If  is a nonzero complex number, and if  is an angle from the real axis to the vector z, then, as
suggested in Figure B.6, the real and imaginary parts of z can be expressed as

  (10)

Thus, the complex number  can be expressed as

  (11)

which is called a polar form of z. The angle φ in this formula is called an argument of z. The argument of z is
not unique because we can add or subtract any multiple of  to it to obtain a different argument of z.
However, there is only one argument whose radian measure satisfies

  (12)

This is called the principal argument of z.

Figure B.6   

 EXAMPLE 5    Polar Form of a Complex Number

Express  in polar form using the principal argument.

Solution   The modulus of z is

Thus, it follows from 10 with  and  that

and this implies that

The unique angle  that satisfies these equations and whose radian measure satisfies 12 is
 (Figure B.7). Thus, a polar form of z is



Figure B.7   

Geometric Interpretation of Multiplication and Division of Complex
Numbers

We now show how polar forms of complex numbers provide geometric interpretations of multiplication and
division. Let

be polar forms of the nonzero complex numbers  and . Multiplying, we obtain

Now applying the trigonometric identities

yields

  (13)

which is a polar form of the complex number with modulus  and argument . Thus, we have
shown that multiplying two complex numbers has the geometric effect of multiplying their moduli and adding
their arguments (Figure B.8).

Figure B.8   



Similar kinds of computations show that

  (14)

which tells us that dividing complex numbers has the geometric effect of dividing their moduli and subtracting
their arguments (both in the appropriate order).

 EXAMPLE 6    Multiplying and Dividing in Polar Form

Use polar forms of the complex numbers  and  to compute  and
.

Solution   Polar forms of these complex numbers are

(verify). Thus, it follows from 13 that

and from 14 that

As a check, let us calculate  and  directly:

which agrees with the results obtained using polar forms.

Remark   The complex number i has a modulus of 1 and a principal argument of . Thus, if z is a complex
number, then  has the same modulus as z but its argument is greater by ; that is, multiplication
by i has the geometric effect of rotating the vector z counterclockwise by 90° (Figure B.9).



Figure B.9   

DeMoivre's Formula

If n is a positive integer, and if z is a nonzero complex number with polar form

then raising z to the nth power yields

which we can write more succinctly as

  (15)

In the special case where  this formula simplifies to

which, using the polar form for z, becomes

  (16)

This result is called DeMoivre's formula.

Euler's Formula

If θ is a real number, say the radian measure of some angle, then the complex exponential function  is
defined to be

  (17)

which is sometimes called Euler's formula. One motivation for this formula comes from the Maclaurin series
in calculus. Readers who have studied infinite series in calculus can deduce 17 by formally substituting  for
x in the Maclaurin series for  and writing



where the last step follows from the Maclaurin series for  and .

If  is any complex number, then the complex exponential  is defined to be

  (18)

It can be proved that complex exponentials satisfy the standard laws of exponents. Thus, for example,

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.



    Answer to Exercises
Exercise Set 1.1
1.  (a), (c), and (f) are linear equations; (b), (d) and (e) are not linear equations
3.  (a) and (d) are linear systems; (b) and (c) are not linear systems
5.  (a) and (d) are both consistent
7.  (a), (d), and (e) are solutions; (b) and (c) are not solutions
9.  a.  

b.  

11.  a.  

b.  

c.  

d.  

13.  a.  

b.  

c.  

d.  

True/False 1.1
(a)  True
(b)  False
(c)  True
(d)  True
(e)  False
(f)  False
(g)  True
(h)  False

Exercise Set 1.2
1.  a.  Both

b.  Both
c.  Both
d.  Both
e.  Both
f.  Both
g.  Row echelon

3.  a.  
b.  
c.  



d.  Inconsistent

5.  
7.  

9.  
11.  

13.  Has nontrivial solutions
15.  Has nontrivial solutions
17.  
19.  
21.  

23.  
25.  If , there are infinitely many solutions; if , there are no solutions; if , there is exactly one solution.
27.  If , there are infinitely many solutions; if , there are no solutions; if , there is exactly one solution.
29.  

31.   and  are possible answers.

35.  

37.  
39.  The nonhomogeneous system will have exactly one solution.

True/False 1.2
(a)  True
(b)  False
(c)  False
(d)  True
(e)  True
(f)  False
(g)  True
(h)  False
(i)  False

Exercise Set 1.3
1.  a.  Undefined

b.  
c.  Undefined
d.  Undefined
e.  
f.  
g.  Undefined
h.  

3.  a.  

b.  

c.  

d.  

e.  Undefined
f.  

g.  



h.  

i.  5
j.  
k.  168
l.  Undefined

5.  a.  

b.  Undefined
c.  

d.  

e.  

f.  

g.  

h.  

i.  61
j.  35
k.  28
l.  99

7.  a.  
b.  
c.  

d.  

e.  
f.  

9.  a.  

b.  

11.  a.  

b.  

13.  a.  



b.  

15.  
17.  
23.  a.  

b.  

c.  

d.  

25.  

a.  

b.  

c.  

d.  



27.  
One; namely, 

29.  a.  

b.  
Four; 

True/False 1.3
(a)  True
(b)  False
(c)  False
(d)  False
(e)  True
(f)  False
(g)  False
(h)  True
(i)  True
(j)  True
(k)  True
(l)  False
(m)  True
(n)  True
(o)  False

Exercise Set 1.4
5.  

7.  

9.  

15.  

17.  

19.  a.  

b.  

c.  

d.  

e.  



f.  

21.  a.  

b.  

c.  

d.  

e.  

f.  

27.  

31.  

33.  

35.  

37.  

39.  

