<u>Mishkin ch.4: Interest Rates</u> <u>Summary</u>

1. Three key concepts:

Present Value Yield to Maturity

Total Return

2. Know how to work with the key concepts:

Task in Exams: Problem solving

3. Applications:

Real versus nominal rates Inflation-indexed bonds PV of stocks: Discounted dividends Tracking total returns

Fundamentals

• Present Value:

$$PV_{t} = \frac{Payment_{t+1}}{(1+i)} + \frac{Payment_{t+2}}{(1+i)^{2}} + \dots + \frac{Payment_{t+N}}{(1+i)^{N}}$$

i = discount rate = interest rate used to discount future payments

• Yield to Maturity (or simply: Yield) = Particular discount rate i that solves

$$P_{B} = PV_{t} = \frac{Payment_{t+1}}{(1+i)} + \frac{Payment_{t+2}}{(1+i)^{2}} + \dots + \frac{Payment_{t+N}}{(1+i)^{N}}$$

One-period example (Treasury Bill promises \$10,000 at maturity)

$$P_{B} = \frac{10000}{(1+i)} \implies (1+i) = \frac{10000}{P_{B}} \implies i = \frac{10000 - P_{B}}{P_{B}}$$

[Notes on Mishkin Ch.4 - P.2]

Application: Coupon Bonds

• Defined by:	Maturity date =>		Years to maturity $=$ N	
	Coupon = C			
	Face Value = F	=>	Coupon rate $= C/F$	
• Market data:	Price = P_B or P_{Bt}	=>	Yield to maturity = i or i_t	

We use subscript t (for time) when multiple dates are involved. Yield or "interest rate" without modifiers refers to yield to maturity.

• Common problems: Compute yield from price. Compute price from yield.

Example

• Bond quote from WSJ:

Date:	4/9/2018			
Security	Maturity	Coupon Rate	Price	Yield
Treasury note	3/31/2021	1.25%	96.63	2.431%

Question: How is the yield calculated?

Example

Date:	4/9/2018			
Security	Maturity	Coupon Rate	Price	Yield
Treasury note	3/31/2021	1.25%	96.63	2.431%

- Task #1: Set up the present value equation
 - About 3 years to maturity=>N = 3Price is per F=100 face value =>C = (Coupon Rate) * 100 = 1.25Payment at dates t+1,...,t+N-1:Coupon = CPayment at maturity date t+N:Face value + final coupon = F+C

$$PV = \frac{C}{(1+i)} + \frac{C}{(1+i)^2} + \frac{C+F}{(1+i)^3} = \frac{1.25}{(1+i)} + \frac{1.25}{(1+i)^2} + \frac{101.25}{(1+i)^3}$$

• Task #2: Solve the present value equation Cubic equation – solve numerically by exploiting that PV is declining in i. *Knowing how this works is essential to understanding yield quotes.*

Worksheet	Discount	PV	Graph each pair	
try coupon:	1.25%	100.00	-> par value	
try low:	0.00%	103.75	-> high PV => yield too low	
try high:	3.00%	95.05	-> low PV => yield too high	
try between:	2.50%	96.43	-> yield too high	
try again:	2.43%	96.63	-> close enough	

The Total Return

(a.k.a: Return, Rate of Return)

• Definition:

$$RET = \frac{Payment + P_{t+1} - P_t}{P_t}$$

• Measured over a specific time period t to t+1:

 P_t = Price at the start; known.

 P_{t+1} = Price at the end; often unknown at time t.

Payment = current yield or other payout during the time period t to t+1; assumed known

• Can be computed for ANY financial asset – not only bonds

• Components:

Current Yield =
$$\frac{Payment}{Pt}$$

Capital Gain =
$$\frac{P_{t+1}-P_t}{P_t} = \frac{Change in Price}{Initial Price}$$

[Notes on Mishkin Ch.4 - P.6]

Application in Mishkin:

Total return on a coupon bond for one year:

$$RET = \frac{C + P_{Bt+1} - P_{Bt}}{P_{Bt}}$$

Mishkin's formula is a special case: Payment = C. Period = one year

Remember the general principle:

$$RET = \frac{Payment}{P_t} + \frac{P_{t+1} - P_t}{P_t}$$

- e.g. if period = D days, then: Payment = (Annualized current yield) * D/365. if asset = real estate, then: Payment = Rental income minus expenses.
- Caution: Yields are usually annualized. But current yield in RET refers to the period over which RET is calculated may require conversion.

