Chapter Goals

\qquad
\qquad
After completing this chapter, you should be able to:

- Calculate and interpret the simple correlation between two variables
- Determine whether the correlation is significant
- Calculate and interpret the simple linear regression equation for a set of data
- Understand the assumptions behind regression analysis
- Determine whether a regression model is significant

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Business Statistics: A Decision.Making Approch, 6e © 2005 Prentice.Hall, Inc. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Correlation Coefficient

\qquad

- The population correlation coefficient ρ (rho)
\qquad measures the strength of the association between the variables \qquad
- The sample correlation coefficient r is an estimate of ρ and is used to measure the \qquad strength of the linear relationship in the sample observations \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Is there evidence of a linear relationship between tree height and trunk diameter at the .05 level of significance?
$H_{0}: \rho=0 \quad$ (No correlation)
$H_{1}: \rho \neq 0 \quad$ (correlation exists)

$$
t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}=\frac{.886}{\sqrt{\frac{1-.886^{2}}{8-2}}}=4.68
$$

\qquad

Example: Test Solution

\qquad
\qquad
\qquad
\qquad

Business Statistics: A Decision.Making Approach, 6e $Q 2005$ Prentice.Hall, Inc.
Decision:
Reject H_{0}
Conclusion:
There is
evidence of a linear relationship at the 5% level of significance
\qquad
\qquad
\qquad

Introduction to Regression Analysis

- Regression analysis is used to:
- Predict the value of a dependent variable based on the value of at least one independent variable
- Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain
Independent variable: the variable used to explain the dependent variable
\qquad

| Simple Linear Regression Model |
| :---: | :---: |
| - Only one independent variable, x |
| - Relationship between x and y is |
| described by a linear function |
| - Changes in y are assumed to be caused |
| by changes in x |

\qquad
\qquad

- Only one independent variable, x \qquad described by a linear function

Changes in y are assumed to be caused by changes in x
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Least Squares Criterion

$\sum e^{2}=\sum(y-\hat{y})^{2}$
$=\sum\left(y-\left(b_{0}+b_{1} x\right)\right)^{2}$
of b_{0} and b_{1} are obtained by finding the values
squared residuals minimize the sum of the

\qquad
\qquad
b_{0} and b_{1} are obtained by finding the values b_{0} and b_{1} that minimize the sum of the squared residuals

$$
\begin{aligned}
\sum \mathrm{e}^{2} & =\sum(\mathrm{y}-\hat{\mathrm{y}})^{2} \\
& =\sum\left(\mathrm{y}-\left(\mathrm{b}_{0}+\mathrm{b}_{1} \mathrm{x}\right)\right)^{2}
\end{aligned}
$$

The Least Squares Equation

\qquad

- The formulas for b_{1} and b_{0} are: \qquad
\qquad
$b_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}$
algebraic equivalent:

$$
b_{1}=\frac{\sum x y-\frac{\sum x \sum y}{n}}{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sample Data for House Price Model \qquad

House Price in $\$ 1000 s$ (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Interpretation of the
Intercept, b_{0}
\qquad
\qquad
b_{0} is the estimated average value of Y when the value of X is zero (if $x=0$ is in the range of observed x values)

- Here, no houses had 0 square feet, so $b_{0}=98.24833$ just indicates that, for houses within the range of sizes observed, $\$ 98,248.33$ is the portion of the house price not explained by square feet
house price $=98.24833+0.10977$ (square feet)
- b_{1} measures the estimated change in the average value of Y as a result of a oneunit change in X
- Here, $\mathrm{b}_{1}=.10977$ tells us that the average value of a \qquad house increases by $.10977(\$ 1000)=\$ 109.77$, on average, for each additional one square foot of size \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Standard Deviation of the Regression Slope

- The standard error of the regression slope coefficient $\left(b_{1}\right)$ is estimated by

$$
\mathrm{s}_{\mathrm{b}_{1}}=\frac{\mathrm{s}_{\varepsilon}}{\sqrt{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}}=\frac{\mathrm{s}_{\varepsilon}}{\sqrt{\sum \mathrm{x}^{2}-\frac{\left(\sum \mathrm{x}\right)^{2}}{\mathrm{n}}}}
$$

where:
$\mathrm{S}_{\mathrm{b}_{1}}=$ Estimate of the standard error of the least squares slope
$S_{\varepsilon}=\sqrt{\frac{\text { SSE }}{n-2}}=$ Sample standard error of the estimate
Business Statistics: A Decision.Making Approach, fe e 2005 Prentice-Hall, Inc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

$$
\hat{\mathrm{y}} \pm \mathrm{t}_{\alpha / 2} \mathrm{~s}_{\varepsilon} \cdot \sqrt{1-\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{x}_{\mathrm{p}}-\overline{\mathrm{x}}\right)^{2}}{\sum_{2}(\mathrm{x}-\overline{\mathrm{x}})^{2}}}
$$

Business statistics: A Decision.Making Approach, be o 2005 Prentice-Hall, Inc. Chap 13.56

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

House Price in $\$ 1000 \mathrm{~s}$ (y)	Square Feet (x)
245	1400
312	1600
279	1700
308	1875
199	1100
219	1550
405	2350
324	2450
319	1425
255	1700

Estimated Regression Equation:
house price $=98.25+0.1098$ (sq.ft.)
Predict the price for a house with 2000 square feet
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: House Prices
(continued) Predict the price for a house with 2000 square feet:
house price $=98.25+0.1098$ (sq.ft.)
$=98.25+0.1098(2000)$
$=317.85$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimation of Individual Values: Example	
Prediction Interval Estimate for $\mathrm{y} \mid \mathrm{x}_{\mathrm{p}}$	
Find the 95% confidence interval for an individual house with 2,000 square feet	
$\begin{aligned} & \text { Predicted Price } \hat{\mathrm{Y}}_{\mathrm{i}}=317.85(\$ 1,000 \mathrm{~s}) \\ & \qquad \hat{\mathrm{y}} \pm \mathrm{t}_{\mathrm{a} / 2} \mathrm{~s}_{\varepsilon} \sqrt{1+\frac{1}{\mathrm{n}}+\frac{\left(\mathrm{x}_{\mathrm{p}}-\overline{\mathrm{x}}\right)^{2}}{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}}=317.85 \pm 102.28 \end{aligned}$	
The prediction interval endpoints are 215.50-- 420.07, or from \$215,500 -- \$420,070	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding Confidence and Prediction Intervals PHStat

- In Excel, use

PHStat | regression | simple linear regression ...

- Check the \qquad
"confidence and prediction interval for $\mathrm{X}=$ " box and enter the x-value and confidence level \qquad desired
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
-

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Chapter Summary

\qquad

- Introduced correlation analysis
\qquad
- Discussed correlation to measure the strength of a linear association \qquad
- Introduced simple linear regression analysis
- Calculated the coefficients for the simple linear \qquad regression equation
- Described measures of variation $\left(R^{2}\right.$ and $\left.s_{\varepsilon}\right)$
- Addressed assumptions of regression and correlation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