41.  

True/False 1.4
(a)  False
(b)  False
(c)  False
(d)  False
(e)  False
(f)  True
(g)  True
(h)  True
(i)  False
(j)  True
(k)  False

Exercise Set 1.5
1.  a.  Elementary

b.  Not elementary
c.  Not elementary



d.  Not elementary

3.  a.  Add 3 times row 2 to row 1: 

b.  

Multiply row 1 by : 

c.  
Add 5 times row 1 to row 3: 

d.  

Swap rows 1 and 3: 

5.  a.  Swap rows 1 and 2: 

b.  
Add  times row 2 to row 3: 

c.  
Add 4 times row 3 to row 1: 

7.  a.  

b.  

c.  

d.  

9.  

11.  

13.  

15.  No inverse
17.  

19.  



21.  

23.  

25.  a.  

b.  

27.  
29.  

31.  

33.  

35.  

37.  Add  times the first row to the second row. Add  times the first row to the third row. Add  times the second row to the first row. Add the second row to
the third row.

True/False 1.5
(a)  False
(b)  True
(c)  True
(d)  True
(e)  True
(f)  True
(g)  False

Exercise Set 1.6
1.  
3.  
5.  

7.  
9.  i.  

ii.  



11.  i.  

ii.  

iii.  

iv.  

13.  No conditions on  and 
15.  
17.  
19.  

True/False 1.6
(a)  True
(b)  True
(c)  True
(d)  True
(e)  True
(f)  True
(g)  True

Exercise Set 1.7
1.  

2.  

5.  

7.  

9.  

11.  

13.  Not symmetric
15.  Symmetric
17.  Not symmetric
19.  Not symmetric
21.  Not invertible
23.  
25.  
27.  

35.  a.  Yes
b.  No (unless )
c.  Yes
d.  No (unless )



39.  

43.  

True/False 1.7
(a)  True
(b)  False
(c)  False
(d)  True
(e)  True
(f)  False
(g)  False
(h)  True
(i)  True
(j)  False
(k)  False
(l)  False
(m)  True

Exercise Set 1.8
1.  

3.  a.  
b.  
c.  For all rates to be nonnegative, we need  cars per hour, so 

5.  

7.  

9.  , and ; the balanced equation is 

11.  ; the balanced equation is 
13.  

15.  

17.  a.  Using  as a parameter,  where .

b.  The graphs for , and 3 are shown.

True/False 1.8
(a)  True
(b)  False
(c)  True
(d)  False
(e)  False

Exercise Set 1.9
1.  a.  



b.  

3.  a.  

b.  

5.  

True/False 1.9
(a)  False
(b)  True
(c)  False
(d)  True
(e)  True

Chapter 1 Supplementary Exercises
1.  

3.  

5.  

7.  

9.  a.  
b.  
c.  
d.  

11.  

13.  a.  

b.  

c.  

15.  

Exercise Set 2.1
1.  

3.  a.  
b.  
c.  



d.  

5.  

7.  

9.  

11.  
13.  
15.  
17.  
19.  
21.  
23.  0
25.  
27.  
29.  0
31.  6
33.  The determinant is .

35.  

True/False 2.1
(a)  False
(b)  False
(c)  True
(d)  True
(e)  True
(f)  False
(g)  False
(h)  False
(i)  True

Exercise Set 2.2
5.  
7.  
9.  1

11.  5
13.  33
15.  6
17.  
19.  Exercises 14: 39; Exercise 15: 6; Exercise 16: ; Exercise 17: 

21.  
23.  72
25.  
27.  18

True/False 2.2
(a)  True
(b)  True
(c)  False
(d)  False
(e)  True
(f)  True

Exercise Set 2.3
7.  Invertible
9.  Invertible



11.  Not invertible
13.  Invertible
15.  

17.  
19.  

21.  

23.  

25.  

27.  

29.  Cramer's rule does not apply.
31.  

35.  a.  
b.  

c.  

d.  

e.  7

37.  a.  189
b.  

c.  

d.  

True/False 2.3
(a)  False
(b)  False
(c)  True
(d)  False
(e)  True
(f)  True
(g)  True
(h)  True
(i)  True
(j)  True
(k)  True
(l)  False

Chapter 2 Supplementary Exercises
1.  
3.  24
5.  
7.  329
9.  Exercise 3: 24; Exercise 4: 0; Exercise 5: ; Exercise 6: 

11.  The matrices in Exercise 1–3 are invertible, the matrix in Exercise 4 is not.
13.  

15.  



17.  

19.  

21.  

23.  

25.  

29.  (b)  

Exercise Set 3.1
1.  a.  

b.  

c.  

d.  

e.  

f.  

3.  a.  



b.  

c.  

d.  

e.  

f.  

5.  a.  

b.  

c.  

7.  a.  

b.  

9.  a.  The terminal point is B(2, 3).
b.  The initial point is .

11.  a.   is one possible answer.

b.   is one possible answer.

13.  a.  
b.  
c.  
d.  
e.  
f.  

15.  a.  
b.  
c.  
d.  
e.  
f.  

17.  a.  
b.  



c.  
d.  
e.  
f.  

19.  a.  
b.  
c.  

21.  

23.  a.  Not parallel
b.  Parallel
c.  Parallel

25.  
27.  
29.  
33.  a.  

b.  

True/False 3.1
(a)  False
(b)  False
(c)  False
(d)  True
(e)  True
(f)  False
(g)  False
(h)  True
(i)  False
(j)  True
(k)  False

Exercise Set 3.2
1.  a.  

b.  

c.  

3.  a.  

b.  

c.  

d.  

5.  a.  

b.  

c.  

