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Note 17 The Kinetic Theory of Gases
Sections Covered in the Text: Chapter 18

In Note 15 we reviewed macroscopic properties of
matter, in particular, temperature and pressure. Here
we see how the temperature and pressure of a gas
arises from the average movement of its constituent
atoms and molecules. This amounts to making a
connection between the microscopic and macroscopic
worlds. The theory that achieves this is a marvel of
classical physics; it is called the kinetic theory of gases.

But we shall see that the kinetic theory, based as it is
on classical Newtonian physics, is limited in what it
can describe. We shall see the need of a new, modern,
quantum, physics.

In addition, in this note we shall encounter an
explanation for the fact that heat always flows spon-
taneously from a hot object to a cold object and never
in the reverse. This fact is encapsulated in the second
law of thermodynamics.

A Microscopic View of a Gas
The history of studies into the nature of gases is very
long. We know from experiments too numerous to go
into here (and the theory we shall present in this note)
that an ordinary volume of gas is comprised of
billions of molecules. At normal temperatures the
molecules move in all directions at high speeds. We
infer that the motion of any one molecule, if it could
be followed, would be quite random. At any instant
the molecules do not all move at the same speed, but
with a range or distribution of speeds, some faster
some slower. The speed distribution of a typical gas
(N2) at 20 ˚C has been studied in detail; it is drawn in
Figure 17-1.

The figure indicates that although we cannot state
what speed a particular molecule moves at (because,
in fact, we cannot follow its movements), we can state
what is its most likely or probable speed. You can see
from the figure that 20% of the molecules have a
speed in the range 500 – 600 m.s–1. Some, of the order
of 0.5%, are moving very slowly, in the range 0 – 100
m.s–1. Others, of the order of 0.5%, are moving very
quickly, in the range 1100-1200 m.s–1. We shall see in
this note that we can take the most probable speed as
the average speed, to a good approximation. 1

                                                                        
1 Figure 17-1 bears a startling resemblance to the distribution of
term test marks from a large class of PHYA10H3S students !

Figure 17-1. The distribution of molecular speeds in a vol-
ume of nitrogen gas at a temperature of 20 ˚C as deter-
mined by experiment.

Kinetic Theory of Ideal Gases

Assumptions
We saw in Note 15 that bulk properties of an ideal gas
are described exactly by the equation of state:

€ 

pV = NkBT . …[17-1]

To simplify our task of describing a gas theoretically
we shall make these additional assumptions about it:

1 It consists of many identical monatomic molecules
of mass m.

2 Its molecules move randomly within the gas and
collide elastically with the walls of the container.

With these assumptions we begin with the macro-
scopic property of pressure.
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Kinetic Theory of Pressure
Consider a cubic container of side L  and volume V of
a monatomic gas. Suppose that at an instant of clock
time a molecule is moving with instantaneous speed
vx in the positive x direction toward the right wall
(Figure 17-2). The molecule collides with the wall and
rebounds.

Figure 17-2. A molecule of gas collides with the right wall of
the container and rebounds.

In the collision the x-component of the molecule’s
velocity is changed from +vx to –vx. This means that
the molecule experiences an impulse of 2

€ 

Jx( )molecule = Δp = m −vx( ) −mvx = −2mvx .

According to Newton’s third law the wall experiences
the same magnitude of impulse but of opposite sign

€ 

Jx( )wall = − Jx( )molecule = +2mvx . …[17-2]

From the definition of impulse,

€ 

Jx = Fx (t)dt
0

Δtcoll

∫ ,

where Fx(t) is the x-component of the force the mole-
cule exerts on the wall during the collision and ∆tcoll is
the elapsed time for the collision. The details of the
function Fx(t) are unknown to us. So to simplify
matters (and to enable us to obtain a result at all), we
replace the actual unknown collision force with an
average force Favg. Then

€ 

Jx( )wall = Favgdt
0

Δtcoll

∫

                                                                        
2 Recall that we defined impulse in Note 07. Impulse is the
change in linear momentum.

€ 

= FavgΔtcoll = 2mvx

using eq[17-2]. Thus

€ 

Favg =
2mvx
Δtcoll

. …[17-3]

If we multiply F avg by the total number of collisions
Ncoll that occur during the time interval ∆tcoll we get the
net force exerted on the wall by all the molecules:

€ 

Fnet = NcollFavg = 2mvx
Ncoll

Δtcoll
. …[17-4]

At the moment we do not have an expression for Ncoll.
To find it we assume temporarily that all molecules
have the same x-component of velocity vx. These
molecules all travel a distance ∆x = vx∆tcoll along the x-
axis during the elapsed time ∆tcoll. They are all con-
tained in the shaded region of the container redrawn
in Figure 17-3.

