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from which we obtain
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where we have used the vector identity (;{ X E) C= (6’ X ;{) -B.
Using Hamilton’s equations, Equation 5.20 can be further simplified:

56. i{(?xf;)_,ﬂﬁx%) }=-36. —Z(rxp) - se L)

j=1
where L is the total angular momentum of the system. Because 80 is arbitrary, we have

dr L
& =0, or L =0 (aconstant vector).

5.4 CANONICAL TRANSFORMATIONS

As shown in the previous section, there is some advantage in using cyclic coordinates. However,
in general, it is impossible to obtain more than a limited number of such coordinates by means of
coordinate transformations. On the other hand, we can employ a more general class of transforma-
tions that involve both generalized coordinates and momenta. If the equations of motion are simpler
in the set of new variables Q; and P, than in the original old set ¢; and p;, we then have a clear gain.
We will not be able to consider all possible transformations but only the so-called canonical trans-
formations that preserve the canonical form of Hamilton’s equations of motion; that is, given that
the ¢’s and p’s satisfy Hamilton’s equations

oH . oH

B P,

J

for some H, then the transformation

Q=040 e 0. P;i=Plq, pro D) (6.21)

is canonical if and only if there exists a function K such that the time evolutions of the Q’s and P’s
are still governed by Hamilton’s equations

- 0K . oK
= p =" 5.22
0, ap” 73, (5.22)

Here, K(Q, P, ) is the new Hamiltonian that may be different from the old Hamiltonian H(g, p, 1.
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In the old variables g; and p;, we can derive Hamilton’s equations from the modified Hamilton’s
principle:

SJ. 2[212,4; - H(p,q,t)]dz =0. (5.23)
L

In the new variables Q; and P, the modified Hamilton’s principle

SLZ[ZR,.QJ - H(P,Q,t)]dt —0 (5.24)

should hold. Both requirements can be satisfied if we require a relationship

. : dF
ijqj—Hzoc(ZPij—K)+dt (5.25)
J J

or

ijdqj—Hdt:oc(ZdeQj—Kdt)+dF (5.26)
j J

where F is some function of the phase space coordinates through continuous second derivatives, and
a is a constant independent of coordinates, momenta, and time, and it is related to a simple type of
transformation: the scale transformation. It is always possible to select « = 1 in Equation 5.25. We
shall do so in the following discussion. The function F is termed the generating function, and it may
be a function of g;, p;, Q), P, and .

It is often stated in some textbooks on theoretical mechanics that because both of the variations
8g; and 8Q; vanish at the endpoints 7, and 1,, the variation of F, 5F, would also vanish at 7, and #,. So
the total time derivative of F in Equation 5.25 will not contribute to the modified Hamilton prin-
ciple. Caution should be exercised here. The vanishing of 8¢, alone would not be sufficient for the

vanishing of 8Q;. This follows directly by carrying out the variation in Equation 5.21:

00, 20
00, = Y —1L8q, + Lop,.
! g‘ g ‘ . op, ‘

In order to make 8Q; = 0, the variations 8¢; and 8p; must all vanish at these endpoints. This is
different from the practice employed to obtain canonical equations from the modified Hamilton’s
principle, where g; was varied subject to 8q,(f,) = 8¢, (#,) = 0, but no such restriction was set on the
variation of p;.

Now, as 8¢,(t)) = 8p(t)) = 0 and dq(t,) = 8p,(t,) = 0, Equation 5.21 implies that the variations of
the new variables will likewise vanish where 8Q (1)) = 8P;(t,) = 0 and 8Q (1,) = 8P/(1,) = 0. Thus, the
total time derivative of F in Equation 5.26 will not contribute to the modified Hamilton’s principle
because the integral of the total time derivative is just the function evaluated at the endpoints where
the variations of all the canonical variables vanish.

The function F' must be some function of both the old and the new canonical variables in order
for a transformation to be effected. It is obvious that we have the following four choices:

Fig, Q. 0, Fyq, P,n, Fyp,Q,10, and Fyp, P,1.
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The circumstances of the problem will dictate which form is the best choice. It may be shown that
F,, F;, and F, can be generated from F|. As an example, let us consider F, and rewrite Equation
5.25) as

Z(mf -PO)+(K —H)=% (5.27)

which becomes, by multiplying through by dr,

Z(pidq,»—BdQ,-)+<K—H)dr=Z(gEd QldQ) L

from which it immediately follows that

O R
aqz' aQi
3 (5.28)
K=H+—
ot

When F, is known, Equation 5.28 gives n relations between ¢, p and Q, P as well as H and K. The
function F; thus acts as a bridge between the two sets of canonical variables and is called the “gen-
erating function” of the transformation. As an example of such a generating function, we take

k= Zqu[- (5.29)

For this special case, Equation 5.28 gives
Q.,=p, P;=-g, and K=H (5.30)

which shows clearly that generalized coordinates and their conjugate momenta are not distinguish-
able, and the nomenclature for them is arbitrary. Therefore, g and p should be treated equally, and
we simply call them “canonically conjugate variables” or “canonical variables.”