7.  

9.  a.  
b.  

11.  a.  

b.  

c.  



13.  a.  ; θ is acute

b.  ; θ is obtuse

c.  ; θ is obtuse

15.  

17.  a.   does not make sense because  is a scalar.

b.   makes sense.

c.   does not make sense because the quantity inside the norm is a scalar.
d.   makes sense since the terms are both scalars.

19.  a.  

b.  

c.  

d.  

23.  a.  

b.  

c.  
d.  

25.  a.  

b.  

c.  

27.  A sphere of radius 1 centered at .

True/False 3.2
(a)  True
(b)  True
(c)  False
(d)  True
(e)  True
(f)  False
(g)  False
(h)  False
(i)  True
(j)  True

Exercise Set 3.3
1.  a.  Orthogonal

b.  Not orthogonal
c.  Not orthogonal
d.  Not orthogonal

3.  a.  Not an orthogonal set
b.  Orthogonal set
c.  Orthogonal set
d.  Not an orthogonal set

5.  

7.  Yes



9.  

11.  
13.  Not parallel
15.  Parallel
17.  Not perpendicular
19.  a.  

b.  

21.  
23.  

25.  

27.  

29.  1
31.  

33.  

35.  

37.  

39.  0 (The planes coincide.)
41.  (b)  

True/False 3.3
(a)  True
(b)  True
(c)  True
(d)  True
(e)  True
(f)  False
(g)  False

Exercise Set 3.4
1.  Vector equation: ;

parametric equations: 

3.  Vector equation: ;

parametric equations: 

5.  Point: ; parallel vector: 

7.  Point: (4, 6); parallel vector: 

9.  Vector equation: 

parametric equations: 

11.  Vector equation: 

parametric equations: 

13.  A possible answer is vector equation: ;

parametric equations: 

15.  A possible answer is vector equation: ;

parametric equations: 

17.  
19.  



21.  a.  
b.  a plane in  passing through P(1, 0, 0) and parallel to  and 

23.  a.  

b.  a line through the origin in 

c.  

25.  a.  

c.  

27.  ; The general solution of the associated homogeneous system is . A

particular solution of the given system is .

True/False 3.4
(a)  True
(b)  False
(c)  True
(d)  True
(e)  False
(f)  True

Exercise Set 3.5
1.  a.  

b.  
c.  

3.  
5.  
7.  

9.  

11.  3
13.  7
15.  

17.  16
19.  The vectors do not lie in the same plane.
21.  
23.  abc
25.  a.  

b.  3
c.  3

27.  a.  

b.  

29.  
37.  a.  

b.  

True/False 3.5
(a)  True
(b)  True
(c)  False
(d)  True
(e)  False
(f)  False



Chapter 3 Supplementary Exercises
1.  a.  

b.  

c.  

d.  

e.  
f.  

3.  a.  
b.  

c.  

d.  

5.  Not an orthogonal set
7.  a.  A line through the origin, perpendicular to the given vector.

b.  A plane through the origin, perpendicular to the given vector.
c.  {0} (the origin)
d.  A line through the origin, perpendicular to the plane containing the two noncollinear vectors.

9.  True
11.  
13.  

15.  

17.  Vector equation: ;

parametric equations: 

19.  Vector equation: ;

parametric equations: 

21.  A possible answer is vector equation: ; parametric equations: 

23.  

25.  

29.  A plane

Exercise Set 4.1
1.  (a)  

(c)  Axioms 1–5

3.  The set is a vector space with the given operations.
5.  Not a vector space, Axioms 5 and 6 fail.
7.  Not a vector space. Axiom 8 fails.
9.  The set is a vector space with the given operations.

11.  The set is a vector space with the given operations.

True/False 4.1
(a)  False
(b)  False
(c)  True
(d)  False
(e)  False

Exercise Set 4.2
1.  (a), (c), (e)
3.  (a), (b), (d)
5.  (a), (c), (d)
7.  (a), (b), (d)
9.  (a), (b), (c)



11.  a.  The vectors span
b.  The vectors do not span
c.  The vectors do not span
d.  The vectors span

13.  The polynomials do not span
15.  a.  Line; 

b.  Line; 

c.  Origin
d.  Origin
e.  Line; 

f.  Plane; 

True/False 4.2
(a)  True
(b)  True
(c)  False
(d)  False
(e)  False
(f)  True
(g)  True
(h)  False
(i)  False
(j)  True
(k)  False

Exercise Set 4.3
1.  a.   is a scalar multiple of .

b.  The vectors are linearly dependent by Theorem 4.3.3.
c.   is a scalar multiple of .
d.  B is a scalar multiple of A.

3.  None
5.  a.  They do not lie in a plane.

b.  They do lie in a plane.

7.  (b)  

9.  

19.  a.  They are linearly independent since , and  do not lie in the same plane when they are placed with their initial points at the origin.

b.  They are not linearly independent since , and  line in the same plane when they are placed with their initial points at the origin.

21.   for some x.

23.  a.  

b.  

25.   for some x.

True/False 4.3
(a)  False
(b)  True
(c)  False
(d)  True
(e)  True
(f)  False
(g)  True
(h)  False

Exercise Set 4.4



1.  a.  A basis for  has two linearly independent vectors.

b.  A basis for  has three linearly independent vectors.

c.  A basis for  has three linearly independent vectors.
d.  A basis for  has four linearly independent vectors.

3.  (a), (b)
7.  a.  

b.  

c.  

9.  a.  
b.  

11.  
13.  
15.  
17.  a.  (2, 0)

b.  

c.  (0, 1)
d.  

