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The forces responsible for chemical combination of atoms are of two main types. There are those forces which arise between electri-
cally charged species, repulsive if the charges are similar, attractive if dissimilar. … The second type of force may be called an 
exchange force and these can be described in terms of the Schrödinger wave equation…. A little reflection will reveal that we under-
stand neither – all we have is two ways of describing different situations, and in all probability the origin of both forces is the same.

Fyfe (1964)

3 Chemical Bonding

Chemical compounds are formed by the combination of 
two or more atoms (or ions), and the formation of a stable 
compound occurs when the combination results in a lower 
energy than the total energy of the separated atoms (or 
ions). Interatomic (or interionic) net attractive forces that 
hold atoms (or ions) in solids together are called chemical 
bonds.

Chemical bonds usually involve only the valence electrons 
(s and p electrons in the outermost orbitals) of an atom. 
Physical and chemical properties of all substances depend 
on the character of the chemical bonds that hold them 
together.

Much of the bonding in solids of geochemical interest can 
be described in terms of two end-member types: (i) ionic (or 
electrovalent) bonds that exist because of electrostatic attrac-
tion between cations and anions formed by transfer of one or 
more electrons between atoms; and (ii) covalent bonds that 
arise because of sharing of electrons between atoms that 
results from overlap of orbitals from the two atoms. For 
example, the ionic bonding in NaCl results from the electro-
static attraction between a Na+ cation formed by the loss of a 
valence electron from the 3s orbital of the Na atom 
(1s22s22p63s1) and a Cl− anion formed by incorporation of 
that electron into the 3p orbital of the Cl atom (1s22s22p63s23p5) 
(Fig. 3.1a):

Na (1s22s22p63s1) ⇒ Na+ (1s22s22p6) + e−

Cl (1s22s22p63s23p5) + e− ⇒ Cl− (1s22s22p63s23p6)
2Na(s) + Cl2(g) ⇒ 2Na+Cl−

(s)

The NaCl molecule itself is electrically neutral because its 
structure contains a Na+ cation for every Cl− anion. Sodium 
and chlorine atoms combine readily because of the large dif-
ference in their first ionization potential and electron affinity 
(see section 2.4). Covalent bonding, on the other hand, arises 
from sharing of electrons. The covalent bonding in Cl2, for 
example, may be viewed as resulting from the sharing of a pair 
of electrons between two Cl atoms, each of which contributes 
one electron to the shared pair (Fig. 3.1b). Atoms can share 
one, two, or three electron pairs, forming, respectively, single, 
double, and triple covalent bonds. All bonds between atoms of 
different elements have some degree of both ionic and cova-
lent character.

Compounds containing predominantly ionic bonding are 
called ionic compounds, and those that are held together 
mainly by covalent bonds are called covalent compounds. 
This difference in bonding accounts for the differences in 
some properties associated with simple ionic and covalent 
compounds (Table 3.1). Other types of bonds that will be dis-
cussed briefly in this chapter include metallic bonds, Van der 
Waals bonds, and hydrogen bonds.
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24 Chemical Bonding

3.1 Ionic bonding

3.1.1 Ionic radii

The potential energy of a system (Ep) comprised of two oppo-
sitely charged ions (e.g., Na+ and Cl−), each with its electron 
cloud around the nucleus, approaching each other is given by 
(Fyfe, 1964):

2 2

p n

e be
E

R R
= − +

 
(3.1)

where R is the interionic distance (i.e., distance between the 
centers of the two ions, which are assumed to be hard spheres), 
b is a constant, and n is an integer with values between 8 and 
12. The term −e2/R represents the coulombic attraction 
between the opposite net charges (±e), and the term e2/Rn 
arises out of the repulsion caused by interpenetration of the 
electron clouds and by the repulsion between the nuclei of the 
ions. As R gets smaller, the attraction term (which, by conven-
tion, is assigned a negative sign) becomes more negative, indi-
cating lower potential energy and thus increased stability. The 
repulsion (which, by convention, is assigned a positive sign) 
contributes little to Ep for large values of R, but its contribu-
tion increases very rapidly when R becomes smaller than a 
critical value R0, which is the equilibrium interionic distance 
at which the isolated ion pair is most stable (Fig. 3.2). When 
the two ions are separated by the distance R0, we have a stable 
ionic bond formed between them. The value of R0, the bond 
length, can be determined from the fact that it corresponds to 
the minimum value of Ep and occurs when dE/dR = 0. (When 
the cation is associated with more than one anion, as in a crys-
tal, repulsion between the anions makes R0 somewhat larger.) 
The curve for Ep in Fig. 3.2 is typical of all atomic–molecular 
 systems, and it is the basis of the concepts of interionic dis-
tance and ionic radius, and the premise that to a first approxi-
mation ions have a more or less constant ionic size. Strictly 
speaking, the electron density distribution around a nucleus 
does not have a spherical symmetry, as implied by the term 
“ionic radius.” A more appropriate term, according to Gibbs 
et al. (1992), is “bonded radius,” which refers to the distance 
between the center of one atom to the point of minimum elec-
tron density in the direction between two nuclei. The outer 
extent of an atom in other directions is usually different 
because of a different distribution of electrons (i.e., the atom 
is not spherical). The bonded radius can be measured from 
electron distribution maps. However, we continue to rely on 
the concept of ionic radii because the approach has been quite 
successful in explaining most of the ionic crystal structures.

