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mg;:
d ..
vgzzt(ll-"x+l2—y)=-—x—y (7.53)
1 2.1 2
T= §m1v1 + 5'”7«21}2 + §m3v3
I, 1 . 1 .
= §m1x2 + Emg(y - x)? + émg(—x ~ j)?2 (7.54)

Let the potential energy U= 0 at x = 0.
U= Ul + U2 + U3
= —mlgx - mgg(ll - x+ y) - mgg(ll —x+ l2 - y) (7-55)

Because T and U have been determined, the equations of motion can be ob-
tained using Equation 7.18. The results are

m15C- + m2(55 - 53) + m3(55 + 57') = (m] — Mo — mg)g (7-56)
Equations 7.56 and 7.57 can be solved for ¥ and §.

Examples 7.2-7.8 indicate the ease and usefulness of using Lagrange’s equa-
tions. It has been said, probably unfairly, that Lagrangian techniques are simply
recipes to follow. The argument is that we lose track of the “physics” by their use.
Lagrangian methods, on the contrary, are extremely powerful and allow us to
solve problems that otherwise would lead to severe complications using Newtonian
methods. Simple problems can perhaps be solved just as easily using Newtonian
methods, but the Lagrangian techniques can be used to attack a wide range of
complex physical situations (including those occurring in quantum mechanics*),

7.5 Lagrange’s Equations with Undetermined
Multipliers

Constraints that can be expressed as algebraic relations among the coordinates
are holonomic constraints. If a system is subject only to such constraints, we can
always find a proper set of generalized coordinates in terms of which the equa-
tions of motion are free from explicit reference to the constraints.

Any constraints that must be expressed in terms of the velocities of the parti-
cles in the system are of the form

f(xa,ia *a,i: t) =0 (7-58)

*See Feynman and Hibbs (Fe65).
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and constitute nonholonomic constraints unless the equations can be integrated
to yield relations.among the coordinates.*
Consider a constraint relation of the form

2A%+B=0, i=1,23 (7.59)

In general, this equation is nonintegrable, and therefore the constraint is non-
holonomic. But if A; and B have the forms

_y LY
A, = o B=—. [=[&0) (7.60)

then Equation 7.59 may be written as

df dx; 0
E—f—+—f=o (7.61)
i ax,‘ dt at
But this is just
d
bd_,
dt
which can be integrated to yield
f(x;,t) — constant = ( (7.62)

so the constraint is actually holonomic.
From the preceding discussion, we conclude that constraints expressible in
differential form as

Z——d + % (7.63)
i 9g; ot
are equivalent to those having the form of Equation 7.9.

If the constraint relations for a problem are given in differential form rather
than as algebraic expressions, we can incorporate them directly into Lagrange’s
equations by using the Lagrange undetermined multipliers (see Section 6.6)
without first performing the integrations; that is, for constraints expressible as in
Equation 6.71,

=1,2,...,s
pRL A 7.64
;aq] k=1,2,...,m ( )
the Lagrange equations (Equation 6.69) are
oL d oL 2 ﬁ

In fact, because the variation process involved in Hamilton’s Principle holds the
time constant at the endpoints, we could add to Equation 7.64 a term (38f,/9¢)d¢

*Such constraints are sometimes called “semiholonomic.”
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without affecting the equations of motion. Thus constraints expressed by Equation
7.63 also lead to the Lagrange equations given in Equation 7.65.

The great advantage of the Lagrangian formulation of mechanics is that the
explicit inclusion of the forces of constraint is not necessary; that is, the empha-
sis is placed on the dynamics of the system rather than the calculation of the
forces acting on each component of the system. In certain instances, however, it
might be desirable to know the forces of constraint. For example, from an engi-
neering standpoint, it would be useful to know the constraint forces for design
purposes. It is therefore worth pointing out that in Lagrange’s equations ex-
pressed as in Equation 7.65, the undetermined multipliers A,(f) are closely re-
lated to the forces of constraint.* The generalized forces of constraint Q; are
given by

_ e
Q;= ;Ak(;;j (7.66)

EXAMPLE 7.9

Let us consider again the case of the disk rolling down an inclined plane (see
Example 6.5 and Figure 6-7). Find the equations of motion, the force of con-
straint, and the angular acceleration.

Solution. The kinetic energy may be separated into translational and rotational
terms’

1 1.,
T = My? + - I1§?
9 T

1 1 .
= — Mj* + — MR? §?
5 Mj 1 MRO

where M is the mass of the disk and Ris the radius; I = % MR? is the moment of
inertia of the disk about a central axis. The potential energy is

U= Mg(l—y)sin & (7.67)

where [ is the length of the inclined surface of the plane and where the disk is
assumed to have zero potential energy at the bottom of the plane. The
Lagrangian is therefore

L=T-U
1 .2 1 242 :
= EMy + ZMR 02 + Mg(y — 1) sin & (7.68)

*See, for example, Goldstein (Go80, p. 47). Explicit calculations of the forces of constraint in some
specific problems are carried out by Becker (Beb4, Chapters 11 and 13) and by Symon (Sy71,
p. 3721f%).

tWe anticipate here a well-known result from rigid-body dynamics discussed in Chapter 11.
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The equation of constraint is
f(3»60)=y—RO=0 (7.69)