Figure 17-3. Half of the molecules contained in the shaded
region will collide with the wall in the time interval ∆tcoll.

On average half of the molecules are moving to the
left in the container, half to the right. The shaded
region has volume A∆x where A is the surface area of
the wall. Hence

€ 

Ncoll =
1
2
N
V
AΔx =

1
2
N
V
AvxΔtcoll . …[17-5]

From eq[17-5] the rate of collisions with the wall is
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€ 

rate  of  collisions =
Ncoll

Δtcoll
=

1
2
N
V
Avx . …[17-6]

Substituting eq[17-6] into eq[17-4] the net force
becomes

€ 

Fnet = 2mvx( ) 12
N
V
Avx

 

 
 

 

 
 =

N
V
mvx

2A . …[17-7]

Recall that eq[17-7] is based on our earlier assumption
that the molecules have the same speed. To make the
equation more accurate we now replace vx

2 with its
average value and obtain:

€ 

Fnet =
N
V
m vx

2( )avg A . …[17-8]

Now, in general, a molecule can be moving in any
direction. Its speed is the magnitude of the velocity
vector in 3D space:

€ 

v = vx
2 + vy

2 + vz
2 . …[17-9]

Squaring eq[17-9] and averaging we have

 

€ 

v 2( )avg = vx
2 + vy

2 + vz
2( )avg ,

€ 

= vx
2( )avg + vy

2( )avg + vz
2( )avg . …[17-10]

Taking the square root of (v2)avg we obtain what is
called the root-mean-square speed vrms:

€ 

vrms = v 2( )
avg

. …[17-11]

Now the averages of each component squared are
equal, i.e.,

€ 

vx
2( )avg = vy

2( )avg = vz
2( )avg . …[17-12]

Hence

€ 

vrms
2 = v 2( )avg

€ 

= vx
2( )avg + vy

2( )avg + vz
2( )avg

€ 

= 3 vx
2( )avg , …[17-13]

using eqs[17-10] and [17-12]. It follows therefore from
eq[17-13] that

€ 

vx
2( )avg =

1
3
vrms
2 . …[17-14]

Using eq[17-14] in eq[17-8] the net force becomes

€ 

Fnet =
1
3
N
V
mvrms

2 A .

This means that the pressure on the wall is

€ 

p =
Fnet
A

=
1
3
N
V
mvrms

2 . …[17-15]

Thus the theory predicts that the pressure p (a macro-
scopic quantity) is proportional to the square of the
average speed of the molecules (a microscopic
quantity). Now let us turn to its counterpart
expression for temperature.

Kinetic Theory of Temperature
A molecule of mass m and velocity v has translational
kinetic energy

€ 

ε =
1
2
mv2 .

Thus the average translational kinetic energy is

€ 

εavg =
1
2
m v 2( )avg =

1
2
mvrms

2 , …[17-16]

using eq[17-11]. From eq[17-15] we can write

€ 

p =
2
3
N
V
1
2
mvrms

2 

 
 

 

 
 =
2
3
N
V
εavg , …[17-17]

using eq[17-16]. We can rearrange eq[17-17] to get

€ 

pV =
2
3
Nεavg . …[17-18]

From eqs[17-1] and [17-18] we can write

€ 

pV = NkBT =
2
3
Nεavg ,

from which it follows that

€ 

εavg =
3
2
kBT . …[17-19]
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Turning eq[17-19] around we get an expression for
temperature:

€ 

T =
2
3kB

εavg . …[17-20]

Thus the temperature T (a macroscopic quantity) is
proportional to εavg, the average translational kinetic
energy of the molecules (a microscopic quantity).
From eqs[17-16] and [17-19] we have

€ 

εavg =
1
2
mvrms

2 =
3
2
kBT , …[17-21]

from which it follows that the rms speed of a molecule
is

€ 

vrms =
3kBT
m

. …[17-22]

Let us consider a numerical example of molecular
speeds predicted by the kinetic theory.

