8 Coupled Oscillations and
Normal Coordinates

We have learned in some detail how a single vibrating system will behave. However, oscillators
rarely exist in complete isolation. We now consider systems of interacting oscillators. This subject
is of general interest because numerous physical systems are well approximated by coupled har-
monic oscillators. Coupled oscillators, in general, are able to transmit their energy to each other
because two oscillators share a common component, capacitance or stiffness, inductance or mass,
or resistance. Resistance coupling inevitably brings energy loss and a rapid decay in the vibration,
but nonresistance coupling consumes no power, and continuous energy transfer over many oscilla-
tors is possible.

We shall investigate first a mechanical example of stiffness coupling between two pendulums.
Two atoms set in a crystal lattice experience a mutual coupling force and would be amenable to a
similar treatment. Motion of this type can be quite complex if it is described in ordinary coordinates
that describe the geometrical configuration of the system. Fortunately, as we shall see, it is always
possible to describe the motion of any oscillatory system in terms of normal coordinates that are
constructed from the original position coordinates in such a way that there is no coupling among the
oscillators. Thus, each normal coordinate oscillates with a single, well-defined frequency. Before
we take up the general analytic approach, let us illustrate the concepts of normal coordinates and
normal frequencies with a very simple example: the coupled pendulum.

8.1 COUPLED PENDULUM

Consider a pair of identical pendulums of mass m suspended on a massless rigid rod of length
b. The masses are connected by a massless spring whose spring constant is £ and whose natural
length equals the distance between the masses when either is displaced from equilibrium. The dis-
placements from rest of the two pendulum bobs are measured in x and y, respectively, as indicated
in Figure 8.1. The kinetic and potential energies for the coupled system are given by, for small
displacement,

T=%m(5c2+y2) (8.1a)

V:%K(x2+y2)+%k(x—y)2 (8.1b)

where K = mg/b. It is clear that in this small displacement approximation the coupled pendulum
system of Figure 8.1 is equivalent to the mass-spring system of Figure 8.2, with a spring constant K
for the outer spring and k for the inner spring. Now, from the Lagrangian L = T — V and Lagrange’s
equations d(dL/dx)/dt — dL/dx = 0, d(dL/dy)/dt — dL/dy = 0, we obtain the differential equations of
motion:

mx =—Kx—k(x—y) (8.2a)
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FIGURE 8.1 Two simple pendulums coupled by a spring.
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FIGURE 8.2 Equivalent mass—spring system for the coupled pendulum system.

my=—Ky+k(x—y). (8.2b)

It is obvious that Equation 8.2a contains a term in y, and Equation 8.2b contains a term in
x. These two differential equations cannot be solved independently and must be solved simulta-
neously. A motion given to one bob affects the other. As a simple approach to the solution of these
simultaneous differential equations, we try an oscillatory state in which both pendulums oscillate
with the same frequency w:

x(f) = Ae™® and y(f) = Be'’ (8.3)

where A and B are constants. Because damping is not present, ® will be a real quantity. Substitution
of Equation 8.3 into Equations 8.2a and 8.2b gives a pair of simultaneous linear algebraic equations
in the undetermined amplitude A and B:

(-mo*+ K+ kA—-kB=0 (8.4a)
kA + (mo*> - K — k)B =0. (8.4b)

Such is a system of two linear homogeneous equations whose solution is not zero only if the
determinant of its coefficients vanishes

2
—-mw°-+K+k —k 0. 8.5)
k mon’—K -k
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Upon expanding this secular determinant, we have
(~mo? + K+ k> - k*>=0, (8.6)
an equation for the determination of ®, which may be rewritten as
(mo? — K)(mo?> - K -2k)=0

from which we obtain the characteristic frequencies (often called eigenfrequencies) for the system,
either

o’ =K/m=glh; o,=%glb (8.7a)

or

W’ = g/b+2kim; ;, = +/g/b+2k/m. (8.7b)

