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The intersecting curves of the two classes (univariant curves for equilibria involving solids only and for equilibria involving a gas 
phase) will thus cut the general P–T diagram into a grid which we may call a petrogenetic grid. With the necessary data determined 
by experiment we might be able to locate very closely on the grid both the temperature and the pressure of formation of those rocks 
and mineral deposits of any terrane that were formed at a definite stage of its history, provided always that a sufficient variety of 
composition of materials occurred in the terrane to permit adequate cross reference. The determinations necessary for the produc-
tion of such a grid constitute a task of colossal magnitude, but the data will be gradually acquired, and we shall thus slowly proceed 
toward an adequate knowledge of the conditions of formation of rocks and mineral deposits.

Bowen (1940)

6 Geothermometry 
and Geobarometry

In the previous two chapters we learned how to evaluate the 
thermodynamic properties of phases of fixed or variable com-
positions, and calculate changes in the thermodynamic prop-
erties of such phases involved in a chemical reaction. In this 
chapter we will learn how this knowledge may be applied for 
the estimation of temperature (geothermometry) and pressure 
(geobarometry) of equilibration of a given mineral assem-
blage at some point in its history, an application of prime 
interest to geologists. Such information provides quantitative 
constraints on P–T environments of geologic events such as 
magmatic crystallization, prograde and retrograde metamor-
phism, and formation of ore deposits. A mineral or mineral 
assemblage useful for geothermometry is called a geother-
mometer; one useful for geobarometry, a geobarometer. As 
most reactions are sensitive to both temperature and pressure, 
many authors refer to them as geothermobarometers or 
 simply as  thermobarometers.

6.1 Tools for geothermobarometry

Except for the use of fluid inclusions in minerals to obtain 
temperature (and, in some cases, pressure) information about 
the host minerals, the techniques employed for quantitative 
geothermometry and geobarometry rely on chemical reactions 
that have been calibrated as a function of temperature, or 
pressure, or both. A petrogenetic grid, as was conceived by 

Bowen (1940) several decades ago, is merely a collection of 
such calibrated reactions relevant to a portion of the P–T 
space. Petrogenetic grids are useful for estimating P–T limits 
of assemblages if the minerals are well approximated by 
 reactions included in the grid.

The tools that have commonly been used for geothermo-
barometry are (Essene, 1982, 1989; Bohlen and Lindsley, 
1987):

(1) univariant reactions, in which all phases essentially have 
fixed compositions, and displaced equilibria, in which 
one or more phases are solid solutions of variable 
 compositions;

(2) exchange reactions, in which exchange of one element 
for another between two coexisting phases occurs 
 primarily as a function of temperature;

(3) solvus equilibria, in which the solubility of a component 
in a phase varies as a function of temperature (or, less 
commonly as a function of pressure);

(4) study of cogenetic fluid inclusions in minerals;
(5) fractionation (or partitioning) of oxygen or sulfur iso-

topes between coexisting phases, which is a function of 
temperature only except at very high pressures (see 
Chapter 11).

Reactions used for thermobarometry generally involve min-
erals of high variance in natural compositions (e.g., garnet, 
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pyroxene, feldspar), so that the corresponding thermodynamic 
equations are sliding scale or continuous P–T indicators. 
Garnet, a common mineral in medium- and high-grade meta-
morphic rocks, is a particularly useful mineral for both geo-
thermometry and geobarometry. The equilibrium constants 
for Fe–Mg exchange reactions between garnet and most other 
silicates (such as clinopyroxene, biotite, etc.) have large values 
because of the strong preference of Fe2+ (relative to Mg2+) for 
the garnet structure. This, in turn, results in significantly 
 temperature-dependent Fe–Mg distribution coefficients, a 
favorable condition for geothermometry. The usefulness of 
garnet in geobarometry arises from the fact that it is a dense 
mineral favored at high pressures. The downside of using gar-
net is the uncertainty associated with the activity models for-
mulated for this mineral, which can incorporate a variety of 
elements such as Mn, Ti, and Cr.

As discussed in several excellent reviews (Ferry, 1980: 
Essene, 1982, 1989; Newton, 1983; Finnerty and Boyd, 1987; 
Bohlen and Lindsley, 1987; Spear, 1989; Smith, 1999), the list 
of promising thermobarometers is a long one. Essene (1989), 
for example, listed 60 equilibria that may be useful for 
 thermobarometry, some more than others for a given meta-
morphic facies. A selection from the more commonly used 
thermobarometers is summarized in Table 6.1; we will discuss 
a few examples from this list to illustrate the principles 
involved. Many computer programs are available for calcula-
tions relevant to many thermobarometers included in the list; 
two widely used programs, both of which can be accessed on-
line, are: THERMOBAROMETRY (version 2.1, May 1999) 
by Frank Spear and Mathew Kohn (http:ees2.geo.rpi.edu/
MetaPetaRen/Software/GTB_Prog/), and THERMOCALC 
(updated 03–24–2011) by Tim Holland, Roger Powell, and 
Richard White (http://www.metamorph.geo.uni-mainz.de/
thermocalc/).

6.2  Selection of reactions for 
thermobarometry

All thermobarometric studies based on mineral assemblages 
embody two inherent assumptions: (i) the mineral assem-
blage under consideration was in equilibrium at some former 
P–T condition, which we wish to determine; and (ii) the 
assemblage either has remained essentially unchanged since 
then or can be reconstructed from textural and other infor-
mation preserved in the rock. It is not easy to verify either of 
these assumptions. There is no way to prove equilibrium; an 
assemblage is assumed to be in equilibrium if such an 
assumption is compatible with a lack of textural and chemi-
cal evidence indicative of disequilibrium. A commonly 
employed test of equilibrium is the concordance of P and T 
calculated from a number of independent reactions con-
structed from a multimineral assemblage, at least within the 
limits of uncertainties of the thermobarometers used. The 
assumption of no subsequent change may be tested by using 

a particular geothermometer or geobarometer for different 
samples of the same rock collected from an area of fairly 
uniform P–T regime as inferred from other lines of evidence. 
One can always calculate a pressure or a temperature from 
an appropriate geobarometer or geothermometer, but the 
numbers may or may not actually pertain to the geologic 
event being investigated. For example, calculations based on 
the compositions of only the outer rims of adjacent phases in 
a metamorphic assemblage, a common practice in thermo-
barometric applications, may yield satisfactory estimates of 
P–T conditions during cooling or uplift, but not of peak 
metamorphism.

For a given mineral assemblage it is generally possible to 
write a number of mass-balanced chemical reactions involving 
components of the phases (minerals) present in the assem-
blage. Of these only some may be suitable for thermobarom-
etry in a particular case. The selection of reactions is based on 
the following considerations:

(1) An accurate thermodynamic database must be available 
for the end-member components included in the reaction. 
It is advisable to use self-consistent data sets to avoid 
introducing systematic errors, although a self-consistent 
data set is not necessarily an accurate one.

(2) The reaction must be well calibrated based either on 
empirical data or on data obtained from reversed experi-
ments (from which standard enthalpies and entropies 
can be extracted). Empirical calibration is derived from 
the composition of minerals in natural assemblages 
for which the equilibrium pressure and temperature 
have been, or can be, estimated by some other 
thermobarometer(s) such as a metamorphic isograd 
(Ferry, 1980), an invariant point (Hodges and Spear, 
1982), or other equilibria (Ghent and Stout, 1981; 
Hoisch, 1990). Empirical calibration is much simpler 
than its experimental counterpart, and the results may be 
more readily applicable to complex natural systems. 
Such a calibration, however, may be saddled with large 
uncertainties in the independent P–T estimate, and it 
may not apply to rocks with significantly different bulk 
compositions. Carefully conducted experiments can pro-
vide more accurate calibration, but experiments are 
almost always performed on simple systems composed of 
end-member components. Thermodynamic properties of 
phases are obtained either directly from the experiments 
involving the reaction being considered (e.g., Holdaway, 
2000), or from a self-consistent thermodynamic database 
developed using statistical methods (such as multiple 
regression) or mathematical programming methods 
applied to all experimental data available for numerous 
related compositional systems (e.g., Berman, 1990; 
Holland and Powell, 1998).

(3) In natural assemblages we often have to deal with dis-
placed equilibria, which refer to variations in tempera-
ture and pressure of a reaction that results from one or 
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6.3 Dependence of equilibrium constant on temperature and pressure 111

more phases being solid solutions of variable composi-
tion. Displaced equilibria increase the P–T stability 
range of an assemblage and, therefore, are more useful 
than univariant reactions involving only pure compo-
nents. However, the extension of experimental data to 
solid solution phases in natural assemblage(s) requires 
suitable solution models for determining activity– 
composition relations. Unfortunately, there is still no 
consensus regarding the correct solution model even for 
most anhydrous mineral groups (including those fre-
quently used in thermobarometry, such as olivine, 
pyroxene, plagioclase, and garnet). The task is more dif-
ficult for hydrous silicates (e.g., amphiboles and micas), 
because mixing models for such minerals are based 
largely on unreversed experimental data or on simple 
ionic mixing models that are generally not supported by 
reversed experiments (Essene, 1989, p. 3). In many 
cases, the formulation of appropriate mixing models for 
solid solutions poses the most difficult challenge in 
 thermobarometry.

(4) In general, reactions involving a fluid phase are not suit-
able for thermobarometry because of a lack of accurate 
information about the fluid composition and the ratio of 
fluid pressure (Pf) to total pressure (Ptotal).

A recurring issue in connection with the composition–
activity relationship in Fe-bearing minerals is the recasting of 
the total Fe obtained with electron microprobe analysis into 
Fe2+ and Fe3+ using some established procedure (e.g., Deer 
et al., 1966; Stormer, 1983; Spear and Kimball, 1984; Droop, 
1987; Spear, 1993). For some minerals, such as olivine and 
orthopyroxene, all the Fe may be treated as Fe2+ without 
introducing much error; for others, such as clinopyroxene 
and spinel, Fe2+ can be estimated by normalizing the analysis 
to cations and calculating the Fe2+: Fe3+ that will satisfy the 
oxygen stoichiometry (see example in section 6.5.3). This 
procedure does not produce unique solutions for micas and 
amphiboles because of different possible substitutions, nor 
can it be applied to minerals with cation vacancies in their 
crystal structures. In such cases, Fe2+–Fe3+ should be meas-
ured directly by wet-chemical analysis or by Mossbaüer 
spectroscopy. In some cases, all that may be feasible is to 
assume a Fe2+: Fe3+ ratio based on experience and the 
 published literature.

6.3  Dependence of equilibrium constant 
on temperature and pressure

The ultimate theoretical basis of most geothermometers and 
geobarometers is the temperature and pressure dependence of 
the equilibrium constant of a reaction (Keq). This is because 
the compositional variations in minerals and coexisting fluids 
are already incorporated in the calculation of Keq at a  specified 

condition of temperature and pressure. The total variation of 
Keq with respect to temperature and pressure can be repre-
sented by the total derivative of ln Keq:

eq eq
eq

 ln  ln 
d ln d d

P T

K K
K T P

T P

∂ ∂
∂ ∂

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  

(6.1)

From the relation −RT ln Keq = ΔGr
0 = ΔHr

0 − TΔSr
0 (equations 

4.62 and 5.37),

− Δ − Δ Δ= = +
0 0 0
r r r

eqln  
G H S

K
RT RT R  

(6.2)

where the superscript “0” refers to the chosen standard state. 
It follows from equation (6.2) that a plot of ln Keq against 
1/T (at constant pressure) will have a slope of −ΔHr

0/R and 
an intercept of ΔSr

0/R (Fig. 6.1a). The magnitudes of ΔHr
0/R 

and ΔSr
0/R will vary with temperature, unless they are 

assumed to be independent of temperature [i.e., (ΔCP
0)r = 0], 

in which case the plot will be a straight line with a uniform 
slope (Fig. 6.1b). In the latter case, the enthalpy and entropy 
change of a reaction can be estimated if the value of Keq for 
the reaction is known at several different temperatures (at 
constant pressure).

Fig. 6.1 Plot (schematic) of ln Keq versus 1/T (K) at constant pressure 
with (a) ΔCP ≠ 0 and (b) ΔCP ≠ 0.
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It can be shown (see Box 6.1) that the equation describing 
the dependence of Keq on temperature at constant pressure, 
assuming ΔHr

0 to be independent of temperature, is

0
r

ref
ref

1 1
ln ln T T

H
K K

R T T

⎛ ⎞Δ= − −⎜ ⎟⎝ ⎠  
(6.3)

The equation describing the dependence of Keq on pressure at 
constant temperature, assuming ΔVr

0 to be independent of 
temperature and pressure, is

( )
0
r

ref refln  ln P P
V

K K P P
RT
Δ= − −

 
(6.4)

For a reaction to qualify as a sensitive geothermometer, 
its equilibrium constant should be a function largely of 
temperature (i.e., almost independent of pressure); the 
opposite is the case for a potentially good geobarometer. It 
is evident from equation (6.5) that a sensitive geothermom-
eter should have a large value of ΔHr

0 (and a small value of 
ΔVr

0). The larger the value of ΔHr
0 (positive or negative), the 

more rapid is the change of Keq with temperature. This 
means that an error in ΔHr

0 or in the activity–composition 
relationships will produce a small error in the calculated T 
if ΔH r

0 is large. Equation (6.6) indicates that a sensitive geo-
barometer, on the other hand, should have a large value of 
ΔVr

0 (positive or negative). For rigorous thermobarometry it 
is advisable to consider heat-capacity data to calculate ΔHr

0 
and equation (4.74) or some other appropriate equation to 
calculate ΔVr

0.
To determine the temperature or pressure from a univariant 

reaction, one of the two variables must be known from an 
independent source. For a given mineral assemblage, the inter-
section of two univariant reaction boundaries in P–T space, 
however, will fix both temperature and pressure, with the 
uncertainty of the estimates determined by the angle of inter-
section of the two reaction boundaries (Fig. 6.2).

