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regarding force. The equations of motion were obtained only by specifying certain
properties associated with the particle (the Kinetic and potential energies), and
without the necessity of explicitly taking into account the fact that there was an
external agency acting on the particle (the force). Therefore, insofar as energy can
be defined independently of Newtonian concepts, Hamilton’s Principle allows us
to calculate the equations of motion of a body completely without recourse to
Newtonian theory. We shall return to this important point in Sections 7.5 and 7.7.

7.3 Generalized Coordinates

We now seek to take advantage of the flexibility in specifying coordinates that
the two examples of the preceding section have suggested is inherent in
Lagrange’s equations.

We consider a general mechanical system consisting of a collection of 7 dis-
crete point particles, some of which may be connected to form rigid bodies. We
discuss such systems of particles in Chapter 9 and rigid bodies in Chapter 11. To
specify the state of such a system at a given time, it is necessary to use n radius
vectors. Because each radius vector consists of three numbers (e.g., the rectan-
gular coordinates), 3z quantities must be specified to describe the positions of
all the particles. If there exist equations of constraint that relate some of these
coordinates to others (as would be the case, for example, if some of the particles
were connected to form rigid bodies or if the motion were constrained to lie
along some path or on some surface), then not all the 3n coordinates are inde-
pendent. In fact, if there are m equations of constraint, then 3n — m coordinates
are independent, and the system is said to possess 3n — m degrees of freedom.

It is important to note that if s = 3n — m coordinates are required in a given
case, we need not choose s rectangular coordinates or even s curvilinear coordi-
nates (e.g., spherical, cylindrical). We can choose any sindependent parameters,
as long as they completely specify the state of the system. These s quantities need
not even have the dimensions of length. Depending on the problem at hand, it
may prove more convenient to choose some of the parameters with dimensions
of energy, some with dimensions of (length}?, some that are dimensionless, and so
forth. In Example 6.5, we described a disk rolling down an inclined plane in
terms of one coordinate that was a length and one that was an angle. We give the
name generalized coordinates to any set of quantities that completely specifies
the state of a system. The generalized coordinates are customarily written as
41, §a» - . . » or simply as the g A set of independent generalized coordinates
whose number equals the number s of degrees of freedom of the system and not
restricted by the constraints is called a proper set of generalized coordinates. In
certain instances, it may be advantageous to use generalized coordinates whose
number exceeds the number of degrees of freedom and to explicitly take into
account the constraint relations through the use of the Lagrange undetermined
multipliers. Such would be the case, for example, if we desired to calculate the
forces of constraint (see Example 7.9).



234 7 / HAMILTON’S PRINCIPLE—LAGRANGIAN AND HAMILTONIAN DYNAMICS

The choice of a set of generalized coordinates to describe a system is not
unique; there are in general many sets of quantities (in fact, an infinite number!)
that completely specify the state of a given system. For example, in the problem
of the disk rolling down the inclined plane, we might choose as coordinates the
height of the center of mass of the disk above some reference level and the dis-
tance through which some point on the rim has traveled since the start of the
motion. The ultimate test of the “suitability” of a particular set of generalized
coordinates is whether the resulting equations of motion are sufficiently simple
to allow a straightforward interpretation. Unfortunately, we can state no general
rules for selecting the “most suitable” set of generalized coordinates for a given
problem. A certain skill must be developed through experience, and we present
many examples in this chapter.

In addition to the generalized coordinates, we may define a set of quantities
consisting of the time derivatives of §;: ¢, , . . . , or simply ¢;. In analogy with the
nomenclature for rectangular coordinates, we call q] the generalized velocities.

If we allow for the possibility that the equations connecting x, ; and ¢; explic-
itly contain the time, then the set of transformation equations is given by*

a=12,...,n
xa,i = xa,i(ql’ q.‘Z"" ’ qs: t)7 ;= 1 2 3
= xa,i(qj! t)s ] = 1, 2, R— (7,5)

In general, the rectangular components of the velocities depend on the general-
ized coordinates, the generalized velocities, and the time:

Xoi = %G5> Gjs 1) (7.6)
We may also write the inverse transformations as
g = 4% 1) (7.7)
G = §(Fair %ai> 1) (7.8)
Also, there are m = 3n — s equations of constraint of the form
Sl ) =0, E=1,2,...,m (7.9)

EXAMPLE 7.1

Find a suitable set of generalized coordinates for a point particle moving on the
surface of a hemisphere of radius R whose center is at the origin.

Solution. Because the motion always takes place on the surface, we have
2+ 2+ 22 -R2=0, z=0 (7.10)

Let us choose as our generalized coordinates the cosines of the angles between
the x-, y-, and z-axes and the line connecting the particle with the origin.

*In this chapter, we attempt to simplify the notation by reserving the subscript i to designate rectan-
gular axes; therefore, we always have i = 1, 2, 3,
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Therefore,

X y z

h ~— g R =75 (7.11)

But the sum of the squares of the direction cosines of a line equals unity. Hence,
Grag+tg=1 (7.12)

This set of ¢; does not constitute a proper set of generalized coordinates, because
we can write ¢; as a function of ¢ and ¢,:

¢s=V1- G- g (7.13)

We may, however, choose ¢ = x/R and ¢, = y/R as proper generalized coordi-
nates, and these quantities, together with the equation of constraint (Equation
7.13)

2= VR — x2 — 2 (7.14)

are sufficient to uniquely specify the position of the particle. This should be an
obvious result, because only two coordinates (e.g., latitude and longitude) are
necessary to specify a point on the surface of a sphere. But the example illus-
trates the fact that the equations of constraint can always be used to reduce a
trial set of coordinates to a proper set of generalized coordinates.

EXAMPLE 7.2

Use the (x, y) coordinate system of Figure 7-1 to find the kinetic energy 7, po-
tential energy U, and the Lagrangian L for a simple pendulum (length €, mass
bob m) moving in the x, y plane. Determine the transformation equations from
the (x, y) rectangular system to the coordinate 6. Find the equation of motion.

Solution. 'We have already examined this general problem in Sections 4.4 and
7.1. When using the Lagrangian method, it is often useful to begin with

FIGURE 7-1 Example 7.2. A simple pendulum of length € and bob of mass m.