One of the characteristic frequencies is of the free pendulum (g/h)"”? exactly; the two pendulums
move in phase. The other frequency reactivates both the pendulums and the springs (with a factor of
2); in this state, the pendulums move in opposite directions. The most general motion of the system
is a superposition of these two modes of oscillation:

x(1) = Ae ™ + A + Ay + A,
)= B,e™" + B,e™ + B.e™™ + B,
y 1 2 3 4

where, as usual, only the real or only the imaginary part is to be taken. Only four of the eight arbi-
trary constants present in the preceding equations are independent. This follows because the dif-
ferential equations are of the second order and are two in number. The ratio between A and B can be
determined by inserting the allowed value of ® into Equation 8.4a or 8.4b:

aam=0,, A,=+B),

AO=0;, Ay =-B;,

The complete solutions then become

x(t):Aleim+Aze—i\/ﬁ+A3ei\/g/h+2k/mr +A4e—i\/g/b+2k/mt (8.8a)
y(t):AleiW+A26—i\/57bl_A3ei\/g/b+2k/mt _A4e—i«/g/h+2k/mt. (8.8b)

We now have only four arbitrary constants, A, A,, A;, and A,, present in the general solution of
the two second-order differential equations.

8.1.1 NORMAL COORDINATES

It is very clear, by inspection of Equations 8.8a and 8.8b or Equations 8.4a and 8.4b that it is possible
to make linear combinations of x and y such that a combination involves a single frequency. These
linear combinations are, in our case, merely the sum and difference of x and y:
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X(1) = x(t)+ y(1) = 2 A,V 1 A, | (8.9a)
Y(t) — x(t)— y(t) — 2[Agei\/g/b+2k/mt + A4e—i\/g/h+2k/mz:| (89b)

where X describes one mode of oscillation with w, = (g/b)?, while Y describes the other with ® =
(g/b + 2k/im)'”2. The terms X and Y are called normal coordinates, and the two modes of oscillation,
(g/b)"? and (g/b + 2k/m)"2, are the corresponding normal modes. We see that a normal mode vibra-
tion involves only one dependent variable X (or Y) and has its own normal frequency.

Coordinates X and Y have no immediate geometric meaning. In order to learn something about
the geometrical configuration of the system, we would have to transform back from (X, Y) to (x, y):

x=(X+Y)2andy=(X-Y)2. (8.10)

However, the normal coordinates X and Y have some interesting and useful properties from the
physical viewpoint:

(1) The equations of motion, when expressed in terms of normal coordinates, are linear equa-
tions with constant coefficients, and each contains but one dependent variable. That is,
each of which has an equation of motion that is simple harmonic:

X =—(g/b)X, Y =—(glb+2kim)Y. (8.11)

Thus, the normal coordinates are independent of each other in the sense that each normal
oscillation may be excited while the other is at rest. If the boundary conditions are such
that only one normal coordinate is excited and the other is zero initially, the latter will
remain zero for all time.

(2) The total energy of the system, which in ordinary position coordinates is a mixed function
of both x and y and their time derivatives, assumes in normal coordinates the following

form:
m(X2+72) 1{(mg)., (mg 2
E, =" 24| 28 x> +| BE vk |y
tor n 4[( b b . (8.12)

The potential energy is now expressed as a sum of squares of the normal coordinates, mul-
tiplied by constant coefficients. There are no longer any cross terms present in £, ,. Thus,
when one normal coordinate is excited while the other remains zero, there is no tendency
for energy to pass from one normal coordinate to another, and the coordinate that is zero
initially remains zero for all time.

From the preceding discussion, it is evident that transformation from ordinary position coordi-
nates to normal coordinates leads to replacement of the actual system of interacting oscillators by a
system of as many independent oscillators. It is very clear, by inspection of Equations 8.8a and 8.8b,
that the motion of the pendulums is, in general, a superposition of the two normal modes of oscil-
lation. To excite a single frequency (i.e., one normal mode), either A, and A, or A; and A, must be
zero. These two possibilities correspond to the pendulum bobs swinging synchronously (in phase)
with frequency (g/b)'? or swinging anti-synchronously (out of phase) with frequency (g/b + 2k/m)"?
as depicted in Figure 8.3. Notice that the synchronous mode has the lower frequency and is a general
result. In a complex system of linearly coupled oscillators, the mode having the highest degree of
symmetry has the lowest frequency.
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FIGURE 8.3 (a) The two pendulum swing in phase and (b) the two pendulum swing out of phase.

