\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Goals

\qquad

After completing this chapter, you should be \qquad able to:

- Define the concept of sampling error
- Determine the mean and standard deviation for the sampling distribution of the sample mean, $\overline{\mathrm{x}}$ \qquad
- Determine the mean and standard deviation for the sampling distribution of the sample proportion, $\overline{\mathrm{p}}$ \qquad
- Describe the Central Limit Theorem and its importance
- Apply sampling distributions for both \bar{x} and \bar{p}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

If the population mean is $\mu=98.6$ degrees and a sample of $\mathrm{n}=5$ temperatures yields a sample mean of $\bar{X}=99.2$ degrees, then the sampling error is

$$
\bar{x}-\mu=98.6-99.2=-0.6 \text { degrees }
$$

\qquad

\qquad
\qquad
\qquad
\qquad

Sampling Distribution

- A sampling distribution is a distribution of the possible values of \qquad a statistic for a given size sample selected from a population \qquad
\qquad
\qquad
\qquad

Developing a

Sampling Distribution

- Assume there is a population ...
- Population size $\mathrm{N}=4$
- Random variable, x , is age of individuals
- Values of x : 18, 20, 22, 24 (years)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Sampling Distribution

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Developing a Sampling Distribution Summary Measures of this Sampling Distribution: $\mu_{\bar{x}}=\frac{\sum \bar{x}_{i}}{N}=\frac{18+19+21+\cdots+24}{16}=21$	
	$\begin{aligned} \sigma_{\bar{x}} & =\sqrt{\frac{\sum\left(x_{i}-\mu_{\bar{x}}\right)^{2}}{N}} \\ & =\sqrt{\frac{(18-21)^{2}+(19-21)^{2}+\cdots+(24-21)^{2}}{16}}=1.58 \end{aligned}$

\qquad
\qquad
Summary Measures of this Sampling Distribution:
$\mu_{\overline{\mathrm{x}}}=\frac{\sum \overline{\mathrm{x}}_{\mathrm{i}}}{\mathrm{N}}=\frac{18+19+21+\cdots+24}{16}=21$

$$
\begin{aligned}
\sigma_{\bar{x}} & =\sqrt{\frac{\sum\left(\mathrm{x}_{\mathrm{i}}-\mu_{\bar{x}}\right)^{2}}{N}} \\
& =\sqrt{\frac{(18-21)^{2}+(19-21)^{2}+\cdots+(24-21)^{2}}{16}}=1.58
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
If a population is normal with mean μ and
standard deviation σ, the sampling distribution
of \bar{X} is also normally distributed with

$$
\mu_{\overline{\mathrm{x}}}=\mu \quad \text { and } \quad \sigma_{\overline{\mathrm{x}}}=\frac{\sigma}{\sqrt{n}}
$$

\qquad
\qquad
$\mu=$ population mean
$\sigma=$ population standard deviation
$\mathrm{n}=$ sample size
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Finite Population Correction

- Apply the Finite Population Correction if: \qquad
- the sample is large relative to the population (n is greater than 5% of N)
and...
- Sampling is without replacement

$$
\text { Then } \quad z=\frac{(\bar{x}-\mu)}{\frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If the Population is not Normal

\qquad

- We can apply the Central Limit Theorem: \qquad
\qquad
- ...sample means from the population will be approximately normal as long as the sample size is large enough \qquad
- ...and the sampling distribution will have

$$
\mu_{\overline{\mathrm{x}}}=\mu \quad \text { and } \quad \sigma_{\overline{\mathrm{x}}}=\frac{\sigma}{\sqrt{n}}
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad distributed, the central limit theorem can be used ($n>30$)
... so the sampling distribution of \bar{x} is approximately normal

- ... with mean $\mu_{\mathrm{x}}=8$
- ... and standard deviation $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}=\frac{3}{\sqrt{36}}=0.5$

Business Statistics: A Decision.Making Approch, 6 e 02005 Prentice-Hall, Inc.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

z-Value for Proportions Standardize \bar{p} to a z value with the formula: $z=\frac{\bar{p}-p}{\sigma_{\bar{p}}}=\frac{\bar{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$		
- If sampling is without replacement and n is greater than 5% of the population size, then $\sigma_{\bar{p}}$ must use the finite population correction$\sigma_{\bar{p}}=\sqrt{\frac{p(1-p)}{n}} \sqrt{\frac{N-n}{N-1}}$ factor:		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1 Example	
- if $p=.4$ and $n=200$, what is $\mathrm{P}(.40 \leq \overline{\mathrm{p}} \leq .45)$?	
Find $\sigma_{\bar{p}}$:	$\sigma_{\bar{p}}=\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{.4(1-.4)}{200}}=.03464$
Convert to standard normal:	$\begin{aligned} \mathrm{P}(.40 \leq \overline{\mathrm{p}} \leq .45) & =\mathrm{P}\left(\frac{.40-.40}{.03464} \leq \mathrm{z} \leq \frac{.45-.40}{.03464}\right) \\ & =\mathrm{P}(0 \leq \mathrm{z} \leq 1.44) \end{aligned}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Summary

- Discussed sampling error \qquad
- Introduced sampling distributions
- Described the sampling distribution of the mean \qquad
- For normal populations
- Using the Central Limit Theorem
- Described the sampling distribution of a proportion
- Calculated probabilities using sampling distributions
- Discussed sampling from finite populations

