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developed. All such approaches are in essence a posteriori, because we know before-
hand that a result equivalent to the Newtonian equations must be obtained. Thus,
to effect a simplification we need not formulate a new theory of mechanics—the
Newtonian theory is quite correct—but only devise an alternate method of deal-
ing with complicated problems in a general manner. Such a method is con-
tained in Hamilton’s Principle, and the equations of motion resulting from the
application of this principle are called Lagrange’s equations.

If Lagrange’s equations are to constitute a proper description of the dynam-
ics of particles, they must be equivalent to Newton’s equations. On the other
hand, Hamilton’s Principle can be applied to a wide range of physical phenom-
ena (particularly those involving fields) not usually associated with Newton’s
equations. To be sure, each of the results that can be obtained from Hamilton’s
Principle was first obtained, as were Newton’s equations, by the correlation of
experimental facts. Hamilton’s Principle has not provided us with any new physical
theories, but it has allowed a satisfying unification of many individual theories by
a single basic postulate. This is not an idle exercise in hindsight, because it is the
goal of physical theory not only to give precise mathematical formulation to ob-
served phenomena but also to describe these effects with an economy of funda-
mental postulates and in the most unified manner possible. Indeed, Hamilton’s
Principle is one of the most elegant and far-reaching principles of physical theory.

In view of its wide range of applicability (even though this is an after-the-fact
discovery), it is not unreasonable to assert that Hamilton’s Principle is more
“fundamental” than Newton’s equations. Therefore, we proceed by first postulat-
ing Hamilton’s Principle; we then obtain Lagrange’s equations and show that
these are equivalent to Newton’s equations.

Because we have already discussed (in Chapters 2, 3, and 4) dissipative phe-
nomena at some length, we henceforth confine our attention to conservative
systems. Consequently, we do not discuss the more general set of Lagrange’s
equations, which take into account the effects of nonconservative forces. The
reader is referred to the literature for these details.*

7.2 Hamilton’s Principle

Minimal principles in physics have a long and interesting history. The search for
such principles is predicated on the notion that nature always minimizes certain
important quantities when a physical process takes place. The first such mini-
mum principles were developed in the field of optics. Hero of Alexandria, in the
second century B.C., found that the law governing the reflection of light could be
obtained by asserting that a light ray, traveling from one point to another by a re-
flection from a plane mirror, always takes the shortest possible path. A simple
geometric construction verifies that this minimum principle does indeed lead to

*See, for example, Goldstein (Go80, Chapter 2) or, for a comprehensive discussion, Whittaker
(Wh37, Chapter 8).



230 7 / HAMILTON’S PRINCIPLE—LAGRANGIAN AND HAMILTONIAN DYNAMICS

the equality of the angles of incidence and reflection for a light ray reflected
from a plane mirror. Hero’s principle of the shortest path cannot, however, yield a
correct law for refraction. In 1657, Fermat reformulated the principle by postulat-
ing that a light ray always travels from one point to another in a medium by a
path that requires the least time.* Fermat’s principle of least time leads immedi-
ately, not only to the correct law of reflection, but also to Snell’s law of refraction
(see Problem 6-7).%

Minimum principles continued to be sought, and in the latter part of the sev-
enteenth century the beginnings of the calculus of variations were developed by
Newton, Leibniz, and the Bernoullis when such problems as the brachistochrone
(see Example 6.2) and the shape of a hanging chain (a catenary) were solved.

The first application of a general minimum principle in mechanics was made
in 1747 by Maupertuis, who asserted that dynamical motion takes place with min-
imum action.! Maupertuis’s principle of least action was based on theological
grounds (action is minimized through the “wisdom of God”), and his concept of
“action” was rather vague. (Recall that action is a quantity with the dimensions of
length X momentum or energy X time.) Only later was a firm mathematic foundation
of the principle given by Lagrange (1760). Although it is a useful form from which
to make the transition from classical mechanics to optics and to quantum me-
chanics, the principle of least action is less general than Hamilton’s Principle
and, indeed, can be derived from it. We forego a detailed discussion here.8

In 1828, Gauss developed a method of treating mechanics by his principle of
least constraint; a modification was later made by Hertz and embodied in his
principle of least curvature. These principles' are closely related to Hamilton’s
Principle and add nothing to the content of Hamilton’s more general formula-
tion; their mention only emphasizes the continual concern with minimal princi-
ples in physics.

In two papers published in 1834 and 1835, Hamilton? announced the dy-
namical principle on which it is possible to base all of mechanics and, indeed,
most of classical physics. Hamilton’s Principle may be stated as follows™:

Of all the possible paths along which a dynamical system may move from one
point to another within a specified time interval (consistent with any con-
straints), the actual path followed is that which minimizes the time integral of the
difference between the kinetic and potential energies.

*Pierre de Fermat (1601-1665}, a French lawyer, linguist, and amateur mathematician.

tIn 1661, Fermat correctly deduced the law of refraction, which had been discovered experimentally
in about 1621 by Willebrord Snell (1591-1626), a Dutch mathematical prodigy.
{Pierre-Louise-Moreau de Maupertuis (1698-1759), French mathematician and astronomer. The
first use to which Maupertuis put the principle of least action was to restate Fermat’s derivation of
the law of refraction (1744).

§See, for example, Goldstein (Go80, pp. 365-371) or Sommerfeld (So50, pp. 204-209).

iI1See, for example, Lindsay and Margenau (Li36, pp. 112-120) or Sommerfeld (5050, pp.
210-214).

9Sir William Rowan Hamilton (1805-1865), Irish mathematician and astronomer, and later, Irish
Astronomer Royal.

**The general meaning of “the path of a system” is made clear in Section 7.3,
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In terms of the calculus of variations, Hamilton'’s Principle becomes

2
SJ (T-U)dt=0 (7.1)
b
where the symbol 8 is a shorthand notation to describe the variation discussed in
Sections 6.3 and 6.7. This variational statement of the principle requires only
that the integral of T'— U be an extremum, not necessarily a minimum. But in al-
most all important applications in dynamics, the minimum condition occurs.

The kinetic energy of a particle expressed in fixed, rectangular coordinates
is a function only of the %, and if the particle moves in a conservative force field,
the potential energy is a function only of the x;:

T=T(x), U= Ux)
If we define the difference of these quantities to be
L=T- U= L(x;, %; (7.2)

then Equation 7.1 becomes

) J L(x, &)dt =0 (7.3)

f

The function L appearing in this expression may be identified with the function
fof the variational integral (see Section 6.5),

5J Qf{y,-(x), yix); x} dx

if we make the transformations

x—>
9i(x) = x,(0)
yix) — %(0)
S, yi); xf = Lx,, %)

The Euler-Lagrange equations (Equation 6.57) corresponding to Equation 7.3
are therefore

7 5. =0, 7=1,2,3 Lagrange equations of motion  (7.4)

These are the Lagrange equations of motion for the particle, and the quantity L
is called the Lagrange function or Lagrangian for the particle.