The general motion of the system is a linear combination of the synchronous and anti-synchronous
modes (see Equations 8.8a and 8.8b). At the moment of excitation, = 0, if x = x=0, y = C, and
y=0 (i.e., we displace pendulum 2 a distance C and release it from rest). Equations 8.8a and 8.8b
then give

Substituting these results into Equations 8.8a and 8.8b, we find
1 1
x(1) = > C(cos @t —cosmt) and y(t) = 5 C(cos ®,f + cos Wt)

where o, and m, are given in Equations 8.7a and 8.7b. These equations may be put in the form

x(t)= Csin[;(w3 —wl)t]sin %(m3 + o))t (8.13a)

y(t) = C cos [;(m3 - (Ol)t:|COS %(0)3 +o))t . (8.13b)

Now, in the case of weak coupling,

0; — O, = O +2kim —o,
=0,/1+2k/im)®, -,

k
=—m <1
m

Thus, the first factors of the right members of Equations 8.13a and 8.13b vary slowly with time.
These slowly varying factors constitute an envelope for the rapidly oscillating sinusoidal factors
of argument as depicted in Figure 8.4. As the amplitude of x(f) becomes large, that of y becomes
smaller, and vice versa. Thus, there is a transfer of energy back and forth. At ¢ = n/(w; — »,), pendu-
lum 2 has come to rest, and all the energy has been transferred through the coupling to the first pen-
dulum. It is this circumstance that gives rise to the phenomenon known as beats. The beat frequency
is (w; — m,)/2, and the frequency of the envelope of the amplitude is (w; — ).

The preceding procedure can be applied to a system of oscillators with different masses; also,
there is no limit to the number of oscillators constituting the system. For a system of n coupled
oscillators, we will find n normal coordinates, Q,, Q,,..., Q,, each representing one normal mode of

ne
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FIGURE 8.4 Oscillograph of two weakly coupled pendulums.

oscillation or one independent oscillator. We examine this general problem of n coupled oscillators
in the next section.

8.2 COUPLED OSCILLATORS AND NORMAL MODES:
GENERAL ANALYTIC APPROACH

For an oscillatory system with n degrees of freedom, the maximum number of normal frequencies is
n. When some of the normal frequencies are identical, the system is said to be degenerate. We shall
limit our discussion to the nondegenerate case.

In the simple example given earlier, the normal coordinates were introduced from symmetry consid-
eration. Suppose it was not easy to discover the normal coordinates from symmetry consideration. How
then could we plow through to a solution? Here we give a general analytic approach to this problem.

8.2.1 THEe EQuAaTiON OF MoOTION OF A COUPLED SYSTEM

Consider a conservative system that has n degrees of freedom and a position of stable equilibrium
where the potential energy of the system assumes a minimum value. We measure the generalized
coordinates ¢q;, ¢,,..., ¢, of the system from this equilibrium position. If the motion of the system is
of small amplitude and takes place about the point of equilibrium, then the potential energy V of the
system can be expanded into a Taylor’s series about the equilibrium configuration:

1% 1 o’V
V(g1 q5,-5q,) = Vo + Z(Bq)o g; +222(aqaq,) gt (8.14)
i i j i 0

1

Terms of higher orders of approximation have been dropped. The second sum vanishes because
all the generalized forces, (0V/dg,),, vanish at the equilibrium configuration. Also, no generality will
be lost by taking V,, = 0. Equation 8.14 now reduces to the quadratic form

V= ;ZZK,.jqiqj (8.15)

where

o’V
K, = ) (8.16)
’ ( a‘Iia‘Ij )0
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Because V is measured from its minimum value, and this minimum is taken to be zero, we must
have, in general, V > 0. That is, Equation 8.15 is a positive-definite quadratic form. The K;; are con-
stants and symmetrical (K;; = K;;) because the second derivatives are evaluated at the equilibrium
position and the order of differentiation is immaterial under our assumption. The diagonal compo-
nents of K;; represent the force constants of the restoring force acting on a single particle when that
particle alone is displaced.