Earlier, we mentioned that F),, F;, and F, may be generated from F,. Now let us consider a simple
example in which the independent arguments of ' are to be ¢; and P;. Then, the generating function
is of the type F,. Equation 5.28 will give us help for the transition from ¢, Q as independent variables
to g, P because

oF _
200, "

This suggests that the generating function F, can be defined in terms of F, according to the
relationship

F@.P.0=F(@.0.0+ Y PO, (531)

We now rewrite Equation 5.25 in terms of F|:
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. : dF
Zpﬂj —H= (ZP;‘QJ ‘K)Jf
j j
Solving Equation 5.31 for /| and substituting, the last equation becomes
Zp G, —H= ZPQ K+~ (F J(q, Pot)— ZQP)
_ZQiPi -K +aF2(q,P,t)
where
dF, oF, . OF, . (’9F1
—== +—2P de.
di 2( 2, 7o " o

Combining the last two equations and collecting coefficients of ¢;, R we obtain the transformation
equations:

p=2E (5.32)
dg;
=2 5.32b
0, oP (5.32b)
K=H +% . (5.32¢)
ot
As an example of such a generating function, we take
F= Zq,.P,.. (5.33a)
For this special case, Equations 5.32a through 5.32c gives
oF, oF;
. =P, Q;=—2>=¢q;, K=H. 5.33b
pl aql A4 Ql aPL ql ( )

The new and old coordinates are the same; hence, F, merely generates the identity transformation
from Equations 5.28 and 5.32 and observing that the difference K — H is the partial derivative of the
generating function F with respect to time. This is also true for the other two generating functions
F5and F,. Thus, if the generating function does not contain the time explicitly, then K = H.

We also note that time ¢ is unchanged by the transformation and that it may be regarded as an
independent parameter. Because ¢ is not directly involved, we may consider a contemporaneous
variation with df set equal to zero. Then, Equation 5.26 with o = 1 becomes

D (nda,~ P80 = BF (534)
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which is a criterion for a canonical transformation without reference to the Hamiltonian function.
Thus, it is more convenient to use Equation 5.34 in testing whether or not a given transformation is
canonical. The functions Q; and P; from Equation 5.21 are used in expressing each P, Q; in terms
of the old variables. If the differential form on the left-hand side of Equation 5.34 is exact and if
the functions 0/, p, D, P{q, p, 1) are at least twice differentiable, then the given transformation is
canonical, and a function ¢(q, p, 1) = F exists such that

0= 2 P84, ‘2 P30,
j j

or equivalently

00, 99
. p=—=L
b= Z "0q;  9q;

j
2 ’aPJ 8P

Upon integrating to obtain ¢(g, p, 1), the new Hamiltonian K is found by equating the coefficients of
dr in Equation 5.26. This leads to

. (5.35)

+—+ZP (5.36)

It is different in form from the expression K = H + dF/dt. This is because different variables are held
constant in the two cases when taking partial derivatives with respect to time.

We can get a better understanding of the usefulness of canonical transformations by examining
a specific problem. We choose the simple harmonic oscillator. Of course, using such a powerful
method as canonical transformation is scarcely necessary for such a simple problem. But an exam-
ple with familiar physics and uncomplicated algebra will help us to gain a better understanding of
the procedures employed.

Example 5.4: Simple Harmonic Oscillator

Consider a linear harmonic oscillator for which we have the Hamiltonian
1 1
H=—p?+—kq*
mP TN

and the Hamilton equations of motion
q = BH/Bp = p/m, p = —aH/aq = _/(q

Suppose that we do not know the solution to these equations and that we wish to simplify them by
a canonical transformation. For the generating function, we select a function of the type

Fy=pg?cot Q. (5.37)
Then, from Equation 5.28, we find that
p=0F/dq=2pqgcotQ, P=-90F/0Q =pqg?cosec’Q.
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Hence,

p=+4uP cosQ, q=./P/un sinQ. (5.38)

Now, we can evaluate the new Hamiltonian K. Because the generating function F, does not
depend on time explicitly, we have

1 1
K=H=—p*+—kq?
2mp 2 q

2
= kP(sinz Q+4Lcos2 Q).
2u mk

If w=+/mk/2, this reduces to
K =kP/2u = P\lk/m (5.39)

which is of a particularly simple form. Because the new coordinate Q is a cyclic coordinate, the
new momentum P conjugated to Q is a constant of the motion:

P=-9K/dQ=0
and
P = B (a constant of the motion). (5.40)

Hamilton’s equations of motion for the new coordinate Q gives

Q= 9K/P = \[kim

from which we obtain
Q= k/mt+o (5.41)

where a is the integration of the constant. The desired expression for p and g can be obtained by
substituting Equations 5.40 and 5.41 into Equation 5.38.

You might wonder where we obtained the generating function F,. Unfortunately, it is not
always easy to find a generating function that leads to a convenient solution, and there is no
simple standard procedure for doing so. Sometimes, the desired transformation can be found by
an intuitive method or by solving Equation 5.28 that connects the generating function to the old
and new Hamiltonians. However, there are two unknown functions in Equation 5.28: One of the
two is F, which is needed to generate the coordinate transformation equations. The other is K,
which is needed to provide the equations of motion. Thus, given K, we can work backward with
Equation 5.28 until the generating function F is reached. A detailed discussion goes beyond our
syllabus. Fortunately, the generating function for a linear harmonic oscillator ;= p g cot Q can
be constructed by the recognition that F, transforms oscillatory motion into uniform rectilinear
motion. See Chow (1997).

It should be pointed out that, in practice, we rarely solve a dynamic problem by canonical
transformations but rather study these transformations as a means of gaining a deeper understand-
ing of the Hamiltonian formalism and of phase space.

5.5 POISSON BRACKETS

The Poisson brackets were originally introduced into the framework of theoretical mechanics in
1809 by Simeon Denis Poisson (1781-1840) in the study of planetary motion. The Poisson brackets
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