Box 6.1 Expressions for K
eq

 as a function of temperature and 

pressure (Krauskopf and Bird, 1995, pp. 203–210; Langmuir, 

1997, pp. 20–23 and 28–30)

From equation (6.2), the variations of Keq with temperature (at 
constant pressure) and with pressure (at constant temperature) are 
given by

0 0
eq r r

2

 ln  ( / )1
 van t Hoff equation

P P

K G T H
T R T RT

∂ ∂
∂ ∂

⎛ ⎞⎛ ⎞ Δ Δ ,= − =⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

(6.5)
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eq r r ln  1
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P RT P RT
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∂ ∂

⎛ ⎞⎛ ⎞ Δ Δ= − = −⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠
 

(6.6)

The total change in Keq with temperature at constant pressure is 
obtained by integrating equation (6.5) from some reference 
temperature (Tref, usually taken as 298.15 K), for which ΔHr and  
are known, to the temperature of interest, T: 

0
r
2ref

ref ref

d(ln ) ln ln d
T T

T T
T T

H
K K K T

RT

Δ= − =∫ ∫
 

(6.7)

Assuming ΔHr
0 to be independent of temperature [i.e., (ΔCP

0)r = 0],

0
r

ref
ref

1 1
ln ln T T

H
K K

R T T

⎛ ⎞Δ= − −⎜ ⎟⎝ ⎠  
(6.3)

If this assumption is valid, a plot of lnKT versus 1/T would yield a 
straight line with

− Δ Δ= − +
0 0
r r

ref
ref

 1
slope         and        intercept= ln  T

H H
K

R R T

The linearity of such a plot would provide evidence that the 
assumption of constant ΔHr

0 is justified. The value of ΔHr
0 can then be 

evaluated from the slope of the plot. This method is used for obtaining 
enthalpy changes (at constant pressure) for reactions involving only 
condensed phases that would be difficult to measure directly.

If ΔHr
0 varies with temperature, then its evaluation must take 

into account the variation of (ΔCP
0)r as a function of temperature, 

using analytical expressions, such as equation (4.53), for the CP of 

Box 6.1 (cont’d)

each phase involved in the reaction. In the special case where 
(ΔCP

0)r = constant, , and the van’t Hoff expression can be integrated 
to give

0 0
ref refr r

ref
ref

( )1 1
ln ln 1 lnP

T T
T TH C

K K
R T T R T T

⎛ ⎞ ⎡ ⎤Δ Δ ⎛ ⎞= − − − − −⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎣ ⎦

(6.8)

The total change in Keq with pressure at constant temperature is 
obtained by integrating equation (6.6) from some reference 
pressure (Pref, usually taken as 1 bar), for which ΔVr and  are 
known, to the pressure of interest, P: 

0
r

ref
ref ref

d(ln ) ln ln d
P P

P P
P P

V
K K K P

RT
Δ= − = −∫ ∫

 
(6.9)

If, for simplicity, ΔVr
0 can be assumed to be independent of 

temperature and pressure,

( )
0
r

ref refln  ln P P
V

K K P P
RT
Δ= − −

 
(6.4)

In this case, a plot of ln Kp versus P would yield a straight line with 

slope = −ΔVr
0/RT and intercept = 

0
r

refref
ln KP

V
P

RT
Δ+ .

If ΔVr
0 is a function of temperature and pressure, equation (6.4) 

has to be modified by taking into account the coefficient of thermal 
expansion at constant pressure (aP) and the coefficient of 
compressibility at constant temperature (bT) of the substances 
involved in the reaction (see Box 4.5).
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Example 6–1: Clinopyroxene–analbite equilibria as a 
function of pressure, temperature and the jadeite content 
of clinopyroxene

Consider the reaction that characterizes the equilibrium between 
omphacitic (Na-bearing) clinopyroxene (cpx) and disordered 
albite in blueschists, metamorphic rocks that are formed at high 
pressures and low temperatures in subduction zones. 
Representing the reaction in terms of end-member components,

  cpx         quartz            analbite

NaAlSi2O6 + SiO2 ⇔ NaAlSi3O8 (6.10)
      jadeite

the equilibrium constant for the reaction at pressure P and 
temperature T is given by

Δ = − = −
anb
NaAlSi O  0 3 8

r eq cpx qz
SiONaAlSi O 22 6

 
 ln  ln

 

a
G RT K RT

a a  

(6.11)

In blueschists, jadeitic pyroxene exhibits a wide range of com-
position because of the components diopside (CaMgSi2O6) 
and acmite (NaFe3+ Si2O6) in solid solution. In contrast, quartz 
and analbite are nearly pure phases. Let us choose the stand-
ard state for each phase as the pure substance at P and T, so 
that =qz

SiO2
1a  and =anb

NaAlSi O3 8
1a . Let us also stipulate, as a first 

approximation, that the cpx solid solution is ideal and that the 
activity of jadeite can be approximated on the basis of a one-
site mixing model: ajd

cpx = (XNa 
cpx)M2 (Holland, 1979). Substituting 

the activity values in equation (6.11), we get

= =cpx cpx
eq NaAlSi O NaAlSi O2 6 2 6

1/ 1/K a X
 

(6.12)

Thus, assuming that the pyroxene composition has not 
changed since its formation, the mole fraction of jadeite in the 
cpx solid solution will be a measure of the equilibrium 
 constant at the pressure and temperature of metamorphism.

Assuming (ΔCP)r = 0 and ΔVr to be independent of tempera-
ture and pressure, ΔGr at the chosen standard state (P, T) is 
given by (see equation 4.95)

ΔGr
0 = ΔGP

r, T = ΔH1
r, T − T ΔS1

r, T + (P − 1) ΔVr

so that the equation relating Xjd
cpx, P, and T (equation 6.12) 

can be written as

− Δ Δ− Δ − Δ= = = + −
1 10
r, r, r r

eq cpx
jd

 1  ( 1) 
ln ln T TH SG P V

K
RT RT R RTX

 
(6.13)

We can use equation (6.13) to calculate P as a function of Xjd
cpx 

(or lnKeq) for any given temperature. For the purpose of 
 illustration, the results for T = 800 K are presented in Table 6.2 
and Fig. 6.3.

Similar calculations will yield a straight line in P − ln Keq 
space for each chosen T, with the equilibration pressure being 
higher at higher temperatures for the same Xjd

cpx (Fig. 6.3). 
Thus, if an independent estimate of temperature is available, 
the jadeite content of cpx in a clinopyroxene–albite–quartz 
assemblage can be used as a geobarometer (e.g., Reinsch, 

Fig. 6.2 Schematic illustration of thermobarometry from the intersection 
of two univariant reaction boundaries. The uncertainty in the position of 
each of the hypothetical reaction boundaries is shown by dashed lines 
and the uncertainties in the estimated pressure and temperature by the 
box with a pattern. Note that the uncertainties in the P–T estimate 
increase with a decrease in the angle of intersection, as in (a).
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Table 6.2 Thermodynamic data (Robie and Hemingway, 1995) and calculation of pressure for the clinopyroxene–
analbite equilibria at T = 800 K as a function of clinopyroxene composition.

Thermodynamic data Calculation of equilibrium P for the reaction

DH1
f,T (kJ mol−1) S1

T (J mol−1 K−1) V1
298.15 (J bar−1) X jd

cpx ln Keq P (kbar) X jd
cpx ln Keq P (kbar)

Jadeite −3027.8 332.22 6.04 0.1 2.30 4.80 0.6 0.51 11.67
0.2 1.61 7.46 0.7 0.36 12.26

Analbite −3920.2 480.35 10.043 0.3 1.20 9.02 0.8 0.22 12.78
0.4 0.92 10.12 0.9 0.11 13.23

Quartz −907.4 99.83 2.269 0.5 0.69 10.97 1.0 0 13.63
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114 Geothermometry and Geobarometry

1977), provided the Na content of the cpx is measured accu-
rately, for example, with an electron microprobe without any 
significant loss due to volatilization under the electron beam. 
The calculations, of course, will be a little more complicated 
for natural assemblages in which the plagioclase is not pure 
analbite or the cpx should not be assumed to behave as an 
ideal solid solution (see, e.g., Ganguly, 1973).

6.4  Univariant reactions and displaced 
equilibria

Univariant reactions and displaced equilibria involve con-
sumption and production of phases and are referred to as net 
transfer reactions. The essence of thermobarometry based on 
such reactions is the determination of reaction boundaries as 
a function of temperature and pressure. The calculations, 
however, tend to get more cumbersome compared with the 
examples discussed above and in the previous two chapters. 
This is because most minerals in natural assemblages are solid 
solutions of variable composition, which generally do not 
 conform to ideal mixing models.

6.4.1 Al2SiO5 polymorphs

One of the most commonly used thermobarometers for crus-
tal rocks is based on the relative stabilities of the three Al2SiO5 
polymorphs: andalusite, kyanite, and sillimanite. The phase 

diagram for this system consists of three univariant reaction 
boundaries (andalusite ⇔ sillimanite, sillimanite ⇔ kyanite, 
and kyanite ⇔ andalusite) that intersect at an invariant point 
(the triple point of the system) where all the three phases coex-
ist in equilibrium at a specific set of P–T values. The phase 
relations in this system have been investigated experimentally 
by a number of workers (see reviews in Kerrick, 1990 (Chapter 
3), and Holdaway and Mukhopadhyay, 1993); most petrolo-
gists now accept the reaction boundaries as determined by 
Holdaway and Mukhopadhyay (1993), who located the triple 
point at 504 ± 20°C and 3.75 ± 0.25 kbar (Fig. 6.4), not much 
different from some of the earlier determinations: 501 ± 20°C 
and 3.76 ± 0.3 kbar by Holdaway (1971); 503°C and 3.73 kbar 
by Berman (1988); and 511°C and 3.87 kbar by Hemingway 
et al. (1991).

Metamorphosed aluminous rocks, such as pelitic schists 
and micaceous quartzites, commonly contain one or more of 
these polymorphs. Assemblages containing only one of the 
polymorphs are not of much use in thermobarometry, but 
those containing any two of the three can be used as a geother-
mometer or a geobarometer, depending on whether the pres-
sure or the temperature can be estimated from some other 
thermobarometer. Assemblages in which all three polymorphs 
coexist are not common, but have been reported (e.g., 
Grambling, 1981; Hiroi and Kobayashi, 1996; Whitney, 
2002). In such a natural assemblage, the triple point of the 
Al2SiO5 phase diagram uniquely defines the equilibrium pres-
sure and temperature, provided the Al2SiO5 phases are almost 
pure, and they formed contemporaneously.

Fig. 6.3 Calculated relationship between ln Keq and pressure for the 
reaction jadeite + quartz = analbite at constant temperatures 800 K, 
900 K, and 1000 K. It is assumed that quartz and analbite are pure 
phases and clinopyroxene is an ideal solid solution with one mixing site.

800 K 900 K 1000 K 

 Reaction: 
 jadeite + quartz = analbite 

ln
 K

eq
 =

 ln
 (

1 
/ X

jd
) 

0.0 
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– 2.5 
4 6 8 10 12 14 16 18 20 

Pressure (kbar) 
Fig. 6.4 The phase diagram for Al2SiO5 polymorphs (andalusite, kyanite, 
and sillimanite) as calculated by Holdaway and Mukhopadhyay (1993) 
from available thermodynamic data. The triple point is located at 504 ± 
20°C and 3.75 ± 0.25 kbar. (After Holdaway and Mukhopadhyay, 1993, 
Fig. 5, p. 312.)
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6.4 Univariant reactions and displaced equilibria 115

A possible problem with the application of this thermo-
barometry is the Fe2O3 contents of andalusite and sillimanite, 
the effect of which is to increase the temperature of the anda-
lusite ⇔ sillimanite reaction in proportion to the amount of 
Fe2O3 in the minerals undergoing reaction. Holdaway and 
Mukhopadhyay (1993) have cautioned that, with Fe2O3 as an 
impurity, the andalusite ⇔ sillimanite phase boundary may be 
up to 20°C higher than that in the pure aluminum silicate sys-
tem. We should also remember that coexistence of the three 
polymorphs in a rock does not necessarily mean that they grew 
together at the P–T condition of the triple point. In some cases 
the textures clearly indicate a sequential growth of the poly-
morphs (Whitney, 2002).