Or

Cl Cl

Cl Cl

Bonding
pair

Electron in the
outermost shell

Lone pairs
(nonbonding)

(a) Ionic bonding in NaCl

(b) Covalent bonding in Cl2

Na Cl Na+ Cl

Cl +

+

–

Cl

Fig. 3.1 Lewis dot representation of (a) ionic bonding (solid NaCl) and (b) 
covalent bonding (Cl2 gas). In this kind of illustration, the chemical symbol 
of the element includes the inner complete shells of electrons, and the 
valence electrons (i.e., electrons in the outermost occupied s and p orbitals) 
are represented by dots. The single covalent bond in Cl2 is represented by the 
two dots of the “bonding pair” or by a single line representing that pair; any 
pair of unshared electrons in the same orbital, which does not participate in 
the formation of covalent bonds, are referred to as a “lone pair.”

Table 3.1 Some properties of ionic and covalent compounds.

Property  Ionic compounds  Covalent compounds

Participating 
elements

Commonly between two elements with quite 
different electronegativities1, usually a metal 
and a nonmetal

Commonly between two elements with similar 
electronegativities1, usually nonmetals. Homonuclear molecules 
(such as Cl2 comprised of only one element) are covalent

Melting point They are solids with high melting points (typically 
> 400°C). Ionic compounds do not exist as gases 
in nature

They are gases, liquids, or solids with low melting points 
(typically < 300°C)

Solubility Many are soluble in polar solvents such as water, 
and most are insoluble in nonpolar solvents 
such as carbon tetrachloride (CCl4).

Many are insoluble in polar solvents, and most are soluble in 
nonpolar solvents such as carbon tetrachloride (CCl4)

Electrical 
conductivity

 Molten compounds and aqueous solutions are 
good conductors of electricity because they 
contain charged particles (ions)

Due to lack of charged particles, liquid and molten compounds 
do not conduct electricity, and aqueous solutions are usually 
poor conductors of electricity

1 See section 3.6.5.
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3.1 Ionic bonding 25

For the discussion below, we assume a model of pure ionic 
bonding arising out of a geometric framework of ions repre-
sented by hard spheres of constant radius. But how do we 
determine the radius of each ion? Actually, it is not possible to 
measure the radius of individual ions in a solid, but we can 
measure the interionic distance between centers of two ions in 
a solid from its cell dimensions determined with X-ray diffrac-
tion techniques, and then determine the radius of individual 
ions through some manipulation (Companion, 1964). For the 
purpose of illustration, let us suppose that Fig. 3.3 represents 
the packing in LiCl and KCl crystals as revealed by X-ray 
 diffraction data. It is reasonable to expect that Li+, with only 
two electrons, is a very small cation and assume that the pack-
ing in LiCl be largely determined by the much larger Cl− ani-
ons (each containing18 electrons) touching each other. In this 
case, the radius of the Cl− ion –Cl

( )r  is one-half of the measur-
able interionic distance d1. We can now determine the radius 
of K+ ion from the measured interionic distance d2 in a KCl 
crystal: + 2 –K Cl

r d r= − . It turns out that the ionic radii calcu-

lated by this strategy are reasonably constant from compound 

to compound and, carried over the entire Periodic Table, this 
has enabled the setting up a self-consistent set of average ionic 
radii (Fig. 3.4).

As expected, ionic radii of cations and anions vary with 
atomic number. The radius of a given ion is also a function of 
the coordination number, the number of nearest neighbors of 
the ion in a crystalline structure (see section 3.1.2). Some general 
trends for ionic radii (expressed in Å) with octahedral (or six-
fold) coordination (Fig. 3.4), the most common kind of coordi-
nation for most ions in silicate minerals, are summarized below:

(1) Cations are smaller than anions, the only exceptions 
being the five largest cations (Rb+, Cs+, Fr+, Ba2+, and 
Ra2+), which are larger than F−, the smallest anion.

(2) Within an isoelectronic series – a series of ions with the 
same number of electrons – ionic radius decreases with 
increasing atomic number because of increased nuclear 
attraction for the electron cloud. For example,

 

4 3 2Si Al Mg Na

– 2–F O

(0.48) (0.54) (0.72) (1.02)

(1.33)  (1.40)

r r r r

r r
+ + + +< < <

< < 

(3) On the other hand, in the lanthanide (or rare-earth) series 
characterized by cations with 3+ charge, the ionic radius 
decreases with increasing atomic number, from 1.13 for 
La3+ to 0.94 for Lu3+. This so-called lanthanide contrac-
tion can be attributed to the influence of the increasing 
nuclear charge.

(4) Within a family of ions, such as the alkali metals or the 
halogens, the ionic size increases as we go down the 
Periodic Table. For example,

 

Li Na K Rb

Cs Fr

(0.76) (1.02) (1.38) (1.52)

(1.67) (1.80)

r r r r

r r
+ + + +

+ +

< < <
< <

 – – – –F Cl Br I
(1.33) (1.81) (1.96) (2.20)r r r r< < <

 This variation is a consequence of adding electrons with 
their most probable distance farther from the nucleus.

(5) In the case of cations of the same element, ionic radius 
decreases with increase in ionic charge because of a 
decrease in the number of electrons. For example,

 3 2Fe Fe
(0.73) (0.78)r r+ +<

 4 3 2Mn Mn Mn
(0.62) (0.73) (0.83)r r r+ + +< <

 4 3 2Ti Ti Ti
(0.61) (0.72) (0.87)r r r+ + +< <

 6 4U U
(0.81) (0.97)r r+ +<

 The opposite is true for anions, although anions with 
variable charge are not common.