Example Problem 17-1
Calculating the RMS Speed of a Molecule From the
Kinetic Theory of Gases

What is the rms speed of a nitrogen molecule at room
temperature predicted by the kinetic theory of gases?

Solution:
Room temperature is 20 ˚C or 293 K. The mass of a
single molecule of N2 is 4.68 x 10–26 kg. Thus from
eq[17-22],

€ 

vrms =
3 1.38 ×10−23J.K−1( )(293 K)

4.68 ×10−26kg
= 509  m.s–1.

Remarkably, this speed is within the most likely, or
average, speed bar of Figure 17-1.

We now apply the kinetic theory to calculate the ther-
mal energy and specific heats of various systems. We
shall compare the results we get with the experimen-
tal measurements listed in Note 16. We shall see that
the comparison is a good one in some cases and bad
in others. Even when the results are bad they will
yield useful insights into the theory.

Calculations of Thermal Energy and
Specific Heat

Monatomic Ideal Gas (3 DFs)
Recall that the thermal energy of a system is the sum
of the kinetic and potential energies of its constituent
particles: Eth = Kmicro + Umicro. In a monatomic gas such
as helium or neon Umicro = 0 and the kinetic energy is
entirely translational. This means that the thermal
energy of a monatomic gas of N atoms is

€ 

Eth = Kmicro = ε1 + ε2 + ...εN = Nεavg …[17-23]

Substituting εavg from eq[17-21] we have

€ 

Eth =
3
2
NkBT =

3
2
nRT  (monatomic) …[17-24]

Thus the kinetic theory predicts that the thermal
energy of a monatomic gas is directly proportional to
temperature. Eth is independent of atomic mass, which
means that any two monatomic gases with the same
number of moles at the same temperature should
have the same thermal energy.

If the temperature of a monatomic gas changes by
∆T, its thermal energy changes by

€ 

ΔEth =
3
2
nRΔT . …[17-25]

We have already seen in Note 16 that

€ 

ΔEth = nCVΔT . …[17-26]

Equating eqs[17-25] and [17-26] and simplifying,

€ 

CV =
3
2
R =12.5  J.mol–1 K–1 (monatomic) …[17-27]

You can see that the value predicted agrees very well
with the experimental values of CV for monatomic
gases listed in Table 16-2. For reference Table 16-2 is
reproduced below.

Also part of the kinetic theory is the so-called equi-
partition theorem. This theorem will assist us in our
analysis of systems of greater complexity than a
monatomic gas.
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Table 16-2. Experimental measurements of molar
specific heats (J.mol–1 K–1) of a selection of gases.

Gas Cp Cv Cp – Cv
Monatomic
He 20.8 12.5 8.3
Ne 20.8 12.5 8.3
Ar 20.8 12.5 8.3
Diatomic
H2 28.7 20.4 8.3
N2 29.1 20.8 8.3
O2 29.2 20.9 8.3

Equipartition Theorem
The translational kinetic energy of a single particle
(atom) in a monatomic gas can be written

€ 

ε =
1
2
mv2 =

1
2
mvx

2 +
1
2
mvy

2 +
1
2
mvz

2

€ 

= εx + εy + εz . …[17-28]

where εx, εy and εz are the energies associated with
translational motion along the three axes. We can
think of εx, εy and εz as independent modes of energy
storage in the system. We define the number of degrees
of freedom (abbreviated DF) as the number of distinct
and independent modes of energy storage. Thus a
monatomic gas has three degrees of freedom. In due
course we shall see that other types of matter (solids,
diatomic molecules) have more than three degrees of
freedom.

The equipartition theorem can be stated in these
words:

The thermal energy of a system of particles is equally
divided among all the possible energy modes. For a sys-
tem of N particles at temperature T, the energy stored in
each mode (each degree of freedom) is (1/2)NkBT or, in
terms of moles, (1/2)nRT.