6.4.2  Garnet–rutile–Al2SiO5 polymorph–ilmenite–
quartz (GRAIL) barometry

A useful geobarometer is based on the natural assemblage gar-
net (gt)–rutile (rut)–Al2SiO5 polymorph (andalusite, kyanite, 
or sillimanite)–ilmenite (ilm)–quartz (qz) (commonly referred 
to as GRAIL) that is common in medium to high-grade, Al-rich 
metamorphic rocks. The equilibrium of interest in this case, 
with kyanite (ky) as the Al2SiO5 polymorph, can be written in 
terms of end-member components as

 gt rut ilm ky qz

Fe3Al2Si3O12 + 3TiO2 ⇔ 3FeTiO3 + Al2SiO5 + 2SiO2 (6.14)
almandine

( ) ( ) ( )
( ) ( )

=

3 2ky qzilm 
FeTiO SiOAl SiO3 22 5

eq 3gt rut
TiOalm 2

  

 

a a a
K

a a
 

(6.15)

The experimentally based P–T calibration of this reaction by 
Bohlen et al. (1983b) is shown in Fig. 6.5. The figure also 
shows contours of log10Keq calculated from the relation

Δ ≅ −
Δ

10 eq

r

  log  

  

RT K
P

V  
(6.16)

using available data on molar volumes, isobaric thermal 
expansion, and isothermal compressibility to calculate ΔVr. 
Note that the slopes of the log10Keq contours change slightly 
when they pass from the stability field of one mineral to that 
of another. The very gentle dP/dT slopes of the log10Keq con-
tours translate to a maximum error of only about 0.5 kbar in 
the inferred pressure corresponding to temperature uncer-
tainties of ±50°C; this is the reason why the GRAIL equilib-
rium qualifies as a sensitive geobarometer. We can use the 
log10Keq contours in Fig. 6.5 to estimate the equilibration 
pressure of a given GRAIL assemblage, provided (i) the 
assemblage can be inferred to have coexisted in equilibrium, 
(ii) we can obtain a reasonable estimate of the equilibration 

temperature of the assemblage from some geothermometer 
(e.g., garnet–biotite exchange reaction), and (iii) we have 
appropriate solution models to calculate activities of the end-
member components in impure minerals and thus Keq for the 
assemblage. However, the log10Keq contours in Fig. 6.5, 
derived from experimental data, are not dependent on the 
mixing models for the solid solutions in the reaction, and 
potential users can make their own choice of solution models 
for geobarometry applications.

Equilibrium coexistence of the GRAIL assemblage minerals 
is sometimes difficult to demonstrate because of the very low 
(commonly < 1%) modal abundance of the Ti-bearing oxides. 
Bohlen et al. (1983b) recommended using assemblages in 
which ilmenite and rutile are present as inclusions in garnet 

Fig. 6.5 Pressure–temperature diagram showing the experimentally 
based univariant reaction boundary for the GRAIL equilibrium 
(equation 6.9) involving only pure phases, and calculated contours of 
log10 Keq for impure garnet and ilmenite compositions. The Al2SiO5 
phase relations from Holdaway (1971) and the a-quartz–b-quartz 
transition from Cohen and Klement (1967) are shown for reference. 
Note that slopes of the contours change slightly when they cross reaction 
boundaries, reflecting changes in the ΔV of the reaction. Mineral 
abbreviations: and = andalusite, alm = almandine, gt = garnet, ilm = 
ilmenite, ky = kyanite, qz = quartz, rut = rutile, sil = sillimanite. (After 
Bohlen et al., 1983b, Fig.3, p.1054.)
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116 Geothermometry and Geobarometry

and exhibit grain boundary relations indicative of chemical 
equilibrium.

An advantage of this geobarometer is the relatively less 
complicated calculation of its equilibrium constant. In natural 
GRAIL assemblages, compositions of three of the phases – 
quartz, rutile, and the Al2SiO5 polymorph – commonly differ 
little from the end-member components considered for reac-
tion (6.9), so that their activities are equal to unity if the stand-
ard state of each phase is taken as the pure substance at the 
pressure and temperature of interest. Ilmenite in the GRAIL 
assemblage seldom contains more than 15% hematite (Fe2O3) 
and pyrophanite (MnTiO3), and can be treated as an ideal 
solution or even as a pure phase in some cases. Thus, to a first 
approximation, the pressure inferred from a GRAIL assem-
blage in equilibrium is a function of the garnet composition 
(at constant temperature).

In order to calculate activities, Bohlen et al. (1983b) adopted 
the following symmetric ternary (Ca–Fe–Mg) mixing model 
for garnet (Perkins, 1979, as quoted in Bohlen et al., 1983a):

RT ln l gt
alm =  WG

CaFeX
2
Ca + WG

FeMgX
2
Mg

+ (WG
CaFe − WG

CaMg + WG
FeMg)XCaXMg

WG
FeMg = 3480 − 1.2 t (°C) cal gm – atom−1

WG
CaFe  = 4180 − 1.2 t (°C) cal gm – atom−1 (6.17)

WG
CaFe  = 1050 − 1.2 t (°C) cal gm – atom−1

agt
alm     = (XFel

gt
alm)3

where WGs represent free-energy interaction parameters. The 
Perkins model, according to Bohlen et al. (1983b), is consist-
ent with the bulk of the empirical data and yields pressures 
consistent with the appropriate Al2SiO5 mineral in the 
GRAIL assemblage. For garnets with significant Mn content, 
the authors assumed that Fe–Mn garnets mix ideally 
(Ganguly and Kennedy, 1974) and that WG

CaMn = WG
CaFe and 

WG
MgMn = WG

MgFe.
Bohlen et al. (1983b) applied the GRAIL geobarometers to 

several metamorphic terranes and found the calculated pres-
sures to be consistent with the appropriate Al2SiO5 
polymorph(s) and generally in good agreement with other 
well-calibrated geobarometers.

Example 6–2: Application of GRAIL geobarometry to a 
sample from the Settler Schist, British Columbia, Canada

Let us estimate the equilibrium pressures for the Settler Schist 
corresponding to 600°C, using the analytical data of Pigage 
(1976), the solution model of Perkins (1979) for garnet, and 
the calibration of the GRAIL equilibrium by Bohlen et al. 
(1983b).

Electron microprobe analyses of minerals from the 
 staurolite–kyanite–garnet–biotite–muscovite–quartz–plagio-
clase–ilmenite–rutile assemblage in the Settler Schist (Pigage, 
1976) indicate that ilmenite and rutile are pure phases. Thus, 
taking the standard state as pure substances at the pressure and 
temperature of interest, and assuming kyanite and quartz to be 
a pure phases, =qz

SiO2
1a , =ilm

FeTiO3
1a , =rut

TiO2
1a , and =ky

Al SiO2 5
1a . 

Substituting the activity values in equation (6.15),

eq gt
alm

1
 

K
a

=
 

(6.18)

For the purpose of illustration, let us choose a typical compo-
sition of garnet in the Settler Schist: (Mg0.4Fe2+

2.15Ca0.4Mn0.05)
Al2Si3O12. The calculated mole fractions for this composition 
are: XMg = 0.133, + =2Fe

0.717X , XCa = 0.133, and XMn = 
0.017. Now we can calculate aalm

gt using equation (6.17) and 
Keq using equation (6.18), and then obtain P from log10Keq con-
tours in Fig. 6.5. The result, ignoring the very small contribu-
tion of Mn in the cpx solid solution, is summarized in Table 6.3.

The pressure calculated with the GRAIL geobarometer 
agrees well with the metamorphic conditions – 550 to 770°C 
and 6 to 8 kbar – inferred for the Settler Schist by Pigage 
(1976) using other methods.

6.4.3  Garnet–plagioclase–pyroxene–quartz (GAPES 
and GADS) barometry

Two of the potentially most useful geobarometers are based 
on the mineral assemblage garnet (gt)–plagioclase (plag)–
orthopyroxene (opx) or clinopyroxene (cpx)–quartz (qz), 
which occurs widely in quartzofeldspathic and mafic 
 lithologies of granulite metamorphic facies. The reactions con-
sidered for this purpose, commonly referred to as GAPES 

Table 6.3 Results of the GRAIL geobarometry calculation for the Settler Schist.

Temperature 
(°C) WG

FeMg WG
CaMg W G

CaFe RT ln lgt
alm lgt

alm

gt 3
2 almFe

( )a Xgtgt
almalm = + λ Keq log10Keq P (kbar)

600 2760 3460 330 47.999 1.205 0.646 2.494 0.397 ≈ 6.2

WGs are in cal gm - atom−1; R = 1.987 cal mol−1K−1.
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6.4 Univariant reactions and displaced equilibria 117

(grossular–anorthite–pyrope–enstatite–silica) and GADS 
( garnet– anorthite–diopside–silica), are:

 plag opx gt gt qz

CaAl2Si2O8 + Mg2Si2O6 ⇔  2/3Mg3Al2Si3O12 + 1/3Ca3Al2Si3O12 + SiO2 
anorthite (an) enstatite (en) pyrope (py) grossular (gr)

 (6.19)

 plag opx gt gt qz
CaAl2Si2O8 + CaMgSi2O6 ⇔  1/3Mg3Al2Si3O12 + 2/3Ca3Al2Si3O12 + SiO2

anorthite (an) diopside (diop) pyrope (py) grossular (gr)

 (6.20)

These reactions are accompanied by large volume changes and 
thus are suitable, in principle, for geobarometry.

Experimental investigations of the two reactions at high 
 temperature and high pressure have been hindered by  apparent 
metastable persistence of anorthite + pyroxene assemblages, 
but the reactions were calibrated by Eckert et al. (1991) using 
measured values of the relevant thermodynamic parameters. 
For simplicity, let us assume that (ΔCP)r = 0 (i.e., ΔHr and ΔSr 
are  independent of temperature) and ΔVr is independent of 
temperature and pressure. Choosing the standard state for 
each phase as the pure substance at P and T, the pressure and 
temperature of interest, and recognizing that P >> 1 bar, equa-
tion (6.13) reduces to

ΔG0
r = ΔH1

r, T − T ΔS1
r, T + P ΔVr = −RT ln Keq (6.21)

Substituting values of ΔH1
r, ΔS1

r, and ΔV1
r listed in Table 6.4, 

the thermobarometric equations, with uncertainties in the cal-
culated P, are (Eckert et al., 1991):

GAPES:  P (kbars) = 3.47 + 0.01307 T
 + 0.003503 T ln Keq (± 1.55 kbar) (6.22)

GADS:  P  (kbars) = 2.60 + 0.01718 T
+ 0.003596 T ln Keq (± 1.90 kbar) (6.23)

To calculate P from equations (6.22) and (6.23) for a known 
or assumed value of T, we need to evaluate the corresponding 
values of Keq:

=

2 1
qzgt gt3 3

py gr SiO2
eq (GAPES) plag opx

an en

( ) ( )  

 

a a a
K

a a  
(6.24)

=

1 2
qzgt gt3 3

py gr SiO2
eq (GADS) cpxplag

an diop

( ) ( )  

 

a a a
K

a a
 

(6.25)

The activity of quartz, almost always a pure phase, was 
taken as unity. For the solid solutions in equation (6.19), 

Eckert et al. (1991) adopted the solution models discussed in 
Newton and Perkins (1982) and Perkins and Chipera (1985). 
The garnet was treated as a ternary (Ca–Fe–Mg) symmetric 
regular solution (Ganguly and Kennedy, 1974), with WG

CaFe ≈ 0, 
and the activity coefficients of the grossular and pyrope com-
ponents in garnet solid solution were calculated using the fol-
lowing expressions:

RT ln lCa
gt  =  WG

CaFeX
2
Fe + WG

CaMgX
2
Mg

+ (WG
CaFe − WG

FeMg + WG
CaMg)XFeXMg

 = WG
CaMg (X

2
Mg + XFeXMg) (6.26)

RT ln l gt
Mg =  WG

FeMg X
2
Fe + WG

CaMg X
2
Ca

+ (WG
FeMg − WG

CaFe + WG
CaMg) XFeXCa

 = WG
CaMg (X

2
Ca + XFeXCa)

Assuming no mixing on the octahedral and tetrahedral sites and 
taking into account the three positions of Ca–Fe–Mg mixing on 
the cubic site in the formula unit of garnet (12 O atoms basis),

λ
⎧ ⎫⎡ ⎤⎪ ⎪= = +⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

3

CaMggt 3 3 2
py Mg Mg Mg Ca Ca Fe( ) exp ( )

GW
a X X X X X

RT
 

(6.27)

λ
⎧ ⎫⎡ ⎤⎪ ⎪= = +⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

3

CaMggt 3 3 2
gr Ca Ca Ca Ca Mg Fe( ) exp ( )

GW
a X X X X X

RT
 

(6.28)

where WG
CaMg = 13807 − 6.3T J mol−1 (four O atoms basis), 

and R = 8.314 J mol−1 K−1.
Expressions used for calculating the activities of enstatite 

and diopside components in pyroxene on the basis of an ideal 
two-site MOS (mixing-on-site) model were adopted from 
Wood and Banno (1973):

aen
opx = XMg 

M2 XMg 
M1 (6.29)

adiop   
cpx = XCa 

M2 XMg 
M1 (6.30)

The cation assignments for calculation of mole fractions in 
clinopyroxene were as follows: Ca, Na, Mn, and Fe2+ to M2; 
and Mg, Ti, Fe3+, AlVI, and remaining Fe2+ to M1. The cation 
assignments were the same for orthopyroxene, except that 
Fe2+ and Mg were considered to be distributed randomly 

Table 6.4 Values used by Eckert et al. (1991) for calibration 
of GAPES and GADS geobarometers.

