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Chapter T Survey of the Elementary Principles

made to roll around in a circle tangent to the path and of arbitrary radius. At the
end of the process, x, ¥, and 9 have been returned to their original values, but ¢
has changed by an amoant depending on the radius of the circle.

Nonintegrable differential constraints of the torm of Eqs. (1.39) are of course
not the only type of nonholonomic constraints. The constraint conditions may
involve higher-order derivatives, or may appear in the form of inequalities, as we
have seen.

Partly because the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints are always amenable to a formal solution. But there is
no general way to attack nonholonomic examples. True, if the constraint is nonin-
tegrable, the differential equations of constraint can be introduced into the prob-
lem along with the differential equations of motion, and the dependent equations
eliminated, in effect, by the method of Lagrange multipliers.

‘We shall return to this method at a later point. However, the more vicious cases
of nonholonomic constraint must be tackled individually, and consequently in the
development of the more formal aspects of classical mechanics, it is almost invari-
ably assumed that any constraint, if present, is holonomic. This restriction does
not greatly limit the applicability of the theory, despite the fact that many of the
constraints encountered in everyday life are nonholonomic. The reason is that the
entire concept of constraints imposed in the system through the medium of wires
or surfaces or walls is particularly appropriate only in macroscopic or large-scale
problems. But today physicists are more interested n atomic and nuclear prob-
lems. On this scale all objects, both in and out of the system, consist alike of
molecules, atoms, or smaller particles, exerting definite forces, and the notion of
constraint becomes artificial and rarely appears. Constraints are then uvsed only
as mathematical idealizations to the actual physical case or as classical approxi-
mations to a quantum-mechanical property, e.g., rigid body rotations for “spin.”
Such constraints are always holonomic and fit smoothly into the framework of the
theory.

To surmount the second difficulty, namely, that the forces of constraint are
unknown a priori, we should like to so formulate the mechanics that the forces
of constraint disappear. We need then deal only with the known applied forces. A
hint as to the procedure to be followed is provided by the fact that in a particular
system with constraints ie arigid body, the work done by internal forces (which
are here the forces ot constraint) vanishes. We shall follow up this clue in the
ensuing sections and generalize the ideas contained in it.

D’ALEMBERT’S PRINCIPLE AND LAGRANGE’S EQUATIONS

A virmal (infinitesimal’ displacement of a system refers to a change in the con-
figuration of the system as the result of any arbitrary infinitesimal change of the
coordinates ér,, consistent with the forces and constraints imposed on the system
al the given instant 1. The displacement is called virtual to distinguish it from an
actual displacement of the system occurring in a time interval d¢, during which
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the forces and constraints may be changing. Suppose the system is in equilibrium;
i.e., the total force on each particle vanishes, ¥, = 0. Then clearly the dot product
F, . ér,, which is the virtual work of the force F, in the displacement ér;, also
vanishes. The sum of these vanishing products over all particles must likewise be
ZEro:

D F, -6n =0. (1.40)

As yet nothing has been said that has any new physical content. Decompose F,
into the applied force, Ff“), and the force of constraint, f;,

F, =F“ 1. (1.41)
so that Eq. (1.40) becomes

ZFf“’ A+ ) Fdn =0 (142)
1

i

We now restrict ourszlves to systems for which the net virtual work of the
Jorces of constraint is zero. We have seen that this condition holds true for rigid
bodies and it is valid for a large number of other constraints. Thus, if a particle is
constrained to move on a surface, the force of constraint is perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes. This is no longer true if sliding friction forces are present, and
we must exclude such systems from our formulation. The restriction is not un-
duly hampering, since the friction is essentially a macroscopic phenomenon. On
the other hand, the forces of rolling friction do not violate this condition, since the
forces act on a point that is momentarily atrest and can do no work in an infinites-
imal displacement consistent with the rolling constraint. Note that if a particle is
constrained to a surface that is itself moving in time, the force of constraint is
instantaneously perpendicular to the surface and the work during a virtual dis-
placement is still zero even though the work during an actual displacement in the
time d¢ does not necessarily vanish.

‘We therefore have as the condition for equilibrium of a system that the virtual
work of the applied forces vanishes:

Y F o, =0, (1.43)

i

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of ér; can no longer be set equal to zero; i.c., in general Fl(a) # 0, since
the 8r; are not completely independent but are connected by the constraints. In
order to equate the coefficients to zero, we must transform the principle into a
form involving the virtual displacements of the g,, which are independent. Equa-
tion (1.43) satisfies our needs in that it does not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.
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To obtain such a principle, we use a device first thought of by James Bemoulli
and developed by D’ Alembert. The equation of motion,

Fx = i’h
can be written as
Fx _]-’1 =0,

which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “reversed effective force” —p;. Instead of (1.40),
we can immediately write

D Fi—p) 81, =0, (1.44)

and, making the same resolutton 1nto applied torces and torces of constraint, there
results

Z‘-Flga) —Pi)eor + Zf, «0r; =0.
f ‘

We again restrict oursclves to systems for which the virtual work of the forces of
constraint vanishes and therefore obtain

D ED —py)-or, =0, (1.45)

which 1s often called D’Alembert's principle. We have achieved our aim, in that
the forces of constraint no longer appear, and the superscript @ can now e
dropped without ambiguity. It is still not in a useful form to furnish equations
of motion for the system. We must now transform the principle into an expression
involving virtual displacements of the generalized coordinates, which are then in-
dependent of each other (for holonomic constraints), so that the coefficients of the
Aq, can be set separately equal to zero.