True/False 4.4
(a)  False
(b)  False
(c)  True
(d)  True
(e)  False

Exercise Set 4.5
1.  Basis: (1, 0, 1); dimension = 1
3.  Basis: ; 

5.  No basis; 
7.  a.  

b.  (1, 1, 0), (0, 0, 1)
c.  
d.  (1, 1, 0), (0, 1, 1)

9.  a.  n

b.  

c.  

13.  Any two of (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) can be used.
15.   with 

True/False 4.5
(a)  True
(b)  True
(c)  False
(d)  True
(e)  True
(f)  True
(g)  True
(h)  True
(i)  True
(j)  False

Exercise Set 4.6



1.  a.  

b.  

c.  

3.  a.  

b.  

5.  a.  
b.  

c.  

7.  a.  

b.  

c.  

9.  a.  

b.  

11.  (b)  

(c)  

(d)  

13.  (a)  

(b)  

(d)  

(e)  



15.  (a)  

(b)  

(d)  

(e)  

17.  a.  

b.  

19.  a.  

23.  a.  
b.  

True/False 4.6
(a)  True
(b)  True
(c)  True
(d)  True
(e)  False
(f)  False

Exercise Set 4.7
1.  ;

3.  a.  

b.  b is not in the column space of A.
c.  

d.  

e.  

5.  a.  

b.  

c.  



d.  

7.  a.  

b.  

c.  ,

d.  

9.  a.  

b.  

c.  

d.  

11.  a.  

b.  

c.  (1, 1, 0, 0), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)

15.  (b)  

17.  a.   for all real numbers a, b not both 0.

b.  Since A and B are invertible, their null spaces are the origin. The null space of C is the line . The null space of D is the entire xy-plane.

True/False 4.7
(a)  True
(b)  False
(c)  False



(d)  False
(e)  False
(f)  True
(g)  True
(h)  False
(i)  True
(j)  False

Exercise Set 4.8
1.  

3.  a.  2; 1
b.  1; 2
c.  2; 2
d.  2; 3
e.  3; 2

5.  a.  
b.  
c.  

7.  a.  Yes, 0
b.  No
c.  Yes, 2
d.  Yes, 7
e.  No
f.  Yes, 4
g.  Yes, 0

9.  
11.  No
13.  Rank is 2 if  and ; the rank is never 1.
17.  a.  3

b.  5
c.  3
d.  3

19.  

True/False 4.8
(a)  False
(b)  True
(c)  False
(d)  False
(e)  True
(f)  False
(g)  False
(h)  False
(i)  True
(j)  False

Exercise Set 4.9
1.  a.  Domain: ; codomain: 

b.  Domain: ; codomain: 

c.  Domain: ; codomain: 

d.  Domain: ; codomain: 

3.  

5.  a.  Linear; 

b.  Nonlinear; 



c.  Linear; 

d.  Nonlinear; 

7.  (a) and (c) are matrix transformations; (b), (d), and (e) are not matrix transformations.
9.  

; 

11.  a.  

b.  

c.  

d.  

13.  a.  
b.  

15.  a.  
b.  (2, 5, 3)
c.  

17.  a.  
b.  
c.  (0, 1, 3)

19.  a.  

b.  

c.  

21.  a.  

b.  

c.  (1, 2, 2)

25.  

29.  a.  Twice the orthogonal projection on the x-axis.
b.  Twice the reflection about the x-axis.

31.  Rotation through the angle .
33.  Rotation through the angle θ and translation by ; not a matrix transformation since  is nonzero.
35.  A line in .

True/False 4.9
(a)  False
(b)  False
(c)  False
(d)  True



(e)  False
(f)  True
(g)  False
(h)  False
(i)  True

Exercise Set 4.10
1.  

3.  a.  

b.  

c.  ,

5.  a.  

b.  

c.  

7.  a.  

b.  

c.  

9.  a.  
b.  
c.  

11.  a.  Not one-to-one
b.  One-to-one
c.  One-to-one
d.  One-to-one
e.  One-to-one
f.  One-to-one
g.  One-to-one

13.  a.  

One-to-one; 

b.  Not one-to-one
c.  One-to-one; 

d.  Not one-to-one

15.  a.  Reflection about the x-axis
b.  Rotation through the angle 

c.  Contraction by a factor of 

d.  Reflection about the yz-plane
e.  Dilation by a factor of 5



17.  a.  Matrix operator
b.  Not a matrix operator
c.  Matrix operator
d.  Not a matrix operator

19.  a.  Matrix transformation
b.  Matrix transformation

21.  a.  

b.  

c.  

23.  a.  
b.  
c.  

25.  a.  Yes
b.  Yes

27.  (b)  

29.  a.  The range of T is a proper subset of .

b.  T must map infinitely many vectors to 0.

True/False 4.10
(a)  False
(b)  True
(c)  True
(d)  False
(e)  False
(f)  False

Exercise Set 4.11
1.  a.  

b.  

c.  

d.  

3.  a.  

b.  

c.  

5.  a.  

b.  

c.  

7.  Rectangle with vertices at (0, 0), 



9.  a.  

b.  

11.  a.  Expansion by a factor of 3 in the x-direction
b.  Expansion by a factor of 5 in the y-direction and reflection about the x-axis
c.  Shearing by a factor of 4 in the x-direction

13.  a.  

b.  

c.  

17.  a.  

b.  
c.  

d.  

e.  

19.  (b)  No

23.  a.  

b.  Shear in the xz-direction with

factor k maps (x, y, z) to : .

Shear in the yz-direction with factor k maps (x, y, z) to : .