DHr
1 (J) DS1

r (J K
−1) DV1

r (J bar−1)

GAPES reaction 8230 −31.033 −2.373
GADS reaction 6020 −39.719 −2.312
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between M1 and M2 sites and partitioned between the two 
sites such that

+ + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 2 mineral

2 2 2

Mg Mg Mg
  

Mg Fe Mg Fe Mg Fe

M M

 (6.31)

The above formulation assumes that there is no mixing on the 
tetrahedral positions.

The calculation of the activity coefficient of the anorthite 
component in plagioclase (lan

plag) was based on the 
“Al-avoidance” model of Kerrick and Darken (1975): that

RT ln lan
plag = Xab

2 [WG
an + 2Xan(W

G
ab − WG

an)] (6.32)

where WG
an = 2025 cal = 8473 J and W G

ab = 6746 cal = 28225 J 
(Newton et al., 1980). The activity coefficient multiplied with 
the activity of anorthite in an ideal plagioclase solid solution 
(equation 5.88) led to the following expression for aan

plag 

λ+=

⎡ ⎤+ += ⎢ ⎥
⎣ ⎦

2
plag plagan an
an an

2 2
an an anab

(1 )
4

(1 ) (8473 39505 )
 exp 

4

X X
a

X X X X
RT  

(6.33)

Eckert et al. (1992) calculated GAPES and GADS pres-
sures for a granulite-facies core of Paleozoic metamorphism 
in the Blue Ridge province of the North Carolina 
Appalachians, at an inferred temperature of 750°C, using 
five different formulations for each barometer. The calcu-
lated GAPES pressures (7.2 to 8.9 kbars) showed reasonable 
to good agreement, all falling in the sillimanite field of the 
experimental Al2SiO5 phase diagram, consistent with the 
location of the samples relative to mapped kyanite and silli-
manite isograds in the area and with the presence of peak-
metamorphic sillimanite in nearby metapelites. The calcu-
lated GADS pressures agreed reasonably well with the 
GAPES pressures from the same rock or adjacent outcrops, 
but were systematically higher by 130–590 bars, suggesting 
that an empirical pressure adjustment of −350 bars to the 
GADS calculations would be necessary to force an agreement 
between the two geobarometers.

6.5 Exchange reactions

Exchange reactions are heterogeneous reactions that are writ-
ten only in terms of the exchange of two similar cations (in 
respect of ionic radius and charge) between nonequivalent 
atomic sites in one mineral (intracrystalline exchange) or 
between atomic sites in two different coexisting minerals 
(intercrystalline exchange). Exchange reactions are accompa-
nied by very small volume changes but relatively large entropy 

changes, so that they are largely independent of pressure and 
potentially good geothermometers (Essene, 1982). However, 
intracrystalline exchange, such as of Fe2+–Mg2+ between M1 
and M2 sites in orthopyroxene,

Fe2+ (M2) + Mg2+ (M1) = Fe2+ (M1) + Mg2+ (M2) (6.34)

requires diffusion of Fe2+ and Mg2+ to be operative over very 
short distances, which makes the cation distribution prone to 
resetting. In general, intercrystalline cation distributions are 
relatively less vulnerable to resetting, as the diffusion has to 
occur over much larger distances.

The general form of an intercrystalline exchange equilib-
rium involving 1 mole each of two elements (or cations) A and 
B between the phases a and b may be written as 

A (a) + B (b) ⇔ A (b) + B (a) (6.35)

The equilibrium constant for the reaction at P and T is

( )
( )

( )
( )

β α β α β α

α β α β α β

α α

β β

λ λ
λ λ

λ λ
λ λ

= =

=

eq
( )  ( ) ( )  ( ) ( )  ( )

( , ) .
( )  ( ) ( )  ( ) ( )  ( )

.

A B A B A B

A B A B A B

A B A B

A B A B

a a X X
K P T

a a X X

X X

X X
 

(6.36)

where ai, Xi, and li represent, respectively, the activity, mole 
fraction, and rational activity coefficient of the constituent i. 
Denoting the ratio of mole fractions in equation (6.36) as 
KD, the empirical distribution coefficient for the exchange 
(see section 3.7.2), and the ratio of activity coefficients as 
Kl, then

Keq(P, T) = KD Kl(P, T) (6.37)

where Kl is a function of P and T. Note that if a and b are 
ideal solutions, then li = 1 and Keq(P, T) = KD(P, T ). In this 
case, a plot of (XA/XB)a versus (XA/XB)b for a suite of rocks 
that equilibrated at the same temperature and pressure 
should define a straight line with a slope equal to KD. As a 
general rule, the preference of a phase to exchange one ele-
ment for another decreases with increasing temperature and 
KD approaches a value of 1. This is because as temperature is 
increased, the energetic distinction between different ele-
ments becomes relatively smaller, so the crystal structures 
display less of a preference for one element over another 
(Spear, 1993).

Choosing the standard state of each phase as a pure sub-
stance at the P and T of interest, and assuming (ΔCP)r = 0, ΔVr 
(solids) to be independent of temperature and pressure, and P 
>> 1 bar, we have (see equation 6.21)

−RT ln Keq(P, T ) = ΔH1
r, T − T ΔS1

r, T + P ΔVr (6.38)
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6.5 Exchange reactions 119

Application of this relationship to geothermometry requires 
the calibration of Keq as a function of T for known or assumed 
values of P.

Many exchange geothermometers have been discussed in 
the literature, but here we will restrict our attention to Fe2+–
Mg2+ exchange reactions, the most widely applied thermome-
ters in metamorphic rocks. This is because Fe2+–Mg2+ substi-
tute easily for each other in many common metamorphic 
minerals and the relatively high concentrations of Fe2+–Mg2+ 
in these minerals permit their precise measurement with an 
electron microprobe. Microprobe analysis, however, measures 
the total Fe in a mineral, which then has to be recast into Fe3 
and Fe2 by some established procedure.

6.5.1 Garnet–clinopyroxene thermometry

The temperature dependence of Fe2+–Mg2+ exchange between 
the minerals garnet and clinopyroxene has long since been rec-
ognized as an important potential geothermometer, because the 
assemblage is common in amphibolites, granulites, and eclog-
ites that span a broad temperature range. It is probably the 
most useful and consistent of the Fe–Mg exchange thermo-
meters for high-grade metamorphic terranes (Pattison and 

Newton, 1989) and is particularly applicable to low-Na and 
low-Cr mineral compositions that are typical of eclogites 
and  granulites. The pertinent exchange reaction in terms of 
end-member components is

 gt cpx gt cpx

1/3Mg3Al2Si3O12  + CaFeSi2O6 ⇔ 1/3Fe3Al2Si3O12+ CaMgSi2O6 (6.39)
 pyrope (py) hedenbergite (hd) almandine (alm) diopside (diop)

Taking into account the three positions for Fe–Mg mixing in the 
garnet (12 O atom basis) and only one position of Fe–Mg mixing 
in the clinopyroxene, the equilibrium constant of the reaction is:

( )
( )

( )
( ) λ

λ λ
λ λ

λ λ

λ λ

= =

= =

1
gt cpx gt cpx gt cpx3
alm diop Fe Mg Fe Mg

eq 1 cpx gt cpx gt
cpxgt 3 Fe Mg Fe Mg

py hd
gt gt

Fe Mg Fe Mg
Dcpx cpx

Fe Mg Fe Mg

( )    
 

  ( )  

        

a a X X
K

X Xa a

X X
K K

X X  

(6.40)

Several authors have proposed equations relating T to Keq 
(Table 6.5), which can be used to calculate T from the compo-
sitions of coexisting garnet and clinopyroxene if P is estimated 
from some other source. The empirical calibration of Dahl 

Table 6.5 Some explicit equations proposed for garnet–clinopyroxene geothermometry

Author(s) Data for calibration Equation for T (K) (P in kbar)

Råheim and Green (1974) Experimental

D

3686 28.35 
ln 2.33

P
K
+

+  (6.41)

Ellis and Green (1979) Experimental gt
Ca

D

3104 ( ) 3030 10.86 
ln 1.9034
X P

K
+ +
+  (6.42)

Dahl (1980) Empirical (based on a 
granulite terrane)

gt gt gt gt
Fe Mg MnCa

D

2482 1509( ) 2810( ) 2855( )

 ln 

X X X X

R K

+ − + +
 

 (6.43)
Krogh (1988) Reinterpretation of existing 

experimental data
gt gt2
Ca Ca

D

6137 ( ) 6731 ( ) 1879 10 
ln 1.393

X X P
K

− + + +
+  

(6.44)

Pattison and Newton (1989) Experimental 3 2

3 2
D o o o o

a' b' c' d'
5.5 ( 15)

ln a b c d

X X X
P

K X X X

+ + + + −
+ + + +  

(6.45)
where ao, bo, co, do, a′, b′, c′, and d′ are 

parameters determined from 
experimental data

Ai (1994) Experimental − +
− + +

+

gt gt2
Ca Ca

D

[ 1629( ) 3648.55( )

 6.59 {mg # (gt)} 1987.98 17.66 ]
ln 1.076

X X

P
K

 (6.46)

mg# (magnesium number) = [molar Mg/(Mg + Fe)]100. The uncertainties in the temperatures estimated by these geothermometers 
are generally ±5% in the 800°–1200°C range, but may be somewhat larger toward the low temperature end of this range because 
of the lack of extensive experimental data or well-constrained thermochemical parameters at such temperatures.
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120 Geothermometry and Geobarometry

(1980) (equation 6.43) gives widely scattered, erratic results 
and is not reliable. The experimental calibration of Råheim 
and Green (1974) (equation 6.41) was based on a series of 
natural basaltic rocks [Mg/(Mg + Fe) = 0.062–0.85] crystal-
lized to eclogite at 20–40 kbar and 600°–1400°C. In order to 
test the effects of variations in the compositions (Na, Ca) of 
clinopyroxene and garnet on KD, Ellis and Green (1979) 
obtained additional experimental data on a series of basaltic 
compositions in the range of 24–30 kbar and 750°–1300°C. 
The variation of KD over a wide range of pressure, tempera-
ture, and rock composition was found to be a function of Xgt

Ca 
[where Xgt

Ca = Ca/(Ca + Mg + Fe2+ + Mn)] at any given P, T 
condition and could be accounted for by the linear relationship

ln KD = c Xgt
Ca + d

where the constants c and d, which incorporate the total non-
ideal effects on KD, were determined from the experimental 
data (equation 6.42). Using experimental data available at the 
time, Krogh (1988) proposed a new equation (equation 6.44), 
which replaced the linear relationship between XCa(gt) and ln 
KD by a curvilinear relationship. Application of this calibra-
tion to a suite of samples of eclogites and associated omphac-
ite–garnet-bearing gneisses showed that the calculated 
 temperatures did not vary much with rather large variations in 
the Mg:(Mg + Fe) ratio of the garnet (0.17–0.54) and Na con-
tent of the clinopyroxene (0.11–0.44).

Pattison and Newton (1989) showed from experimental 
study that the magnesium number (mg #) of garnet had a sig-
nificant effect on KD. They fitted their experimental data on 
synthetic compositions (mg # 12.5 to 60) to a third-order 
polynomial, 

ln KD = aY3 + bY2 + cY + d

where Y represents the Mg:(Mg + Fe) ratio of the garnet and 
the coefficients are functions of 1/T (e.g., a = ao + a1(1/T), etc.), 
an apparent contradiction with the experimental observation 
of Råheim and Green (1974) that KD increases with increasing 
temperature. The geothermometer (equation 6.45) requires 
the extraction of eight parameters (or coefficients) for each 
garnet composition and, as the authors have cautioned, it 
should not be applied outside the experimental range of gar-
net composition, Xgt

Ca = 0.125 − 0.600. Overall, temperatures 
calculated using equation (6.45) are 0 to 60°C lower than 
those obtained by Råheim and Green (1974) and 60° to150°C 
lower than those of Ellis and Green (1979). For high-pressure 
mantle rocks (T greater than about 1000° C) temperatures 
calculated with the calibration of Ai (1994) (equation 6.46), 
based on all the experimental data available at the time, are 
similar to those of Ellis and Green (1979), but may be lower 
by as much as about 100°C for crustal rocks.

Berman et al. (1995) proposed a “provisional” solution model 
to evaluate ln Kl for the calibration of the garnet–clinopyroxene 
geothermometer. For this model, the M1 site in clinopyroxene is 

treated as a symmetric ternary regular solution of Mg, Fe, and 
Al atoms, and the M2 site as a quaternary solution of Na, Ca, 
Fe and Mg atoms; Mg:(Mg + Fe) is assumed to be equal in both 
M1 and M2. The garnet is considered to be a Ca–Mg–Fe ternary 
solution, with each of the three binary joins modeled as asym-
metric regular solution.

The geothermometer of Ellis and Green (1979) is the one 
that is most commonly used for intermediate, mafic, and 
ultramafic rocks from metamorphic terranes and from xeno-
lith assemblages as it agrees more closely with feldspar- and 
oxide-based temperature determinations than other formula-
tions. From a comparison of the various formulations of the 
garnet–clinopyroxene thermometer, Green and Adam (1991) 
concluded that the Ellis and Green (1979) calibration may 
result in an overestimation of temperature when applied to 
crustal rocks formed at low to moderate pressures (10–20 kbar), 
but temperatures for such rocks calculated using the solution 
model of Berman et al. (1995) are quite similar to that pro-
duced with the formulation by Ellis and Green (1979).

