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CHAPTER 3

THE THIRD LAW OF THERMODYNAMICS1

In sharp contrast to the first two laws, the third law of thermodynamics

can be characterized by diverse expression2, disputed descent, and questioned

authority.3  Since first advanced by Nernst4 in 1906 as the Heat Theorem, its

thermodynamic status has been controversial; its usefulness, however, is

unquestioned.

3.1  THE HEAT THEOREM

The Heat Theorem was first proposed as an empirical generalization based

on the temperature dependence of the internal energy change, ∆U, and the

Helmholtz free energy change, ∆A, for chemical reactions involving condensed

phases.  As the absolute temperature, T, approaches zero, ∆U and ∆A by

definition become equal, but The Heat Theorem stated that d∆U/dT and d∆A/dT

also approach zero.  These derivatives are ∆Cv and -∆S respectively.  The

statement that ∆Cv equals zero would attract little attention today in view of the

abundance of experimental and theoretical evidence showing that the heat

capacities of condensed phases approach zero as zero absolute temperature is

approached.  However, even today the controversial and enigmatic aspect of The

Heat Theorem is the equivalent statement

                                      
    1 Most of this chapter is taken from B.G. Kyle, Chem. Eng. Ed., 28(3), 176
(1994).

    2 For a sampling of expressions see E. M. Loebl, J. Chem. Educ., 37, 361
(1960).

    3 For extreme positions see E. D. Eastman, Chem. Rev., 18, 257 (1936).

    4 All of Nernst's work in this area is covered in W. Nernst, The New Heat
Theorem; Dutton: New York, 1926.
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In 1912 Nernst offered a proof that the unattainability of zero absolute
temperature was dictated by the second law of thermodynamics and was able to
show that Eq. (3-1) follows from the unattainability principle.  The latter result
seems undisputed, but Nernst was unable to convince his contemporaries of the
thermodynamic grounding of the unattainability principle.

Many years of low-temperature research have firmly established the
credibility of the unattainability principle and as a result it has been proposed as
the third law of thermodynamics.  This proposal has the merit of having all three
laws expressed in phenomenological language and, of course, it leads to the
useful result stated in Eq. (3-1).

As a matter of convenience, it is possible to express ∆S for a process under
consideration in terms of entropies of formation of participating species because
in such a calculation there is a cancellation of the entropies of the constituent
elements.  For this reason the entropy of an element may be assigned any value.
 According to Eq. (3-1), at zero absolute temperature the entropy changes for
formation reactions will be zero and it is convenient to set elemental entropies
equal to zero as recommended by Lewis and Randall.5  This results in the
familiar statement that the entropy of every perfect crystalline substance can be
taken as zero at zero absolute temperature and is, of course, the convention
employed in the determination of "absolute" entropies.

3.2  CONFORMANCES, EXCEPTIONS, AND INTERPRETATIONS

Undoubtedly the most convincing confirmation of the Heat Theorem

involved the calculation of absolute entropies from calorimetric measurements

on pure substances which were then used to calculate entropy changes for

chemical reactions.  These calculated values were in agreement with entropy

changes determined from the temperature dependence of experimentally

measured equilibrium constants.6  Later, it was shown through the use of

                                      
    5 G. N. Lewis and M. Randall, Thermodynamics and the Free Energy of
Chemical Substances, McGraw-Hill, New York, 1923, Chap. 31.

    6 Other successful applications of the third law are given by K. Denbigh, The
Principles of Chemical Equilibrium, 3rd ed., Cambridge University Press,
Cambridge, 1971, Chap. 13.
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quantum statistical mechanics that spectroscopic data could be used to

calculate absolute entropies in excellent agreement with those calculated from

calorimetric data.7  Quantum statistical mechanics also provides the microscopic

interpretation of zero entropy for a perfect crystal as well as quantitative

corrections for those few errant substances exhibiting small positive entropy

values at zero absolute temperature.  The statement that the lowest energy state

of the crystal is nondegenerate (only a single quantum state is available to it) is

easily visualized as a perfectly ordered crystal where only a single arrangement of

atoms, molecules, or ions on the crystal lattice is possible.  Thus, in terms of

Boltzmann's famous equation

Ω= lnkS (3-2)

it may be stated that for Ωo = 1 at T = 0 the entropy, So, is zero.

Exceptions to So equal to zero are explained in terms of "frozen-in"

disorder.  For example, a linear molecule such as carbon monoxide can take two

possible orientations on a lattice site, CO or OC.  Orientations on adjacent sites

such as COOC or OCCO represent a slightly higher energy state than ordered

orientations such as COCO and are therefore favored at higher temperatures. 

