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5.7 PHASE SPACE AND LIOUVILLE'S THEOREM

Hamilton’s canonical formalism is of no great assistance in getting an actual solution of the trajec-
tories of the particles, but it is very valuable in picturing the motion of a dynamic system in phase
space. The motion in phase space takes place along a surface given by H(q,, @a»-- > Q> P1s Pare s Pn) =
energy (constant). As an example, the motions in phase space for the harmonic oscillators are along
the elliptical curves (Figure 5.3):
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We could picture the motion of a dynamic system in an n-dimensional configuration space of the
g,’s in the Lagrangian scheme. We are often interested in the motion of a group of systems having
different initial conditions. At any point g,,, there are many possible curves intersecting with differ-
ent values of the velocity at that point. This is not the case in the Hamiltonian scheme, where there
is only one possible path through each phase point because for given 2n initial conditions g,(0) and
p;0), the solution of the Hamilton’s equations of motion is uniquely determined.

An important property of the 2n-dimensional phase space is described by Liouville’s theorem,
which states that the phase points move like an incompressible fluid. More precisely, the phase vol-
ume occupied by a set of phase points is constant.

To prove Liouville’s theorem, we shall first define a few terms, such as phase volume. The prod-
uct of differentials dV = dg,...dg, dp,...dp, may be regarded as an element of volume in phase
space. If p is the density of representative points in phase space, then N = p dV is the number of
representative points within the element volume dV. We next consider an element of area in the g;
and p; planes in phase space (Figure 5.4). The number of representative points moving across the
left-hand edge into the area per unit time is
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By a Taylor series expansion, the number of representative points moving out of the area through
its right-hand edge is
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FIGURE 5.3 Phase space for the harmonic oscillators.
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FIGURE 5.4 Element area in phase space.

Hence, the net increase in p in the element dg; dp, because of flow in the horizontal direction is
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In a similar way, we find the net gain resulting from flow in the vertical direction to be
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The total increase in density in the element dg, dp; per unit time is, therefore,
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This should equal the net changes in p in dg;dp; per unit time, which is
(dp/01) dg; dp;.

Summing over all possible values of i, we find
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The last parentheses vanish because of Hamilton’s equations of motion, leaving

ap Z('w, J:o.

But this is just the total time derivative of p with respect to time ¢, so we conclude that
dp/dr=0
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or, in Poisson bracket notation,

dp 9
£:§+[p,ﬁ]= 0. (5.52)

It says that the total time rate of change of p, the density of representative points in phase space
(briefly, phase-point density), vanishes. This result is often referred to as the principle of conserva-
tion of phase-point density.

Equation 5.52 means that to one following the motion of the phase points in an ensemble (a
group of a large number of similar systems), the phase-point density does not change with the time.
The phase-point density may change at any given place in phase space, but what may be called the
“motional change” vanishes. Thus, if we consider a certain region of phase space containing a cer-
tain number of phase points, in the course of time, these points move in such a way as to occupy an
equal phase volume at every instant, even though the shape of the phase volume may alter.

Liouville’s theorem attains considerable importance for aggregates of microscopic particles
where the concepts of statistical physics are important as in the statistical mechanics of particle
systems, focusing properties of charged particle accelerators, in the study of the motion of electrons
in the Earth’s magnetic field, or even in stellar dynamics and galactic dynamics where stars or gal-
axies are treated as particles. It is often impractical to calculate an exact solution for such complex
systems or even impossible because of a lack of complete information on the initial conditions.
Statistical physics makes no attempt to obtain a complete solution for systems containing many
particles. Instead, its aim is to make predictions about certain average properties at a given time by
examining the motion of a group of a large number of similar systems. The group of similar systems
is called an ensemble of systems and is to be seen as an intellectual construction to simulate and
represent, at one time, the properties of the actual system as developed in the course of time. The
statistical properties of an ensemble of systems can be specified at any time ¢ by giving the density
p in the phase space of system points per unit volume.

Example 5.7
As an illustration of Liouville’s theorem, consider a system consisting of a large number of charged
particles, each of mass m and charge e moving in a uniform electric field D. The Hamiltonian for
such a particle is

H=p2m-eDqg=°L (E<L<L,)
where the electric field D is assumed to be in the direction of the positive g-axis. At a given time,
say, t = 0, an ensemble representing such a system occupies the region A; shown in Figure 5.5.

As time advances, these points will move to an adjacent region A, bounded by the momentum
values p{ and pj, where

pr=pi+pt, py=p,+pt
SO
Pi=pP2=pi= P

Now, p=-0dH/dq=eD, and the phase “volume” occupied by the ensemble at t = 0 is the
area
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FIGURE 5.5 Motion of a “volume” in phase space.
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Obviously, the phase “volume” occupied by the ensemble at time t is equal to A;:

A, = (Pﬁ_ngfz—Eﬂ _ (Pz_P;)éEz_E1) = A

As time passes, the same set of phase points occupies an equal volume of phase space. Therefore
the phase-point density must remain the same as Liouville’s theorem requires. It is easy to note
that the shape of the successive phase region occupied by the ensemble changes, although the
phase volume is invariant.

5.8 TIME REVERSAL IN MECHANICS (OPTIONAL)

We saw earlier and in Chapter 4 that conservation of energy, momentum, and angular momentum
are well established in mechanics; they are the consequences of translation invariance in time,
space, and the rotational symmetry of space, respectively. These conservation laws can be extended
to the whole field of physics if all the physical laws (such as electromagnetic) have the same invari-
ance properties as in mechanics. In all experiences accumulated up to now, no evidence has been
found to cause us to doubt the validity of these laws. Thus, we believe that the nature of our physical
world has the fundamental symmetries represented by the invariance properties above.

Symmetries in variables other than spatial coordinates are also significant in many parts of phys-
ics, especially in subnuclear physics (or high-energy particle physics). We now take a brief look at
the symmetry of physical laws under a reversal of the direction of time. The question as to how a
direction of time is to be defined is in itself a difficult one. But ignoring this point for the present,
we may ask whether we should expect physical laws to be invariant under the simple time reversal
operation T:

t'=Tt=—1. (5.53)

A little reflection shows that, apart from an intuitive feeling or attitude, there is no a priori reason
for requiring all physical laws to be invariant under time reversal. In actual fact, mechanics and
electromagnetic laws are invariant under the time reversal in Equation 5.53.
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