6.5.2 Garnet–biotite (GABI) thermometry

The garnet (gt)–biotite (bi) Fe–Mg exchange geothermometer is 
one of the most widely used geothermometers for estimating the 
temperature of equilibration of medium- and high-grade meta-
morphic rocks. The cation exchange equilibrium can be expressed 
in terms of end-member components of garnet and biotite as: 

 garnet biotite garnet biotite

Fe3Al2Si3O12 + KMg3AlSi3O10(OH)2 ⇔ Mg3Al2Si3O12+ 
KFe3AlSi3O10(OH)2 (6.47)

 almandine phlogopite pyrope annite

The equilibrium constant of the reaction, taking into account 
the Fe–Mg exchange on three crystallographic sites, is:

( ) ( )
( ) ( )

( ) ( )
( ) ( ) λ

λ λ

λ λ
= =

3 33 3gt gt gt gt
Mg Fe Mg Fe 3

eq D3 3 3 3bi bi bi bi
Mg Fe Mg Fe

  . (  )
X X

K K K
X X

 

(6.48)

If ΔHr and ΔSr for reaction (6.47) are assumed to be independ-
ent of temperature and ΔVr independent of temperature and 
pressure, we can combine equations (6.38) and (6.48) to get 
the following (see Box 6.2):

( ) ( )1 1
r, 298.15 r r, 298.15

D

  1
ln  ,  

3 3

H P V S
K K P T

T R Rλ

⎡ ⎤− Δ + Δ Δ
⎢ ⎥( ) = +
⎢ ⎥⎣ ⎦

 

(6.49)

Conducting reversed experiments for calibration of the parti-
tioning of Fe and Mg between a large amount of synthetic 
Fe–Mg garnet of known composition and a small amount of 
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6.5 Exchange reactions 121

Fe–Mg biotite of unknown composition at temperatures rang-
ing from 550 to 800°C, Ferry and Spear (1978) established the 
relation between KD and T (at P = 2.07 kbar, the pressure at 
which the experiment was conducted) as:

ln KD = −2109/T(K) + 0.782 (6.50)

where KD = (Mg/Fe)gt/(Mg/Fe)bi (either on a weight or atomic 
basis). This equation is consistent with ideal mixing of Fe and 
Mg in biotite and garnet solid solutions (i.e., ai = Xi so that Kl = 
1 in equation (6.49) ), at least in the compositional range stud-
ied in their experiments (0.80 ≤ Fe/(Fe + Mg) ≤ 1.00). The 
coefficients in this equation were determined by a linear least-
squares fit of the experimental values of ln KD versus 1/T 
(Fig. 6.6). The straight-line plot in Fig. 6.7 indicates that the 
assumptions − ΔCr

0 = 0 and ΔVr = 0 − are quite reasonable. 
Comparing equation (6.49) with equation (6.50), and substi-
tuting ΔVr = 0.057 cal bar−1 = 0.238 J bar−1 (using molar vol-
ume data at 298.15 K and 1 bar from Robie et al., 1978), they 
determined that at P = 2070 bars (the pressure at which the 
experiment was conducted),

ΔS1
r, 298.15 = 3R (0.782) = 4.662 cal K−1 = 19.51 J K−1

ΔH1
r, 298.15 = 3R (2109) − 2070 (ΔVr) = 12,454 cal = 52,108 J

Substituting the above values in equation (6.49) (and assum-
ing Kl = 1),

52, 108 (J)  − 19.51 T (K) + 0.238 P (bars)
+ 3RT ln KD = 0 (6.51)

which can be rearranged as (R = 8.314 J mol−1 K−1):

ln KD = −(2089 + 0.0096P)/T + 0.782 (6.52)

Box 6.2 Derivation of equation (6.49) for GABI thermometry

Separating the mole fractions term from the activity coefficients 
term in equation (6.48),

Keq = (KD Kl)
3

ln Keq = 3 ln (KD Kl)

where

( ) ( )
( ) ( )

( ) ( )
( ) ( )

gt gt gt gt
Mg Fe Mg Fe

D bi bi bi bi
Mg Fe Mg Fe

   a n d     
X X

K K
X X

λ
λ λ

λ λ
= =

 
Substituting for Keq in equation (6.38), 

−RT ln Keq(P, T) = ΔH1
r, T − T ΔS1

r, T + P ΔVr

−3RT ln (KD Kl) (P, T) = ΔH1
r, T − T ΔS1

r, T + P ΔVr

1 1
r, r, r

D
   

ln (  ) ( , )
3

T TH T S P V
K K P T

RTλ
− Δ − Δ + Δ

=

which can be rearranged to give equation (6.49)

( ) ( )1 1
r, 298.15 r r, 298.15

D

  1
ln  ,  

3 3

H P V S
K K P T

T R Rλ

⎡ ⎤− Δ + Δ Δ
⎢ ⎥( ) = +
⎢ ⎥⎣ ⎦  

(6.49)

Fig. 6.6 Plot of ln KD[= ln {(Mg/Fe)garnet/(Mg/Fe)}biotite] versus 1/T (K) for 
experimentally equilibrated garnet–biotite pairs by Ferry and Spear 
(1978). The solid circle–open circle pairs represent reversal brackets, and 
the solid line the calculated least-squares fit to the data points. (After 
Ferry and Spear, 1978, Figure 3, p.115.)
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Fig. 6.7 The major solid solution series of the FeO–Fe2O3–TiO2 system: 
ilmenite (FeTiO3)–hematite (Fe2O3) solid solution [a phase, rhombohedral]; 
magnetite (Fe3O4)–ulvöspinel (Fe2TiO4) solid solution [b phase, cubic]; and 
ferropseudobrookite (FeTi2O5)–pseudobrookite (Fe2TiO5) solid solution [g 
phase, orthorhombic]. Compositions are in mole percent.
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122 Geothermometry and Geobarometry

Note that the effect of pressure on this exchange equilibrium is 
small (as it should be for a good geothermometer) so that the 
error introduced on account of uncertainty in the estimated 
pressure will be small. This reaction is appropriate for geother-
mometry because of the relatively large ΔHr and quite small ΔVr.

Equation (6.52) can be used to calculate T for a given rock 
first by calculating KD from electron microprobe analysis of 
coexisting garnet and biotite, and then obtaining an independ-
ent estimate of P, provided that the garnet and biotite compo-
sitions lie close to the Mg–Fe binary and the Mg–Fe mixing is 
ideal in both the minerals. In reality, the activity–composition 
relations are more complicated because of dilution of the solid 
solutions – with Ca and Mn in garnets, and with AlVI and Ti in 
biotites – and the nonideality of the solutions. In addition, 
natural and synthetic biotites and garnets contain Fe3+, which 
was not been taken into account in the calibration of Ferry 
and Spear (1978). They considered it a useful thermometer 
(with a maximum practical resolution of approximately 
±50°C) without correction for components other than Fe and 
Mg [(Ca + Mn)/(Ca + Mn + Fe + Mg) up to ∼0.2 in garnet and 
(AlVI + Ti)/(AlVI + Ti + Fe + Mg) up to ∼0.15 in biotite].

Over the past two decades, a number of calibrations of the 
GABI geothermometer, incorporating different mixing models 
for garnet or biotite or both, have been discussed in the litera-
ture (see Table 6.1). Holdaway (2000) made a statistical com-
parison of several of these models and concluded that the 
models of Berman and Aranovich (1996), Ganguly et al. 
(1996), and Mukhopadhyay et al. (1997) can be used to pro-
duce reasonable garnet–biotite geothermometer calibrations.

6.5.3  Magnetite–ilmenite thermometry 
and oxygen barometry

The compositions of coexisting magnetite–ulvöspinel solid 
solution (mtss or b phase; cubic) and ilmenite–hematite solid 
solution (ilmss or a phase; rhombohedral) (Fig. 6.7), the two 
most common iron–titanium oxide minerals in rocks and min-
eral deposits, provide information about not only the tempera-
ture of equilibration but also the corresponding oxygen fugac-
ity. The method is best suited to extrusive and hypabyssal 
igneous rocks that were subjected to relatively rapid cooling 
and are unmetamorphosed. Its application to plutonic igneous 
rocks and mineral deposits should be viewed with caution 
because of likely reequilibration subsequent to crystallization.

The crystal structure of both hematite (Fe2
2+ O3) and ilmen-

ite (Fe2+ Ti4+ O3) may be described as a hexagonal close-packed 
array of oxygen atoms with octahedrally coordinated metal 
atoms in the interstices. In pure ilmenite, there are two cation 
sites, one (site A) containing Fe2+ and the other (site B) con-
taining Ti4+. In pure hematite the two sites are indistinguisha-
ble as both contain only Fe2+. In the structure of the ilmss, Ti is 
assumed to be restricted to the B sites, as in pure ilmenite, 
where it mixes randomly with Fe3+, and Fe2+ is restricted to the 
A sites where it mixes randomly with the rest of Fe3+ (Rumble, 
1977). For the pure Fe–Ti–O system, a further constraint in 
this model is that the amount of Fe2+ and Fe3+ on the A and B 

sites must be equal in order to preserve charge balance. Thus, 
we may accept a structural model for ilmss that is ordered in 
terms of A and B sites but disordered in respect of Fe3+.

In spinels (AIVB2
VIO4) with “normal” structure, A cations 

occupy the tetrahedral sites and B cations only the octahedral 
sites. But both magnetite (Fe3O4) and ulvöspinel (Fe2TiO4) 
have “inverse” spinel structure – that is, one-half of the B cati-
ons occupy tetrahedral sites, and the other half of the B cations 
and the A cations occupy octahedral sites – and their structural 
formulas may be written as (Fe3+)IV[Fe2+ Fe3+]VIO4 and (Fe2+)
IV[Fe2+ Ti4+]VIO4. Several models have been proposed to account 
for the cation distribution in mtss, and the activity–composition 
relationships vary depending on the model adopted.

Thermodynamic equilibrium between mtss and ilmss may be 
represented by the reaction among the end-member compo-
nents as

 β phase α phase

[ ] ( )⎡ ⎤+ − + ⇔ + −⎣ ⎦
31

2 4 3 4 2 3 2 34 2Fe TiO (1 )Fe O O FeTiO Fe Oy y y y
 

(6.53)

( ) ( )
( ) ( ) ( )

α α

β β

−

−
=

3
2

FeTiO Fe O3 2 3
eq 11

4
Fe TiO Fe O2 4 3 4 2

y y

yy

O

a a
K

a a f
 

(6.54)

As Keq is a constant at given P, T and the effect of total pressure 
on this equilibrium is negligible (Buddington and Lindsley 
1964), Keq is essentially a function of temperature and O2

.f  
Thus, the equilibrium temperature of the reaction and its asso-
ciated O2

f  are defined simultaneously if the activities of all the 
solids are fixed. Buddington and Lindsley (1964) experimen-
tally determined calibration curves for various compositions of 
the two solid solutions as a function of temperature and O2

,f  
which could then be used to determine temperature and O2

f  for 
coexisting mtss and ilmss in equilibrium in natural assemblages. 
The calibration has subsequently been refined incorporating 
additional experimental data and solution models.

For thermodynamic modeling, the compositions of coexist-
ing mtss and ilmss phases are considered in terms of two sepa-
rate reactions involving end-member components:

(1) a Fe-Ti exchange reaction,

 ilmss     mtss      mtss      ilmss

FeTiO3 + Fe3O4 ⇔ Fe2TiO4 + Fe2O3 (6.55)

 ilm       mt       usp      hem

Since ΔGr
0 = −RT ln Keq (equation 5.37),

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

φφ

φφ

φφ φ φ

φ φφφ

λ λ

λ λ

==

==

== = =

= ===

Δ− = =

= +

21 ilmmt  ssss0
usp hemexch

eq 21 ilmmt ssss
mt ilm

21 1 2ilmmt mt ss ilm ssssss
usp hem usp hem

2 211 ilm mt ss ilm ssmt ssss
mt ilmmt ilm

ln ln

              ln ln

a aG
K

RT a a

X X

X X  
(6.56)
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(2) an oxidation reaction (oxidation of magnetite to hematite), 

  mtss     ilmss

4Fe3O4 ⇔ 6Fe2O3 (6.57)
  mt        hem

( )
( )

( )
( )

( )
( )

φ

φ

φ φ

φ φ

λ

λ

=

=

= =

= =

Δ− = =

= + −

6 . 2ilm ss0
hemoxid

eq 4. 1mt ss
mt O2

6 . 2 6 . 2ilm ss ilm ss
hem hem

O4 . 1 4 . 1 2mt ss mt ss
mt mt

ln ln 

ln ln ln 

aG
K

RT a f

X
f

X
 

(6.58)

The variable f in equations (6.56) and (6.58) is set to 2 for 
ilmss and to 1 for mtss in accordance with configurational 
entropy expressions (Rumble, 1977). Spencer and Lindsley 
(1981) used the above reactions to revise the calibration of 
Buddington and Lindsley (1964) with a solution model based 
on least squares fit of thermodynamic parameters to experi-
mental data in the range 550–1200°C obtained by various 
workers. The assumptions for the model are as follows: 
(i) ilmss behaves as a binary asymmetric regular solution; (ii) 
mtss behaves as a binary asymmetric regular solution below 
800°C and as a binary ideal solution above 800°C; (iii) the 
activities of the components can be approximated by a molec-
ular mixing model for the mtss (with the proportions of the 
different end-member “molecules” calculated in a specified 
sequence) and by disorder of Fe3+ in ilmss. The equations 
derived by them for calculation of the temperature and O2

f  of 
equilibration of a mtss−ilmss pair are: 

where WH and WG are enthalpy and free-energy interaction 
parameters, respectively, and log MH is the value of O2

log  f  
of coexisting mtss−ilmss at T and is calculated as log MH = 
13.996 − 24634/T.

