Chapter Goals

After completing this chapter, you should be able to:

- Explain three approaches to assessing \qquad probabilities
- Apply common rules of probability \qquad
- Use Bayes' Theorem for conditional probabilities
- Distinguish between discrete and continuous \qquad probability distributions
- Compute the expected value and standard deviation for a discrete probability distribution
Business Statsitics: A Decision.Making Approach, 6e \& 2005 Prentice.Hall, Inc. \quad Chap 4-2

Important Terms

- Probability - the chance that an uncertain event will occur (always between 0 and 1)
- Experiment - a process of obtaining outcomes for uncertain events
- Elementary Event - the most basic outcome possible from a simple experiment
- Sample Space - the collection of all possible \qquad elementary outcomes \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Events

\qquad
\qquad
Elementary event - An outcome from a sample space with one characteristic

- Example: A red card from a deck of cards
- Event - May involve two or more outcomes
\qquad simultaneously
- Example: An ace that is also red from a deck of \qquad cards

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- A automobile consultant records fuel type and vehicle type for a sample of vehicles
2 Fuel types: Gasoline, Diesel
3 Vehicle types: Truck, Car, SUV

6 possible elementary events:	
e_{1}	Gasoline, Truck
e_{2}	Gasoline, Car
e_{3}	Gasoline, SUV
e_{4}	Diesel, Truck
e_{5}	Diesel, Car
e_{6}	Diesel, SUV

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- The probability of an event E_{i} is equal to the sum of the probabilities of the elementary events forming E_{i}.
\qquad

That is, if:

$$
\mathrm{E}_{\mathrm{i}}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}\right\}
$$

then:

$$
P\left(E_{i}\right)=P\left(e_{1}\right)+P\left(e_{2}\right)+P\left(e_{3}\right)
$$

Complement Rule

\qquad

- The complement of an event E is the collection of all possible elementary events not contained in event E. The complement of event E is represented by $\overline{\mathrm{E}}$.
- Complement Rule:

$$
P(\bar{E})=1-P(E)
$$

$$
\longrightarrow \text { Or, } P(E)+P(\bar{E})=1
$$

Business Statistics: A Decision.Making Approach, be e 2005 Prentice. Hall, Inc.
Chap $4 \cdot 14$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$P(C D \mid A C)=\frac{P(C D \text { and } A C)}{P(A C)}=\frac{.2}{.7}=.2857$
Conditional Probability Example

- Of the cars on a used car lot, 70\% have air conditioning (AC) and 40% have a CD player (CD).

	CD	No CD	Total
AC	.2	.5	.7
No AC	.2	.1	.3
Total	.4	.6	1.0

\qquad

Conditional Probability Example

 20% have a CD player. 20% of 70% is about 28.57%.| | CD | No CD | Total |
| :--- | :---: | :---: | :---: |
| AC | $(.2)$ | .5 | .7 |
| No AC | .2 | .1 | .3 |
| Total | .4 | .6 | 1.0 |

	For Independent Events:			
	- Conditional probability for independent events $\mathrm{E}_{1}, \mathrm{E}_{2}$:			
	$P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right)$		$\mathrm{P}\left(\mathrm{E}_{2}\right)>0$	
	$P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$		$\mathrm{P}\left(\mathrm{E}_{1}\right)>0$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multiplication Rules
$P\left(E_{1}\right.$ and $\left.E_{2}\right)=P\left(E_{1}\right) P\left(E_{2} \mid E_{1}\right)$
Note: If E_{1} and E_{2} are independent, then $P\left(E_{2} \mid E_{1}\right)=P\left(E_{2}\right)$ and the multiplication rule simplifies to $P\left(E_{1}\right.$ and $\left.E_{2}\right)=P\left(E_{1}\right) P\left(E_{2}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$P\left(E_{i} \mid B\right)=\frac{P\left(E_{1}\right) P\left(B \mid E_{i}\right)}{P\left(E_{1}\right) P\left(B \mid E_{1}\right)+P\left(E_{2}\right) P\left(B \mid E_{2}\right)+\ldots+P\left(E_{k}\right) P\left(B \mid E_{k}\right)}$

- where:
$E_{i}=i^{\text {th }}$ event of interest of the k possible events
$B=$ new event that might impact $P\left(E_{i}\right)$
Events E_{1} to E_{k} are mutually exclusive and collectively exhaustive
\qquad
\qquad
\qquad
\qquad

Bayes' Theorem Example

\qquad

- A drilling company has estimated a 40% chance of striking oil for their new well.
- A detailed test has been scheduled for more information. Historically, 60% of successful wells have had detailed tests, and 20% of
\qquad unsuccessful wells have had detailed tests.
- Given that this well has been scheduled for a detailed test, what is the probability that the well will be successful?

