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Equations 7.160 and 7.161 are Hamilton’s equations of motion.* Because of
their symmetric appearance, they are also known as the canonical equations of mo-
tion. The description of motion by these equations is termed Hamiltonian dynamics.

Equation 7.163 expresses the fact that if H does not explicitly contain the
time, then the Hamiltonian is a conserved quantity. We have seen previously
(Section 7.9) that the Hamiltonian equals the total energy T + U if the potential
energy is velocity independent and the transformation equations between x, ; and ¢
do not explicitly contain the time. Under these conditions, and if /3t = 0, then
H = E = constant.

There are 2s canonical equations and they replace the s Lagrange equations.
(Recall that s = 3n — m is the number of degrees of freedom of the system.) But
the canonical equations are first-order differential equations, whereas the Lagrange
equations are of second order.” To use the canonical equations in solving a problem,
we must first construct the Hamiltonian as a function of the generalized coordi-
nates and momenta. It may be possible in some instances to do this directly. In
more complicated cases, it may be necessary first to set up the Lagrangian and
then to calculate the generalized momenta according to Equation 7.151. The
equatons of motion are then given by the canonical equations.

EXAMPLE 7.11

Use the Hamiltonian method to find the equations of motion of a particle of
mass m constrained to move on the surface of a cylinder defined by

x® + y2 = R2 The particle is subject to a force directed toward the origin and
proportional to the distance of the particle from the origin: F = —kr.

Solution. The situation is illustrated in Figure 7-9. The potential corresponding
to the force Fis

1 1
U= ke =Sk + y? + 2%)
1
=G KR + 2% (7.164)

We can write the square of the velocity in cylindrical coordinates (see Equation
1.101) as

v = R?+ R%% + 32 (7.165)

But in this case, Ris a constant, so the kinetic energy is

I .
T =5 m(R%? + i) (7.166)

*This set of equations was first obtained by Lagrange in 1809, and Poisson also derived similar equa-
tions in the same year. But neither recognized the equations as a basic set of equations of motion;
this point was first realized by Cauchy in 1831. Hamilton first derived the equations in 1834 from a
fundamental variational principle and made them the basis for a far-reaching theory of dynamics.
Thus the designation “Hamilton’s” equations is fully deserved.

1This is not a special result; any set of s second-order equations can always be replaced by a set of 25

first-order equations.
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FIGURE 79 Example 7.11. A particle is constrained to move on the surface of a cylinder.

We may now write the Lagrangian as

L=T—-U-= %m(RﬂéQ + 32) — %k(R2 + 22) (7.167)
The generalized coordinates are 6 and z, and the generalized momenta are
te = % = mR% (7.168)
oL
p= i mi (7.169)

Because the system is conservative and because the equations of transformation
between rectangular and cylindrical coordinates do not explicitly involve the
time, the Hamiltonian H is just the total energy expressed in terms of the vari-
ables 0, py, z, and p,. But 8 does not occur explicitly, so

H(z, ppp) =T+ U

p3 P2 1
=5 + o + Ekz2 (7.170)

where the constant term 1 kR? has been suppressed. The equations of motion
are therefore found from the canonical equations:

. oH
fo = e 0 (7.171)
b= —ﬁ= —kz (7.172)

0z
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é_@Z pﬂ

= o :n—}? (7.173)
z= oH = P (7.174)
ap, m

Equations 7.173 and 1.174 just duplicate Equations 7.168 and 7.169. Equations
7.168 and 7.171 give

be = mR20 = constant (7.175)

The angular momentum about the z-axis is thus a constant of the motion. This
result is ensured, because the z-axis is the symmetry axis of the problem.
Combining Equations 7.169 and 7.172, we find

i+twiz=0 (7.176)
where
w3 =k/m (7.177)

The motion in the z direction is therefore simple harmonic.

The equations of motion for the preceding problem can also be found by
the Lagrangian method using the function L defined by Equation 7.167. In this
case, the Lagrange equations of motion are easier to obtain than are the canoni-
cal equations. In fact, it is quite often true that the Lagrangian method leads
more readily to the equations of motion that does the Hamiltonian method. But
because we have greater freedom in choosing the variable in the Hamiltonian
formulation of a problem (the ¢, and the p, are independent, whereas the g, and
the ¢, are not), we often gain a certain practical advantage by using the Hamiltonian
method. For example, in celestial mechanics—particularly in the event that the
motions are subject to perturbations caused by the influence of other bodies—it
proves convenient to formulate the problem in terms of Hamiltonian dynamics.
Generally speaking, however, the great power of the Hamiltonian approach to
dynamics does not manifest itself in simplifying the solutions to mechanics prob-
lems; rather, it provides a base we can extend to other fields.