3.1.2 Coordination number and radius ratio

How do ions fit together to produce different crystal struc-
tures? The fundamental constraint is that, for a given set of 
ions, the most stable arrangement is the one that has the 
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Fig. 3.2 Variation of the potential energy (Ep) of a system consisting of 
a singly charged cation and a singly charged anion as a function of 
interionic distance. The equilibrium interionic distance (R0) is marked by 
the minimum value of Ep, when dE/dR = 0. For R > R0, Ep is essentially 
determined by the coulombic attraction between the opposite charges and 
for R < R0 by the repulsion between the nuclei and the electron clouds.

 d
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LiCl

d1

rCl– = d1/2

Cl–

rCl–d2 –=rK+
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Cl–Cl–Cl–Cl–

Cl–

Fig. 3.3 Strategy for determining ionic radii from packing of ions 
(assumed to be hard spheres) in LiCl and KCl.
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26 Chemical Bonding

 lowest potential energy. The general rules that need to be 
observed for attaining maximum stabilization of a crystal 
structure are as follows:

(1) The crystal structure must be electrically neutral, that 
is, the cation: anion ratio must be such that the posi-
tive charges are exactly balanced by the negative 
charges.

(2) The cation–anion separation must be close to the equilib-
rium interionic distance (R0 in Fig. 3.2) for the compound 
under consideration.

(3) The arrangement of the ions must be in a regular pattern, 
with as many cations around anions as possible and as 
far away from each other as possible; analogous restric-
tions apply to the anions. In other words, we may treat 
the ions as spherical balls and pack them as closely as 

possible, subject to the constraints of electrical neutrality 
of the structure and minimum interionic distance. In a 
given three-dimensional close packing of spheres, the 
number of oppositely charged nearest neighbors sur-
rounding an ion is called its coordination number (CN). 
If an ion A, for example, is surrounded by four ions of B, 
CNA = 4 (tetrahedral coordination); if A is surrounded by 
six ions of B, CNA = 6 (octahedral coordination), and so 
on. As discussed below, coordination number is an 
important consideration in crystal chemistry.

Generally, cations are smaller than anions, so the number 
of anions that can be packed around the smaller cations 
determines crystal structures. The combined influence of cati-
ons and anions on coordination number can be predicted 
from a consideration of the magnitudes of their radii 
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Fig. 3.4 Ionic radii of ions in octahedral coordination. Å = 10−10 m. Sources of data: compilations by Krauskopf and Bird (1995), and Faure (1991).

Misra_c03.indd   26Misra_c03.indd   26 1/19/2012   8:56:38 PM1/19/2012   8:56:38 PM



3.1 Ionic bonding 27

expressed as the radius radio (RR). For a cation in a binary 
ionic solid, RR is defined as

c

a

Radius ratio ( )
r

RR
r

=
 

(3.2)

where rc and ra are ionic radius of the cation and the anion, 
respectively. Evidently, as the cation becomes larger relative to 
the anion, a larger number of anions may fit around the cat-
ion. In other words, the CN of the cation is likely to increase 
as RR increases.

Accepting a model based on close packing of spheres, we 
can easily calculate the critical radius ratios (i.e., the limiting 
values of the radius ratio) for different geometrical arrange-
ments of the spheres. The smallest value of CN is 2, which 
represents the situation when the cation is so small that it is 
possible to pack only two anions around it if anion–cation 
contact is to be maintained. As the size of the cation increases 
relative to that of the anion, it becomes possible to place three 
anions in mutual contact around the cation (i.e., CN = 3) when 
RR reaches a critical value of 0.155 (Fig. 3.5a). With increas-
ing size of the cation relative to that of the anion, the CN 
changes to higher values. The calculated critical radius ratios 
for different possible symmetries are: 0.155–0.225 for CN = 3 
(trigonal coordination); 0.225–0.414 (Fig. 3.5b) for CN = 4 
(tetrahedral or square planar coordination); 0.414–0.732 for 
CN = 6 (octahedral coordination); 0.732–1.0 for CN = 8 
(body-centered cubic coordination); and > 1.0 for CN = 12 
(edge-centered cubic coordination) (Fig. 3.6). Other coordina-
tion numbers, such as 5, 7, 9, 10, and 11, do exist but are quite 
uncommon because such coordination polyhedra cannot be 

extended into infinite, regular three-dimensional arrays 
(Greenwood, 1970). In mineral structures, the most common 
anion is O2−, which has an ionic radius of 1.40 Å, and the ionic 
radii of most common cations are between 0.60 and 1.10 Å. 
Thus, the radius ratios with oxygen in minerals mostly lie 
between 0.43 and 0.79, suggesting that the most frequent 
coordination number in minerals is 6. This is why Fig. 3.4 lists 
ionic radii for octahedral coordination rather than for tetrahe-
dral or cubic coordination. Examples of some ionic crystal 
structures characterized by different coordinations are 
 presented in Fig. 3.7.

Many cations in silicate minerals occur exclusively in a 
 particular coordination with oxygen, but some occur in more 
than one coordination, to some extent controlled by the 
 temperature and pressure of crystallization. For example, the 
radius ratio of Al3+ bonded to O2− is 0.54 Å/1.40 Å = 0.386, 
which is very close to the theoretical boundary of 0.414 
between CN = 4 and CN = 6. Thus, in silicate minerals formed 
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Fig. 3.5 Critical radius ratios for (a) threefold (trigonal) and (b) fourfold 
(square planar) coordinations.
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Fig. 3.6 The effect of critical radius ratios on coordination number 
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structure because it is the most common compound in which this 
geometrical arrangement occurs (Evans, 1966).
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28 Chemical Bonding

at high temperatures or low pressures, Al3+ tends to assume 
tetrahedral coordination and substitute for Si4+, whereas in 
minerals formed at low temperatures or high pressures, Al3+ 
tends to occur in octahedral coordination.

Crystal structures are often more complicated than what 
can be predicted on the basis of radius ratios. An important 
complicating factor is the degree of covalence (electron shar-
ing) in many dominantly ionic minerals, resulting in distortion 
of the electronic charge density around ions (polarization) (see 
section 3.6.5).