While there is a tendency for the crystal to move toward the low-energy, ordered

state on cooling, the rate at which molecular orientations proceed slows to a

standstill and a state of "frozen-in" disorder results at zero absolute temperature.

 If the orientations of the CO molecule were completely random, there would be
2N possible configurations on a lattice of N sites (two possibilities per site). 

Setting Ωo = 2N in Eq. (3-2) leads to So = Rln2 which is also seen to be the entropy

change on forming an equimolar binary mixture.8  The value of Rln2 is extremely

close to the observed difference between calorimetric and spectroscopic absolute

entropies.

The vast majority of substances conform to So equal to zero and can be

visualized as forming crystals of perfect order (Ωo = 1).  The few exceptions can be

explained in terms of "frozen-in" disorder in a manner similar to that described

for carbon monoxide.  Here there is seen to be a close correspondence between

                                      
    7 See Sec. 3-6.

    8 See Eq. (14-22) of this textbook.
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entropy and disorder in a spatial sense.  Unfortunately, there are other systems

conforming to the Heat Theorem that place a strain on this interpretation.  We

now examine these systems.

Measurements of phase equilibrium data for pure substances show that

the slope of the solid-vapor coexistence curve for many substances and the slope

of the liquid-vapor coexistence curves for 4He and 3He approach zero as zero

absolute temperature is approached.9  From the Clapeyron equation,

dP

dT

S

v
 

∆
∆ (3-3)

and the fact that ∆v is finite, we obtain the result that ∆S = 0 and conclude that

Eq. (3-1) applies to these phase changes.  Both helium isotopes remain liquid

under their own vapor pressure down to zero Kelvin and both require a pressure

considerably higher than their vapor pressures in order to form a solid phase

and the appropriate calculations show10 that Eq. (3-1) also applies to the solid-

liquid phase transition.  Thus, if the Lewis and Randall convention is used, the

entropies of pure liquids and vapors also have zero entropies.  While it may be

possible to argue that these systems are nondegenerate in their lowest energy

state, the simple picture of zero entropy corresponding to perfect order does not

seem appropriate, at least in a physical sense. 

The interpretation is further strained when the behavior of glasses in the

low-temperature limit is considered.  The Maxwell relationship
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together with Eq. (3-1) leads to
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Thermal coefficients of expansion for many substances have been measured at

                                      
    9 J. A. Beattie and I. Oppenheim, Principles of Thermodynamics; Elsevier,
Amsterdam, 1979, Chap. 11.

    10 ibid.
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temperatures approaching absolute zero.  As expected, Eq. (3-5) is obeyed by

crystalline solids, but one may be surprised to learn that it is also obeyed by

glasses.11  Here a microscopic physical interpretation hardly seems possible.

Systems comprised of liquids, vapors, and glasses strain to the breaking

point the putative association of zero entropy with perfect spatial order.  These

are the systems that prompt us to ask Is there a microscopic physical

interpretation of the Heat Theorem applicable to all systems?  One could argue

that the association of entropy with spatial order is naive and that Ω0 = 1 only

means that the system is nondegenerate.  For example, both Fermi-Dirac and

Bose-Einstein gases have been shown to be nondegenerate12  and therefore have
So = 0.  In the case of crystalline solids Ωo = 1 can be interpreted physically as

spatial order, but no such microscopic description of the gases in physical terms

is possible.  Instead Ωo can only be seen as a logical construct that allows a

mathematical treatment of the system. The answer to the question is No! only an

explanation in logical terms is possible.  This is yet another instance of our

inability to obtain a microscopic view of entropy in anything other than logical

terms.

If there is no physical microscopic interpretation of the Heat Theorem,

then what is the basis for its existence?  As will be shown below, the answer is

that Eq. (3-1) is dictated by the logical structure of thermodynamics.

3.3  THE CLASSICAL THERMODYNAMIC VIEW

The absolute temperature scale is defined in terms of the performance of a

Carnot engine

|Q|

|Q|
  =  

T

T

2

1

2

1 (3-6)

where Q2 is the input heat at T2 and Q1 is rejected heat at T1.  Instrumental

in the derivation of Eq. (3-6) is a second-law statement such as It is impossible to

                                      
    11 G. K. White, Cryogenics, 4, 2 (1964).

    12 A. H. Wilson, Thermodynamics and Statistical Mechanics, Cambridge
University Press, Cambridge, 1957, Chap. 6.
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completely convert heat into work in a cyclic process.  Equation (3-6) is therefore

subject to this constraint and would not be valid for T1 = 0 where Q1 would be

zero.  Therefore, the logical structure of thermodynamics does not permit zero

absolute temperature and since the laws of thermodynamics are based on

statements from the physical world and have proven reliable in dealing with the

physical world, it may be stated that zero absolute temperature is unattainable. 