The parameters for this model are listed in Table 6.6. 
Spencer and Lindsley (1981) suggested using the low-T 
parameters to calculate an initial temperature, and recalculat-
ing T by setting WGs = 0 for mt and usp (i.e., considering mtss 
to be ideal) if the initial temperature turned out to be greater 
than 800°C. Uncertainties in T and O2

f  according to the 

authors are  approximately 40–80°C and 0.5–1.0 log units 
O2f  (2σ),  assuming 1% uncertainties in mtss and ilmss compo-

sitions. The T– O2
f  curves calculated from this model are 

shown in Fig. 6.8.
The calibration of Spencer and Lindsley (1981), like that of 

Buddington and Lindsley (1964), did not consider minor con-
stituents (such as Mg, Mn, Ca, Al, Cr, V, Si, etc.) that may 
occur in the solid solutions due to ionic substitutions. Stormer 
(1983) recommended a scheme for calculation of what he 
called “apparent mole fractions” of the solid solution compo-
nents that considered the effect of ionic substitutions while 
being consistent with the solution models of Spencer and 
Lindsley (1981). This scheme assumes that in ilmss the 2+ ions 
are confined to the A site with Fe2+, the 4+ cations occupy the 
B sites with Ti4+, and the 3+ cations and Fe3+ are randomly 
mixed in equal proportions on both sites. For mtss it is assumed 
that all the 4+ cations substitute for Ti4+ on the B sites, the two 
octahedral sites always contain one Fe2+ per formula unit, Fe2+ 
and Fe3+ substitute on the tetrahedral sites in ratios equal to 
the molar ratio of usp to mt, and the local charge balance is 
maintained by the substitution of 2+ cations for Fe2+ and of 3+ 
cations for Fe3+. Incorporation of this scheme into the solution 
model of Spencer and Lindsley (1981) simply requires replac-
ing the mole fractions (Xilm, Xhem, Xusp, Xmt) used in equations 
(6.59) and (6.60) by corresponding apparent mole fractions 
(X∗

ilm, X∗
hem, X∗

usp, X
∗
mt), which are calculated as follows:

+ +∗

+ + +

∗

=
+

=

(Ti Si, F) 2(Fe , F)
ilm

3 (Ti Si, F) 2(Fe , F) (Fe , F)
*

hem ilm

 

0.5  

1—

n n
X

n n n

X X  

(6.61)

+ + +

+ + + + + +

∗

∗ ∗

=
+

= −

(Ti Si, F) 2 2(Fe , S )
usp

3 3 3 (Ti Si, F) 2 2(Fe , F) (Fe , S ) (Fe , S )

mt usp

 

0.5   

1

n X
X

n X n X

X X
 

(6.62)

where n denotes the number of moles, F is the formula unit, 

+ +2 2Fe , S
X  is the mole fraction of Fe2+ versus all other 2+ cati-
ons, and + +3 3Fe , S

X   is the mole fraction of Fe3+ versus all other 
3+  cations.

− − + + + Δ
=

− − + + + Δ −

0
1 usp 2 mt 3 4ilm hem exch

0
1 usp 2 mt 3 4ilm hem exch exch

A A A A
 (K)

A A A A  ln 

H H H H

S S S S

W W W W H
T

W W W W S R K
 (6.59)

( ) ( )
( ) ( )

uspilm

2 2
usp usp usp usp usp mtO2

2 2
ilm ilm ilm ilm ilm hem

12 ln (1 ) 4 ln(1 )
1

8 1 4 1 2log log MH 1
2.303

12 1 6 1 2

G G

G G

X X

X X W X X Wf

RT X X W X X W

− − − +⎡ ⎤
⎢ ⎥⎧ ⎫− + −= + ⎪ ⎪⎢ ⎥⎨ ⎬⎢ ⎥+ − − −⎪ ⎪⎩ ⎭⎣ ⎦  (6.60)
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124 Geothermometry and Geobarometry

Table 6.6 Parameters for the solution model of Spencer and Lindsley (1981).

Interaction and other parameters*

kJ mol−1 J mol−1 K−1

A1 = −3X2
usp + 4Xusp − 1 WG

usp(T ≥ 800°C) = 0 WG
mt(T ≥ 800°C) = 0

A2 = 3X2
usp − 2Xusp WH

usp(T < 800°C) = 64.835 WS
usp(T < 800°C) = 60.296

A3 = −3X2
ilm + 4Xilm − 1 WH

mt(T < 800°C) = 20.798 WS
mt(T < 800°C) = 19.652

A4 = 3X2
ilm − 2Xilm WH

ilm = 102.374 WS
ilm = 71.095

Kexch = (XuspX2
hem)/(Xmt X ilm

2) WH
hem = 36.818 WS

hem = 7.7714

ΔHexch
0 = 27.799 kJ mol−1 ΔH0

usp = −3.0731** ΔS0
usp = 10.724**

ΔSexch
0 = 4.1920 J mol−1 K−1

*WG = WH − TWS, where WG, WH, and are free energy, enthalpy, and entropy exchange parameters, respectively.
**These values represent the intercept and slope of a line on a Gf

0 − T plot, and are not values for 298 K.

Fig. 6.8 Temperature (°C)– O2
f  grid for compositions, in mole percent, of coexisting magnetite (mt)–ulvöspinel (usp) solid solution (mtss) and ilmenite 

(ilm)–hematite (hem) solid solution (ilmss) pairs based on experimental data and the solution model of Spencer and Lindsley (1981). The compositional 
contours are effectively univariant calibration curves because of the nondetectable effect of pressure on the equilibrium. The intersection of contours 
for the compositions of these two phases provide a measure of both temperature and oxygen fugacity. The light grey shaded fields are estimates of the 
limits of the model. The mt–usp miscibility gap is calculated for the three-phase assemblage mtss + uspss + ilmss. The ilmenite–hematite miscibility gap 
(labeled “Approx. ilmss-hemss”) is the best guess from experimental data (it is not calculated). The mtss and ilmss are assumed to be pure binary Fe–Ti 
oxides; no minor constituents are considered. (After Spencer and Lindsley 1981, Figure 4, p.1197.)
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6.5 Exchange reactions 125

Example 6–3: Fe–Ti oxide geothermometry and oxygen 
barometry applied to a sample of Tertiary tholeiitic 
basalt from Iceland in which the coexisting mtss and ilmss 
have compositions as given in Table 6.7

The results of the first set of necessary calculations are pre-
sented in Table 6.8. The first task is to determine Fe2+and Fe3+ 
in the mtss and ilmss from the total Fe given as FeO. To accom-
plish this we follow the steps recommended by Stormer 
(1983): (i) calculate the molar proportions of all cations in the 
analyses (columns 2 and 3); (ii) normalize the cations in mtss 
to a formula unit of 3 sites and the cations in ilmss to a formula 
unit of 2 sites (columns 4 and 5); (iii) calculate the sum of the 
cationic charges per formula unit, and subtract 8 for the mtss 
and 6 for the ilmss (columns 6 and 7) to get the cation charge 
deficiency (or excess) for each. In the present example, there is 
a charge deficiency in both cases, which turns out to be 0.3772 
for mtss and 0.1199 for ilmss.

The charge deficiency numbers show that:

Fe3+ cations in the formula unit of mtss (3 cations total) 
= 0.3772

Fe3+ cations in the formula unit of ilmss. (2 cations total) 
= 0.1199

To get the number of moles of Fe3+ in the formula unit of each 
solid solution, we subtract the Fe3+ cations from its total num-
ber of Fe cations:

Fe2+ cations in mtss = 2.1027 − 0.3772 = 1.7255

Fe2+ cations in ilmss = 1.0017 − 0.1199 = 0.8818

We now have the number of moles of each cation per formula 
unit for both phases (columns 9 and 10) so that we can calcu-
late the apparent mole fractions of usp in mtss and of ilm in 
ilmss, using equations (6.61) and (6.62).
For mtss:

+
+ +

+

+
+ +

+

+ +∗

= + =

=
+ + + +

=

= =
+ + +

=

(Ti+Si, F)

2(Fe , F)
2 2(Fe , S )

2 (Mn, F) (Mg, F) (Ca, F) (Zn, F)(Fe , F)

3(Fe , F)
3 3(Fe , S )

3 (V, F) (Cr, F)(Al, F)(Fe , F)

(Ti Si, F) 2(Fe
usp

0.7648 0.0086 0.7734

 

0.9730

 0.8324

 

n

n
X

n n n n n

n
X

n n n n

n X
X

+

+ + + + + +

∗

=
+

= − =

2, S )

3 3 3 (Ti Si, F) 2 2(Fe , F) (Fe , S ) (Fe , S )
*

mt usp

0.8275
0.5   

1 0.1725

n X n X

X X

Table 6.7 Electron microprobe analysis of 
mtss and ilmss (Carmichael, 1967a).

Wt% mtss ilmss

SiO2 0.23 0.17
TiO2 27.1 49.5
Al2O3 1.22 0.13
V2O3 0.03 –
Cr2O3 0.71 0.10
FeO (t) 67.0 47.8
MnO 0.83 0.49
MgO 0.19 1.09
CaO 0.19 0.16
ZnO 0.12 –
Total 97.6 99.4
FeO (t) = total Fe calculated as FeO.

Table 6.8 First set of calculations for Fe–Ti oxide geothermometry and oxygen barometry of Tertiary tholeiitic basalt from Iceland.

Molar proportion of cations

Normalized to 3 cations 
for mtss and 2 cations 
for ilms Cationic charge

Recomputed molar 
proportion of cations

(1) (2) mtss (3)ilmss (4)mtss (5) ilmss (6) mtss (7) ilmss (8) (9) mtss (10) ilmss

Si4+ 0.0038 0.0028 0.0086 0.0043 0.0345 0.0171 Si4+ 0.0086 0.0043
Ti4+ 0.3392 0.6195 0.7648 0.9328 3.0591 3.7313 Ti4+ 0.7648 0.9329
Al3+ 0.0239 0.0025 0.0540 0.0038 0.1619 0.0115 Al3+ 0.0540 0.0038
V3+ 0.0004 0.0000 0.0009 0.0000 0.0027 0.0000 V3+ 0.0009 0.0000
Cr3+ 0.0093 0.0013 0.0211 0.0020 0.0632 0.0059 Cr3+ 0.0211 0.0020
Fe2+ (t) 0.9325 0.6653 2.1027 1.0017 4.2054 2.0035 Fe3+ 0.3770 0.1199
Mn2+ 0.0117 0.0069 0.0264 0.0104 0.0528 0.0208 Fe2+ 1.7256 0.8817
Mg2+ 0.0047 0.0270 0.0106 0.0407 0.0213 0.0814 Mn2+ 0.0264 0.0104
Ca2+ 0.0034 0.0029 0.0076 0.0043 0.0153 0.0086 Mg2+ 0.0106 0.0407
Zn2+ 0.0015 0.0000 0.0033 0.0000 0.0067 0.0000 Ca2+ 0.0076 0.0043
Total 1.3305 1.3283 3.0000 2.0001 7.6228 5.8801 Zn2+ 0.0033 0.0000
Cation deficiency 0.3772 0.1199 Total 3.0000 2.0000
Fe2+ (t) = total Fe expressed as Fe2+.
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126 Geothermometry and Geobarometry

For ilmss:

   

+

+ +

+ + +

∗

∗

= + =

= =
+

= =

(Ti Si, F)

(Ti Si,F) 2(Fe , F)
ilm

3 (Ti Si, F) 2(Fe , F) (Fe , F)
*

hem ilm

0.9329 0.0043 0.9372

 
0.9193

0.5  

1— 0.0807

n

n n
X

n n n

X X

Next we calculate the following parameters as defined in 
Table 6.6, replacing Xi values with Xi

∗ values:

A1 = −3X2
usp + 4Xusp − 1 = 0.2557;  A2  = 3X2

usp − 2Xusp 
= 0.3992

A3 = −3X2
ilm + 4Xilm − 1 = 0.1419;  A4  = 3X2

ilm − 2Xilm 
= 0.6967

Kexch = (Xusp X
2
hem/Xmt X

2
ilm) = 0.0369

Substituting the values calculated above and the low-T 
parameters (Table 6.6) in equation (6.59), we obtain T = 
1622 K (1349°C). Since T is above 800°C, we recalculate T by 
setting WH

usp = 0, WS
usp = 0, WH

mt = 0, and WS
mt = 0, and then use 

the new value of T to calculate O2
f  using equation (6.60), 

remembering that WG
usp = 0 and WG

mt = 0 at T < 800°C.
The final result: T = 1443 K (1170°C); O2

log f  = −9.23.

