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Calculating the derivatives, we find
F— r0%sin?a + gsina cosa =0 (7.31)
which is the equation of motion for the coordinate 7.

We shall return to this example in Section 8.10 and examine the motion in
more detail.

The point of support of a simple pendulum of length & moves on a massless rim
of radius a rotating with constant angular velocity @. Obtain the expression for
the Cartesian components of the velocity and acceleration of the mass m.
Obtain also the angular acceleration for the angle # shown in Figure 7-3.

Solution. 'We choose the origin of our coordinate system to be at the center of
the rotating rim. The Cartesian components of mass m become

= q cos wt+ bsin 0
x-ac } (7.32)
y = asin ot — b cos @
The velocities are
%= —aw sin wt + b6 cos O
. 7.33
= qw cos wt + bfsin 0 } ( )

FIGURE 7-3 Example 7.5. A simple pendulum is attached to a rotating rim.
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Taking the time derivative once again gives the acceleration:
= —aw?cos wt+ b(6 cos § — 0%sin 6)

j = —aw?sin ot + b(é sin & + é%os )

It should now be clear that the single generalized coordinate is . The kinetic and
potential energies are

1
T= '2‘7;'7/(.962 + §2)
U= mgy
where U = 0 at y = 0. The Lagrangian is

L=T-U= —g[aQwQ + 5202 + 2bfaw sin (0 — wi)]

—mg(a sin @t — b cos 6) (7.34)
The derivatives for the Lagrange equation of motion for 8 are
d oL . .
139 = mb%0 + mbaw(§ — w) cos(§ — wt)
oL . .
56 = mblaw cos(0 — wt) — mgbhsin §

which results in the equation of motion (after solving for 6)

- 2 .
§ = ﬁ’b—“ cos(6 — wt) — f sin 0 (7.35)
Notice that this result reduces to the well-known equation of motion for a sim-

ple pendulum if w = 0.

EXAMPLE 7.6

Find the frequency of small oscillations of a simple pendulum placed in a rail-
road car that has a constant acceleration g in the x-direction.

Solution. A schematic diagram is shown in Figure 74a for the pendulum of
length €, mass m, and displacement angle 6. We choose a fixed cartesian coordi-
nate system with x = 0 and % = v, at ¢ = 0. The position and velocity of m become

1
x = vyt + Qat2 + €sin 0

y= —{cos @
%= v, + at+ €6 cos 0
5= €0 sin 0
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(b)

FIGURE 7-4 Example 7.6. (a) A simple pendulum swings in an accelerating railroad
car. (b) The angle 6,is the equilibrium angle due to the car’s
acceleration ¢ and acceleration of gravity g.

The kinetic and potential energies are

1
T= ém(aé2 +3%) U= —mglcosb

and the Lagrangian is
1 . 1 .
L=T-U= gm(vo + at + €0 cos 6)2 + §m(€9 sin 6)2 + mgfcos @

The angle 6 is the only generalized coordinate, and after taking the deriva-
tives for Lagrange’s equations and suitable collection of terms, the equation of
motion becomes (Problem 7-2)

e g . _ f
6= ¢ 50 ] ¢ €08 0 (7.36)

We determine the equilibrium angle 8 = 6, by setting § =0,
0=gsin§,+acosé, (7.37)
The equilibrium angle 6,, shown in Figure 7-4b, is obtained by

tan 6, = — g (7.38)

Because the oscillations are small and are about the equilibrium angle, let
8 = 8, + n, where 7 is a small angle.

b =%=— %sin(@e +7n) — %cos(ﬂe + ) (7.39)
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We expand the sine and cosine terms and use the small angle approximation
for sin n and cos 7, keeping only the first terms in the Taylor series expansions.

n=- %( sinf,cos p + cosé,sinn) — %(cos 6, cosn — sin 6, sin 1)

= - %(sin 6, + ncoséb,) — %(cos 6, — m sin 6,)

1
= - z[(g sinf, + a cos §,) + n(g cos§, — asin 6,)]

The first term in the brackets is zero because of Equation 7.37, which leaves

1

n=- E(g cos 8, — asin 6,)7n (7.40)

We use Equation 7.38 to determine sin 6,and cos 6, and after a little manipula-
tion (Problem 7-2), Equation 7.40 becomes