True/False 4.11
(a)  False
(b)  True
(c)  True
(d)  True
(e)  False
(f)  False
(g)  True

Exercise Set 4.12
1.  a.  Stochastic

b.  Not stochastic
c.  Stochastic
d.  Not stochastic

3.  

5.  a.  Regular
b.  Not regular
c.  Regular

7.  



9.  

11.  a.  Probability that something in state 1 stays in state 1
b.  Probability that something in state 2 moves to state 1
c.  0.8
d.  0.85

13.  a.  

b.  0.93
c.  0.142
d.  0.63

15.  a.  
Year 1 2 3 4 5

City 95,750 91,840 88,243 84,933 81,889

Suburbs 29,250 33,160 36,757 40,067 43,111

b.  
City 46,875

Suburbs 78,125

17.  a.  

b.  

c.  35, 50, 35

19.  

21.   for every positive integer k

True/False 4.12
(a)  True
(b)  True
(c)  True
(d)  False
(e)  True

Chapter 4 Supplementary Exercises
1.  (a)  

(c)  Axioms 1–5

3.  If  the solution space is the origin. If , the solution space is a plane through the origin. If , the solution space is a line through the origin.

7.  A must be invertible
9.  a.  

b.  
c.  

11.  a.   where  if n is even and  if n is odd.

b.  



13.  a.  

b.  

15.  Possible ranks are 2, 1, and 0.

Exercise Set 5.1
1.  5
3.  a.  

b.  

c.  

d.  

e.  

f.  

5.  a.  
Basis for eigenspace corresponding to ; basis for eigenspace corresponding to 

b.  
Basis for eigenspace corresponding to 

c.  
Basis for eigenspace corresponding to ; basis for eigenspace corresponding to 

d.  There are no eigenspaces.
e.  Basis for eigenspace corresponding to 

f.  Basis for eigenspace corresponding to 

7.  a.  1, 2, 3
b.  

c.  
d.  2
e.  2
f.  

9.  a.  

b.  

11.  a.  

b.  

13.  

15.  a.   and 

b.  No lines
c.  

True/False 5.1
(a)  False
(b)  False
(c)  True



(d)  False
(e)  True
(f)  False
(g)  False

Exercise Set 5.2
1.  Possible reason: Determinants are different.
3.  Possible reason: Ranks are different.
5.  
7.  Not diagonalizable
9.  Not diagonalizable

11.  Not diagonalizable
13.  

15.  

17.  

19.  

21.  

23.  

25.  

27.  On possibility is  where  and  are as in Exercise 20 of Section 5.1.

33.  a.  
b.  Dimensions will be exactly 1, 2, and 3.
c.  

True/False 5.2
(a)  True
(b)  True
(c)  True
(d)  False
(e)  True
(f)  True
(g)  True
(h)  True

Exercise Set 5.3
1.  

5.  
7.  

11.  
13.  



15.  

17.  

19.  

21.  

23.  

25.  

27.  a.  

b.  None

True/False 5.3
(a)  False
(b)  True
(c)  False
(d)  True
(e)  False
(f)  False

Exercise Set 5.4
1.  a.  

b.  

3.  a.  

b.  

7.  

9.  

True/False 5.4
(a)  False
(b)  False
(c)  True
(d)  True
(e)  False

Chapter 5 Supplementary Exercises
1.  (b)  The transformation rotates vectors through the angle ; therefore, if , then no nonzero vector is transformed into a vector in the same or opposite

direction.

3.  (c)  

9.  

11.  
13.  They are all 0.
15.  



17.  They are all 0, 1, or .

Exercise Set 6.1
1.  a.  5

b.  
c.  
d.  

e.  

f.  

3.  a.  2
b.  11
c.  
d.  
e.  0

5.  a.  
b.  1
c.  
d.  1
e.  1
f.  1

7.  a.  3
b.  56

9.  (b)  29

11.  a.  

b.  

13.  a.  

b.  0

15.  a.  

b.  

17.  

19.  a.  

b.  

c.  

21.  a.  

b.  

27.  For , then , so Axiom 4 fails.



29.  a.  

b.  0

True/False 6.1
(a)  True
(b)  False
(c)  True
(d)  True
(e)  False
(f)  True
(g)  False

Exercise Set 6.2
1.  a.  

b.  

c.  0
d.  

e.  

f.  

3.  a.  

b.  0

7.  No
9.  a.  

b.  

13.  No
15.  a.  

b.  

c.  

31.  a.  The line 

b.  The xz-plane
c.  The x-axis

True/False 6.2
(a)  False
(b)  True
(c)  True
(d)  True
(e)  False
(f)  False

Exercise Set 6.3
1.  (a), (b), (d)
3.  (b), (d)
5.  (a)
7.  a.  

b.  

c.  



9.  a.  

b.  

c.  

11.  (b)  

13.  a.  

b.  

15.  a.  

b.  

17.  a.  

b.  

19.  a.  

b.  

21.  a.  

b.  

23.  

25.  

27.  

29.  a.  



b.  

c.  

d.  

e.  

f.  Columns not linearly independent

33.  

True/False 6.3
(a)  False
(b)  False
(c)  True
(d)  True
(e)  False
(f)  True

Exercise Set 6.4
1.  a.  

b.  

3.  a.  

b.  

5.  a.  

b.  

7.  a.  Solution: ; least squares error: 

b.  Solution:  (t a real number); least squares error: 



c.  Solution:  (t a real number); least squares error: 

9.  a.  (7, 2, 9, 5)
b.  

11.  a.   A does not have linearly independent column vectors.

b.   A does not have linearly independent column vectors.

13.  a.  

b.  

15.  a.  
b.  

c.  

d.  

17.  
21.  