Thus according to the equipartition theorem the
thermal energy of a monatomic gas is 3 x (1/2)nRT =
(3/2)nRT, in agreement with eq[17-24]. Let us now see
how well the kinetic theory describes the thermal
properties of a solid.

A Solid (6 DFs)
Though not an ideal gas, a solid can be analyzed with
the kinetic theory of gases with partial success. A
solid may be represented as is shown in Figure 17-4.

Figure 17-4. Representation of a solid.

We can think of a solid as a collection of atoms held in
a lattice-like structure by molecular bonds (repres-
ented by springs in the figure). Each atom is able to
vibrate with kinetic energy in the x-, y- and z-
directions and has, therefore, three degrees of
vibrational energy. Each degree of vibrational energy
has associated with it a degree of potential energy
(potential energy stored in the springs). Thus a solid
has a total of six degrees of freedom.

According to the equipartition theorem, the energy
stored in each of these six degrees of freedom is
(1/2)NkBT. Thus the total thermal energy of a solid is

€ 

Eth = 3NkBT = 3nRT  (solid) …[17-29]

If the temperature changes by ∆T then the thermal
energy changes by

€ 

ΔEth = 3nRΔT . …[17-30]

Recall (Note 16) that the molar specific heat C of a
solid is defined by

€ 

ΔEth = nCΔT . …[17-31]

Equating eqs[17-30] and [17-31] and cancelling com-
mon factors we have

€ 

C = 3R = 25.0  J.mol–1 K–1 (solids) …[17-32]

You can see that the value 25.0 J.mol–1 K –1 agrees with-
in a few percent with the few values of C  for solids
listed in Table 16-1. So we can claim with some satis-
faction that the kinetic theory describes a solid pretty
well. Let us now look at a system with more than six
degrees of freedom.



Note 17

17-6

A Diatomic Molecule (8 DF)
A diatomic molecule, like a monatomic molecule, has
three modes of translational motion. In addition, a
diatomic molecule such as N2 has the vibrational and
rotational modes illustrated in Figure 17-5. Since the
vibrational mode has both kinetic and potential
energy the total number of modes comes to eight.

Thus the kinetic theory of gases predicts a CV for a
gas consisting of diatomic molecules of

€ 

CV = 8 × 1
2
 

 
 
 

 
 R = 33.2  J.mol–1 K–1.

You can see that this value differs substantially from
the measured value of CV = 20.8 J.mol–1 K–1 listed in
Table 16-2. Why is this? In fact, it appears as if a
diatomic molecule should actually have five degrees
of freedom not eight (making for CV = (5/2)R = 20.8
J.mol–1 K–1, a better agreement with what is observed).

Figure 17-5. The various modes of a diatomic molecule in
addition to the three translational modes.

The answer has to do with quantum effects making
their appearance with the diatomic molecule. Classical
Newtonian physics via the equipartition theorem has
a natural limitation in that it treats all of the degrees of
freedom equally, meaning that at any given tempera-
ture all of them will be equally active and equally able
to store energy. However, it can be shown that quan-
tum effects predict that three of the modes—the two
vibrational modes and the single rotational mode—
will not be active at ordinary temperatures. This is
reflected in the experimental data of CV for hydrogen
gas (Figure 17-6).

Figure 17-6. Hydrogen molar specific heat at constant
volume as a function of temperature. At ordinary
temperatures (200 – 800)K only five degrees of freedom are
active.

Only quantum (statistical) physics can explain why
certain modes become active only at certain
temperatures. We must leave the details to a higher-
level course in physics.
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Irreversible Processes and the
Second Law of Thermodynamics

We have seen that in a thermal interaction—such as
warming your cold hands over a hot object—heat
flows from the hot object to the cold. We know from
experience that the reverse never happens, that is, that
your hands never become colder and the hot object
hotter. It is natural to ask why this should be so. Why
isn’t heat transferred spontaneously from a cold object
to a hot object? In fact, none of the physics we have
studied thus far would prevent this from happening.
We shall see that the search for the answer to this
question will lead us to the second law of
thermodynamics.