Vit g

Because this equation now represents simple harmonic motion, the frequency

w 1s determined to be
Va? + g
£

This result seems plausible, because w — V g/€ for a = 0 when the railroad car
is at rest.

w?=

(7.42)

ENAMPLE 7.7

A bead slides along a smooth wire bent in the shape of a parabola z = ¢r?
(Figure 7-5). The bead rotates in a circle of radius R when the wire is rotating
about its vertical symmetry axis with angular velocity w. Find the value of ¢

Solution. Because the problem has cylindrical symmetry, we choose 7, 6, and z as
the generalized coordinates. The kinetic energy of the bead is

T = g[i? + 22 4 (16?)] (7.43)

If we choose U = 0 at z = 0, the potential energy term is
U= mgz (7.44)
But 7, z and 6 are not independent. The equation of constraint for the parabola is
z= cr? (7.45)
z= 2ctr (7.46)
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FIGURE 7-5 Example 7.7. A bead slides along a smooth wire that rotates about the z-axis.

We also have an explicit time dependence of the angular rotation
0 = wt
6= w (7.47)

We can now construct the Lagrangian as being dependent only on r, because
there is no direct § dependence.

L=T-U
= g’(fﬂ + 4652 + 1207 — mger® (7.48)

The problem stated that the bead moved in a circle of radius R. The reader
might be tempted at this point to let r = R = const. and 7 = 0. It would be a
mistake to do this now in the Lagrangian. First, we should find the equation
of motion for the variable r and then let r = Ras a condition of the particular
motion. This determines the particular value of ¢ needed for r = R.

oL m
= -+ 2,22
5 9 (27 + 8¢2r3%%)

d oL

= —2’9(2;~' + 1662772 + 8c72F)
oL
— = m(4c®*ri? + ro? — 2gcr)
or

Lagrange’s equation of motion becomes
1 + 4c%?) + #(4c*D + 1(2gc — 0?) = 0 (7.49)

which is a complicated result. If, however, the bead rotates with r = R = constant,
then # = # = 0, and Equation 7.49 becomes

R(2gc — w?) =0
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and

¢ == (7.50)

is the result we wanted.

EXAMPLE 7.8

Consider the double pulley system shown in Figure 7-6. Use the coordinates in-
dicated, and determine the equations of motion.

Solution. Consider the pulleys to be massless, and let /; and } be the lengths of
rope hanging freely from each of the two pulleys. The distances xand y are
measured from the center of the two pulleys.

my.

v =& (7.51)

d

Pulley 2

mg

Mg

FIGURE 7-6 Example 7.8. The double pulley system.
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mg;:
d ..
vgzzt(ll-"x+l2—y)=-—x—y (7.53)
1 2.1 2
T= §m1v1 + 5'”7«21}2 + §m3v3
I, 1 . 1 .
= §m1x2 + Emg(y - x)? + émg(—x ~ j)?2 (7.54)

Let the potential energy U= 0 at x = 0.
U= Ul + U2 + U3
= —mlgx - mgg(ll - x+ y) - mgg(ll —x+ l2 - y) (7-55)

Because T and U have been determined, the equations of motion can be ob-
tained using Equation 7.18. The results are

m15C- + m2(55 - 53) + m3(55 + 57') = (m] — Mo — mg)g (7-56)
Equations 7.56 and 7.57 can be solved for ¥ and §.

Examples 7.2-7.8 indicate the ease and usefulness of using Lagrange’s equa-
tions. It has been said, probably unfairly, that Lagrangian techniques are simply
recipes to follow. The argument is that we lose track of the “physics” by their use.
Lagrangian methods, on the contrary, are extremely powerful and allow us to
solve problems that otherwise would lead to severe complications using Newtonian
methods. Simple problems can perhaps be solved just as easily using Newtonian
methods, but the Lagrangian techniques can be used to attack a wide range of
complex physical situations (including those occurring in quantum mechanics*),

7.5 Lagrange’s Equations with Undetermined
Multipliers

Constraints that can be expressed as algebraic relations among the coordinates
are holonomic constraints. If a system is subject only to such constraints, we can
always find a proper set of generalized coordinates in terms of which the equa-
tions of motion are free from explicit reference to the constraints.

Any constraints that must be expressed in terms of the velocities of the parti-
cles in the system are of the form

f(xa,ia *a,i: t) =0 (7-58)

*See Feynman and Hibbs (Fe65).