3.1.3 Lattice energy of ideal ionic crystals

The stability of ionic compounds is optimized by close pack-
ing of oppositely charged ions together in extended arrays. 
The three-dimensional arrangement of atoms or ions in a crys-
tal is commonly referred to as (crystal) lattice. Every lattice is 
associated with a certain amount of stabilization energy, 
which is called the (crystal) lattice energy. The lattice energy 
(UL) of a perfectly ionic crystal is defined as the amount of 
energy required at absolute zero (i.e., −273°C) to convert one 
mole of the solid into its constituent ions at infinite separation 
in the gas phase:

MaXb(s) ⇒ aMb+(g) + bXa−(g) (UL) (3.3)

The lattice energy for NaCl, for example, is 786 kJ mol−1; that 
is, it would require 786 kJ of energy per mole of NaCl to pro-
duce infinite separation of Na+ and Cl− ions in the gas phase. 
We can also conclude that one mole of solid NaCl compound 
is 786 kJ lower in energy, and thus more stable, than a mixture 
of one mole each of the constituent ions.

For 1 gram-mole of a binary compound, the lattice energy 
can be calculated directly from the properties of the ions by 
means of the following equation, originally derived by Born 
and Landé (see Box 3.1):

2
c

L c
  1

1az z e
U M A

R n
⎛ ⎞= −⎜ ⎟⎝ ⎠

 
(3.4)

where zc and za are the charges on cations and anions 
(expressed as a multiple of the electron charge e), R is the 
cation–anion interionic distance, n is a constant for the 
 particular crystal structure, A is the Avogadro’s number, and 
Mc is a numerical quantity called the Madelung constant, the 
value of which depends on the crystal structure (Table 3.2). 
From experimental studies of compressibility, it is known that 
for most ionic crystals n has a value between 8 and 12. 
Suggested values of n for some common solids are: LiF, 5.9; 
LiCl, 8.0; LiBr, 8.7; NaCl, 9.1; NaBr, 9.5. By convention, the 
lattice energy is considered positive because energy is con-
sumed for separation of the ions. The energy released during 

x

y

z 
Zn or S S or Zn 

ZnS – Tetrahedral coordination 

(a)

Na Cl 

NaCl – Octahedral coordination 

(b)

Cs or Cl Cl or Cs 

CsCl – Body-centered cubic coordination 

(c)

Fig. 3.7 Examples of some ionic crystal structures characterized by 
different coordinations: (a) ZnS (tetrahedral); (b) NaCl (octahedral); and 
(c) CsCl (body-centered cubic). It should be stressed that such 
illustrations of crystal structures represent only the geometry of 
arrangement of the centers of the ions or the mean positions of the 
vibrating nuclei; the electron density is concentrated near the nuclei and 
along directions to near neighbors. (From An Introduction to Crystal 
Chemistry, 2nd edition, by R.C. Evans, Figure 3.04, p. 35, Figure 3.02, 
p. 33, and Figure 3.03, p. 34; Copyright 1966, Cambridge University 
Press.  Reproduced with permission of the publisher.)
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3.1 Ionic bonding 29

the reverse process, the formation of a crystal from its widely 
separated constituent ions, called the energy of crystallization 
(Ecryst), is assigned a negative sign (i.e., UL = −Ecryst). Equation 
(3.4) does not include the contribution due to the van der 
Waals forces of attraction between the ions (see section 3.8), 

but the correction arising out of this weak force is very 
small – for example, less than about 12 kJ mol−1 for the alkali 
halides (Evans, 1966).

The Born–Landé equation, strictly speaking, applies only to 
binary compounds, but it enables us to make some qualitative 
statements regarding the lattice energy of more complex sub-
stances. For a particular structure type, lattice energies are 
greater the higher the charge on the ions, the smaller the ions, 
and the closer the packing (Mason, 1966).

For crystals of the same structure, with ions of the same 
charge, the lattice energy varies as the interionic distance: 
ULiCl < UNaCl < UKCl.

Example 3–1: Calculation of the lattice energy and the 
energy of crystallization of one mole of NaCl crystals 
using equation (3.5)

Given: radius of Na+ +Na
( ) 1.02r =  Å; radius of Cl− –Cl

( ) 1.81r =  Å; 

A = 6.02 × 1023 ; e = 4.80 × 10−10 coulombs; n = 9; and M = 1.747

R = 1.02 Å + 1.81 Å = 2.83 Å = 2.83 × 10−8 cm

⎛ ⎞= −⎜ ⎟⎝ ⎠
= ×

× ⎛ ⎞−⎜ ⎟⎝ ⎠×
= × × ×
= ×
=

2
c a

L c

23

–10 2

–8

–11

11 –1

1
(NaCl) 1

              (1.747)(6.02  10 )
(1)(1)(4.80  10 ) 1

1
9.12.83  10

              10.517  8.141  0.890  10
 76.201 10  ergs mol

              (76.201 

z z e
U M A

R n

× ×
= =

11 –11 –1

–1 –1

 10 ) (2.389  10 ) kcal mol
182 kcal mol  761 kJ mol

Ecryst(NaCl) = −UL(NaCl) = −761 kJ mol−1

It is impossible to measure precisely the lattice energy of a 
crystal directly, but it can be estimated from more readily 
measurable quantities by applying Hess’s Law of Heat 
Summation, which says that the heat of a reaction (exothermic 
or endothermic) is the same whether it occurs in one step or a 
series of steps. The energy cycle used in this approach to cal-
culate lattice energy is known as the Born–Haber cycle, which 
is illustrated in Example 3–2 for NaCl. Lattice energies of 
selected solid halides, estimated by application of the Born–
Haber cycle, are listed in Table 3.3.

Example 3–2: Estimation of the lattice energy of 1 mole 
of NaCl crystal using the Born–Haber cycle approach

The estimate of lattice energy obtained by the application of 
Born–Haber cycle will vary somewhat, depending on the reac-
tions chosen for the cycle; the cycle depicted in Fig. 3.8 will 
suffice to illustrate the concept.