True/False 6.4
(a)  True
(b)  False
(c)  True
(d)  True
(e)  False
(f)  True
(g)  False
(h)  True

Exercise Set 6.5
1.  

3.  

11.  

True/False 6.5
(a)  False
(b)  True
(c)  False
(d)  True

Exercise Set 6.6
1.  a.  

b.  

3.  a.  

b.  



5.  a.  

b.  

9.  

True/False 6.6
(a)  False
(b)  True
(c)  True
(d)  False
(e)  True

Chapter 6 Supplementary Exercises
1.  a.   with 

b.  

3.  a.  The subspace of all matrices in  with only zeros on the diagonal.
b.  The subspace of all skew-symmetric matrices in .

7.  

9.  No
11.  (b)   approaches 

17.  No

Exercise Set 7.1
1.  (b)  

3.  (a)  

(b)  

(d)  

(e)  

7.  a.  

b.  

9.  a.  



b.  

11.  a.  

b.  

13.  

17.  The only possibilities are  or .

21.  a.  Rotations about the origin, reflections about any line through the origin, and any combination of these
b.  Rotation about the origin, dilations, contractions, reflections about lines through the origin, and combinations of these
c.  No; dilations and contractions

True/False 7.1
(a)  False
(b)  False
(c)  False
(d)  False
(e)  True
(f)  True
(g)  True
(h)  True

Exercise Set 7.2
1.  a.   one-dimensional;  one-dimensional

b.   one-dimensional;  two-dimensional

c.   one-dimensional;  two-dimensional

d.   two-dimensional;  one-dimensional

e.   three-dimensional;  one-dimensional

f.   two-dimensional;  two-dimensional

3.  

5.  

7.  

9.  

15.  No
19.  Yes

True/False 7.2



(a)  True
(b)  True
(c)  False
(d)  True
(e)  True
(f)  False
(g)  True

Exercise Set 7.3
1.  a.  

b.  

c.  

3.  

5.  

7.  

9.  a.  

b.  

11.  a.  ellipse
b.  hyperbola
c.  parabola
d.  circle

13.  Hyperbola: 

15.  Hyperbola: 

17.  a.  Positive definite
b.  Negative definite
c.  Indefinite
d.  Positive semidefinite
e.  Negative semidefinite

19.  Positive definite
21.  Positive semidefinite
23.  Indefinite
27.  
31.  a.  

b.  Yes



33.  A must have a positive eigenvalue of multiplicity 2.

True/False 7.3
(a)  True
(b)  False
(c)  True
(d)  True
(e)  False
(f)  True
(g)  True
(h)  True
(i)  False
(j)  True
(k)  False
(l)  False

Exercise Set 7.4
1.  Maximum: 5 at  and ; minimum:  at  and 

3.  Maximum: 7 at (0, 1) and (0, −1); minimum: 3 at (1, 0) and (−1, 0)
5.  Maximum: 9 at (1, 0, 0) and (−1, 0, 0); minimum: 3 at (0, 0, 1) and (0, 0, −1)
7.  Maximum:  at  and  minimum:  at  and 

9.  

13.  Critical points: (−1, 1), relative maximum; (0, 0), saddle point
15.  Critical points: (0, 0), relative minimum; (2, 1) and (−2, 1), saddle points
17.  Corner points: 

21.  

True/False 7.4
(a)  False
(b)  True
(c)  True
(d)  False
(e)  True

Exercise Set 7.5
1.  

3.  

5.  a.  
b.  

9.  

11.  



13.  

15.  

17.  

19.  

21.  a.  
b.  

29.  (c)  B and C must commute.

37.  

39.  Multiplication of x by P corresponds to  times the orthogonal projection of x onto . If , then multiplications of x by 
corresponds to reflection of x about the hyperplane .

True/False 7.5
(a)  False
(b)  False
(c)  True
(d)  False
(e)  False

Chapter 7 Supplementary Exercises
1.  a.  

b.  

5.  

7.  positive definite
9.  a.  parabola

b.  parabola

Exercise Set 8.1
1.  Nonlinear
3.  Linear
5.  Linear



7.  a.  Linear
b.  Nonlinear

9.  
11.  
13.  
15.  (a)
17.  (a)
19.  (a)
21.  a.  

b.  

c.  

23.  a.  

b.  

c.  Rank  nullity

d.  Rank  nullity

25.  a.  

b.  

c.  Rank

d.  Rank

27.  a.  Kernel: y-axis; range: xz-plane
b.  Kernel: x-axis; range: yz-plane
c.  Kernel: the line through the origin perpendicular to the plane ; range: plane 

29.  a.  Nullity

b.  Nullity

c.  Nullity

d.  Nullity

31.  a.  3
b.  No

33.  A line through the origin, a plane through the origin, the origin only, or all of 

35.  (b)  No

41.  ker(D) consists of all constant polynomials.
43.  a.  

b.  

True/False 8.1
(a)  True
(b)  False
(c)  True
(d)  False
(e)  True
(f)  True
(g)  False
(h)  False
(i)  False

Exercise Set 8.2



1.  a.   T is one-to-one

b.   T is not one-to-one

c.   T is one-to-one

d.   T is one-to-one

e.  ; T is not one-to-one

f.  ; T is not one-to-one

3.  a.  Not one-to-one
b.  Not one-to-one
c.  One-to-one

5.  a.  ker

b.  T is not one-to-one since .

7.  a.  T is one-to-one
b.  T is not one-to-one
c.  T is not one-to-one
d.  T is one-to-one

11.  a.  

b.  

c.  

d.  