If the constraints are time independent, kinetic energy 7 can be written as a homogeneous qua-
dratic form in the velocities

T=;szijq,.qj (8.17)

where the m; are, in general, functions of the generalized coordinates and contain the masses,
or other inertial parameters, of the system. We may expand the quantity m,; into a Taylor’s series
about the equilibrium values of the ¢; in a manner similar to that shown in Equation 8.14. As the ¢;
are assumed to be small, we shall take the constant values of m,; at the equilibrium position as an
approximation and neglect all the higher-order terms in the expansion. Call these constants A, ; then
Equation 8.17 becomes

i

7= ;221‘\(]6[ (8.18)

where A; = A;;. Itis clear that T'is a positive-definite quadratic form. The Lagrangian of the system is

1 ..
L=T=V=_3" (Add; — Kyaa)) (8.19)
[
The equations of motion follow from the Lagrange’s equation d oL - oL =0
dt dg;  9g;
D (A +Kpg)=0,j=12,...n (8.20)

where the terms A; g, and K} g, are called dynamical and static coupling terms, respectively.

Equation 8.20 is a system of n second-order linear homogeneous differential equations with
constant coefficients, and each of these equations involves all n coordinates. So it is desirable to
separate the variables and obtain n equations, each only involving a single unknown. This means
that we introduce normal coordinates.

8.2.2 NORMAL MODES OF OSCILLATION

Our first step is to find a set of constants C;. If we multiply the first of Equation 8.20 by C,, the
second by C,, and so on, and then add the resulting equations, we obtain a new set of equations of
the form

i, +@’n;=0,j=12,...,n (8.21)
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where n; are linear combinations of g;:
n= Y hyde (8.22)
k

The various constants are related by the sets of equations

D A =02 Y CKy =1y (8.23)
J J
From the last equation, we have
D (@A -KC =0, j=12,...n (8.24)
k

which is a system of n linear homogeneous algebraic equations with the unknowns C;, C,,..., C,.
They have a trivial solution C, = C, = ... = C, and a nontrivial solution given by, as before, setting
the determinant of its coefficients equal to zero:

K -0’4, K,-0’A, . . . K,-0%A,
Ky —@°Ay  Kyp-w’A, . . . K, —0°A,

=0. (8.25)
Klll - 0‘)2Alll KnZ - 0‘)2An2 . . . sz - (DQA"”

It is evident that if we assume that the solution of the equation of motion, Equation 8.20, is (com-
pared with Equation 8.3)

— i(0t—0)
qj(t) = Cje’ (6%

then, by substitution of g; into Equation 8.20, the resulting equations will take the same form as
Equation 8.24.

Now the determinant of Equation 8.25 is an nth-degree equation in ® that can be solved for the n
roots: ®?, ®3,..., ®>. It can be proved that these roots are all real. To accomplish this, we multiply
through the jth equation of Equation 8.24 by C; and sum over j, which gives

0 ) D A,CC =D Y KCiC =0, (8.26)
ik ik

We notice that the double sum in the first term is the function 2T of Equation 8.18 with ¢; and
g, replaced by C; and C;. The double sum in the second term is the function 2U of Equation 8.15,
with C; and C, replacing g, and g;. And Equation 8.26 may thus be written in the form

®2T(C) = V(C) =0
or
®? = T(C)/V(C). (8.27)
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Here, T and V are positive for all sets of values of the variables, and accordingly, ? is real and
positive.

