104 Classical Mechanics

But note that the following two functions
-y and Ly gy~ L
2 =miy—mgx and L, =mgy——mgy’ —mx’y ——my

also lead to the same equations of motion, so they are also Lagrangians for this system. But
because the action integral of the Lagrangians L, and L; is not the classical action, we can use this
as a guide to reject them and select a correct Lagrangian for the system.

4.6 INTEGRALS OF MOTION AND CONSERVATION LAWS

Lagrange’s equations of motion for a system of n degrees of freedom are a set of n second-order
differential equations. The solution of each equation has two constants of integration, which usually
can be determined from the initial values of the generalized coordinate ¢ and the generalized
velocity g. Sometimes Lagrange’s equations can be solved in terms of known functions but not
always. In general, most problems either cannot be solved completely or are too tedious to solve.
Fortunately, very often, a great deal of information about the system is contained in a number of so-
called first integrals of the motion, which are often of greater interest and importance than a com-
plete knowledge of all the ¢’s as a function of time ¢. The first integrals of motion are functions of the
generalized coordinates g; and the generalized velocities g; of the form f(g’s, g’s, 1) = a; (constant)
whose values remain constant during the motion of the system and are dependent only on the initial
conditions of the system. The conservation laws of energy, momentum, and angular momentum that
we deduced in Newtonian formalism are of this exact type. These conservation laws can be deduced
casily in Lagrangian formalism in a very general and elegant fashion. In the process, they make
quite clear the relationship between conservation laws and the symmetry properties of the system.
The association goes beyond these conservation laws, beyond classical systems; it finds wide appli-
cation in modern physics, especially in quantum field theories and particle physics. Hence, the study
of symmetry and its uses in learning about the laws of nature is very important.

4.6.1 Cycric COORDINATES AND CONSERVATION THEOREMS

We begin by examining the first integrals of the motion associated with the so-called cyclic coordi-
nates. Coordinates that do not appear explicitly in the Lagrangian of a system are said to be cyclic
or ignorable. Be aware that this definition is not universal. Other authors may use them differently.
If ¢, is a cyclic coordinate, then the Lagrangian L will take the form

L=L(q s sG> Gis1o-sDusQiseesGis-esqyyst) 4.31)
and so
0L/0q; = 0.
Lagrange’s equations of motion reduce to

ia7{‘=0,i= 1,2,...,n
dt 9q;
or

dp/dt =0,
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From this, it follows that

P=o0,i=1,2,...,n 4.32)
where the «; are constants evaluated from the initial conditions. They are called the first integrals
of motion. We now find a general conservation theorem: The generalized momentum conjugate
to a cyclic coordinate is conserved during the motion. This conservation theorem for generalized
momentum is more general than the conservation theorems for linear momentum and angular
momentum. In fact, the latter two conservation theorems are contained in the general conservation
theorem. For example, if ¢, does not appear in L and if a change 8¢, in ¢, corresponds to a transla-
tion of the system through a distance along a certain direction, say x, then

oL N a',)
m; (X7 + y? + 2} m;
a‘]l a‘]l Z Z ( a% a q
. Oy 0z
Zm( aql + ,aql) Zm ()C aq]+O+OJ me o

1

or
= Zmifci =0, (constant). (4.33)

This is the law of momentum conservation along the x; axis.

In a similar fashion, it can be shown that if cyclic coordinate g; is such that 8g; corresponds to
a rotation of the system around some axis, then the conservation of its conjugate momentum cor-
responds to the conservation of an angular momentum. We do not plan to give a general proof here
because of its length and tediousness and refer interested students to the book by Goldstein (1980).
The two-dimensional harmonic oscillator described in plane polar coordinates gives a simple illus-
trative example. The Lagrange L is

L=T-V= lm(};2 +r292)—lkr2
2 2

where 0 is a cyclic coordinate. Hence,
0L/96 = mr?6 =B = constant.

mr?9 is seen to be the angular momentum about the origin.

Summarizing these results, we see that if a translation coordinate is cyclic, the system is invari-
ant under translation along a given direction, and the corresponding linear momentum is conserved.
Similarly, when a rotation coordinate is cyclic, the system is invariant under rotation about the
given axis, and the conjugate angular momentum is conserved. That is, when arbitrary changes d¢;
of a coordinate ¢; make no difference to the description of the motion by the Lagrangian, ¢, need
not appear in the Lagrangian and the description possesses symmetry expressible as an invariance
of the system to g;. The consequent conservation property testifies to a close association between
conservation laws and invariances or symmetries. In the following, we shall explore the purely geo-
metric types of symmetry that reflect the general properties of the homogeneity of space and time
and the isotropy of space in an inertial reference frame.