Box 3.1 Expression for the lattice energy of an ionic crystal

The electrostatic potential energy (Ep) associated with a cation–
anion pair in an ionic crystal can be described by a relation of the 
form (Fyfe, 1964)

2 2
c a

p
  

n
z z e be

E
R R

= − +
 

(3.5)

where zc and za are the charges on cations and anions (expressed as 
a multiple of the electron charge e), R is the interionic distance 
separating the ions, and b and n are constants characteristic of the 
crystal structure. As in equation (3.1), the first term in equation 
(3.5) represents normal coulombic attraction and the second term 
repulsion. The potential energy of an entire crystal, which is 
obtained by adding together all such interactions over the three-
dimensional lattice of the entire crystal, is (for derivation see Fyfe, 
1964, pp. 48–49):

2
c a

p (crystal) c
  1

1
z z e

E M
R n

⎛ ⎞= − −⎜ ⎟⎝ ⎠
 

(3.6)

where Mc is a numerical quantity called the Madelung constant, 
the value of which depends on the crystal structure (Table 3.2). To 
obtain the lattice energy of 1 gram-mole of a crystal, this energy 
must be multiplied by Avogadro’s number (A), the number of 
molecules in one mole of a substance. The lattice energy (UL) of a 
crystal is defined as −AEp(crystal), so that

2
c a

L p c
  1

1
z z e

U AE M A
R n

⎛ ⎞= − = −⎜ ⎟⎝ ⎠
 

(3.4)

Note that UL decreases with increasing R, and approaches zero as 
R approaches infinity.

Table 3.2 Madelung constants for selected types of crystal structures.

Structure 
type

Madelung 
constant

Coordination (anion) : 
Coordination (cation)

Solid 
compound

NaCl type 1.747 6:6 Halite
CsCl type 1.747 8:8 CsCl
ZnS type 1.638 4:4 Sphalerite
CaF2 type 2.519 8:4 Flourite
TiO2 type 2.408 6:3 Rutile
Al2O3 type  4.172  6:4  Corundum

Source of data: Lide (1998).

Misra_c03.indd   29Misra_c03.indd   29 1/19/2012   8:56:42 PM1/19/2012   8:56:42 PM



30 Chemical Bonding

The reactions included in this Born–Haber cycle are:

Reaction Heat of reaction (kJ mol−1)

Na+(g) + e− = Na (g) (−INa) = 495.9
Cl−(g) = Cl (g) + e− (+ECl) = 348.3
Na (g) = Na (s) (−SNa) = 108.8
Cl (g) = 0.5Cl2(g) (−0.5DCl) = 236.0
Na (s) + 0.5 Cl2 (g) = NaCl (s) (+QNaCl) = −411.3

Addition of the above equations gives

Na+(g) + Cl−(g) = NaCl (s)  [−UL(NaCl) or Ecryst(NaCl)]

Rearranging and substituting the given energy values, we 
get the lattice energy of NaCl: 

UL(NaCl) = INa + SNa + 0.5DCl − QNaCl − ECl

  = 495.9 + 108.8 + 118.0 + 411.3 − 348.3 = 785.7 kJ mol−1

Note that the estimated value of UL (NaCl) is very close to that 
obtained in Example 3–1.

To a first approximation, the lattice energy of a crystal may 
be viewed as representing the binding energy of the ions in 
the crystal. The magnitude of the lattice energy, therefore, has 
significant influence on certain physical properties, such as 
melting point and solubility, of a solid. Melting points of sol-
ids with similar crystal structures tend to increase with 
increasing lattice energy. For example, the melting point of 
NaCl (UL ≈ 760 kJ mol−1) is 801°C, but that of MgO 
(UL ≈ 3790 kJ mol−1), which also has a simple cubic crystal 
structure, is 2800°C. The higher melting point is partly due to 
a smaller cation–anion distance in the MgO structure, but 
primarily due to its much higher lattice energy (Companion, 
1964). This is to be expected as Ep (crystal) (and consequently 
UL) increases fourfold when the ionic charge increases from 1 
to 2 (equations 3.4 and 3.6).

Lattice energy is one of many factors that determine the 
solubility of a salt in water (see Chapter 7). When a salt, such 
as NaCl, dissolves in water, it dissociates into Na+ and Cl− 
ions, both of which become dispersed in the solution:

H O + –2
aq aqNaCl (s) Na Cl⎯⎯⎯→ +  

(3.7)

The lattice energy of a salt gives a rough indication of the 
solubility of a salt in water because it reflects the energy that 
must be supplied to separate the cations in the salt from its 
anions. It follows that solubility of salts should decrease with 
increasing lattice energy. Thus, from the data in Table 3.3, we 
may predict that halides of alkaline earth metals are less solu-
ble than those of alkali metals, and aluminum halides are even 
less so. Similarly, the solubility of NaOH (UL = 900 kJ mol−1) 

Table 3.3 Estimated lattice energies (UL) of selected solid compounds (halides).

Solid  (UL) kJ mol−1 Solid  (UL) kJ mol−1 Solid  (UL) kJ mol−1 Solid (UL) kJ mol−1

LiF 1036 LiCl 853 LiBr 807 LiI 757
NaF 923 NaCl 786 NaBr 747 NaI 704
KF 821 KCl 715 KBr 682 KI 649
RbF 785 RbCl 689 RbBr 660 RbI 630
CsF 740 CsCl 659 CsBr 631 CsI 604
MgF2 2957 MgCl2 2526 MgBr2 2440 MgI2 2327
AlF3  5215  AlCl3  5492  AlBr3  5361  AlI3  5218

Source of data: Lide (1998).