For the nondegenerate case, Equation 8.25 has n different real positive roots (05, j=1,2,.,n
This means that there are n different modes of oscillation with frequencies given by ;. o, are the
natural frequencies of the system and are called the characteristic frequencies or eigenfrequencies
of the system. Each value of @ can then be used, in turn, in Equation 8.24 to calculate a set of C;. For
a given value of w;, (n — 1) of the C; can be determined in terms of the nth one from Equation 8.24.
The value for C, must then be determined arbitrarily. Each set of C; can be considered to define the
components of an n-dimensional vector, called an eigenvector, of the system. We designate C, as the
eigenvector associated with the eigenfrequency o, and C;; the kth component of the jth eigenvector.
Accordingly, the factor C; in Equations 8.23 and 8.24 should now be replaced by C,:

D CA=02) C Ky =, (8.23a)

and
Z(Kjk —@?A,)C, =0,j=12,....n. (8.24b)
k
The general motion of the system is a linear combination of the normal modes:
q;(t)= ZC € =12, n (8.28a)
k
or, passing over to the real part of this expression,
q,() = chk oS 1 —8,), j=1,2,...0m. (8.28b)
k

Thus, in general, a given coordinate will depend on C;; and the frequencies of all modes of oscil-
lation at the same time. In certain special circumstances, the system may only oscillate at one of
the characteristic frequencies alone. When this happens, we speak of a normal mode of oscillation.

8.2.3 ORTHOGONALITY OF EIGENVECTORS

There is a fundamental property of the eigenvector 6_,. that is important in determining the values
of its components Cj, from the initial conditions. To investigate this fundamental property of the
eigenvector C, let us return to Equation 8.24, which gives, for the sth root wy,

02 ) AyCy =) KuCy (8.29)

k k
Interchanging j and k and replacing s by r, we obtain a comparable equation for the rth root of ®,:
0 ) A,C, =Y KyC, (8.29b)

k k

where use has been made of the symmetry of A and C;,.
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First, multiplying Equation 8.29a by C;, and summing over j, multiplying Equation 8.29b by C,;
and summing over k, and then subtracting the resulting equations, we obtain

(0 - mf)z 4,C,C,, =0. (8.30)
Jk
For the case o, # ®,, the sum must be zero identically:
D A4CC =0, (8.31)
ik

The preceding condition is generally called the “orthogonality condition.” When ®, = o, the
factor (o — w?) in Equation 8.30 vanishes, and the sum is indeterminate. But it can be shown that
the sum is, in general, positive. To show this, we return to Equation 8.18 for the kinetic energy of
the system and Equation 8.28 for g;:

1 ..
T= 22‘%%%
K

= %Z A]k [Z OJerr COS(O)rt - Sr)][zwxckx COS(OJS[ - 6‘)]
ik r '

or
1
T = 5 Z ®,0; cos(m,t —d,)cos(m - SS)Z A;C,Cy.
r.s J.k
For o, = o, this expression becomes

1
T= EZ“’? cos? (@, — 5,>Zk 4,C,C,. (8.32)
r J

Now T is positive and can become zero only if all of the velocities vanish, and we note that
2 2
; cos”(m,r—9,) > 0.

Thus, in general, we have
ZAjkcj,Ck, >0 (8.33)
ik

where the equal sign applies when 7 = 0.

As remarked earlier, (n — 1) of the C;, can be obtained in terms of the nth one from Equation
8.24 when the w, are known. The value for the nth one must then be determined arbitrarily. We now
remove this indeterminacy by choosing C;, so that the eigenvector C, has unit length:

ZAjkcj,ckr ~1. (8.34)
ik
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Equation 8.34 is generally called the normalization condition. The orthogonality condition 8.31
and normalization condition 8.34 are often combined into one statement by the use of the Kronecker
delta symbol &;;:

Y AiCiC =3, (8.35)
ik

The vector 5, defined in this way constitutes an orthonormal set: the set is orthogonal accord-
ing to Equation 8.31 and has been normalized according to Equation 8.34. The orthogonality and
normalization conditions of Equation 8.35 are of more than academic interest; as we shall see, they
prove useful in establishing the constants resulting from the initial conditions.