Thus, it is not necessary to propose the unattainability principle as a third law of

thermodynamics. 

Equation (3-1) can be derived from the unattainability principle13  by

considering the arbitrary process α → β which could be a chemical or physical

transformation or a change in a thermodynamic property (e.g., intensity of

magnetization).  The entropies of the system in these states are

dT 
T
C  +  S  =  S

T

0

0
ααα ∫ (3-7a)

dT 
T
C

  +  S  =  S
T

0

0
βββ ∫ (3-7b)

The mathematical formalism of thermodynamics allows these equations to be

written as if T = 0 were possible.  However, a more rigorous approach that uses

the limit as T approaches zero yields the same result.14

For a reversible adiabatic process between states α and β occurring near

zero absolute temperature, we utilize Eq. (3-7) to write

dT 
T
C

  + S = dT 
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C  + S

T
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(3-8)

If the process began in state α at T′ and ended in state β at T″ = 0 we would have

0 > dT 
T
C  = S - S

T

0

00
ααβ ∫

′

(3-9)

but because T″ = 0 is not possible, the following holds

                                      
     13 R. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge
University Press, London, 1956, Chap. 5.

     14 See Appendix 3A.
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0  S - S 00 ≤αβ (3-10)

Considering the reverse process that proceeds from T″ to T′ = 0, we can, in the

same manner, show that it is necessary for

0  S - S 00 ≥αβ (3-11)

These two inequalities can be satisfied only when S0
β = S0

α and it is seen that Eq.

(3-1) follows from the unattainability principle.  Thus, Eq. (3-1) arises from the

second law and is needed to preserve the logical structure of thermodynamics; a

third law is therefore unnecessary. 

3.4  ADDRESSING PREVIOUS ARGUMENTS

Two types of arguments found in the literature should be addressed: 

those that attempt to show that the attainment of zero absolute temperature is

not prohibited by the second law and those that attempt to show that existence

of a reservoir at zero absolute temperature does not threaten the second law. 

By applying the mathematical formalism of thermodynamics down to and

including zero absolute temperature, it has been shown that this temperature

can be reached in a finite number of steps15 or that the work required to reduce a

system16  to this temperature is finite.17  As shown in Appendix 3A, the

mathematical formalism is such that the use of T = 0 as a lower limit of

integration gives the appearance of being permissible.  A similar condition

probably obtains for these arguments which, despite their apparent cogency, are

incomplete because the possibility that the existence of a reservoir at zero

absolute temperature might pose a threat to the second law was not examined.

Nernst's proof that the unattainability principle is required by the second

law was based on the argument that if a reservoir at zero absolute temperature

existed, it would be possible to operate a Carnot engine using this reservoir to

                                      
     15 F. E. Simon, Low Temperature Physics, Academic Press, London, 1952,
Chap. 1.

     16 The heat capacity of the system was assumed to follow Eq.(3-12) of
Appendix 3A.

     17 E.M.Loebl, op. cit.
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convert heat taken in at a higher temperature  completely into work.  This is

essentially the argument presented here.  The two most damaging objections

against this position were based on possible operating difficulties associated with

the Carnot cycle.18 19 20 

The first objection calls into question the possibility of carrying out an

isothermal process at zero absolute temperature because the effects of heat leaks

and frictional heat are much more pronounced at this extreme.  This is an

objection of degree rather than principle and should carry no weight when it is

recognized that the logical structure constituting thermodynamics rests on such

idealizations as reversibility, isothermality, and adiabaticity.  As these

idealizations can never be realized in the physical world, it seems pointless to

argue that they would be more difficult to achieve at low temperature.

The second objection points to the ambiguity associated with the

isothermal step in the Carnot cycle presumed to occur at zero absolute

temperature.  Because no heat is rejected, this step would be adiabatic as well as

isothermal but it would not necessarily be isentropic for it can only be said that

the entropy change is 0/0.  It has been argued that when a system attempting to

follow a Carnot cycle reaches zero absolute temperature the second law is not

threatened because there is no assurance that the system would take the

isothermal path and complete the cycle rather than take the adiabatic path and

return to a previous state.  The emphasis here is misplaced!  Because a single

violation would vitiate the second law, concern should be directed to the

possibility, no matter how small, that the system would take the isothermal

path.  There is no assurance that this would not occur and therefore the

unattainability principle is needed.