Illustrations in Mishkin

<u>1. Price – Yield Relation</u>

Table 1 Yields to Maturity on a 10%-Coupon-Rate Bond Maturing in Ten Years (Face Value = \$1,000)

Price of Bond (\$)	Yield to Maturity (%)		
1,200	7.13		
1,100	8.48		
1,000	10.00		
900	11.75		
800	13.81		

<u>2. Key Linkages: Yield Change - Price Change - Return</u>

Table 2 One-Year Returns on Different-Maturity 10%-Coupon-Rate Bonds WhenInterest Rates Rise from 10% to 20%

(1) Years to Maturity When Bond Is Purchased	(2) Initial Current Yield (%)	(3) Initial Price (\$)	(4) Price Next Year* (\$)	(5) Rate of Capital Gain (%)	(6) Rate of Return [col (2) + col (5)] (%)
30	10	1,000	503	-49.7	-39.7
20	10	1,000	516	-48.4	-38.4
10	10	1,000	597	-40.3	-30.3
5	10	1,000	741	-25.9	-15.9
2	10	1,000	917	-8.3	+1.7
1	10	1,000	1,000	0.0	+10.0

• Lesson: Price responses increase with maturity.

Quantitative measure of price-sensitivity: $\Delta P = -$ **Duration** * $\Delta i/(1+i)$

Discount bonds have duration = maturity; coupon bonds have duration < maturity.

Optional reading: Online Appendix to Ch.4

Real Returns and Real Interest Rates

• <u>**Real interest rate**</u> = Nominal interest rate minus expected inflation

$\mathbf{r} = \mathbf{i} - \pi^{\mathbf{e}}$

- Traditional measurement: Find nominal interest rates & estimate expected inflation Problem: expectations are not directly observable.
- Better approach: exploit yields on inflation-protected securities (in U.S. since 1997)

• **Treasury Inflation-Protected Securities (TIPS)**:

- Face value is fixed in real terms: $F_r = 100
- Nominal face value varies with CPI: $F = F_r * (CPI)$
- Nominal coupon varies with CPI: C = (Coupon rate) * F
- If Price = Face value, then: nominal return \approx (Coupon rate) + (Change in CPI)

=> Real yield to maturity = real return ≈ Coupon rate

- => Interpret coupon rate as real interest rate.
- If Price <> Face value, real return differs from coupon rate & not easy to compute.
 - => Rely on published sources for real yields to maturity (e.g. WSJ)
- Remember: Quoted yields on TIPS are direct measures of REAL interest rates.
- Expected inflation: compute $\pi^{e} = \mathbf{i} \mathbf{r}$ from observed Treasury yields (i and r).

Other Applications

- Present values of corporate stocks:
 - Payment = Dividend. Example of infinitely-lived asset.

$$PV_t = \frac{Dividend_{t+1}}{1+i} + \frac{Dividend_{t+2}}{(1+i)^2} + \dots$$

- More on stocks in Mishkin ch.7.
- <u>British consols</u> = coupon bonds without repayment date.
 - Simple present value formula from math of geometric sums:

$$P_B = \frac{C}{1+i} + \frac{C}{(1+i)^2} + \ldots = \frac{C}{i}$$

- Illustrates <u>negative</u> price-yield relationship.

More on Bond Quotes: Review and Caveats

- Most of the time, economists use published or online quotes to obtain yields.
- Traders sometimes work with yields without mentioning prices. Then $P_B = PV$ is implied. Everyone knows.
- Bond quotes have two parts:
 - (1) Identify the security: issuer, maturity date, coupon = fixed data.
 - (2) Market information: price, yield, time of quote = changes over time.
- Implied items that also change: current yield, remaining maturity.
- Assumptions to check:

Prices are usually per \$100 face value; but sometimes per \$1000. Prices are may be decimal or fractional (e.g. "100 : 8"= $100\frac{8}{32}$ = 100.25)

Good sources should have legends or footnotes to confirm interpretation

- Simplifications for this class:
 - Disregard discounting over fractional periods; usually maturity = whole years Disregard lumpiness in coupons; treat payments as smooth over the year Disregard "accrued interest" – use prices are as quoted "clean"