8.2.4 NORrRMAL COORDINATES

The n; given by Equation 8.22 are the desired normal coordinates. In terms of these coordinates,
the small oscillations of the system are described by a set of harmonic oscillators of frequencies
o,. Each oscillation can be excited independently. Once we know C;, h;, are readily obtained from
Equation 8.23a. Finally, n; follows from Equation 8.22. In terms of normal coordinates, the equa-
tions of motion are completely separated, as shown by Equation 8.21.

The normal coordinates are often introduced through the use of Equation 8.28 instead of Equation
8.20. However, because we have normalized C;, according to Equation 8.34, we need to introduce
a constant scale factor « that will depend on the initial conditions of the problem to account for the

loss of generality that has been introduced by the arbitrary normalization. Thus,
4,(0)= D oCye (8.36)
k

or
q]‘(t) = ZBijkeimkt (8.36a)
k

where B, = e, the new scale factors. The normal coordinates n, are defined by the following
relationships:

N, (1) =Be™". (8.37)

It is evident that n, undergoes oscillation at only one frequency. In terms of these new quantities,
Equation 8.36a becomes

g,(0= Y Cym (1) (8.38)
k

Equation 8.38 can be considered as the inverse transformation of Equation 8.22.
The kinetic and potential energies assume the simple form

1 . 1
TZEZ“?’ V=30 (8.39)
J J
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To show these, we first note that g;(t) = ZC jkﬁ (). Equation 8.18 becomes
k

11 Tmai- 1S Zea | Seal
Jok -k r s

from which we obtain, by rearrangement of summations,
1 ..
EYp) FEEY T
r,s j k

_ %Z(ammms (with the aid of Equation 8.35)

1 .9
=3 E n:, Q.E.D.
In terms of 1,, Equation 8.15 becomes

V= %szkqjqk = EZ[ZK”‘C”C’“ ]nms-
Jok Jok

r.s

Now, multiplying Equation 8.29a by C;, and summing over j, we obtain

(‘)ngjkas = ZKjkastr'
Jk Jk

Substituting this into the expression for U, we obtain

V= ;Z[ZKjijers }ms = ;Z{Qﬁz A C;Cy ]ﬂms
7k ik

r,s r.s

=D (ot . =5 > o

r.s r

The Lagrangian L takes the simple form
1 .
L=T—V=—§ (2 -o™,) (8.40)

and the Lagrange’s equation gives Equation 8.21:
1, +omn, =0.
We now apply the general formulation just developed to the coupled pendulum.
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Example 8.1: Coupled Pendulum Revisited

1. Eigenfrequencies

The eigenfrequencies for the two-coupled pendulums are given by Equation 8.25.

261

Thus, we must first calculate the quantities K;; and A;. The potential energy of the system is

given by Equation 8.15:

V= %K(xﬁ + x§)+%k(x1 -x,)’ = %(K+k)(x12 +x3) = kx;x,

(8.41)

where we have replaced the original coordinates x and y by x, and x,. From Equation 8.16,

QU
T Ox,0x,

;0 =12

0

we obtain

o’V
Ky = = 2
X3

=K+k.

o
The kinetic energy of the system is given by Equation 8.1a:
T=2m(+x2).
2
According to the general formalism, we have

1 ..
T= 52 Ai/xixj.
ij

Comparing these two expressions for T, we find
Ag=Ay=mand A, = A, =0.

Substituting the results of Equations 8.42 and 8.45 into Equation 8.25, we obtain

K+ k- mo’ —k
—k K+ k - mw?

=0.

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

This is exactly Equation 8.5, and the solutions are the same as those given by Equations 8.7a

and 8.7b.
2. Eigenvectors
We return to Equation 8.24a to determine the eigenvector components C,:
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Y Ky —0AC, =0.

k

Forr=1andj=1, we have

(Kiy _0)12A11)C11 + (K, _(012A12)C21 =0.

Classical Mechanics

(8.24a)

(8.47)

Substituting @] =K/m (from Equation 8.7a) and A, and K, and so forth, from Equations

8.42 and 8.45, we find

Co=-Cy.