6.6 Solvus equilibria

As mentioned earlier (section 5.5.1), the unmixing of a non-
ideal binary solid solution below the consolute temperature 
at a given pressure provides a method of geothermometry. 
For example, the calcite (CaCO3)–dolomite (CaMg(CO3)2) 
solvus (Fig. 6.9) can be used to estimate the equilibration 
temperature from the compositions of calcite coexisting in 
equilibrium with dolomite. (Strictly speaking, the immisci-
bility between two phases of different crystal structures, 
such as calcite and dolomite, is not a “solvus”, but for brev-
ity we shall refer to such a miscibility gap as “solvus”.). The 
solvus, however, is not applicable to natural calcites, which 
generally contain small amounts of MgCO3 and FeCO3 in 
solid solution.

Reliable experimental data on the ternary CaCO3 – MgCO3 
– FeCO3 system are not available. Anovitz and Essene (1987) 
constructed isothermal phase diagrams for the system from 
natural carbonate assemblages at various grades of metamor-
phism and used these to obtain approximate activity–compo-
sition relations for the phase components, assuming an asym-
metric regular solution model for the ternary system. The 
equation they derived for the calculation of equilibration tem-
perature from the mole fractions of CaCO3, MgCO3, and 
FeCO3 in calcite (cal) is:

−= + + +

+ +

+

cal cal 2 cal cal
Fe Mg FeCO FeCO FeCO MgCO3 3 3 3

cal cal cal cal 2
FeCO MgCO FeCO MgCO3 3 3 3

cal cal 2
FeCO MgCO3 3

 (K)  ( ) ( ) ( / )

          ( . ) ( / )

( . )

T T a X b X c X X

d X X e X X

f X X
 

(6.63)
where

− = + +

+ +

cal cal 2 cal 2
Fe Mg MgCO MgCO MgCO3 3 3

cal 0.5
MgCO3

(K) ( ) /( ) ( )

( )

T A X B X C X

D X E
 (6.64)

and the values of the constants (A, B, C, D, E, a, b, c, d, e, and 
f ) are as given in Table 6.9. Evidently, for very small values of 

Fig. 6.9 The calcite–dolomite solvus constructed by Anovitz and Essene 
(1987). The position of the calcite limb of the solvus was based on 
reversed experiments of several earlier workers. Equilibration 
temperatures were calculated from the calcite limb of the solvus and 
natural dolomite compositions in equilibrium with calcites were used to 
locate the dolomite limb of the solvus. The solvus seems to be well 
calibrated in the temperature range from 400 to 800°C. (After Anovitz 
and Essene, 1987, Figure 3, p. 394.)

CaCO3 CaMg(CO3)2

Solvus

Mole fraction

900

700

600

500

400

300

200

800

1000

Te
m

pe
ra

tu
re

 (
°C

)

Table 6.9 Coefficients for equations (6.63) and (6.64) (Anovitz and 
Essene, 1987).

Coefficient Value Coefficient Value

A −2360 a 1718
B −0.01345 b −10610
C 2620 c 22.49
D 2608 d −26260
E 334 e 1.333

f 0.32837 × 107
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6.7 Uncertainties in thermobarometric estimates 127

cal
FeCO3

X , the difference in T calculated from equations (6.63) 
and (6.64) will be very small.

The formulation of Anovitz and Essene (1987) does not 
consider the possible effect of Mn in calcite, but the mole frac-
tion of Mn in natural calcites is commonly too small to make 
a significant contribution to the temperature estimate. The 
two-carbonate thermometer is not recommended for high-
temperature metamorphic rocks (above about 600°C) because 
of possible loss of Mg from the original high-Mg calcite due to 
exsolution (resulting in dolomite lamellae in calcite) or diffu-
sion during retrogression.

6.7  Uncertainties in thermobarometric 
estimates

Realistic interpretation of thermobarometric results requires 
an appreciation of the uncertainties associated with the P–T 
estimates. The calculation of uncertainties is largely an exer-
cise in statistics, which is beyond the scope of the present 
book. The purpose of this section is to provide an overview of 
the subject; the details are discussed in many recent publica-
tions (e.g., Hodges and McKenna, 1987; Kohn and Spear, 
1991; Spear, 1993; Powell and Holland, 1994).

Sources of error in geothermobarometry include (modified 
from Spear, 1993):

(1) accuracy of calibration, experimental or calculated (in 
the latter case because of uncertainties of thermodynamic 
datasets);

(2) error in the ΔVr;
(3) uncertainty associated with the compositions of stand-

ards and matrix correction factors used in electron 
microprobe analyses;

(4) analytical imprecision in electron microprobe analyses 
and in the estimation of Fe3+ from Fetotal such analyses;

(5) cross correlations between errors in temperature esti-
mates (for geobarometers) and errors in pressure (for 
geothermometers) as all thermobarometers are depend-
ent to some extent on both temperature and pressure;

(6) compositional heterogeneities in minerals; and
(7) uncertainties in activity–composition models for solid 

solutions.

Items (1) to (5) produce random errors that can be handled 
statistically by standard techniques of error propagation (see, 
e.g., Hodges and McKenna, 1987; Spear, 1993), whereas items 
(6) and (7) generate systematic errors that are handled differ-
ently (see, e.g., Kohn and Spear, 1991; Powell and Holland, 
1994). Since the pressure term in the calculations (see, e.g., 
equation 6.4) is a difference between the pressure of interest 
and the reference pressure, many of the sources of uncertainty 
in pressure cancel out. Many of the uncertainties in the P–T 
estimates arise from sources that contribute to error in the 

temperature estimate, which also contributes to error in the 
pressure estimate.

Calculated P–T estimates are critically dependent on the 
mixing models adopted for the various solid solution phases 
involved in the chosen thermobarometric reactions. For exam-
ple, as shown by Spear (1993, pp. 528–531), the P–T obtained 
for a single set of mineral analyses from Mount Moosilauke, 
New Hampshire (Sample 90A, Hodges and Spear, 1982), 
using the calibrations of different authors for garnet–biotite 
thermometry and GASP barometry, show a spread of approx-
imately 80°C and as much as 3.5 kbar. Without an absolute 
reference against which the calculated pressures can be com-
pared, it is not possible to make a judgment as to which of 
these calibrations is the most accurate, and an arithmetic aver-
age of the estimates will not be meaningful.

A practical approach for obtaining more consistent P–T 
estimates may lie in using an internally consistent set of ther-
mometers and barometers, which is calibrated either with the 
same thermodynamic database and solution models for all 
phases or against the same set of empirical data. The results of 
such an approach for the same Mt Moosilauke sample 90A 
mentioned above are shown in Fig. 6.10. The internally con-
sistent thermodynamic data set of Berman (1988) and Holland 
and Powell (1990) would also yield a consistent set of P–T 
estimates for this sample.

Fig. 6.10 Pressure–temperature diagram showing an internally 
consistent set of geothermobarometers applied to sample 90A from 
Mount Moosilauke, New Hampshire. The three garnet–plagioclase 
geobarometers (gt–pl–mus–qz, gt–pl–mus–bi, gt–pl–sil–qz) give pressures 
very close to 4 kbar at 500°C, whereas the two plagioclase-absent 
geobarometers (gt–mus–sil–qz, gt–mus–bi–sil) give slightly lower 
pressures, with a mean value of approximately 3.25 ±. 0.75 kbar. 
Calibration of the gt–bi geothermometer is from Hodges and Spear 
(1982) and calibrations of the five geobarometers are from Hodges and 
Crowley (1985). Phase relations among the Al2SiO5 polymorphs are 
shown for reference. (After Spear, 1993, Figure 15–10, p. 532.)
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128 Geothermometry and Geobarometry

To obtain optimal results, Powell and Holland (1985, 1994) 
have proposed a further refinement of the internally consistent 
approach, which they call “the average P–T method”. For a 
given sample (assemblage), this method considers equilibria, 
including uncertainties and enthalpies of formation of the 
end-members, pertaining to all possible independent thermo-
barometric reactions in the system, and employs an iterative 
least-squares regression technique to calculate an average P–T 
with an ellipse of uncertainty. The calculations are quite com-
plex, but the results can be obtained readily with the computer 
program THERMOCALC (Powell and Holland, 2001).

It should be pointed out that the internally consistent 
approach provides a reasonably good test for equilibrium in 
the assemblage under consideration, but it does not guaran-
tee that the P–T estimates are accurate. A consistent set of 
P–T estimates (i.e., with a narrow spread of values) may not 
be correct because of systematic errors in the calibrations 
(Spear, 1993).

6.8 Fluid inclusion thermobarometry

Fluid inclusions are minute aliquots of fluid that were trapped 
inside a crystal at some stage of its history. The trapped fluid 
may be liquid, vapor, or supercritical fluid. In terms of compo-
sition, the trapped fluid may be essentially pure water, brines 
of different salinity (the total dissolved salt content), gas or 
gas-bearing fluids, or even silicate, carbonate or sulfide melts. 
Subsequent to trapping at some temperature and pressure, a 
fluid inclusion may undergo various physical changes (e.g., 
necking down to form several small inclusions, leakage) and 
phase transformations (e.g., separation into immiscible gas 
and liquid phases, crystallization of daughter minerals). At 
surface temperature–pressure conditions, the inclusions usu-
ally consist of some combination of gaseous, liquid, and solid 
phases (Figs 6.11 and 6.12). The essence of fluid inclusion 
thermobarometry is to estimate the trapping temperature (Tt) 
and/or trapping pressure (Pt) from the present state of the 
inclusions in a mineral.

This reconstruction requires that the physical characteris-
tics of the fluid inclusions and their behavior during micro-
thermometric analysis (heating and cooling experiments) are 
consistent with the following assumptions (Roedder, 1984):

(1) the inclusion fluid was trapped and sealed as a single, 
homogeneous phase;

(2) the inclusion has behaved as an isochoric (constant den-
sity) system throughout its history;

(3) nothing has been added to or lost from the inclusion after 
sealing.

In terms of the timing of trapping of the inclusion relative 
to the crystallization of the host mineral, fluid inclusions may 
be classified as primary, secondary, or pseudosecondary. 
Primary inclusions result from fluids trapped in growth 

 irregularities during the growth of the host crystal. Thus, 
inclusions trapped along growth surfaces of a crystal are the 
most obvious examples of primary inclusions. A crystal may 
be fractured one or more times after its formation and the 
fractures healed in the presence of fluids; fluids trapped in 
these fractures result in secondary fluid inclusions, which are 
most easily identified when they occur along a fracture that 
crosscuts the entire crystal. A crystal may contain secondary 
 inclusions of several generations, each possibly representing a 
different fluid. Pseudosecondary inclusions originate from 
trapping of fluid in a fracture that formed during the growth 
of the crystal; such inclusions show a distribution similar to 
that of secondary inclusions but are primary in terms of their 
age relative to the host crystal, although not necessarily of the 
same composition as the primary inclusions. Distinction 
among the three types of fluid inclusions (and different gen-
erations of secondary inclusions) in a given sample is of fun-
damental importance in correlating the fluid inclusion data to 
geologic processes. The petrographic and morphological cri-
teria listed by Roedder (1984, pp. 43–45) for categorization 
of fluid inclusions are very useful, but the task can be difficult 
and sometimes impossible. Nevertheless, for thermobarome-
try it is imperative that we focus on a fluid inclusion assem-
blage (FIA; Goldstein and Reynolds, 1994) – a group of fluid 
inclusions that were all trapped at the same time and thus 
from a fluid of about the same composition at approximately 
the same temperature and pressure – that represents the fluid 
event of interest.

The practical and interpretative aspects of fluid inclusion 
study are quite involved, as discussed by several authors 
(e.g., Hollister and Crawford, 1981; Roedder, 1984; 
Shepherd et al., 1985; Bodnar, 2003). The basic principles of 
thermobarometric application, however, can be illustrated 

Fig. 6.11 Sketches of some common types of fluid inclusions at room 
temperature: (a) two-phase (L + V) aqueous inclusion; (b) three-phase 
(L + V + H) aqueous inclusion; (c) CO2-bearing inclusion (LCO2 + V + 
LH2O); (d). CO2-bearing inclusion with a salt crystal (LCO2 + V + LH2O 
+ H). Abbreviations: L = liquid, V = vapor, H = halite.
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6.8 Fluid inclusion thermobarometry 129

by considering an assemblage of two-phase (L + V) aqueous 
inclusions that can be approximated by the NaCl – H2O sys-
tem with no detectable gases, the most common kind of fluid 
inclusions found in hydrothermal minerals. Suppose we have 
determined from laboratory experiments that such an assem-
blage of NaCl – H2O inclusions have an average salinity 
(dissolved salt content) of 20 wt% NaCl and an average 
homogenization temperature (Th) of 300°C, and that the cal-

culated P–T phase relations in this system are as shown in 
Fig. 6.13. The homogenization temperature, the temperature 
at which an inclusion homogenizes to a single fluid phase, 
and the vapor pressure in the inclusion at homogenization 
(Ph; which is about 0.1 kbar in this case) represent Tt and Pt 
only if the inclusions were trapped in a boiling or immiscible 
fluid system. In all other cases they represent the minimum 
values of trapping temperature and trapping pressure, 

Fig. 6.12 Photomicrographs of fluid inclusions hosted by quartz samples from a gold deposit in India: (a) a two-phase (L + V) aqueous inclusion; 
(b) secondary aqueous inclusions trapped along a fracture; (c) aqueous inclusions trapped along intersecting fractures; (d) a CO2–bearing three–phase 
inclusion; (e) a CO2–bearing three–phase inclusion; (f) a cluster of CO2-bearing inclusions. Abbreviations: L = liquid, V = vapor, H = halite. (Courtesy 
Dr M.K. Panigrahi, Indian Institute of Technology, Khragpur, India.)
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130 Geothermometry and Geobarometry

 irrespective of the fluid composition. Since the fluid inclu-
sions are assumed to have evolved with constant density, the 
Tt and Pt for this fluid inclusion assemblage are defined by 
some point along the iso-Th line (approximately the same as 
an isochore) marked as 300°C. The liquid (L)–vapor (V) 
curve in Fig. 6.13 defines the equilibrium between an aque-
ous solution containing 20 wt% NaCl and a vapor phase of 
lesser salinity; it was constructed using the empirical equa-
tion of Atkinson (2002), which describes the vapor pressure 
of NaCl – H2O solutions as a function of salinity and tem-
perature. The iso-Th lines in this figure were calculated using 
the equation formulated by Bodnar and Vityk (1994), which 
calculates the slope of an iso-Th line as a function of Th and 
salinity. As shown in Fig. 6.13 we can use the 300°C iso-Th 
line to estimate the Th as ∼370°C if we have an independent 
estimate of Pt as 1 kbar (e.g., from the thickness of the over-
lying rocks at the time of trapping or some other geobarom-
eter), and vice versa.

