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Here we consider only the motion of systems subject to conservative forces.
Such forces can always be derived from potential functions, so that condition 1 is
satisfied. This is not a necessary restriction on either Hamilton’s Principle or
Lagrange’s equations; the theory can readily be extended to include nonconser-
vative forces. Similarly, we can formulate Hamilton’s Principle to include certain
types of nonholonomic constraints, but the treatment here is confined to holo-
nomic systems. We return to nonholonomic constraints in Section 7.5.

We now want to work several examples using Lagrange’s equations. Experience
is the best way to determine a set of generalized coordinates, realize the con-
straints, and set up the Lagrangian. Once this is done, the remainder of the
problem is for the most part mathematical.

EXAMPLE 7.3

Consider the case of projectile motion under gravity in two dimensions as was
discussed in Example 2.6. Find the equations of motion in both Cartesian and
polar coordinates.

Solution. We use Figure 2-7 to describe the system. In Cartesian coordinates, we
use x (horizontal) and y (vertical). In polar coordinates we use r (in radial direc-
tion) and & (elevation angle from horizontal). First, in Cartesian coordinates we
have
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We find the equations of motion by using Equation 7.18:
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By using the initial conditions, Equations 7.21 and 7.22 can be integrated to
determine the appropriate equations of motion.
In polar coordinates, we have
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The equations of motion expressed by Equations 7.21 and 7.22 are clearly
simpler than those of Equations 7.24 and 7.25. We should choose Cartesian co-
ordinates as the generalized coordinates to solve this problem. The key in
recognizing this was that the potential energy of the system only depended on the
y coordinate. In polar coordinates, the potential energy depended on both r and 6.

EXAMPLE 7.4

A particle of mass m is constrained to move on the inside surface of a smooth
cone of half-angle « (see Figure 7-2). The particle is subject to a gravitational
force. Determine a set of generalized coordinates and determine the con-
straints. Find Lagrange’s equations of motion, Equation 7.18.

Solution. Let the axis of the cone correspond to the z-axis and let the apex of
the cone be located at the origin. Since the problem possesses cylindrical sym-
metry, we choose 7, 8, and z as the generalized coordinates. We have, however,
the equation of constraint

z2= rcot o (7.26)
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FIGURE 7-2 Example 7.4. A smooth cone of half-angle o. We choose 1, 8, and z as the
generalized coordinates.

so there are only two degrees of freedom for the system, and therefore only two
proper generalized coordinates. We may use Equation 7.26 to eliminate either the
coordinate z or r; we choose to do the former. Then the square of the velocity is

v? = 72 + 1%0? + 32
=72 + 1202 + 2 cot2a :
= P2cscla + 7202 (7.27)
The potential energy (if we choose U= 0 atz = 0) is
U= mgz= mgrcot a

so the Langrangian is
1 .
L= §m (7* csc?*a + 1°0%) — mgr cot (7.28)

We note first that L does not explicitly contain 8. Therefore 4L/06 = 0, and
the Lagrange equation for the coordinate 6 is

doL_
dt o
Hence
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But m7% = mrw is just the angular momentum about the z-axis. Therefore,
Equation 7.29 expresses the conservation of angular momentum about the axis
of symmetry of the system.
The Lagrange equation for r is
oL doL
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Calculating the derivatives, we find
F— r0%sin?a + gsina cosa =0 (7.31)
which is the equation of motion for the coordinate 7.

We shall return to this example in Section 8.10 and examine the motion in
more detail.

The point of support of a simple pendulum of length & moves on a massless rim
of radius a rotating with constant angular velocity @. Obtain the expression for
the Cartesian components of the velocity and acceleration of the mass m.
Obtain also the angular acceleration for the angle # shown in Figure 7-3.

Solution. 'We choose the origin of our coordinate system to be at the center of
the rotating rim. The Cartesian components of mass m become

= q cos wt+ bsin 0
x-ac } (7.32)
y = asin ot — b cos @
The velocities are
%= —aw sin wt + b6 cos O
. 7.33
= qw cos wt + bfsin 0 } ( )

FIGURE 7-3 Example 7.5. A simple pendulum is attached to a rotating rim.