The translation from r, to g, language starts from the transformation equations
(1.38),

I =rg, 4, ... qn t) (1.45"

(assuming » independent coordinates), and is carried out by means of the usual
“chain rules” of the calculus of partial differentiation. Thus, v; is expressed in
terms of the g; by the formula

dr; or; . ar,
VWE —— = 9k

= — 1.46
dt = Oqk ot (1.40)
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Similarly, the arbitrary virtual displacement 3r, can be connected with the virtual
displacements &g, by

dr =) —4q, (147)

Note that no variation of time, §t, is involved here, since a virtual displacement
by definition considers only displacements of the coordinates. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
is changing in time.)

In terms of the generalized coordinates, the virtual work of the F, becomes

D Fp b= ZF -ﬁaq,
2

= E 0,84;. (1.48)
J

where the Q, are called the components of the generalized force, defined as

ar,
0, = ZF, e (1.49)

Note that just as the ¢’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but @,8g, must always have the
dimensions of work. For example, @, might be a torque N, and dg; a differential
angle d6,, which makes N, 40, a differential of work.

We turn now to the onther other term mvolved m Eq. (1.45), which may be

written as
Z . 8r, = Zm,r, . 81,

1

Expressing 5r; by (1.47), this becomes

TR

Consider now the relation

) d . or, 5 d Br,-) -
¢ — = — s — 11— et broudl I F 1.50
Zl:mlrl 2q, ,Z [dl (mlrt aq}) mr dt (aqj (1.50)

In the last term of Eq. (1.50) we can interchange the ditferentiation with respect
to ¢t and q,, for, in analogy to (1.46).
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d (81‘,) A d°r, et 3°r,
dr \da;)  dq, aq,aqk dg,ot’
8v,
Iy

by Eq. (1.46). Further, we also see from Eq. (1.46) that

v, or,

3¢, dq;’
Substitution of these changes in (1.50) leads to the result that

. ov,
S = [ (e ) = 5

and the second term on the left-hand side of Eq. (1.45) can be expanded into

Sl ()] (23 -0 o

Identifying >, %m,v,2 with the system kinetic energy T, D’ Alembert’s principle
(cf. Eq. (1.45)) becomes

d (8T @T )
Ci& (@) -agl-ofm=0 am

Note that in a system of Cartesian coordinates the partial derivative of T with
respect to g; vanishes. Thus, speaking in the language of differential geomeury,
this term arises from the curvature of the coordinates g,. In polar coordinates,
e.£., itis in the partial derivative of T with respect to an angle coordinate that the
centripetal acceleration term appears.

Thus far, no restriction has been made on the nature of the constraints other
than that they be workless in a virtual displacement. The variables g, can be any
set of coordinates used to describe the motion of the system. If, however, the con-
straints are holonomic, then it is possible o find sets of independent coordinates
g, that contain the constraint conditions implicitly in the transformation equations
(1.38). Any virtual displacement 8¢ is then independent of §gx, and therefore the
only way for (1.52) to hold is for the individual coefficients to vanish:

d (T oT
_— 1.53
dt (3‘31 ) 9% — < (133

(1.51)

There are n such equations in all.
When the forces are derivable from a scalar potential function V,

F,=-V,V.
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Then the generalized forces can be written as
31‘, al',
Q = F * = - V V t T
! X;: " ag, X,: ©dg,

which is exactly the same expression for the partial derivative of a function
—V(r,r2,..., Iy, t) with respect to g;:

oV
Q,=——. (1.54)
7T g
Equations (1.53) can then be rewritten as

4 (ﬂ)___"(T_V) ~o. (1.55)
dt \ 8g; 3g,

The equations of motion in the form (1.55) are not necessarily restricted to conser-
vative systems, only if V is not an explicit function of time is the systcm conscerva-
tive (cf. p. 4). As here defined, the potential V does not depend on the generalized
velocities. Hence, we can include a term m V in the partial derivative with respect

tog;:

d (B(T—V) (T —V)
- : - =0.
dt 3q, 3q,
Or, defining a new function, the Lagrangian L, as
L=T-YV, (1.56)
the Egs. (1.53) become
d (3L oL
—| = )-—5—=0, 1.57
dt (aq ; ) g, (1.57)

expressions referred to as “Lagrange’s equations.”

Note that for a particular set of equations of motion there is no unique choice
of Lagrangian such that Eqs (1 57) lead to the equations of motion in the given
generalized coordinates. Thus, in Derivations 8 and 10 it is shown thatif L(g, g, £)
is an approximate Lagrangian and F(g, 1) is any differentiable function of the
generalized coordinates and time, then

L'(q,4,) =L{g.4, )+ % (1.57")
is a Lagrangian also resulting in the same equations of motion. It is also often
possible to find alternative Lagrangians beside those constructed by this prescrip-
tion {see Exercise 20). While Eq. (1.56} is always a suitable way to construct a
Lagrangian for a conservative system, it does not provide the only Lagrangian
suitable for the given system.