First we need a few more definitions. Any process
can be classified as being reversible or irreversible. A
reversible process is a process that can run equally
well forward or backward in time. An example is an
interaction or collision between two microscopic
particles (Figure 17-7). If a movie were taken of that
interaction, it would look the same (except for a
reversal in sign) if run backward as forward. There
would be no way to distinguish the backward
running movie from the forward. In fact, all inter-
actions at the microscopic level are reversible.

Figure 17-7. All interactions at the microscopic level are
reversible processes.

On the other hand there are interactions that are very
definitely irreversible. A case in point is the collision
between a speeding car and a brick wall (Figure 17-8).
If a movie were made of this interaction and then run
backwards we would see the damaged car miracul-
ously repair itself and then speed off in reverse! It
would be obvious the movie is running backwards.
The backward-running movie would show a process
that is physically impossible. The process of the car
hitting a wall is a macroscopic process. It only makes
sense run in one direction in time.

Figure 17-8. An example of an irreversible interaction.

For the most part, macroscopic processes are irrever-
sible and microscopic processes are reversible. The
flow of heat from a hot object to a cold object, though
dependent on reversible microscopic collisions
between particles, is itself an irreversible process.

To get an idea of a process that can run in one direc-
tion only in time consider the two “systems” shown in
Figure 17-9. Each “system” consists of a box with a
number of identical balls inside. These systems
undergo an “interaction” resulting in balls being
moved from one box to the other. To simulate this
interaction we adopt the following algorithm. In any
elapsed time, say 1 second, we select a ball (or no ball)
at random from both boxes. If indeed we pick a ball
we move it to the other box. Whether we select a ball
or no ball at all is entirely a matter of chance.

This means that, with the number of balls illustrated
in the figure, there is a 1 in 11 chance that any
particular ball, or no ball, will be selected from Box 1.
If, in fact, we do pick a ball as our random choice, we
move it to Box 2. Similarly, in the same second, there
is a 1 in 6 chance that any particular ball, or no ball,
will be selected from Box 2. If a ball is, in fact, chosen
it is moved to Box 1.

Figure 17-9. Two systems interacting. This interaction can
only go one way in time.
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This algorithm means that there is a greater chance
that a ball—any ball—will be moved from Box 1
(10/11 = 0.9) to Box 2 than the reverse (5/6 = 0.8) to
Box 1. This means that over time the number of balls
in Box 2 will increase, the number of balls in Box 1
will decrease. Over time the number of balls in both
boxes will approach the same number. This is a state
of equilibrium. This interaction simulates the flow of
heat from a hot object to a cold object.

The state of the systems before the interaction is in
fact more ordered than is the state of the systems after
the interaction (when the systems are in equilibrium).
A state variable called entropy is defined to measure
the disorder in a system (the probability that a
macroscopic state will occur).

The Second Law of Thermodynamics
The second law of thermodynamics is a new law for
us. It states, in effect, that macroscopic systems evolve
irreversibly towards equilibrium, or towards a state of
the same or greater disorder. The law can be put in
these words:

The entropy of an isolated system never decreases. The
entropy either increases, until the system reaches
equilibrium, or, if the system began in equilibrium,
stays the same.

This concludes our study of the basic physics of heat.
In Note 18 we shall see how the physics of heat will
enable us to explain the working of practical devices,
such as the heat engine and the refrigerator.

To Be Mastered

• Assumptions: kinetic theory of gases

• Derivations: kinetic theory of pressure: 

€ 

p =
1
3
N
V
mvrms

2

kinetic theory of temperature: 

€ 

T =
2
3kB

εavg

• Derivations: thermal energy of a monatomic gas: 

€ 

Eth = 3
2 nRT

specific heat of a monatomic gas: 

€ 

CV = 3
2 R

• Definitions: Equipartition Theorem
• Application of kinetic theory to: a monatomic gas (3 DFs)

a solid (6 DFs)
a diatomic molecule (8 DFs)

• Definition: Second Law of Thermodynamics

Typical Quiz/Test/Exam Questions

1. Use kinetic theory to explain the origin of the pressure of a gas.

2. State the classical equipartition theorem, defining any symbols you use.

3. In outer space there is one hydrogen atom per cubic centimeter, and the temperature is 3.5 K. Calculate the
rms speed of hydrogen atoms in outer space and the pressure they exert.