13.  T is not one-to-one since, for example,  is in its kernel.

15.  Yes; it is one-to-one
17.  T is not one-to-one since, for example a is in its kernel.
19.  Yes

True/False 8.2
(a)  False
(b)  True
(c)  False
(d)  True
(e)  False
(f)  False

Exercise Set 8.3
1.  a.  

b.  

c.  

d.  

3.  a.  
b.   does not exist since  is not a  matrix.

5.  

11.  a.  T has no inverse.



b.  

c.  

d.  

13.  a.   for 

b.  

15.  a.  

17.  (a)  
(d)  

21.  a.  
b.  
c.  

True/False 8.3
(a)  True
(b)  False
(c)  False
(d)  True
(e)  False
(f)  True

Exercise Set 8.4
1.  a.  

3.  a.  

5.  a.  

7.  a.  

b.  

9.  a.  

b.  

c.  



d.  

11.  a.  

b.  

c.  

d.  

13.  a.  

b.  

19.  a.  

b.  

c.  

d.  
 since 

21.  a.  
b.  

True/False 8.4
(a)  False
(b)  False
(c)  True
(d)  False
(e)  True

Exercise Set 8.5
1.  

3.  

5.  

7.  

11.  a.  

b.  



13.  a.  
b.  Basis for eigenspace corresponding to ; basis for eigenspace corresponding to 

21.  The choice of an appropriate basis can yield a better understanding of the linear operator.

True/False 8.5
(a)  False
(b)  True
(c)  True
(d)  True
(e)  True
(f)  False
(g)  True
(h)  False

Chapter 8 Supplementary Exercises
1.  No. , and if , then 

5.  a.   and any two of , and  form bases for the range;  is a basis for the kernel.

b.  

7.  a.  
b.  T is not one-to-one.

11.  
13.  

15.  

17.  

19.  (b)  
(c)  

21.  (d)  The points are on the graph.

25.  

Exercise Set 9.1
1.  
3.  
5.  
7.  
9.  

11.  a.  

b.  



c.  

13.  

15.  

17.  

19.  (b)  

True/False 9.1
(a)  False
(b)  False
(c)  True
(d)  True
(e)  True

Exercise Set 9.2
1.  a.   dominant

b.  No dominant eigenvalue

3.  ;

dominant eigenvalue: ;

dominant eigenvector: 

5.  

dominant eigenvalue: ;

dominant eigenvector: 

7.  a.  

b.  

c.  Dominant eigenvalue: ; dominant eigenvector: 

d.  0.1%

9.  

13.  a.  
Starting with , it takes 8 iterations.

b.  

Starting with , it takes 8 iterations.

Exercise Set 9.3



1.  

3.  

5.  Sites 1 and 2 (tie); sites 3 and 4 are irrelevant
7.  Site 2, site 3, site 4; sites 1 and 5 are irrelevant

Exercise Set 9.4
1.  a.  

b.  
c.  , or about 18.5 hours

3.  a.  
b.  
c.  
d.  

5.  a.   s for forward phase, 10 s for backward phase

b.  1334

7.  

9.  

Exercise Set 9.5
1.  

3.  

5.  

7.  

9.  

11.  

True/False 9.5
(a)  False
(b)  True
(c)  False
(d)  False
(e)  True
(f)  False
(g)  True

Exercise Set 9.6



1.  

3.  

5.  

7.  

9.  70,100 numbers must be stored; A has 100,000 entries

True/False 9.6
(a)  True
(b)  True
(c)  False

Chapter 9 Supplementary Exercises
1.  

3.  

5.  a.  

b.  

c.  

9.  

11.  

Exercise Set 10.1
1.  a.  

b.  



2.  a.   or 

b.   or 

3.   (a parabola)

4.  a.  

b.  

5.  a.  

b.  ; 

6.  a.   or 

b.   or 

10.  

11.  The equation of the line through the three collinear points
12.  
13.  The equation of the plane through the four coplanar points

Exercise Set 10.2
1.  , ; maximum value of 

2.  No feasible solutions
3.  Unbounded solution
4.  Invest $6000 in bond A and $4000 in bond B; the annual yield is $880.
5.   cup of milk,  ounces of corn flakes; minimum 

6.  a.   and  are nonbinding;  is binding
b.   for  is binding and for  yields the empty set.
c.   for  is nonbinding and for  yields the empty set.

7.  550 containers from company A and 300 containers from company B; maximum shipping 

8.  925 containers from company A and no containers from company B; maximum shipping 

9.  0.4 pound of ingredient A and 2.4 pounds of ingredient B; minimum 

Exercise Set 10.3
1.  700
2.  a.  5

b.  4

4.  a.  Ox,  units; sheep,  unit

b.  First kind,  measure; second kind,  measure; third kind,  measure

5.  a.  , , 

b.  Exercise 7(b); gold,  minae; brass,  minae; tin,  minae; iron,  minae

6.  a.  

 where t is an arbitrary number

b.  Take , so that , , , .

c.  Take , so that , , , .



7.  a.  Legitimate son,  staters; illegitimate son,  staters

b.  Gold,  minae; brass,  minae; tin,  minae; iron,  minae

c.  First person, 45; second person, ; third person, 

Exercise Set 10.4
2.  a.  

b.  

3.  a.  The cubic runout spline
b.  

4.  

Maximum at 

5.  

Maximum at 

6.  a.  

b.  

c.  The three data points are collinear.

7.  (b)  

8.  (b)  

Exercise Set 10.5
1.  a.  

b.  

P is regular since all entries of P are positive; 

2.  a.  



b.  

P is regular, since all entries of P are positive: 

3.  a.  

b.  

c.  

4.  a.  

 Thus, no integer power of P has all positive entries.

b.  
 as n increases, so  for any  as n increases.

c.  The entries of the limiting vector  are not all positive.

