\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Goals

\qquad

After completing this chapter, you should be \qquad able to:

- understand model building using multiple \qquad regression analysis
- apply multiple regression analysis to business \qquad decision-making situations
- analyze and interpret the computer output for a \qquad multiple regression model
- test the significance of the independent variables in a multiple regression model

Chapter Goals

After completing this chapter, you should be
\qquad able to:

- use variable transformations to model nonlinear \qquad relationships
- recognize potential problems in multiple regression analysis and take the steps to correct the problems.
\qquad
\qquad
- incorporate qualitative variables into the regression model by using dummy variables. \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model Specification

\qquad
\qquad

- Decide what you want to do and select the dependent variable
- Determine the potential independent variables for your model
- Gather sample data (observations) for all variables
\qquad
\qquad
\qquad
\qquad

The Correlation Matrix

- Correlation between the dependent variable and
\qquad selected independent variables can be found using Excel:
- Tools / Data Analysis... / Correlation
- Can check for statistical significance of correlation with a t test \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

	Interpretation of Estimated Coefficients
	Estimates that the average value of y changes by b_{i} units for each 1 unit increase in X_{i} holding all other variables constant
	Example: if $\mathrm{t}_{1}=-20$, then sales ($(\mathrm{y}$) s expected
	(ease by an estimated 20 pies per week for
	mhanges due to averetising (x_{2})
	iterepept $\left(b_{0}\right)$
	The estimated average value of y when all $x_{i}=0$ (assuming all $x_{i}=0$ is within the range of observe

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiple Coefficient of
Determination

$R^{2}=\frac{\mathrm{SSR}}{\mathrm{SST}}=\frac{\text { Sum of squares regression }}{\text { Reports the proportion of total variation in } \mathrm{y}}$
explained by all x variables taken together squares
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Adjusted R ${ }^{2}$

- R^{2} never decreases when a new x variable is added to the model
- This can be a disadvantage when comparing models
- What is the net effect of adding a new variable?
- We lose a degree of freedom when a new x variable is added
- Did the new x variable add enough explanatory power to offset the loss of one degree of freedom?

Business Statistics: A Decision.Making Approach, 6e © 2005 Prentice.Hall, Inc.

Adjusted R ${ }^{2}$

Shows the proportion of variation in y explained by all x variables adjusted for the number of x variables used

$$
R_{A}^{2}=1-\left(1-R^{2}\right)\left(\frac{n-1}{n-k-1}\right)
$$

(where $\mathrm{n}=$ sample size, $\mathrm{k}=$ number of independent variables)

- Penalize excessive use of unimportant independent variables
- Smaller than R^{2}
- Useful in comparing among models

Business Statistics: A Decision.Making Approach, 6e $Q 2005$ Prentice.Hall, Inc.

\qquad

Is the Model Significant?

- F-Test for Overall Significance of the Model
- Shows if there is a linear relationship between all of the x variables considered together and y
- Use F test statistic
- Hypotheses:
- $\mathrm{H}_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{\mathrm{k}}=0$ (no linear relationship)
- H_{A} : at least one $\beta_{i} \neq 0$ (at least one independent variable affects y)

Are Individual Variables Significant?

- Use t-tests of individual variable slopes
- Shows if there is a linear relationship between the variable x_{i} and y
- Hypotheses:
- $\mathrm{H}_{0}: \beta_{\mathrm{i}}=0$ (no linear relationship)
- $H_{A}: \beta_{i} \neq 0$ (linear relationship does exist between x_{i} and y)
\qquad

Confidence Interval Estimate for the Slope				
Confidence interval for the population slope β_{1} (the effect of changes in price on pie sales):				
$\mathrm{b}_{\mathrm{i}} \pm \mathrm{t}_{\alpha / 2} \mathrm{~S}_{\mathrm{b}_{\mathrm{i}}}$				Wenee thas $\left(\begin{array}{c}\text { m-k-1) dif } \\ \hline\end{array}\right.$
	,	emme		,
				\%es
Example: Weekly sales are estimated to be reduced by between 1.37 to 48.58 pies for each increase of \$ in the selling price				

