Mishkin ch.4: Interest Rates Summary

1. Three key concepts:

$$
\text { Present Value } \quad \text { Yield to Maturity } \quad \text { Total Return }
$$

2. Know how to work with the key concepts:

> Task in Exams: Problem solving
3. Applications:

Real versus nominal rates Inflation-indexed bonds

PV of stocks: Discounted dividends
Tracking total returns

Fundamentals

- Present Value:

$$
\mathrm{PV}_{\mathrm{t}}=\frac{\text { Payment }_{t+1}}{(1+i)}+\frac{\text { Payment }_{t+2}}{(1+i)^{2}}+\ldots+\frac{\text { Payment }_{t+N}}{(1+i)^{N}}
$$

$$
\mathrm{i}=\text { discount rate }=\text { interest rate used to discount future payments }
$$

- Yield to Maturity (or simply: Yield) = Particular discount rate ithat solves

$$
\mathrm{P}_{\mathrm{B}}=\mathrm{PV}_{\mathrm{t}}=\frac{\text { Payment }_{t+1}}{(1+i)}+\frac{\text { Payment }_{t+2}}{(1+i)^{2}}+\ldots+\frac{\text { Payment }_{t+N}}{(1+i)^{N}}
$$

One-period example (Treasury Bill promises $\$ 10,000$ at maturity)

$$
\mathrm{P}_{\mathrm{B}}=\frac{10000}{(1+i)} \Rightarrow(1+\mathrm{i})=\frac{10000}{P_{B}} \Rightarrow \mathrm{i}=\frac{10000-P_{B}}{P_{B}}
$$

Application: Coupon Bonds

- Defined by: Maturity date $\quad \Rightarrow \quad$ Years to maturity $=\mathrm{N}$

Coupon $=\mathrm{C}$
Face Value $=\mathrm{F} \quad \Rightarrow \quad$ Coupon rate $=\mathrm{C} / \mathrm{F}$

- Market data: \quad Price $=\mathrm{PB}_{\mathrm{B}}$ or $\mathrm{PBt}_{\mathrm{Bt}} \quad \Rightarrow \quad$ Yield to maturity $=\mathrm{i}$ or i_{t}

We use subscript t (for time) when multiple dates are involved.
Yield or "interest rate" without modifiers refers to yield to maturity.

- Common problems: Compute yield from price. Compute price from yield.

Example

- Bond quote from WSJ:

Date:	$4 / 9 / 2018$			
Security	Maturity	Coupon Rate	Price	Yield
Treasury note	$3 / 31 / 2021$	1.25%	96.63	2.431%
	Question: How is the yield calculated?			

Example

Date:	$4 / 9 / 2018$			
Security	Maturity	Coupon Rate	Price	Yield
Treasury note	$3 / 31 / 2021$	1.25%	96.63	2.431%

- Task \#1: Set up the present value equation

About 3 years to maturity $\quad \Rightarrow \quad \mathrm{N}=3$
Price is per $\mathrm{F}=100$ face value $=>\quad \mathrm{C}=($ Coupon Rate $) * 100=1.25$
Payment at dates $\mathrm{t}+1, \ldots, \mathrm{t}+\mathrm{N}-1: \quad$ Coupon $=\mathrm{C}$
Payment at maturity date $\mathrm{t}+\mathrm{N}: \quad$ Face value + final coupon $=\mathrm{F}+\mathrm{C}$

$$
P V=\frac{C}{(1+i)}+\frac{C}{(1+i)^{2}}+\frac{C+F}{(1+i)^{3}}=\frac{1.25}{(1+i)}+\frac{1.25}{(1+i)^{2}}+\frac{101.25}{(1+i)^{3}}
$$

- Task \#2: Solve the present value equation

Cubic equation - solve numerically by exploiting that PV is declining in i.
Knowing how this works is essential to understanding yield quotes.

[Notes on Mishkin Ch. 4 - P.5]

The Total Return

(a.k.a: Return, Rate of Return)

- Definition:

$$
\text { RET }=\frac{\text { Payment }+\mathbf{P}_{t+1}-\mathbf{P}_{t}}{\mathbf{P}_{t}}
$$

- Measured over a specific time period t to $\mathrm{t}+1$:
$\mathrm{P}_{\mathrm{t}}=$ Price at the start; known.
$P_{t+1}=$ Price at the end; often unknown at time t.
Payment $=$ current yield or other payout during the time period t to $t+1$; assumed known
- Can be computed for ANY financial asset - not only bonds
- Components:

$$
\begin{aligned}
& \text { Current Yield }=\frac{\text { Payment }}{P t} \\
& \text { Capital Gain }=\frac{\mathrm{Pt}+1-\mathrm{Pt}}{\mathrm{Pt}}=\frac{\text { Change in Price }}{\text { Initial Price }}
\end{aligned}
$$

Application in Mishkin:

Total return on a coupon bond for one year:

$$
R E T=\frac{C+P_{B t+1}-P_{B t}}{P_{B t}}
$$

Mishkin's formula is a special case: Payment $=$ C. Period $=$ one year
Remember the general principle:

$$
R E T=\frac{\text { Payment }}{P_{t}}+\frac{P_{t+1}-P_{t}}{P_{t}}
$$

e.g. if period $=\mathrm{D}$ days, then: Payment $=($ Annualized current yield $) * \mathrm{D} / 365$. if asset $=$ real estate, then: Payment $=$ Rental income minus expenses.