INa= Ionization potential of sodium = 495.9 kJ mol–1

ECl= Electron affinity of chlorine = 348.3 kJ mol–1 

SNa= Heat of sublimation of sodium = 108.8 kJ mol–1

DCl= Heat of dissociation of chlorine = 236.0 kJ mol–1

QNaCl= Heat of formation of NaCl = – 411.3 kJ mol–1

UNaCl= Lattice energy of NaCl 

Na (g) Cl (g)

–INa +ECl

–SNa – 0.5 DCl

NaCl (s)

QNaCl 

UNaCl 

Na (s) 0.5 Cl2 (g)+ 

Na+(g) Cl–(g)+ 

Fig. 3.8 Born–Haber cycle for estimation of the lattice energy of solid 
NaCl. Sources of data: Fyfe (1964); Evans (1966).

Misra_c03.indd   30Misra_c03.indd   30 1/19/2012   8:56:48 PM1/19/2012   8:56:48 PM



3.3 Ionic substitution in crystals 31

is very high (420 g L−1), but that of Mg(OH)2 (UL = 3006 kJ 
mol−1) is very low (0.009 g L−1), and Al(OH)3 (UL = 5627 kJ 
mol−1) is essentially insoluble in water.

3.2 Crystal structures of silicate minerals

Assuming a model of pure ionic bonding, the basic unit for 
building crystal structures of silicate minerals is considered to 
be the silicon–oxygen tetrahedron (SiO4

4−), which is comprised 
of four O2− anions at the four corners of a tetrahedron and the 
much smaller Si4+ cation filling the interstitial space at the 
center of the tetrahedron, giving the unit a net charge of −4 
(Fig. 3.9). In essence, silicate structures (except those formed at 
extremely high pressures) consist of linked silicon–oxygen 

tetrahedra and cations as can be accommodated by the 
structure to achieve electrical neutrality. The different 
structural classes of silicate minerals result from the various 
ways in which the silicon–oxygen tetrahedra are linked to each 
other (Table 3.4). The tetrahedra may exist as isolated units, 
with no shared oxygen, or may be linked by sharing one, two, 
three, or four oxygen ions, as illustrated in Fig. 3.10. The 
bonds between silicon and oxygen within SiO4

4− units are so 
strong that the dimensions and shape of the tetrahedra remain 
nearly constant irrespective of what the rest of a silicate 
structure may be.

3.3 Ionic substitution in crystals

Most rock-forming minerals are dominantly ionic compounds, 
and they are seldom pure phases. Deviation of the chemical 
composition of a mineral from its ideal chemical formula 
occurs due to incorporation of minor amounts of foreign ions 
into the lattice, primarily by ionic substitutions governed by 
similarities in size and charge of the ions involved. The ability 
of different elements to occupy the same lattice position in a 
particular crystal structure is called diadochy. For example, 
Mg, Fe, Mn, and Sr are diadochic in the structure of calcite 
because they can substitute for Ca in this structure. The con-
cept of diadochy, if used rigorously, always applies to a par-
ticular crystal structure. Two elements may be diadochic in 
one mineral and not in another (Mason, 1966).

3.3.1 Goldschmidt’s rules

It is well known from experience that there exists a preferen-
tial association, or geochemical coherence, between certain 
elements in natural assemblages because ions of such elements 
substitute easily for each other in minerals. The Norwegian 

O 

Si

O 

O 

O 

(a) (b) 

Fig. 3.9 The silicon–oxygen tetrahedron, the basic building block for 
crystal structures of silicate minerals: (a) A model of the tetrahedron 
using rods to depict the ionic bonds that connect the central Si4+ cation 
to the four O2− anions positioned at the corners; (b) A commonly used 
graphical representation of the tetrahedron.

Table 3.4 Structural classification of silicate minerals.

Silicate class  Linkage of tetrahedra  Repeat unit Si:O ratio  Example of silicate mineral

Nesosilicates Independent tetrahedra (no sharing of 
oxygen ions)

SiO4
4− 1:4 Forsterite (olivine)

[Mg2SiO4]
Sorosilicates Two tetrahedra sharing one oxygen ion Si2O7

6− 2:7 Åkermanite
[Ca2MgSi2O7]

Cyclosilicates (ring 
structures)

Closed rings of tetrahedra, each sharing 
two oxygen ions

SiO3
2− 1:3 Beryl

[Al2Be3Si6O18]
Inosilicates (single chains) Continuous single chains of tetrahedra, 

each sharing two oxygen ions
SiO3

2− 1:3 Enstatite (pyroxene)
[MgSiO3]

Inosilicates (double 
chains)

Continuous double chains of 
tetrahedra, alternately sharing two 
and three oxygen ions

Si4O11
6− 4:11 Anthophyllite (amphibole)

[Mg7(Si4O11)2(OH)2]

Phylosilicates (sheet 
structures)

Continuous sheets of tetrahedra, each 
sharing three oxygen ions

Si2O5
2− 2:5 Phlogopite (mica)

[KMg3(AlSi3O10)(OH)2]
Tektosilicates (framework 

structures)
 Continuous framework of tetrahedra, 

each sharing four oxygen ions
SiO2 1:2 Albite (plagioclase feldspar)

[Na(AlSi3)O8]
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32 Chemical Bonding

geochemist V.M. Goldschmidt (1888–1947) was the first to 
propose a series of rules governing the mutual replacement 
(diadochy) of ions in magmatic minerals, on the assumption 
that the bonding in these minerals was purely ionic. He 
 considered that between two ions capable of diadochy, the one 
that makes the larger contribution to the energy of the crystal 
structure is incorporated preferentially. Goldschmidt’s rules of 
substitution may be summarized as follows:

(1) If two ions have the same radius and the same charge, 
they would enter into solid solution in a given mineral 
with equal ease, in amounts roughly proportional to 
their abundances. The ionic radii must not differ by more 
than 15%; substitution is limited or rare if the radii differ 
by 15% to 30%, and nonexistent if the difference is more 
than 30%. Examples are the common substitution of 
Ta5+ (0.64 Å) for Nb5+ (0.64 Å), Hf4+ (0.71 Å) for Zr4+ 
(0.72 Å), Ga3+ (0.62 Å) for Al3+ (0.54 Å), and Fe2+ (0.78 
Å) for Mg2+ (0.72 Å) in many silicate minerals. In such 
cases, the minor element is said to be camouflaged in the 
crystal structure (Shaw, 1953).