(8.48)

The orthonormality condition can be used to determine Cy and C,,. For the coupled pendu-

lum, the orthonormality condition

D AC,Ci =8,
Jk

reduces to

Y ms,C,Co=mY C,C, =5,

Jk J
Forr=s=1, we have
Ch+Cy =1/m.
Solving Equations 8.48 and 8.50, we find

C,y==Cyy =J1/2m.

For r = s, Equation 8.49 becomes

) mC,C, =0=\2m(C,, - Cy)
J

from which we find

For r =s, Equation 8.49 gives
ChL+C3,=1m.

Solving Equation 8.53 and 8.54, we obtain

G, =Cy, =+/1/2m.

. Normal coordinates
We first calculate the quantities h,k(h/k = ZC’kA’fJ and find
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(8.52)

(8.53)

(8.54)
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hyy = CAn+ CyAy =Vm/2
hy = G A, +ChAy =—m/2
hyy = CAy + Ay =m/2

hyy = CyA +CpAyy =m/2.
The normal coordinates 1, and n, are given by

Ny = b+ hipxy =m/2(x+ x,). (8.56)
Mo = hyiXg+ hyoXy =M/ 2(=x+ x,). (8.57)

They differ from Equations 8.9a and 8.9b by a constant factor.

Example 8.2: Longitudinal Vibrations of a CO, Molecule

Atoms in polyatomic molecules behave as the masses of our pendulum; the method of normal
coordinates may be applied to the study of molecular vibrations—often with rich rewards. The
carbon dioxide molecule that has the chemical structure O—C-O provides a simple example. We
can regard this system as equivalent to a set of three particles joined by elastic springs (Figure 8.5).
Clearly, the system will vibrate in some manner when subjected to an external force. For simplic-
ity, we shall consider only longitudinal vibrations, and the interaction of the oxygen molecules
with one another will be neglected (so we consider only the nearest neighbor interactions). Our
coordinates are x,, X,, and x;. The Lagrangian function L for the system is clearly

1 . 1, .. 1 1
L= Em()q2 + x32)+§/\/lx§ —Ek(x2 -x,)? _Ek(X3 -x,)% (8.58)

The equations of motion are found to be

mX; —k(x, —x;)=0
M5, + k(x, = X;) = k(x5 = X,) =0 (8.59)
mX; +k(x; —x,)=0.
Let
x;=A; cos(owt —a), j=1,2, 3. (8.60)

FIGURE 8.5 Linear symmetrical CO, molecule.
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FIGURE 8.6 Longitudinal vibrations of a CO, molecule, (a) A pure translation of the system as a whole,
(b) with the center mass at rest, the two end masses vibrate in opposite direction, and (c) the two end masses
vibrate in unison, the center mass vibrates oppositely.

Substituting Equation 8.60 into Equation 8.59, we obtain
(=mw* + k)A, — kA, =0
—kA, +(—=Mw* + 2k)A, — kA, = 0 (8.61)

—kA, — (=mw* + k)A; = 0.

The secular equation is

—-mo? +k —k 0
—k ~Mw? + 2k —k =0 (8.62)
0 —k —-mo? +k
or
02(—ma? + k)(=mMae? + kM + 2km) = 0 (8.62a)

from which we find the normal frequencies of the system

®,=0, ®,=+vk/m, ©;=+k/m+2k/M. (8.63)

1. Setting @ = 0 in Equation 8.61, we find that A; = A, = A;. Thus, this mode is no oscillation
at all but is a pure translation of the system as a whole (Figure 8.6a).

2. Setting o= Jkim in Equation 8.61, we find A, = 0 and A, = —A,. Thus, the center mass M
is at rest, while the two end masses vibrate in opposite directions with the same amplitude
(Figure 8.6b).

3. Setting o = (k/m + 2k/M)'” in Equation 8.61, we find A, = A; and A, = 2A,(mM/M) =
—2A;(m/M). Thus, in this mode, the two end masses vibrate in unison, and the center mass
vibrates oppositely with a different amplitude (Figure 8.6¢).