- Caution: Yields are usually annualized. But current yield in RET refers to the period over which RET is calculated - may require conversion.

Illustrations in Mishkin

1. Price - Yield Relation

Table 1 Yields to Maturity on a 10\%-Coupon-Rate Bond Maturing in Ten Years (Face Value $=\$ 1,000$)

Price of Bond (\$)	Yield to Maturity (\%)
1,200	7.13
1,100	8.48
1,000	10.00
900	11.75
800	13.81

2. Key Linkages: Yield Change - Price Change - Return

Table 2 One-Year Returns on Different-Maturity 10\%-Coupon-Rate Bonds When Interest Rates Rise from 10\% to 20\%

(1) Years to Maturity When Bond Is Purchased	(2) Initial Current Yield (\%)	(3) Initial Price (\$)	(4) Price Next Year* (\$)	(5) Rate of Capital Gain (\%)	(6) Rate of Return [col (2) + col (5)] (\%)
30	10	1,000	503	-49.7	-39.7
20	10	1,000	516	-48.4	-38.4
10	10	1,000	597	-40.3	-30.3
5	10	1,000	741	-25.9	-15.9
2	10	1,000	917	-8.3	+1.7
1	10	1,000	1,000	0.0	+10.0

- Lesson: Price responses increase with maturity.

Quantitative measure of price-sensitivity: $\% \Delta \mathrm{P}=$ - Duration * $\Delta \mathrm{i} /(1+\mathrm{i})$
Discount bonds have duration = maturity; coupon bonds have duration < maturity.
Optional reading: Online Appendix to Ch. 4

Real Returns and Real Interest Rates

- Real interest rate $=$ Nominal interest rate minus expected inflation

$$
\mathbf{r}=\mathbf{i}-\pi^{\mathbf{e}}
$$

- Traditional measurement: Find nominal interest rates \& estimate expected inflation

Problem: expectations are not directly observable.

- Better approach: exploit yields on inflation-protected securities (in U.S. since 1997)
- Treasury Inflation-Protected Securities (TIPS):
- Face value is fixed in real terms: $\quad \mathrm{Fr}=\$ 100$
- Nominal face value varies with $\mathrm{CPI}: \quad \mathrm{F}=\mathrm{Fr} *(\mathrm{CPI})$
- Nominal coupon varies with CPI: $\quad \mathrm{C}=($ Coupon rate $) * \mathrm{~F}$
- If Price $=$ Face value, then: nominal return $\approx($ Coupon rate $)+($ Change in CPI $)$
\Rightarrow Real yield to maturity $=$ real return \approx Coupon rate
\Rightarrow Interpret coupon rate as real interest rate.
- If Price <> Face value, real return differs from coupon rate \& not easy to compute.
\Rightarrow Rely on published sources for real yields to maturity (e.g. WSJ)
- Remember: Quoted yields on TIPS are direct measures of REAL interest rates.
- Expected inflation: compute $\boldsymbol{\pi}^{\mathbf{e}}=\mathbf{i}-\mathbf{r}$ from observed Treasury yields (i and r).

Other Applications

- Present values of corporate stocks:
- Payment = Dividend. Example of infinitely-lived asset.

$$
P V_{t}=\frac{\text { Dividend }_{t+1}}{1+i}+\frac{\text { Dividend }_{t+2}}{(1+i)^{2}}+\ldots
$$

- More on stocks in Mishkin ch.7.
- $\underline{\text { British consols }}=$ coupon bonds without repayment date.
- Simple present value formula from math of geometric sums:

$$
P_{B}=\frac{C}{1+i}+\frac{C}{(1+i)^{2}}+\ldots=\frac{C}{i}
$$

- Illustrates negative price-yield relationship.

More on Bond Quotes: Review and Caveats

- Most of the time, economists use published or online quotes to obtain yields.
- Traders sometimes work with yields without mentioning prices.

Then $\mathrm{P}_{\mathrm{B}}=\mathrm{PV}$ is implied. Everyone knows.

- Bond quotes have two parts:
(1) Identify the security: issuer, maturity date, coupon = fixed data.
(2) Market information: price, yield, time of quote $=$ changes over time.
- Implied items that also change: current yield, remaining maturity.
- Assumptions to check:

Prices are usually per $\$ 100$ face value; but sometimes per $\$ 1000$.
Prices are may be decimal or fractional (e.g. "100:8"=100 $\frac{8}{32}=100.25$)
Good sources should have legends or footnotes to confirm interpretation

- Simplifications for this class:

Disregard discounting over fractional periods; usually maturity = whole years
Disregard lumpiness in coupons; treat payments as smooth over the year
Disregard "accrued interest" - use prices are as quoted "clean"