The system has only one degree of freedom if we insist that the rolling takes
place without slipping. We may therefore choose either y or 6 as the proper co-
ordinate and use Equation 7.69 to eliminate the other. Alternatively, we may
continue to consider both y and 8 as generalized coordinates and use the
method of undetermined multipliers. The Lagrange equations in this case are

ol.  daoL J
g

= 0
0 dt 9y d
ag, d ag ajyf (.70
— —— =+ A==0
00 dtod o0
Performing the differentiations, we obtain, for the equations of motion,
Mgsina — My + A =0 (7.71a)
1 .
- §MR20 —AR=0 (7.71b)

Also, from the constraint equation, we have
y= Re (71.72)

These equations (Equations 7.71 and 7.72) constitute a soluble system for the
three unknowns y, 8, A. Differentiating the equation of constraint (Equation
7.72), we obtain

=— 7.73
6= (7.73)
Combining Equations 7.71b and 7.73, we find
1
A= - §M ¥ (7.74)

and then using this expression in Equation 7.71a there results

2g sin «
¥ = (7.75)
3
with
Mg sin a
A= — (7.76)
3
so that Equation 7.71b yields
G- 2gsin a 277
iy (7.77)

Thus, we have three equations for the quantities ¥, 6, and A that can be imme-
diately integrated.
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We note that if the disk were to slide without friction down the plane, we
would have ¥ = gsin a. Therefore, the rolling constraint reduces the accelera-
tion to % of the value of frictionless sliding. The magnitude of the force of fric-
tion producing the constraint is just A—that is, (Mg/3) sina.

The generalized forces of constraint, Equation 7.66, are

af Mg sina
Q= dy A= 3

of MgR sin o
e o 3

Note that Q and Qy are a force and a torque, respectively, and they are the gen-
eralized forces of constraint required to keep the disk rolling down the plane
without slipping. )

Note that we may eliminate 8 from the Lagrangian by substituting = j/R
from the equation of constraint:

= %Mj“’ + Mg(y — I)sin & (7.78)

The Lagrangian is then expressed in terms of only one proper coordinate, and
the single equation of motion is immediately obtained from Equation 7.18:

Mgsina — gMy =0 (7.'719)

which is the same as Equation 7.75. Although this procedure is simpler, it can-
not be used to obtain the force of constraint.

FXAMPLE 7.10

A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius
a. Find the force of constraint, and determine the angle at which the particle
leaves the hemisphere.

Solution. See Figure 7-7. Because we are considering the possibility of the parti-
cle leaving the hemisphere, we choose the generalized coordinates to be rand
8. The constraint equation is

f(rn®)y=r—a=0 (7.80)
The Lagrangian is determined from the kinetic and potential energies:
T= %’(# + 122)
U= mgr cos 8
L=T-U
L= %z(f"2 + 7202) — mgr cos 0 (7.81)



7.5 LAGRANGE’S EQUATIONS WITH UNDETERMINED MULTIPLIERS

253

FIGURE 7-7 Example 7.10. A particle of mass m moves on the surface of a fixed

smooth hemisphere.

where the potential energy is zero at the bottom of the hemisphere. The

Lagrange equations, Equation 7.65, are

oL d ol J
————t A==
Jor dior or

oL doL d
e =4 A==
90 dtoe o6 0

Performing the differentiations on Equation 7.80 gives

of_

0
or 00

Equations 7.82 and 7.83 become

mrf2 — mgcos — m¥+ A =0

mgrsin @ — mr28 — 2mri = 0

Next, we apply the constraint r = a to these equations of motion:

r=a, t=0=7%
Equations 7.85 and 7.86 then become
mab? — mgcos6 + A = 0

mgasin @ — ma2d = 0
From Equation 7.88, we have
6= £ sin 6
a

We can integrate Equation 7.89 to determine 2,
5 ddo_do_dods _ .db
~dtdt dt dodt  df
We integrate Equation 7.89,

fé de = ﬂsin 6de

(7.82)

(7.83)

(7.84)

(7.85)

(7.86)

(7.87)

(7.88)

(7.89)

(7.90)

(7.91)
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which results in

2 -
——=—£c050+§
a a

5 (7.92)

where the integration constant is g/a, because 0 =0att=0when8 = 0.
Substituting 82 from Equation 7.92 into Equation 7.87 gives, after solving for A,
A= mg(3cosf — 2) (7.93)

which is the force of constraint. The particle falls off the hemisphere at angle 6,
when A = 0.

A=0=mg(3cosby — 2) (7.94)

0, = cos‘l(g) (7.95)

As a quick check, notice that the constraint force is A = mgat § = 0 when the
particle is perched on top of the hemisphere.

The usefulness of the method of undetermined multipliers is twofold:

1. The Lagrange multipliers are closely related to the forces of constraint that
are often needed. .

2. When a proper set of generalized coordinates is not desired or too difficult
to obtain, the method may be used to increase the number of generalized
coordinates by including constraint relations between the coordinates.

7.6 Equivalence of Lagrange’s
and Newton’s Equations

As we have emphasized from the outset, the Lagrangian and Newtonian formu-
lations of mechanics are equivalent: The viewpoint is different, but the content
is the same. We now explicitly demonstrate this equivalence by showing that the
two sets of equations of motion are in fact the same.

In Equation 7.18, let us choose the generalized coordinates to be the rectan-
gular coordinates. Lagrange’s equations (for a single particle) then become

oL daL
2%y i=1,23 7.96
ax,  dtox, =12 (7.96)

or

NT—U) ddT—U) _

- 0
0x; dt  0x;