© 2010 Taylor & Francis Group, LLC



106 Classical Mechanics

4.6.2 SYMMETRIES AND CONSERVATION LAws

The homogeneity of space and time means that there are no fixed reference points in space and that
there is no preferred instant in time. In other words, the displacement in space of the system as a
whole or a shift in time will not change the mechanical properties of a closed system (i.e., one that
does not interact with other systems). The isotropy of space means that all directions in space are
equivalent; hence, rotation in space does not change the properties of a closed system.

In Lagrangian formalism, the laws of motion of a system are given by Lagrange’s equations
of motion and so are uniquely determined by the Lagrange of the system. In other words, the
effects of a symmetry operation on a system’s equations of motion can be determined from its effect
on the Lagrangian L. That is what we shall proceed to do, and we begin with the law of energy
conservation.

4.6.2.1 Homogeneity of Time and Conservation of Energy

Assume that a system of particles is in unchanging external conditions; this occurs if the system is
closed or in a stationary force field (a time-independent constant external force field). In this case,
the time, because of its homogeneity, cannot enter the Lagrangian explicitly, and so we have 9L/ = 0.
Then the total derivative of the Lagrangian becomes

dL oL . OJL . d{oL). OJL.. d( oL .
dt_Z(quQi+8¢'],.qu_z(clt(éébJQi+aébQi]_zdt(aqi fli)

i i i

or

d(dL .
—| ¢, -L|=0.
zdt(aqq' ]

i 1

Thus, we see that, for a closed system or one in a stationary external force field, the quantity in
the parentheses, a function of the generalized coordinates and the generalized velocities, remains
constant during the motion:

a—,Lq',. —L=o0 (aconstant).
; a%'

Functions of the quantities g; and g, that remain, during the motion, a constant value determined
by the initial conditions are called integrals of motion. Accordingly, o is an integral of constant.

The quantity Zggq'i — L is denoted by the symbol H, called the Hamiltonian of the system:

H:Zg;q'i_Lzzpiq'i_L- 4.34)

If the potential energy V'is velocity-independent, and if the equations of transformation (Equation
4.1) do not depend on time explicitly, then H is equal to the total energy of the system. It is easy
to show this explicitly. By the first condition, we have V = V(x, ), where i = 1, 2, ..., n (number of
particles) and o = 1, 2, 3 (coordinate axes). By making use of the second condition, namely, the
equations of transformation connecting the rectangular and generalized coordinates do not depend
on time explicitly [x;, = x; (g, or g; = q,(x;,)], we can express V in terms of ¢; as V = V(g)), and so
0V (q;)/dq; = 0. Furthermore, under the second condition, the kinetic energy 7"is a homogeneous,
quadratic function of the ¢’s, and Euler’s theorem gives
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Substituting these into the expression for the Hamiltonian H, we obtain

an L_Za(T V) —(T=V)

9g; 9g;
= gqu—(T V) =2T—(T-V)=T+V =E.

Hence, the homogeneity of time leads to the following law: The energy of the system of a closed
conservative system of particles (or a system in a stationary external force field) remains constant.

When the equations of transformation connecting the rectangular and generalized coordinates
depend on time explicitly, the Hamiltonian H is no longer the total energy of the system, but it is
still conserved.

4.6.2.2 Spatial Homogeneity and Momentum Conservation

Consider a closed system. Because of the homogeneity of space, the displacement of the system by
a small amount &7 must not change the mechanical properties of the system, and so the Lagrangian
must retain its previous value. This would not be true for an unclosed system because such a dis-
placement would cause a change in the arrangement of the particles relative to the bodies interacting
with them, and so the mechanical properties of the system would be affected. As the displacement
dr is very small, we can write

SL = Z— 57, = o7 - gL =0 (4.35)
r

where j is the number of particles, and we have made use of the fact that each particle in the sys-
tem is displaced by the same amount, and so 57’; = &r. Before we continue further, we ought to
digress for a moment to explain a mathematical notation here: the derivative of a scalar function
with respect to a vector quantity. By the derivative of the scalar ¢ with respect to the vector 2, it is
understood as a vector having the components d/dL,, dp/dh,, and d§p/dA.. Consequently, the sym-
bol d¢/dr stands for a vector with the components dp/dx, ddp/dy, and dp/dz, and

9o . do . IO 8<p
dr = dx dy
or ox o dy i 82

We now return to Equation 4.35. Because or = 0, we have

oL

—=0. (4.36)
- arj

Lagrange’s equations allow us to write

L __dodL dL_ddL JL_dJL
ox, drax,’ dy, drdy, 9z, droz

7
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Multiplying the first, second, and third of these equations by the unit vectors ¢,,e,,e., respec-
tively, and summating them, we obtain the expression

a_da
or;  dt oF,’
Equation 4.36 can thus be written as

dy i _, 4.37)

dr & 7
J J

The quantity BL/E);_;;. is a vector with the components dL/dx;, dL/dy;, and dL/0zZ;.
These are the projections of the conventional (not generalized) momentum p; of the jth particle
onto the coordinate axes. Hence,

LI, = B,

Accordingly, Equation 4.37 can be written as

iZﬁ,:o.
J

Hence, it follows that
P= 2 B, = constant. (4.38)
j

Thus, the homogeneity of space leads to the momentum conservation: The total momentum of a
closed system of particles remains constant, that is, it is also an integral of motion.