6.  

 has all positive entries; 

7.  

8.   in region 1,  in region 2, and  in region 3

Exercise Set 10.6
1.  a.  

b.  

c.  

2.  a.  



b.  

c.  

3.  a.  

b.  

c.  

4.  (a)  

(c)  The th entry is the number of family members who influence both the ith and jth family members.

5.  a.  
b.  
c.   and 

6.  a.  None
b.  

7.  

8.  First, A; second, B and E (tie); fourth, C; fifth, D

Exercise Set 10.7
1.  a.  

b.  
c.  

2.  Let , for example.

3.  a.  

b.  

c.  



d.  

4.  a.  

b.  

c.  

d.  

e.  

5.  

Exercise Set 10.8
1.  a.  

b.  

c.  

2.  a.  Use Corollary 10.8.4; all row sums are less than one.
b.  Use Corollary 10.8.5; all column sums are less than one.
c.  

Use Theorem 10.8.3, with .

3.   has all positive entries.

4.  Price of tomatoes, $120.00; price of corn, $100.00; price of lettuce, $106.67
5.  $1256 for the CE, $1448 for the EE, $1556 for the ME
6.  (b)  

Exercise Set 10.9
1.  The second class; $15,000
2.  $223
3.  
5.  

6.  

Exercise Set 10.10
1.  a.  

b.  

 



c.  

 

d.  

 

2.  (b)  

 

(c)  

3.  a.  

b.  

 

c.  

 

4.  a.  

b.  

5.  a.  

b.  

6.  

7.  



a.  

b.  

Exercise Set 10.11
1.  a.  

b.  

c.  

d.  for  and , %; for  and , %

2.  

3.  

Exercise Set 10.12
1.  (c)  

2.  a.  

b.  Same as part (a)
c.  



4.  , , 

7.  

8.  

Exercise Set 10.13
1.  

2.  ;  Rotation angles:  (upper left);  (upper right);  (lower left);  (lower right);

3.  
4.  a.  (i) ; (ii) all rotation angles are ; (iii)  This set is a fractal.

b.  (i) ; (ii) all rotation angles are ; (iii)  This set is a fractal.

c.  (i) ; (ii) rotation angles:  (top); 1  (lower left);  (lower right); (iii)  This set is a fractal.

d.  (i) ; (ii) rotation angles:  (upper left);  (upper right);  (lower right) (iii)  This set is a fractal.

5.  

6.  (0.766, 0.996) rounded to three decimal places
7.  
8.  

9.  ; the cube is not a fractal.

10.  ; ; ; the set is a fractal.



11.  

12.  Area of ; area of ; area of ; area of ; area of 

Exercise Set 10.14
1.  , , , , , , , , 

2.  One 1-cycle: ; one 3-cycle: ; two 4-cycles:  and ;

two 12-cycles:   and

, . 

3.  (a)  3, 7, 10, 2, 12, 14, 11, 10, 6, 1, 7, 8, 0, 8, 8, 1, 9, 10, 4, 14, 3, 2, 5, 7, 12, 4, 1, 5, 6, 11, 2, 13, 0, 13, 13, 11, 9, 5, 14, 4, 3, 7,
(c)  (5, 5), (10, 15), (4, 19), (2, 0), (2, 2), (4, 6), (10, 16), (5, 0), (5, 5),

4.  (c)  The first five iterates of  are , , , , and .

6.  (b)  The matrices of Anosov automorphisms are  and .

(c)  The transformation affects a rotation of S through  in the clockwise direction.

9.  

  

In region I: ; in region II: ; in region III: ; in region IV: 

12.   and  form one 2-cycle, and  and  form another 2-cycle.

14.  Begin with a  array of white pixels and add the letter ‘A’ in black pixels to it. Apply the mapping to this image, which will scatter the black pixels
throughout the image. Then superimpose the letter ‘B’ in black pixels onto this image. Apply the mapping again and then superimpose the letter ‘C’ in black pixels
onto the resulting image. Repeat this procedure with the letters ‘D’ and ‘E’. The next application of the mapping will return you to the letter ‘A’ with the pixels for
the letters ‘B’ through ‘E’ scattered in the background.

Exercise Set 10.15
1.  a.  GIYUOKEVBH

b.  SFANEFZWJH

2.  a.  

b.  Not invertible
c.  

d.  Not invertible
e.  Not invertible
f.  



3.  WE LOVE MATH
4.  

5.  THEY SPLIT THE ATOM
6.  I HAVE COME TO BURY CAESAR
7.  a.  010110001

b.  

8.  A is invertible modulo 29 if and only if  (mod 29).

Exercise Set 10.16
2.  

3.  

4.  Eigenvalues: , ; eigenvectors: 

5.  12 generations; .006%
6.  

; 

8.  

Exercise Set 10.17
1.  a.  

b.  

c.  

7.  2.375
8.  1.49611

Exercise Set 10.18



1.  a.  

 of population; 

b.  

 of population; ; harvest 57.9% of youngest age class

2.  

4.  
5.  

Exercise Set 10.19
1.  

2.  

3.  

4.  

5.  

Exercise Set 10.20
1.  a.  Yes; 

b.  No; 

c.  Yes; 

d.  Yes; 

2.   number of triangles  number of vertex points ,  number of boundary vertex points ; Equation (7) is .

3.  

4.  a.  



b.  

5.  a.  

b.  

c.  

d.  

7.  a.  Two of the coefficients are zero.
b.  At least one of the coefficients is zero.
c.  None of the coefficients are zero.

8.  a.  

b.  

Copyright © 2010 John Wiley & Sons, Inc. All rights reserved.
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