\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter Goals

\qquad

After completing this chapter, you should be able to:

- Compute and interpret the mean, median, and mode for a set of data
- Compute the range, variance, and standard deviation and know what these values mean
\qquad
\qquad
\qquad
- Construct and interpret a box and whiskers plot
- Compute and explain the coefficient of variation and z scores
- Use numerical measures along with graphs, charts, and tables to describe data \qquad

Business Statistics: A Decision.Making Approach, fe © 2005 Prentice.-Hall, Inc.

Chapter Topics

- Measures of Center and Location \qquad
- Mean, median, mode, geometric mean, midrange
- Other measures of Location
- Weighted mean, percentiles, quartiles
- Measures of Variation \qquad
- Range, interquartile range, variance and standard deviation, coefficient of variation \qquad

Business Statistics: A Decision.Making Approach, 6e © 2005 Prentice.Hall, Inc. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

- In an ordered array, the median is the "middle" number \qquad
- If n or N is odd, the median is the middle number
- If n or N is even, the median is the average of the \qquad two middle numbers

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Which measure of location
is the "best"?

\qquad

Percentiles

- The $p^{\text {th }}$ percentile in an ordered array of n values is the value in $\mathrm{i}^{\text {th }}$ position, where

$$
i=\frac{p}{100}(n+1)
$$

- Example: The $60^{\text {th }}$ percentile in an ordered array of 19 values is the value in $12^{\text {th }}$ position:

$$
i=\frac{p}{100}(n+1)=\frac{60}{100}(19+1)=12
$$

Business Statistics: A Decision.Making Approach, 6e 2005 Prentice.Hall, Inc.

Quartiles

\qquad

- Quartiles split the ranked data into 4 equal
- Example: Find the first quartile

| Sample Data in Ordered Array: 11 | 12 | 13 | 16 | 16 | 17 | 18 | 21 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ($\mathrm{n}=9$)

 so use the value half way between the $2^{\text {nd }}$ and $3^{\text {rd }}$ values
so $\mathrm{Q} 1=12.5$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

2) Interquartile Range

- Can eliminate some outlier problems by using the interquartile range
- Eliminate some high-and low-valued observations and calculate the range from the remaining values.
- Interquartile range $=3^{\text {rd }}$ quartile $-1^{\text {st }}$ quartile

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
the mean
- Sample variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}
$$

- Population variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}
$$

Business Statistics: A Decision.Making Approach, 6e 2005 Prentice-Hall, Inc.
\qquad
\qquad

Standard Deviation

Most commonly used measure of variation

- Shows variation about the mean
- Has the same units as the original data
- Sample standard deviation:

- Population standard deviation:

\qquad

Calculation Example:

Sample Standard Deviation

Sample

Data $\left(X_{i}\right):$| 10 | 12 | 14 | 15 | 17 | 18 | 18 | 24 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n=8$ | Mean $=\bar{x}=16$ | | | | | | |

$$
s=\sqrt{\frac{(10-\bar{x})^{2}+(12-\bar{x})^{2}+(14-\bar{x})^{2}+\cdots+(24-\bar{x})^{2}}{n-1}}
$$

$$
=\sqrt{\frac{(10-16)^{2}+(12-16)^{2}+(14-16)^{2}+\cdots+(24-16)^{2}}{8-1}}
$$

$$
=\sqrt{\frac{126}{7}}=4.2426
$$

Business Statistics: A Decision:Making Approach, 6e © 2005 Prentice.Hall, Inc.
Chap 3.30
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Coefficient of Variation

\qquad

- Measures relative variation \qquad
- Always in percentage (\%)
- Shows variation relative to mean
- Is used to compare two or more sets of data measured in different units

Population	Sample
CV $=\left(\frac{\sigma}{\mu}\right) \cdot 100 \%$	$C V=\left(\frac{s}{\bar{x}}\right) \cdot 100 \%$

$$
\text { Business Statistics: A Decision.Making Approach, 6e © } 2005 \text { Prentice.Hall, Inc. Chap } 3 \cdot 32
$$

Comparing Coefficient of Variation

- Stock A:
- Average price last year $=\$ 50$
- Standard deviation = \$5

$$
\mathrm{CV}_{\mathrm{A}}=\left(\frac{\mathrm{s}}{\overline{\mathrm{x}}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 50} \cdot 100 \%=10 \%
$$

- Stock B:
- Average price last year $=\$ 100$
- Standard deviation = \$5 standard
deviation, but
stock B is less variable relative $\mathrm{CV}_{\mathrm{B}}=\left(\frac{s}{\bar{x}}\right) \cdot 100 \%=\frac{\$ 5}{\$ 100} \cdot 100 \%=5 \%$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- If the data distribution is bell-shaped, then the interval:
- $\mu \pm 1 \sigma$ contains about 68% of the values in the population or the sample

Business Statistics: A Decision.Making Approach, 6e 2005 Prentice-Hall, Inc.

The Empirical Rule

$\mu \pm 2 \sigma$ contains about 95% of the values in the population or the sample

- $\mu \pm 3 \sigma$ contains about 99.7% of the values in the population or the sample

Tchebysheff's Theorem

- Regardless of how the data are distributed, at least ($1-1 / k^{2}$) of the values will fall within k standard deviations of the mean
- Examples:

At least	within
$\left(1-1 / 1^{2}\right)=0 \% \ldots \ldots \ldots .$.	$\mathrm{k}=1 \quad(\mu \pm 1 \sigma)$
$\left(1-1 / 2^{2}\right)=75 \% \ldots \ldots \ldots . \mathrm{k}=2(\mu \pm 2 \sigma)$	
$\left(1-1 / 3^{2}\right)=89 \% \ldots \ldots \ldots . \mathrm{k}=3 \quad(\mu \pm 3 \sigma)$	

\qquad

$$
+2-2 y+2
$$

\qquad

Standardized Population Values

$$
z=\frac{x-\mu}{\sigma}
$$

\qquad
\qquad
\qquad
\qquad

- $\mathrm{x}=$ original data value
\qquad
- $\sigma=$ population standard deviation
- z = standard score (number of standard deviations x is from μ)
\qquad

$$
z=\frac{x-\bar{x}}{s}
$$

\qquad
\qquad
where:

- $\mathrm{x}=$ original data value \qquad
- $\overline{\mathrm{x}}=$ sample mean
- $\mathrm{s}=$ sample standard deviation \qquad
- z = standard score
(number of standard deviations x is from μ)

Business Statistics: A Decision.Making Approach, 6e © 2005 Prentice.Hall, Inc.
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