8.3 FORCED OSCILLATIONS OF COUPLED OSCILLATORS

We shall find the transformation from the g-coordinates to the n-coordinates also useful in discuss-
ing the forced vibrations of coupled systems. Suppose that, in addition to the restoring forces that we
have already considered in earlier sections, the component masses of the system are also acted upon
by generalized forces Q,, O,...., @,. In order to handle the resulting motion in terms of the normal
coordinates, we must first find the generalized forces R,, R,,..., R, in the normal coordinate system
during the displacements n,, 1,...., n,- We do this by setting up the work done in both coordinate
systems. The work done, Q.g, by O,, @,,..., @, in displacements ¢,, ¢,,..., ¢, must be the same as the
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work done by a corresponding set of generalized forces R, R,.,..., R, in the normal coordinate system
during the displacements n;, 1,,..., N,

iQiQi =2Rﬂ1j- (8.64)
i=1 j=l

Substituting its value in terms of C;; and n; for each g; from Equation 8.38 and equating terms in
n,, we obtain

Ri= 0 j=12m (8.65)
i=1

for the jth mode of oscillation. We notice from Equation 8.65 that a force applied to a particle cannot
excite a mode in which that particle does not oscillate but will be very effective in exciting a mode
in which it oscillates strongly. In terms of R;, the Lagrange’s equation of motion gives

i, +om; =R, (8.66)

We can use all the methods learned in Chapter 7 in discussing the motion of each of the normal
coordinates. As an example, consider that the forces Q; all depend on time ¢ through a factor exp(iw?),
where o is arbitrary. Then R; will likewise vary according to this exponential. To solve Equation
8.66, we assume that n; varies in the same way, and we find, as in Chapter 7,

Rj
n=— 2 (8.67)
(J)j -
and
CiR;
=y 4 8.68
a Z . (8.68)

Thus, the phenomenon of resonance occurs in the forced motion of coupled systems just as it
does in the case of a single forced oscillator. The essential difference is that there are now n separate
resonance points, corresponding to the n frequencies o, of the normal modes.

The forces Q; could be damping forces. For example, as a result of friction, there will be a force—
¢;q; acting on the component mass m;, where c; is a constant. Then

R, = —2 ngCiQi = _Z Cijcizcimk = _2 'Y_fmk (8.69)
i i k k

where

Yy = Zcic,.jcik. (8.70)

1
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The equations of motion now take the form
o, = Zv,km (8.71)

These equations cannot be separated if all the overtones are excited, and in this case, we cannot
have a general solution. A simple solution exists only if one overtone is excited, say, the jth, for then
all the n’s except n; are zero, and Equation 8.71 becomes

i, +y;M,+0om,; =0 (8.72)
which is of the same form as Equation 8.29 for a damped oscillator.

It is evident that for forced oscillations of coupled damped oscillators, we have the following
equations of motion:

ﬁj+yjjﬁj+w3nj:Rj_z’ijﬁk. (8.73)

k#j
We shall not go on to treat this problem in detail.

8.4 COUPLED ELECTRIC CIRCUITS

The examples we have been taking up so far have related to coupled mechanical oscillators. We
shall see that methods developed earlier apply to other coupled systems, such as electric circuits.
When a LC circuit is brought close to another similar electric circuit, oscillations in the one can
be induced in the other as shown in Figure 8.7a. Figure 8.7b and c shows two different coupling
schemes. For the purposes of illustration, we shall analyze the circuit in Figure 8.7a. Kirchhoff’s
circuit rules require that, in traversing each circuit completely, the total voltage drop be zero:

LI, +q,/C+MI,=0 (8.74a)

LI, +q,/C+MI, =0. (8.74b)
Differentiating with respect to time, we obtain

LI, +1,/C+MI,=0 (8.75a)

LI, +1,/C+MI,=0. (8.75b)

() (©)

FIGURE 8.7 Coupled electric oscillator, (a) Inductive coupling, via mutual inductance M, (b) Capacitive
coupling, via C,, and (c) Inductive coupling, via L,,.
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