Standard Deviation of the
Regression Model

- The estimate of the standard deviation of the
regression model is:
$\mathrm{s}_{\varepsilon}=\sqrt{\frac{\mathrm{SSE}}{\mathrm{n}-\mathrm{k}-1}}=\sqrt{\mathrm{MSE}}$
- Is this value large or small? Must compare to the
mean size of y for comparison
\qquad
\qquad
\qquad
\qquad
\qquad
Is this value large or small? Must compare to the
\qquad
\qquad

Standard Deviation of the Regression Model						
		$\begin{aligned} & \text { The standard deviation of the } \\ & \text { regression model is } 47.46 \\ & \hline \end{aligned}$, 종
Ooberations						
Anova	dt	5				
Regerssion		${ }^{298800027}$	41473013		${ }^{0.012}$	
$\underset{\substack{\text { Restaual } \\ \text { Toold }}}{\substack{\text { ate }}}$	${ }_{14}^{12}$	cist				
	Semationt	Stanar	${ }_{\text {tsat }}$	P.apate	Lomeresse	
			268285	0.012		
Price	-2487599					
Raversting	74,13098	2589832	${ }^{2} 28548$	0.0149	17.5 S503	-130.72988
memes selus	mexa	wosferememe				Cime 28

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multicollinearity

- Multicollinearity: High correlation exists between two independent variables
- This means the two variables contribute redundant information to the multiple regression model
Multicollinearity
- Multicollinearity: High correlation exists
between two independent variables
- This means the two variables contribute

redundant information to the multiple regression
model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Multicollinearity

- Including two highly correlated independent
variables can adversely affect the regression
results
- No new information provided
- Can lead to unstable coefficients (large
standard error and low t-values)
- Coefficient signs may not match prior
expectations
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Incorrect signs on the coefficients
- Large change in the value of a previous coefficient when a new variable is added to the model
- A previously significant variable becomes insignificant when a new independent variable is added
- The estimate of the standard deviation of the model increases when a variable is added to the model

Business Statistics: A Decision-Making Apprach, 6e $\& 2005$ Prentice-Hall, Inc.	Chap 14-40

\qquad

Detect Collinearity (Variance Inflationary Factor)
$\mathrm{VIF}_{\mathrm{j}}$ is used to measure collinearity:

$$
\mathrm{VIF}_{\mathrm{j}}=\frac{1}{1-\mathrm{R}_{\mathrm{j}}^{2}}
$$

R^{2} ji the coefficient of determination when the $\mathrm{j}^{\text {th }}$ independent variable is regressed against the remaining $\mathrm{k}-1$ independent variables

If $\mathrm{VIF}_{\mathrm{j}}>5, \mathrm{x}_{\mathrm{j}}$ is highly correlated with the other explanatory variables

Business Statistics: A Decision.Making Approach, 6e $\begin{gathered}2005 \\ \text { Prentice-Hall, Inc. }\end{gathered}$
Chap 14.41

Detect Collinearity in PHStat

PHStat / regression / multiple regression ... Check the "variance inflationary factor (VIF)" box

-Regression Analysis	
-Price and all oth	
-Regression Statistics	
-Multiple R	$\cdot 0.030437581$
-R Square	$\cdot 0.000926446$
-Adjusted R Square	-0.075925366
-Standard Error	$\cdot 1.21527235$
- Observations	$\cdot 15$
- VIF	$\cdot 1.000927305$

Output for the pie sales example:

- Since there are only two explanatory variables, only one VIF is reported
- VIF is <5
- There is no evidence of collinearity between Price and Advertising
Business Statistics: A Decision.Making Approch, 6e © 2005 Prentice.Hall, Inc.
Chap 14.42
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation of the Dummy
Variable Coefficient (with 2 Levels)
Example: Sales $=300-30$ (Price) +15 (Holiday)
Sales: number of pies sold per week
Price: pie price in \$
Holiday: $\begin{cases}1 & \text { If a holiday occurred during the week } \\ 0 & \text { If no holiday occurred }\end{cases}$
$b_{2}=15$: on average, sales were 15 pies greater in weeks with a holiday than in weeks without a holiday, given the same price