4.6.2.3 Isotropy of Space and Angular Momentum Conservation

Because of the isotropy of space, the Lagrangian of a closed system should not be affected by an
infinitesimal rotation of the system as a whole in space. Accordingly, the Lagrangian should be
unchanged, 8L = 0. We are now interested in the increment of the Lagrangian 8L in an arbitrary very
small rotation of a system through an angle 86. All the vectors characterizing the system will rotate
together with it. As a result, they will receive certain increments that will be of the same order as
00. According to Equation 4.36, we have

o7, =80x7,, and OF, =0V, =00x7,. (4.39)

Because of the smallness of the quantities 87, and 8V, we have

SL(7,,V,) = Zgg.&g NS (4.40)

= 0%,
which becomes, in view of Equation 4.39,
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8L, )Za (sexa)+z (89>< ). (4.41)

Now, a cycli¢_transposition of the multipliers may be performed in a scalar triple product,
(BXC) B- (CXA) C- (A>< B) Such a transposition in Equation 4.41 yields

8L=;8§.(?a aL) Zse( J 56. Z( ><7+* aE’VLJ

OL can be further simplified with the help of Lagrange’s equation:

doL_ oL _, AL d oL

dt av ﬁ o ar dr av

SL=56- 2( ><7+* aaf)
(X va

5 5 5 4.42)
d JL = L =~ d - L
=36 X——+VyX—-| =60-— X— |
2( dr o, o, ) dr Z[r o, ]
Because 56 # 0, the condition 8L = 0 is equivalent to the condition
d - _ oL
— 0 443
dr & [ra av, :| 43

from which it follows that

L= Z[?‘x X g‘i] = ;[?a X P, | = constant. (4.44)

o

The symbol L for angular momentum should not be confused with the Lagrangian L.

Thus, the isotropy of space leads to the angular momentum conservation law: The resultant
angular momentum of a closed system of particles remains constant. The angular momentum of a
closed system, like its energy and momentum, is also an integral of motion.

Although the conservation law for angular momentum is valid only for a closed system, the
conservation law may hold in a more restricted form for a system in an external force field that
possesses an axis of symmetry. In such a field, the Lagrangian of the system is invariant about the
symmetry axis; hence, the angular momentum of the system about the axis of symmetry is constant
in time, that is, it is conserved. The most important such case is that of a central force field that will
be examined in Chapter 6. We consider here a simple illustrative example: the motion of a particle
on the inner surface of a cone.

Example 4.9

A particle of mass m is constrained to move under the influence of gravity on the smooth inner
surface of the paraboloid of revolution x* + y? = az?, where a is a constant. Show that the angular
momentum of the particle about the axis of symmetry of the system is conserved.
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FIGURE 4.11 Particle constrained to move under gravity on the smooth inner surface of the paraboloid.

Solution:

The problem possesses cylindrical symmetry, so we choose p, ¢, and z as the generalized coordi-
nates, and we let the axis of the paraboloid correspond to the z-axis and the vertex of the parabo-
loid be located at the origin (Figure 4.11). The Lagrangian of the system is

L=T—V=%m(p2+p2¢2+z'2)—mgz

where the reference level for the potential energy is set at the vertex of the paraboloid.
As ¢ is a cyclic coordinate, 0L/0¢ = 0. Then, Lagrange’s equation for coordinate ¢ reduces to

do. d 5.
—_— = =O
dt 9¢ dt(mp ?)

from which we obtain
mp’¢ = constant. (4.45)

Note that mp’¢ = mp”w is just the angular momentum of the particle about the system'’s axis of
symmetry, the z-axis. Thus, Equation 4.45 simply expresses the fact that the angular momentum of
the particle about the axis of symmetry is conserved.

We have learned that the laws of conservation of energy, linear momentum, and angular
momentum are an immediate consequence of the general symmetry properties of space and
time. We should also note that these laws also explain, from their derivations, why the following
pairs of variables are associated with each other:

(7, 5),(8, [),and t,E).

4.6.2.4 Noether’s Theorem

By now, we have all learned that symmetries of the Lagrangian gave rise to constants of the motion.
But the constants of the motion do not always come from the obvious symmetries of the Lagrangian,
nor do they always have a simple form. Mathematician Emmy Noether took a general approach to
this problem in 1919 and found a theorem that states essentially that if corresponding to a variable
a in the Lagrangian, and the Lagrangian remains unchanged for a change of a to o + € where € is
infinitesimal, we will have a conservation principle. The conservation laws of energy, momentum,
and angular momentum are just an example of Noether’s theorem. A straightforward and simple
exposition of Noether’s work is given in Appendix 3.
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