(2) When two ions possessing the same charge but different 
radii compete for a particular lattice site, the ion with the 

smaller radius would be incorporated preferentially 
because the smaller ion forms a stronger ionic bond. 
During magmatic crystallization, for example, the earlier 
formed olivine tends to be enriched in Mg2+ (0.72 Å) rela-
tive to Fe2+ (0.78 Å).

(3) When two ions having similar radii but different charges 
compete for a particular lattice site, the ion with the higher 
charge would be incorporated preferentially because the 
ion with higher charge forms a stronger ionic bond. If 
the  substituting ion has a higher charge than the ion in 
the  lattice being substituted, it is said to be captured by the 
crystal structure; if the substituting ion has a lower charge, 
it is said to be admitted by the crystal structure. For exam-
ple, the K-feldspar structure captures Ba2+ (1.35 Å) for 
replacement of K+ (1.38 Å), and the biotite structure 
admits Li+ (0.76 Å) for replacement of Mg2+ (0.72 Å).

(4) Ions whose charges differ by one unit may substitute for 
one another provided electrical neutrality of the crystal is 
maintained by coupled (or compensatory) substitution. 
Example: concurrent substitution of Na+ (1.02 Å) by 
Ca2+ (1.00 Å) and of Si4+ (0.26) Å) by Al3+ (0.47 Å) in 
plagioclase feldspars:

 NaAlSi3O8 + Ca2+ + Al3+ ⇒ CaAl2Si2O8 + Na+ + Si4+ (3.8)

 In general, very little or no substitution takes place when 
the difference in charge on the ions is > 1, even if the size 
is appropriate. Zr4+ (0.72 Å) does not substitute for 
Mg2+ (0.72 Å) nor Cr3+ (0.62 Å) for Li+ (0.76 Å); this is 
probably because of the difficulty in achieving charge 
balance by compensatory substitutions.

3.3.2 Ringwood’s rule

Over the years the generalizations embodied in the 
Goldschmidt’s rules have been found to be fraught with 
many exceptions. Moreover, some ion pairs of similar size 
and charge, such as Mg2+ (0.72 Å) and Ni2+ (0.69 Å), show 
only a moderately close association, whereas a few ion pairs, 
for example Sr2+ (1.18 Å) and Hg2+ (1.02 Å), show virtually 
no geochemical coherence. Obviously, there are other prop-
erties that are also important in predicting geochemical 
associations.

A major limitation in the application of Goldschmidt’s 
rules is the assumption of pure ionic bonding because most 
minerals have a significant component of covalent bonding. 
Ringwood (1955) suggested that substitution may be limited, 
even when the size and charge criteria are satisfied, if the 
competing ions have different electronegativities (see section 
3.6.5) and, therefore, form bonds of different strengths. For 
example, Cu2+ (0.73 Å) rarely substitutes for Mg2+ (0.72 Å) 
because of the large difference in electronegativity (1.90 
versus 1.31), although it should from the consideration of 
charge and size. Si4+ (0.26 Å; electronegativity = 1.9) and 

Inosilicate 
(double chain) 

Tektosilicate Phyllosilicate 

Inosilicate 
(single chain) 

Nesosilicate Sorosilicate Cyclosilicate 

Fig. 3.10 Different patterns of silicon–oxygen tetrahedra linkages for the 
various structural classes of silicate minerals listed in Table 3.4. The 
sketch is a two-dimensional representation of crystal structures that are 
three-dimensional. In all cases, except the tektosilicate, the apexes of all 
the tetrahedra are pointing upward. The tektosilicate structure consists 
of layers of hexagonal rings of tetrahedra with alternate rows of apexes 
pointing in opposite directions, and the upward-pointing apexes of a 
given layer coincide with the downward-pointing apexes of the layer 
above it. Thus, all four oxygens of each tetrahedron of the tektosilicate 
are shared with oxygens of other tetrahedra in the structure.
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3.4 Crystal-field theory 33

Ge4+  (0.73 Å; electronegativity = 2.01), on the other hand, 
show strong geochemical coherence because of almost 
identical values of electronegativity, despite a large difference 
in ionic radius. Ringwood’s rule states that between two 
cations satisfying the criteria of charge and size for diadochic 
substitution in a crystal structure, preference will be for the 
one with lower electronegativity because it forms a more 
ionic, stronger bond. In most cases, the difference in 
electronegativity required before elements obey this rule is about 
0.1. For example, Pb2+ (1.19 Å; electronegativity = 1.8) does not 
substitute easily for K+ (1.38 Å; electronegativity = 0.82) in 
potash–bearing minerals and hence becomes concentrated in 
the residual magma.

It should be evident that the extent of ionic substitution is 
determined by the nature of the crystal structure and how 
similar the ions are in terms of size, charge, and electronega-
tivity. Other factors that affect the extent of substitution are 
the temperature and pressure at which the substitution takes 
place, elevated temperatures and lower pressures favoring 
increased substitution. Higher temperatures promote greater 
atomic vibration and open structures, which are easier to dis-
tort locally to accommodate cations of different sizes. Thus, 
the concentration of minor and trace elements in minerals 
(e.g., of Fe in sphalerite, ZnS) provides a potential means of 
determining the temperatures of mineral formation (geother-
mometry; see section 6.5). Pressure at the time of substitu-
tion has the opposite effect, but is much less important 
(except at very high pressures) because most minerals are 
quite incompressible.