Both of these inoperability objections seem to demand a premature reality

check.  It could be argued that the Carnot engine is simply a concept that is part

of the logical, mathematical formalism of thermodynamics and it is rather the

                                      
     18 P. S. Epstein, Textbook of Thermodynamics, Wiley, New York, 1937, Chap.
15.

     19 A. B. Pippard, The Elements of Classical Thermodynamics, Cambridge
University Press, London, 1957, Chap. 5.

     20 M. L. Boas, Am. J. Phys., 28, 675 (1960).
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final result of the argument which should be subjected to a reality check.  In this

regard it should be noted that the observed conformance to Eq. (3-5) may be

taken as proof that the concept of a Carnot engine is viable in the limit as T

approaches zero.  This is because the Maxwell relation, Eq. (3-4), can be derived

through the agency of a Carnot cycle as was originally shown by Maxwell

himself.21

3.5  THE STATUS AND INTERPRETATION OF THE THIRD LAW

We have seen that Eq. (3-1) can be understood only in a logical sense and

to that end a derivation showing its descent from the second law has been

presented.  As this derivation is essentially an elaboration of Nernst's original

derivation which was never  fully accepted, it is reasonable to expect that it could

suffer the same fate.  However, whether Eq. (3-1) is regarded as deriving from the

second law or whether it is regarded as an additional statement required to save

the second law, it is still possible to see it as a logical requirement.  It could be

stated that Eq. (3-1) is necessary to define the limiting entropy change which we

have seen would have the indeterminate form 0/0 otherwise.  By reversing the

argument presented in Sec. 3.3, it is easily seen that the unattainability principle

follows from Eq. (3-1).

Although Eq. (3-1) has now been given thermodynamic justification, its

exceptions seem uncomfortably numerous for a thermodynamic relationship and

it is therefore appropriate to examine its applicability.  This problem has been

addressed by Simon22 and resolved by the following statement:

“At absolute zero the entropy differences vanish between all those states of a

system between which a reversible transition is possible in principle even at the

lowest temperatures.”

Simon's statement is completely general, however, in regard to the behavior of

glasses the statement of Fowler and Guggenheim23 is more specific.

                                      
     21 L. K. Nash, J. Chem. Educ., 41, 368 (1964).

     22 F. E. Simon, Physica, 10, 1089 (1937).

     23 op. cit.
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"For any isothermal process involving only phases in internal equilibrium or,

alternatively, if any phase is in frozen metastable equilibrium, provided the process

does not disturb this frozen equilibrium, lim
T→ 0

∆S = 0."

Simon assigned unquestioned thermodynamic status to Eq. (3-1) and pointed

out that the restrictions made explicit in his statement are implicitly made in

applying any other thermodynamic relationship.  The question is not whether

Eq. (3-1) is valid, but rather whether the application of thermodynamics to a

particular system is valid.  Valid thermodynamic systems must exist in

equilibrium states and thus be capable of undergoing reversible processes.  As

Eq. (3-1) is applied only under the most stringent conditions where "frozen-in,"

nonequilibrium states are not unexpected, it is natural that it will not seem to

possess the unexceptional status accorded to the other laws and relations of

thermodynamics.  However, this is a problem in the application of

thermodynamics and should not call the validity of Eq. (3-1) into question.

Because of the widespread use of the Lewis and Randall convention

leading to the convenience of "absolute" entropies and because of the remarkable

success in calculating these values via the methods of quantum statistical

mechanics, we are tempted to regard entropy as an intrinsic property of matter

and thereby seek a physical microscopic interpretation.  However, we have seen

for the case of liquids, gases, and glasses that this is not a fruitful approach.

Equation (3-1) is the most general statement and has been shown to be

simply a necessary logical statement.  This suggests the view that entropy is

merely a defined state function embedded in the logical-mathematical structure

of thermodynamics.  Thus, it seems appropriate that quantum statistical

mechanics yields a representation of entropy in logical rather than physical

terms.  Because classical thermodynamics neither provides nor requires physical

visualization of its functions, entropy is no less useful for want of a microscopic

physical interpretation.  While this view does not provide the physical insight

available through a microscopic interpretation, it is at least free of

contradictions.

3.6  ABSOLUTE ENTROPIES

If the requisite calorimetric data are available, the entropy of an ideal gas

can, in general, be calculated from
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where CP(c), CP(l), and CP(g) are the heat capacities of the crystalline, liquid, and

gas phases, ∆hF and ∆hV are the latent heats of fusion and vaporization, and TF

and TV are the corresponding phase transition temperatures.  We have already

seen that when elements are assigned zero entropy at zero absolute temperature,

the third law specifies the entropy of any substance, So, to be zero at this

condition.  This convention allows values of "absolute" entropy to be calculated

from calorimetric data via the above equation.  This is a convenience and not a

necessity.  In fact, in using this convention the isotope effect has been ignored.