Dummy-Variable Models (more than 2 Levels)

- The number of dummy variables is one less than the number of levels
- Example:

$$
y=\text { house price } ; x_{1}=\text { square feet }
$$

- The style of the house is also thought to matter:
Style = ranch, split level, condo
Three levels, so two dummy variables are needed
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nonlinear Relationships

- The relationship between the dependent variable and an independent variable may not be linear
- Useful when scatter diagram indicates nonlinear relationship
- Example: Quadratic model
- $y=\beta_{0}+\beta_{1} x_{j}+\beta_{2} x_{j}^{2}+\varepsilon$
- The second independent variable is the square of the first variable

Polynomial Regression Model

General form:
$y=\beta_{0}+\beta_{1} x_{j}+\beta_{2} x_{j}^{2}+\ldots+\beta_{p} x_{j}^{p}+\varepsilon$

- where:
$\beta_{0}=$ Population regression constant
$\beta_{\mathrm{i}}=$ Population regression coefficient for variable $x_{\mathrm{j}}: \mathrm{j}=1,2, \ldots k$
$p=$ Order of the polynomial
$\varepsilon_{i}=$ Model error
If $p=2$ the model is a quadratic model:

$$
y=\beta_{0}+\beta_{1} x_{j}+\beta_{2} x_{j}^{2}+\varepsilon
$$

Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice Hall
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
diagram takes on the following shapes:

Chap 14.53
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. \quad Chap 14.53
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If $p=3$ the model is a cubic form:

$$
y=\beta_{0}+\beta_{1} x_{j}+\beta_{2} x_{j}^{2}+\beta_{3} x_{j}^{3}+\varepsilon
$$

Business Statistics: A Decision.Making Approach, be © 2005 Prentice. Hall, Inc.

\qquad

	Interaction Regression Model Worksheet				
	Case, i	y_{i}	x_{11}	$\mathrm{x}_{2 i}$	$\mathrm{x}_{1 i} \mathrm{x}_{2 \mathrm{i}}$
	1	1	1	3	3
	2	4	8	5	40
	3	1	3	2	6
	4	3	5	6	30
	:	:	:		
		$\begin{aligned} & \text { multiply } x_{1} \text { by } x_{2} \text { to get } x_{1} x_{2} \text {, then } \\ & \text { run regression with } y, x_{1}, x_{2}, x_{1} x_{2} \end{aligned}$			
Osmes smata					

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Hypothesize interaction between pairs of independent variables

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\varepsilon
$$

- Hypotheses:
- $\mathrm{H}_{0}: \beta_{3}=0$ (no interaction between x_{1} and x_{2})
- $\mathrm{H}_{\mathrm{A}}: \beta_{3} \neq 0 \quad\left(\mathrm{x}_{1}\right.$ interacts with $\left.\mathrm{x}_{2}\right)$
\qquad
\qquad
\qquad
\qquad

Stepwise Regression

\qquad
\qquad

- Idea: develop the least squares regression equation in steps, either through forward selection, backward elimination, or through standard stepwise regression
- The coefficient of partial determination is the measure of the marginal contribution of each \qquad independent variable, given that other independent variables are in the model \qquad
\qquad

Best Subsets Regression

- Idea: estimate all possible regression equations using all possible combinations of independent variables
- Choose the best fit by looking for the highest \qquad adjusted R^{2} and lowest standard error s_{ε}

Stepwise regression and best subsets regression can be performed using PHStat, Minitab, or other statistical software packages \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Normality Assumption

- Errors are assumed to be normally distributed
- Standardized residuals can be calculated by computer
- Examine a histogram or a normal probability plot \qquad of the standardized residuals to check for normality \qquad
\qquad
\qquad

Chapter Summary - Developed the multiple regression model - Tested the significance of the multiple regression model - Developed adjusted R^{2} - Tested individual regression coefficients - Used dummy variables - Examined interaction in a multiple regression model	
mat.	

\qquad
\qquad

- Developed the multiple regression model

Tested the significance of the multiple \qquad

- Developed adjusted R^{2}
- Tested individual regression coefficients
- Used dummy variables
- Examined interaction in a multiple regression model
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