A noteworthy limitation of the approach discussed above 
is that aqueous inclusion fluids in many geologic environ-
ments contain other dissolved salts, such as KCl and CaCl2, 
in addition to NaCl. At present our ability to use such inclu-
sions for thermobarometry is hindered by (i) the difficulty of 
observing and identifying phase changes in complex aque-
ous solutions during heating and cooling experiments (espe-
cially in small, natural inclusions) and (ii) the paucity of 
P–V–T–X data applicable to these more complex composi-
tions (Bodnar, 2003).

6.9 Summary

 1. Geothermometry and geobarometry refer, respectively, to 
the estimation of temperature and pressure at which a 
given mineral assemblage equilibrated during some event 
in its history (e.g., magmatic crystallization, prograde or 
retrograde metamorphism, hydrothermal alteration).

 2. The tools that have commonly been used for geothermo-
barometry are: (i) univariant reactions and displaced 
equilibria; (ii) exchange reactions; (iii) solvus equilibria; 
(iv) study of cogenetic fluid inclusions in minerals; and 
(v) fractionation of oxygen and sulfur isotopes between 
coexisting phases.

 3. The dependence of the equilibrium constant of a reaction 
on temperature and pressure is given by the following 
equations: 
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∂ ∂
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 Since the equilibrium constant is a function of both tem-
perature and pressure, one of the variables must be 
known from an independent source in order to calculate 
the other. For a reaction to be a sensitive geothermome-
ter, its equilibrium constant should largely be a function 
of T, that is the reaction should have a large value of ΔHr 
and a small value of ΔVr; for a reaction to be a sensitive 
geobarometers, it should have a large value of ΔVr and a 
small value of ΔHr.

 4. In general, reactions involving a fluid phase are not suit-
able for thermobarometry because of a lack of informa-
tion about the fluid composition and the ratio of fluid 
pressure (Pf) to total pressure (Ptotal).

 5. The basic relation used for calculation of equilibrium 
temperature and pressure of reactions is

 

−Δ −Δ Δ= = +
0 0 0
r r r

eqln  
G H S

K
RT RT R

 where the superscript “0” refers to the chosen standard 
state.

 6. For univariant reactions and displaced equilibria (net 
transfer reactions) involving solid phases only, 

 

− Δ Δ − Δ−
1 1
r, r, r

eq

 ( 1) 
ln = +T TH S P V

K
RT R RT

Fig. 6.13 Iso-Th lines for NaCl-H2O inclusions having a salinity of 
20 wt% NaCl. The L–V curve was constructed using the empirical 
equations in Atkinson (2002) and the iso-Th lines using data from 
Bodnar and Vityk (1994). (After Bodnar, 2003, Fig. 4–10, p. 90.)
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6.11 Questions 131

 if the standard state for each substance is taken as the 
pure substance at the temperature (T) and pressure (P) of 
interest, and ΔVr is assumed to be independent of tem-
perature and pressure.

 7. For an exchange reaction involving 1 mole each of two 
elements (or cations) A and B between the phases a and b,

 Keq(P, T ) = KD Kl(P, T )

 where, 

 

( )
( )

( )
( )

α α

λβ β
λ λ
λ λ

= =D    and   A B A B

A B A B

X X
K K

X X

 8. Reactions selected for geothermobarometry commonly 
include one or more solid solutions. The activity–compo-
sition relations in such solid solutions depend on the 
choice of solution models for the particular problem.

 9. Rigorous thermobarometry should include an estimate 
of uncertainties in the estimated temperature and pres-
sure due to several possible sources of error, some of 
which are random and others systematic.

10. Study of fluid inclusion assemblages can provide reason-
able estimates of trapping temperature and trapping 
pressure if P–V–T–X data are available for the inclusion 
fluid composition. The application of fluid inclusion 
thermobarometry to complex compositions is hindered 
at present by the lack of reliable P–V–T–X data for such 
systems.

6.10 Recapitulation

Terms and concepts

Al2SiO5 triple point
Displaced equilibria
Exchange reaction
Fluid inclusion assemblage
Fluid inclusion microthermometry
Geobarometer
Geobarometry
Geothermometer
Geothermometry
Homogenization temperature
Oxygen fugacity
Petrogenetic grid
Solid solutions
Solvus equilibria
Trapping pressure
Trapping temperature
Univariant reaction
van’t Hoff equation

Computation techniques

 ● Activities of constituents of solid solutions.
 ● Variation of equilibrium constant as a function of tempera-

ture and pressure.
 ● Reaction boundaries in P–T space.
 ● Equilibration temperature and pressures of appropriate 

mineral assemblages.

6.11 Questions

1. Show that for a reaction at constant pressure, the differ-
ence in the equilibrium constant at temperatures T1 and 
T2, assuming (ΔCP)r = 0, is related to the standard state 
enthalpy, ΔHr

0, of the reaction by the relation

 

⎛ ⎞Δ− − −⎜ ⎟⎝ ⎠

0
r

2 1
2 1

1 1
ln ln =T T

H
K K

R T T

2. The ΔG0 (in kJ mol−1) of the reaction

 3CaMg(CO3)2 + 4SiO2 + H2O = Mg3Si4O10(OH)2

 dolomite quartz fluid talc 

 + 3CaCO3 + 3CO2

 calcite fluid

 can be described by the relation ΔGr
0 = 173.1 − 0.2275T at 

2 kbar pressure, assuming (ΔCP)r = 0 (Powell, 1978, 
p. 116). How does the equilibrium constant for the reac-
tion change if the temperature of the reaction is raised 
from 300 K to 700 K? What is the slope of the line in a 
plot of ln Keq versus 103/T?

3. Calculate the equilibrium metamorphic pressure at 750°C 
for GAPES and GADS assemblages using the solid solu-
tion models discussed in the text. Assume quartz to be a 
pure phase, no mixing in the octahedral or tetrahedral 
sites in garnet, and no mixing in the tetrahedral sites in 
pyroxene. The cation and component mole fractions in 
the different minerals in the GAPES and GADS assem-
blages are given below:

4. Given below are the compositions of coexisting mtss and 
ilmss in a sample of basalt (Carmichael, 1967b).

 Calculate the temperature and oxygen fugacity of equili-
bration represented by the assemblage. Assume that the 

Garnet Plagioclase Clinopyroxene Orthopyroxene

XMg  
cubic = 0.181 Xab = 0.613 XCa

M2 = 0.870 XMg 
M2 = 0.482

cubic
2+Fe

=0.598X Xan = 0.373 XMg 
M1 = 0.664 XMg 

M1 = 0.468

XCa  
cubic = 0.191
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132 Geothermometry and Geobarometry

assemblage had achieved equilibrium and has experienced 
no subsequent change.

5. Given below are the electron microprobe analyses (in 
wt%) of coexisting garnet and clinopyroxene in an eclog-
ite xenolith recovered from the Udachnaya kimberlite 
pipe, Siberia (Misra et al., 2004):

 

Calculate the temperature of equilibration using the cali-
brations of Ellis and Green and (1979) and Krogh (1988), 
assuming FeO (total) = FeO (i.e., no Fe3+ in the garnet or 
clinopyroxene) and an equilibrium pressure of 6.5 GPa. 
Comment on the discrepancy, if any, between the two 
 estimates of temperature.

6. The compositions of coexisting garnet and biotite 
(expressed as mole ratios) in a sample from the sillimanite 
metamorphic zone in a pelitic schist unit are as follows 
(Ferry, 1980):

 garnet: Fe/(Fe + Mg) = 0.872; and biotite: Fe/(Fe + Mg)
 = 0.507

 Assuming equilibrium at a pressure of 3474 bars, calcu-
late the temperature of metamorphic equilibration of the 
pelitic schist, using the calibration of Ferry and Spear 
(1978).

7. Consider the metamorphic assemblage garnet–biotite–
plagioclase–kyanite–quartz. Microprobe analyses have 
shown that in the cubic garnet site XCa = 0.04, XMg = 0.18, 
and 2+Fe =0.78X . The biotite has the octahedral-site 
 contents XMg = 0.63 and 2+Fe =0.37X . If the activity of the 
anorthite component of plagioclase has been calculated to 
be 0.3, calculate the equilibrium P and T values that are 
consistent with these mineral compositions. For biotite–
garnet equilibrium, 

 garnet phlogopite garnet 

 Fe3Al2Si3O12 + KMg3AlSi3O10(OH)2 ⇔ Mg3Al2Si3O12

 almandine pyrope

 biotite

 + KFe3AlSi3O10(OH)2 (6.47)
 annite

 use the following equation calculated from Ferry and 
Spear (1978): 

 

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−= − − +

Mg Mg

Fe Fegt biot

ln ln ln 

2089 0.0096 ( 1)
0.782

X X
K

X X

P
T T

 For plagioclase–garnet–kyanite–quartz equilibrium, 

 gt      kyanite     qz         plag

 Ca3Al2Si3O12 + 2Al2SiO5 + SiO2 ⇔ 3CaAl2Si2O8

    grossular     kyanite   quartz     anorthite

 use the following equation calculated from Koziol and 
Newton (1988):

 

⎛ ⎞ −= = − − +⎜ ⎟
⎝ ⎠

plag 3
an
gt
gross

( ) 5815 ( 1)
ln ln 0.795 18.12

a P
K

T Ta

 In both equations, T is in Kelvin and P is in bars. Calculate 
the equilibrium temperature and pressure for the mineral 
assemblage, assuming all the solid solutions to be ideal. 
(After Nordstrom and Munoz, 1994.)

8. The metamorphic mineral assemblage garnet + plagio-
clase + orthopyroxene + quartz occurs within granulite 
facies rocks of pelitic bulk composition. The equilibrium 
among these minerals can be represented by the reaction

 garnet garnet quartz plagioclase orthopyroxene

 Ca3Al2Si3O12 + 2Fe3Al2Si3O12 + 3SiO2 ⇔ 3CaAl2Si2O8 + 3Fe2Si2O6

 grossular almandine anorthite ferosillite

 (a)  Calculate the equilibrium constant for the reaction if 
the composition of the minerals at equilibrium are as 
follows:

 garnet: Ca1.04Fe1.43Mg0.46Mn0.07Al2.15Si2.86O12

 plagioclase: Ca0.91Na0.07K0.02Al2.35Si1.65O8
 orthopyroxene: Ca0.09Fe1.67Mg0.19Al0.07Si1.98O6

Wt% mtss ilmss

SiO2 0.09 0.06
TiO2 28.80 50.32
Al2O3 1.18 0.02
V2O3 0.97 0.11
Cr2O3 0.71 –
Fe2O3 10.74 4.34
FeO 56.06 43.85
MnO 0.82 0.50
MgO 0.50 0.49
CaO 0.14 0.07
ZnO 0.12 –
Total 99.44 99.76

Garnet Clinopyroxene

SiO2 40.5 55.9
TiO2 0.55 0.50
Al2O3 21.9 11.2
Cr2O3 0.06 0.07
MgO 12.2 9.01
FeO (total) 17.3 4.87
CaO 6.95 11.7
MnO 0.34 0.04
Na2O 0.23 6.67
K2O 0.04 0.12
Total 100.07 100.08
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 Assume that the solid solutions are ideal (i.e., a = Xn, 
where X = mole fraction and n = site multiplicity).

 (b)  From the P–T calibration of this reaction by Bohlen 
et al. (1983a) estimate the equilibrium pressure cor-
responding to a temperature of 850°C.

9. In Koziol and Newton (1988), as cited in the question 7, 
the experimental fit to the univariant line for the 
 reaction

 Ca3Al2Si3O12 + 2Al2SiO5 + SiO2 ⇔ 3CaAl2Si2O8

 grossular kyanite quartz anorthite

 is given by

 P (bars) = 22.80 T (°C) − 1093
 Derive the ln K equation used in the above problem from 

the P–T fit to the experimental data. Take ΔV(s) = 6.608 J 
bar−1. Note that the temperature scales are different. State 
any assumptions that you need to make. (After Nordstrom 
and Munoz, 1994.)
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