Most elements consist of a mixture of isotopes.  From the microscopic

point of view, there will be many possible arrangements of these sets of

distinguishable particles on the crystal lattice and therefore Ωo will be

significantly greater than unity.  From a macroscopic point of view, we would

simply say that there is an entropy of mixing to be considered.  Because the

isotopic composition of the elements is now well known, the isotopic effect could

be dealt with quantitatively.  However, as a practical matter it is not necessary to

do so because the isotopic composition is expected to remain constant for

processes of thermodynamic interest and therefore any correction for this effect

would cancel on determining an entropy change.

Using quantum statistical mechanics the Sackur-Tetrode equation, Eq. (2-

21), for the entropy of a monatomic ideal gas was derived in Sec. 2.3.2.
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2

π
lnln (2-21)

This equation yields absolute entropy values in excellent agreement with

calorimetric values.  Since most of the noble gases are isotopic mixtures, this

situation must be considered in applying Eq. (2-21).  As Eq. (2-21) shows a

dependence of entropy on particle mass, the entropy of each isotope can be

calculated separately and a weighted average determined for the mixture. 

Consistent with the convention used for the calorimetric absolute entropy, the

entropy of mixing the isotopes is ignored.  Thus, "absolute" entropies are not

absolute.

While the concept of absolute entropy derives from the third law and the

Sackur-Tetrode equation yields excellent values of absolute entropy,it will be
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noticed that it does not show the expected behavior as absolute zero temperature

is approached.  Instead of approaching zero, the Sackur-Tetrode entropy

becomes negatively infinite in this limit.  This discrepancy is resolved by the

quantum statistical mechanical treatment of ideal gases at extremely low

temperatures24 where it is necessary to use different types of statistics.  The rules

for determining probabilities of quantum states as given in Sec. 2.1 characterize

Maxwell-Boltzmann statistics.  While this statistical scheme works well for most

problems of thermodynamic interest, it fails at very low temperatures where it

becomes necessary to use different schemes for determining the probability of

quantum states.  There are two of these schemes: Fermi-Dirac statistics and

Bose-Einstein statistics.  Both of these statistics when applied to ideal gases

yield expressions showing vanishing entropy at zero absolute temperature. 

These entropy expressions are relatively complex, but reduce to the Sackur-

Tetrode equation at higher temperatures.  In this sense, the Sackur-Tetrode

equation can be considered consistent with the third law.  

As the Sackur-Tetrode equation applies to monatomic gases whose energy

can be manifested only as translational energy, a different approach is needed

for polyatomic gases.  In accounting for the energy of molecules, it is necessary

to include contributions due to the rotation of the molecule and to vibrations

between atoms within the molecule as well as translational energy.  Each mode

of energy is quantized and the energy levels for the rotational and vibrational

modes can be calculated from spectroscopic data.  Because it is assumed that

translational, rotational, and vibrational energy modes are independent, the total

energy is additive and the partition function can be written as a product of the

translational, rotational, and vibrational partition functions.  The

thermodynamic functions are expressed in terms of the logarithm of the partition

function and therefore the contributions to them from the various energy modes

are additive.25  Absolute entropies calculated in this manner are in excellent

agreement with calorimetric values and are actually considered to be more

reliable.  Most ideal-gas thermodynamic property tabulations are based on

calculation from spectroscopic data.  

                                      
     24 A.H.Wilson, op. cit.

     25 Details for calculation of thermodynamic properties from spectroscopic data
are available in G.N. Lewis, M. Randall, K.S. Pitzer, and L.Brewer,
Thermodynamics, McGraw-Hill, New York, 1961, Chap. 27.
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APPENDIX 3A

ENTROPY CHANGES NEAR ABSOLUTE ZERO

For a heat capacity of the form

0)>(

0)>(
   T = C

β
α

α β (3-12)

the entropy change between an extremely low temperature, ε, and the

temperature of interest, T, is

)  - T (  = dT 
T
T  = S - S

T

εβ
αα ββ

β

ε
ε ∫ (3-13)

and the limit as ε approaches zero is

dT 
T

C
  = T  = ) S-(S 

T

0
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∫→

β
ε

ε β
α

lim (3-14)

which is seen to be the result obtained by using T = 0 as the lower limit of

integration.


