\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Goals

\qquad

After completing this chapter, you should be \qquad able to:

- Distinguish between a point estimate and a confidence \qquad interval estimate
- Construct and interpret a confidence interval estimate for a \qquad single population mean using both the z and t distributions
\qquad population mean within a specified margin of error
- Form and interpret a confidence interval estimate for a single population proportion \qquad

Confidence Intervals

Content of this chapter

- Confidence Intervals for the Population Mean, =
- when Population Standard Deviation I is Known \qquad
- when Population Standard Deviation I is Unknown
- Determining the Required Sample Size \qquad
- Confidence Intervals for the Population Proportion, p \qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General Formula - The general formula for all confidence intervals is:

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

- Population standard deviation σ is known
- Population is normally distributed
- If population is not normal, use large sample

Confidence interval estimate

$$
\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

Finding the Critical Value
Consider a 95\% confidence interval: $z_{\alpha / 2}= \pm 1.96$

Common Levels of Confidence

- Commonly used confidence levels are $90 \%, 95 \%$, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	z value, $Z_{\alpha / 2}$
80%	.80	1.28
90%	.90	1.645
95%	.95	1.96
98%	.98	2.33
99%	.99	2.57
99.8%	.998	3.08
99.9%	.999	3.27

Business Statistics: A Decision-Making Approach, 6 e $\otimes 2005$ Prentice:Hall, Inc. Chap 7.15
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Margin of Error

\qquad

- Margin of Error (e): the amount added and
\qquad subtracted to the point estimate to form the confidence interval \qquad

Example: Margin of error for estimating μ, σ known: \qquad $\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \quad e=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}$

Factors Affecting Margin of Error

$$
\mathrm{e}=\mathrm{z}_{\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

- Data variation, σ :
e § as $\sigma \sqrt{2}$
- Sample size, n :
$\mathrm{e} \sqrt{ }$ as n 亿
- Level of confidence, 1- α : e \mathbb{Z} if 1- $\alpha \rrbracket$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Interpretation

- We are 98% confident that the true mean
\qquad resistance is between 1.9932 and 2.4068 ohms
- Although the true mean may or may not be in this interval, 98% of intervals formed in this manner will contain the true mean
- An incorrect interpretation is that there is 98% probability that this \qquad interval contains the true population mean.
(This interval either does or does not contain the true mean, there is no probability for a single interval)
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Confidence Interval for μ
 (σ Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2	Confidence Interval for μ (σ Unknown)	
	Assumptions - Population standard deviation is unknown - Population is normally distributed - If population is not normal, use large sample Use Student's t Distribution - Confidence Interval Estimate	
	$\bar{x} \pm t_{\alpha / 2} \frac{s}{\sqrt{n}}$	

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

t distribution values				
With comparison to the z value				
Confidence Level	$\underset{\left(10^{\mathrm{d} . \mathrm{f} .}\right)}{ }$	$\begin{gathered} \mathrm{t} \\ (20 \mathrm{d.f}) \end{gathered}$	$\underset{\left(30^{\mathrm{t} \text { d.f. }}\right)}{ }$	z
. 80	1.372	1.325	1.310	1.28
. 90	1.812	1.725	1.697	1.64
. 95	2.228	2.086	2.042	1.96
. 99	3.169	2.845	2.750	2.57

Note: $\mathrm{t} \rightarrow \mathrm{z}$ as n increases

Example

A random sample of $\mathrm{n}=25$ has $\overline{\mathrm{x}}=50$ and $\mathrm{s}=8$. Form a 95% confidence interval for μ

- d.f. $=n-1=24$, so $t_{\alpha / 2, n-1}=t_{.025,24}=2.0639$

The confidence interval is

$$
\overline{\mathrm{x}} \pm \mathrm{t}_{\alpha / 2} \frac{\mathrm{~s}}{\sqrt{\mathrm{n}}}=50 \pm(2.0639) \frac{8}{\sqrt{25}}
$$

46.698
53.302
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Determining Sample Size

\qquad

- The required sample size can be found to \qquad reach a desired margin of error (e) and level of confidence (1- α)
- Required sample size, σ known:

$$
n=\frac{z_{\alpha / 2}^{2} \sigma^{2}}{e^{2}}=\left(\frac{z_{\alpha / 2} \sigma}{e}\right)^{2}
$$

\qquad
\qquad
\qquad

Required Sample Size Example

If $\sigma=45$, what sample size is needed to be 90% confident of being correct within ± 5 ?
$\mathrm{n}=\left(\frac{\mathrm{z}_{\alpha / 2} \sigma}{\mathrm{e}}\right)^{2}=\left(\frac{1.645(45)}{5}\right)^{2}=219.19$
So the required sample size is $\mathbf{n} \mathbf{= 2 2 0}$
(Always round up)
Business Statistics: A Decision:Making Approach, 6e © 2005 Prentice:Hall, Inc.
Chap 7.33
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- An interval estimate for the population proportion (p) can be calculated by adding an allowance for uncertainty to
\qquad
\qquad
\qquad
\qquad the sample proportion ($\overline{\mathrm{p}}$)
\qquad
\qquad
\qquad
- Recall that the distribution of the sample proportion is approximately normal if the sample size is large, with standard deviation
\qquad

$$
\sigma_{p}=\sqrt{\frac{p(1-p)}{n}}
$$

- We will estimate this with sample data:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Confidence interval endpoints

\qquad

- Upper and lower confidence limits for the population proportion are calculated with the formula

$$
\bar{p} \pm z_{\alpha / 2} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}
$$

- where
- z is the standard normal value for the level of confidence desired
\qquad
- \bar{p} is the sample proportion
- n is the sample size
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

- A random sample of 100 people shows 25 are left-handed. Form a 95\% confidence interval for the true proportion of left-handers.

1. $\overline{\mathrm{p}}=25 / 100=.25$
2. $S_{\bar{p}}=\sqrt{\overline{\mathrm{p}}(1-\overline{\mathrm{p}}) / \mathrm{n}}=\sqrt{.25(.75) / \mathrm{n}}=.0433$
3. $.25 \pm 1.96(.0433)$

$$
0.1651 \ldots . . .0 .3349
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Changing the sample size

- Increases in the sample size reduce the width of the confidence interval.

Example:

- If the sample size in the above example is doubled to 200, and if 50 are left-handed in the sample, then the interval is still centered at .25 , but the width shrinks to

$$
\text { . } 19 \text {...... . } 31
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finding the Required Sample Size for proportion problems	
Define the margin of error:	$e=z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}$
Solve for n :	$n=\frac{z_{\alpha / 2}^{2} p(1-p)}{e^{2}}$
p can be estimated with a pilot sample, if necessary (or conservatively use $\mathrm{p}=.50$)	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
What sample size...?

- How large a sample would be necessary
to estimate the true proportion defective in
a large population within 3%, with 95%
confidence?
(Assume a pilot sample yields $\bar{p}=.12$)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

