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5.3 INTEGRALS OF MOTION AND CONSERVATION THEOREMS

5.3.1 ENERGY INTEGRALS

In the preceding section, we showed that if the Hamiltonian H does not depend on time explicitly,
then H is a constant of the motion:

H=) pji;—L=h (constant) (5.13)

J

The quantity /4 is called the Jacobian integral of the motion. Further, if the potential energy depends
only on the coordinates, and the holonomic constraints are time independent, H is also the total
energy of the system:

H=h=E. (5.14)

5.3.2 Cycric COORDINATES AND INTEGRALS OF MOTION

A cyclic coordinate is defined as one that does not appear explicitly in L. It is obvious that a coordi-
nate that is cyclic will also be absent from H for

oH 0 .

- = pq,—L|[=0.

| Za
Combining this result with Hamilton’s equations, we obtain

. _OH _

Pj 0

dq;
from which it follows that
p; = b; (constant). (5.15)

Thus, we get the same result: the generalized momentum conjugate to a cyclic coordinate is con-
served, that is, it is an integral of the motion. In the following section, we will show a more general
momentum conservation theorem.

When some coordinates, say, ¢, ¢s,.--, ¢,, i < n), are cyclic, the Lagrangian of the system is of
the form

L= L(qm+l""’qn, Pr» p2""’pn)-

We still have to solve the problem of n degrees of freedom even though m of them correspond to m
cyclic coordinates. But the Hamiltonian of the system is of the form

H= H(qm+l""9qn9 IS TRy 2o bl’ bZ""’bm;t)'

Thus, (n — m) coordinates and momenta remain, and the problem is essentially reduced to (n — m)
degrees of freedom. Hamilton’s equations corresponding to each of the (n —m) degrees of freedom
can be obtained while completely ignoring the cyclic coordinates. The cyclic coordinates them-
selves can be found by integrating the equations of motion g; =dH/0b;, j=1,2,...m. Routh has
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devised a procedure that combines the advantage of the Hamiltonian formulation in handling cyclic
coordinates with the Lagrangian formulation. We refer the students to the book by Goldstein about
Routh’s procedure.

5.3.3 CONSERVATION THEOREMS OF MOMENTUM AND ANGULAR MOMENTUM

In the preceding section, we found that, for a conservative system, the Hamiltonian is a constant
if it does not depend on time explicitly. This represents the constancy of the energy of the system.
By examining the Hamiltonian, it is possible to establish two other conservation theorems, namely,
conservation of momentum and conservation of angular momentum, just as we did in Chapter 4 by
examining the Lagrangian of the system.

We first show that if the Hamiltonian H is invariant with respect to an arbitrary infinitesimal
translation of the coordinates, the total momentum of the system is conserved. For simplicity, con-
sider the Hamiltonian depending on the difference of two coordinates ‘7{ - 72‘ . If the whole system
is translated by a small amount d7, then the difference of two coordinates is not affected:

i = dr = (7 =) =[i = 5.
Hence,
H( +d7,p)= H(F, p). (5.16)

Expanding the left-hand side, we obtain
3N
HGEF)+ ) dry- 5= HE. )
j=1 i
or

3N
oH
;drj = 5.17)

By Hamilton’s equations, Equation 5.17 reduces to

3N

dp.
zdn(_ﬂ):o.
- dr
Jj=1

Because dr is arbitrary, we obtain

D

which is the conservation of the total momentum.

We can also show that if the Hamiltonian is invariant with respect to an arbitrary infinitesimal
rotation of the coordinate axes, the total angular momentum of the system is conserved. Consider a
vector 7 in the x,x, plane; we rotate the coordinates counterclockwise through an angle 0 about the
x5 axis (Figure 5.2). In the old coordinate system, the point P is at

xy=rcos®d, x,=rsin¢
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FIGURE 5.2 Infinitesimal rotation of the coordinate axes.

while in the new coordinate system, P is at
x;=rcos(¢—0), x5 =rsin(p—0).
Using the trigonometric identities
sin (A+B)=sinA cos BxcosAsinB
cos (A +B)=cosAcosB+sinAsinB
we obtain
X; =rcos¢cosO+rsinsin® = x, cos0+ x, sin6
and
x5 =rsindpcosO—rcoshsin® =—x, sinO+ x, cosO.
For infinitesimal rotations 00, cos®0 = 1, and sind0 ~ 0, we obtain
X;=x+x,00, x;=—x,00+x,
and so
X —x; =0x=x,00, x5—x,=0x,=—x,00 (5.18)
where 80 has only a z component. Equation 5.18 can be written as a vector equation:
dr =7 x80. (5.19)

All vectors will transform according to Equation 5.19 under an infinitesimal rotation about an axis.
If the Hamiltonian H is invariant with respect to an infinitesimal rotation, we then have

H([F+7 x 801, [p+px8pl)= H(F, p).

Expanding the left-hand side, we have

3N
o oo\ .. OH L. OH N
H(r,p)+2|:(59><r)jan+(59Xp)j6w = HF, D)
J J

J=1
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or

Zl(sem) o L (80x )aH]:o
op;

j=1 J J

from which we obtain

3N
> oH - _OH 3
56- E {(r xar)]+(p><aﬁl} =0 (5.20)

j-1

where we have used the vector identity (;{ X E) C= (6’ X ;{) -B.
Using Hamilton’s equations, Equation 5.20 can be further simplified:

56. i{(?xf;)_,ﬂﬁx%) }=-36. —Z(rxp) - se L)

j=1
where L is the total angular momentum of the system. Because 80 is arbitrary, we have

dr L
& =0, or L =0 (aconstant vector).

5.4 CANONICAL TRANSFORMATIONS

As shown in the previous section, there is some advantage in using cyclic coordinates. However,
in general, it is impossible to obtain more than a limited number of such coordinates by means of
coordinate transformations. On the other hand, we can employ a more general class of transforma-
tions that involve both generalized coordinates and momenta. If the equations of motion are simpler
in the set of new variables Q; and P, than in the original old set ¢; and p;, we then have a clear gain.
We will not be able to consider all possible transformations but only the so-called canonical trans-
formations that preserve the canonical form of Hamilton’s equations of motion; that is, given that
the ¢’s and p’s satisfy Hamilton’s equations

oH . oH

B P,

J

for some H, then the transformation

Q=040 e 0. P;i=Plq, pro D) (6.21)

is canonical if and only if there exists a function K such that the time evolutions of the Q’s and P’s
are still governed by Hamilton’s equations

- 0K . oK
= p =" 5.22
0, ap” 73, (5.22)

Here, K(Q, P, ) is the new Hamiltonian that may be different from the old Hamiltonian H(g, p, 1.
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