Business Statistics: A Decision.Making Approach, 6e $\begin{gathered}2005 \\ \text { Prentice.Hall, Inc. }\end{gathered}$

Bayes' Theorem Example

- Let $\mathrm{S}=$ successful well and $\mathrm{U}=$ unsuccessful well
- $P(S)=.4, P(U)=.6 \quad$ (prior probabilities)
- Define the detailed test event as D \qquad
- Conditional probabilities:
$P(D \mid S)=.6 \quad P(D \mid U)=.2$

Event	Prior Prob.	Conditional Prob.	Joint Prob.	$\begin{aligned} & \hline \text { Revised } \\ & \text { Prob. } \end{aligned}$
S (successful)	. 4	. 6	$4^{*} .6=.24$. $24 / .36=.67$
U (unsuccessful)	. 6	2	$6^{*} .2=.12$. $12 / .36=.33$

Sum $=.36$ \qquad

- Given the detailed test, the revised probability of a successful well has risen to 67 from the original estimate of .4

Event	Prior Prob.	Conditional Prob.	Joint Prob.	Revised Prop.
S (successful)	.4	.6	$.4^{*} .6=.24$	$.24 / .36=.67)$
U (unsuccessful)	.6	.2	$.6^{*} .2=.12$	$.121 .36=.33$
Sum $=\overline{.36}$				

Business Statistics: A Decision.Making Approach, be e 2005 Prentice.-Hall, Inc.
\qquad
\qquad

\qquad
\qquad
\qquad

Discrete Random Variables

- Can only assume a countable number of values \qquad
Examples:
- Roll a die twice

\qquad
Let x be the number of times 4 comes up (then x could be 0,1 , or 2 times)
- Toss a coin 5 times.

Let x be the number of heads (then $x=0,1,2,3,4$, or 5)
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Discrete Random Variable

 Summary Measures- Expected Value of a discrete distribution (Weighted Average)

$$
E(x)=\Sigma x_{i} P\left(x_{i}\right)
$$

- Example: Toss 2 coins, $x=\#$ of heads, compute expected value of x :
$E(x)=(0 \times .25)+(1 \times .50)+(2 \times .25)$
$=1.0$

x	$\mathrm{P}(\mathrm{x})$
0	.25
1	.50
2	.25

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Two Discrete Random Variables

Expected value of the sum of two discrete random variables:

$$
\begin{aligned}
E(x+y) & =E(x)+E(y) \\
& =\Sigma x P(x)+\Sigma y P(y)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
(The expected value of the sum of two random \qquad variables is the sum of the two expected values) \qquad
\qquad
Covariance between two discrete random variables:

$$
\sigma_{x y}=\Sigma\left[x_{i}-E(x)\right]\left[y_{j}-E(y)\right] P\left(x_{i} y_{j}\right)
$$

where:
$x_{i}=$ possible values of the x discrete random variable $y_{i}=$ possible values of the y discrete random variable $P\left(x_{i}, y_{j}\right)=$ joint probability of the values of x_{i} and y_{j} occurring
Business Statistics: A Decision-Making Approch, 6e $\begin{gathered}2005 \\ \text { Prentice-Hall, Inc. }\end{gathered}$
\qquad

Interpreting Covariance

\qquad

- Covariance between two discrete random variables:
$\sigma_{x y}>0 \rightarrow x$ and y tend to move in the same direction
$\sigma_{\mathrm{xy}}<0 \rightarrow \mathrm{x}$ and y tend to move in opposite directions
$\sigma_{\mathrm{xy}}=0 \rightarrow \mathrm{x}$ and y do not move closely together
\qquad

Correlation Coefficient

- The Correlation Coefficient shows the strength of the linear association between two variables

$$
\rho=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}
$$

where:
$\rho=$ correlation coefficient ("rho")
$\sigma_{x y}=$ covariance between x and y
$\sigma_{x}=$ standard deviation of variable x
$\sigma_{y}=$ standard deviation of variable y
Business Statistics: A Decision.Making Approach, 6e © 2005 Prentice.Hall, Inc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Summary

\qquad

Described approaches to assessing probabilities
\qquad

- Developed common rules of probability
- Used Bayes' Theorem for conditional probabilities
\qquad

Distinguished between discrete and continuous probability distributions \qquad

- Examined discrete probability distributions and their summary measures \qquad
\qquad