The generalized coordinate g, and the generalized momentum p, are canon-
ically conjugate quantities. According to Equations 7.160 and 7.161, if g, does
not appear in the Hamiltonian, then $, = 0, and the conjugate momentum p; is
a constant of the motion. Coordinates not appearing explicitly in the expres-
sions for Tand U are said to be cyclic. A coordinate cyclic in H is also cyclic in L.
But, even if ¢, does not appear in L, the generalized velocity ¢, related to this co-
ordinate is in general still present. Thus

L= L(QI, veey qh—l’ 9k+1’ coe s q.l"' ,qs, t)

and we accomplish no reduction in the number of degrees of freedom of the sys-
tem, even though one coordinate is cyclic; there are still ssecond-order equations
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to be solved. However, in the canonical formulation, if ¢, is cyclic, #, is constant,
P = a, and

H= H(ql’ e qk—la q}H—Is ’qss pl’ ’pk-ls &y, pk-t—b ;jbs! t)

Thus, there are 25 — 2 first-order equations to be solved, and the problem has, in
fact, been reduced in complexity; there are in effect only s — 1 degrees of freedom
remaining. The coordinate g, is completely separated, and it is ignorable as far as the
remainder of the problem is concerned. We calculate the constant a;, by applying
the initial conditions, and the equation of motion for the cyclic coordinate is

Gp = OH _ Wy (7.178)

- o,

which can be immediately integrated to yield

q:(t) = kadt (7.179)

The solution for a cyclic coordinate is therefore trivial to reduce to quadrature.
Consequently, the canonical formulation of Hamilton is particularly well suited
for dealing with problems in which one or more of the coordinates are cyclic.
The simplest possible solution to a problem would result if the problem could
be formulated in such a way that all the coordinates were cyclic. Then, each co-
ordinate would be described in a trivial manner as in Equation 7.179. It is, in
fact, possible to find transformations that render all the coordinates cyclic,* and
these procedures lead naturally to a formulation of dynamics particularly useful
in constructing modern theories of matter. The general discussion of these top-
ics, however, is beyond the scope of this book."

EXAMPLE 7.12

Use the Hamiltonian method to find the equations of motion for a spherical
pendulum of mass m and length & (see Figure 7-10).

Solution. The generalized coordinates are 8 and ¢. The kinetic energy is

1 . 1 .
T =—mb%0? + - mb? sin? 0¢?
2 2
The only force acting on the pendulum (other than at the point of support) is
gravity, and we define the potential zero to be at the pendulum’s point of
attachment.

U= —mgbcos 0

*Transformations of this type were derived by Carl Gustav Jacob Jacobi (1804-1851). Jacobi’s investi-
gations greatly extended the usefulness of Hamilton’s methods, and these developments are known
as Hamilton-facobi theory.

1See, for example, Goldstein (Go80, Chapter 10).



7.10  CANONICAL EQUATIONS OF MOTION—HAMILTONIAN DYNAMICS 271

e

FIGURE 7-10 Example 7.12. A spherical pendulum with generalized coordinates
@ and ¢.

The generalized momenta are then

P = % = mb20 (7.180)
o

Ps = %‘ = mb? sin? O (7.181)
3

We can solve Equations 7.180 and 7.181 for § and ¢ in terms of ps and p.
We determine the Hamiltonian from Equation 7.155 or from H =
T'+ U (because the conditions for Equation 7.130 apply).

H=T+U
1 b3 1 mb? sin? 6p3
= —mb* +35 — mgh cos 0
2" (mb%? T 2 (mb? sinz gy BV €08
Y I S
T 2mb?  2mb?sin? @ mgb cos
The equations of motion are
= _ b
dpy  mb?
(i’ _ aiv"l N p(ﬁ
6P¢ ’”’I,b2 Sin2 7]
oH  p3 cos 6 '
po = "0 mbsin®0 mgh sin 6
h, — — é_}_l_ 0
Ps Py

Because ¢ is cyclic, the momentum g, about the symmetry axis is constant.