Although the rules discussed above can be applied to explain 
to a certain extent the distribution of elements during many 
geochemical processes (especially magmatic crystallization 
and metamorphic recrystallization), their application is lim-
ited because of numerous exceptions, especially when the 
transition elements are involved (Burns and Fyfe, 1967; Burns, 
1973). The order of uptake of the transition-metal ions by 
minerals formed by magmatic crystallization is better 
explained by the crystal-field theory.

3.4 Crystal-field theory

Crystal-field theory was developed originally by the physicists 
Hans Bethe and John Hasbrouck van Vleck in the 1930s to 
explain the absorption spectra of the transition metals such as 
Ni, Co, Fe, Ti, etc. At its present state of development, the 
theory can be applied to account for some magnetic properties, 
colors, hydration enthalpies, and spinel structures (“normal” 
versus “inverse” spinels) of transition metal complexes (Burns 
and Fyfe, 1967; Burns, 1973, 1993).

Crystal-field theory describes the effects of electrostatic 
fields on the energy levels of the valence electrons (electrons in 
the outermost orbitals) of a transition-metal when it is sur-
rounded by negatively charged ligands in a crystal structure. 
(A ligand is an ion, a molecule, or a molecular group that 

binds to another chemical entity to form a larger complex.) 
The ligands are assumed to be point negative charges sited on 
the Cartesian axes, and the bonding entirely ionic. The more 
comprehensive ligand-field theory, which is too complicated 
to be discussed here, treats the metal-ligand interaction as a 
covalent bonding interaction involving overlap between the 
d-orbitals of the metals and the ligand-donor orbitals.

3.4.1 Crystal-field stabilization energy

Transition elements are characterized by incompletely filled 
inner d or f orbitals. Let us consider the first transition series 
involving 3d orbitals. Electronic structures of this transition 
series are of the general form [Ar core (1s22s22p63s23p6)3d1 to 10

4s1 or 2], and ions are formed when the 4s electrons, and in 
some cases 3d electrons, are removed from the metal atom. 
When such an ion is surrounded by ligands, for example, in 
octahedral coordination (i.e., coordinated to six identical 
ligands), the increased repulsion between the anions and the 
electrons of the 3s orbital, which has a spherical symmetry, 
results simply in raising the energy level of 3s electrons. The 
3p orbitals of the metal pointing directly towards the point 
charges of anions are also raised to a higher energy level 
because of increased repulsion between the ligands and 3p 
electrons, but remain degenerate.

The main effect of the ligands on the transitional-metal ion 
arises from interaction with 3d electrons. In a free (isolated) 
transition-metal ion, the 3d orbitals ( 23

z
d , 

−2 23
x y

d , 3dxy, 3dxz, 

3dyz; see Table 2.2 and Fig. 2.6) are fivefold degenerate – i.e., 
they are energetically equivalent and the d electrons have 
equal probability of being located in any of the five 3d orbit-
als. When the same ion is placed in a crystal, for example in an 
octahedral coordination, the five 3d orbitals do not experience 
exactly the same kind of interaction because they do not have 
the same spatial configuration relative to the ligands. The 23

z
d  

and 2 23
x y

d
−

 orbitals (designated as eg symmetry group) have 

lobes that point directly towards the point charges of the 
ligands, whereas the 3dxy, 3dxz, 3dyz orbitals (designated as t2g 
symmetry group) have lobes that point between the negative 
charges. This results in a greater electrostatic repulsion for the 
eg electrons than the t2g electrons. The 3d orbitals can no 
longer remain degenerate, and they split into two groups that 
have different levels of energy (Fig. 3.11a). The energy separa-
tion between t2g and eg orbitals is termed the crystal-field 
 splitting parameter and denoted by Δo (the “o” stands for an 
octahedral coordination). Energy is lowered by 2/5 Δo for the 
three t2g orbitals and raised by 3/5 Δo for the two eg orbitals 
relative to the mean energy of an unperturbed ion (Fig. 3.11a). 
Each electron in a t2g orbital lowers the energy of the transi-
tion-metal ion, and thus increases its stability, by 2/5 Δo, 
whereas each electron in the eg orbital diminishes the stability 
by 3/5 Δo relative to a hypothetical nontransitional-metal ion 
of the same size and charge. The resultant net energy, which 
depends on the number of electrons and how they fill the 
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orbitals, is called crystal-field stabilization energy (CFSE), the 
magnitude of which can be estimated from absorption spectra 
measurements.

Let us examine how the 3d orbitals are filled by electrons in 
an octahedral field (Fig. 3.12), the most common type of coor-
dination between transition-metal ions and ligands in silicate 
minerals. As per Hund’s rule of maximum multiplicity (see 
Section. 2.3.1), ions possessing one, two, or three 3d electrons 
(e.g., Ti3+, V3+, and Cr3+, respectively) can have only one elec-
tronic configuration, each with 3d electrons occupying different 
t2g orbitals, with parallel orientation of their spins. The CFSE 
for these three cases, respectively, are: 2/5 Δo; 2/5 Δo + 2/5 Δo = 
4/5 Δo; and 4/5 Δo + 2/5 Δo = 6/5 Δo. Ions carrying four, five, six, 
or seven 3d electrons (e.g., Mn3+, Fe3+, Fe2+, and Co2+, respec-
tively) present a choice between two states: a weak-field 
(or high-spin) state; and a strong-field (or low-spin) state. In the 
high-spin state, two electrons occupy eg orbitals without pair-
ing before the rest are paired in t2gorbitals. No energy is 
expended by pairing of electrons in t2g orbitals already filled 
with unpaired electrons, but the CFSE is reduced by 3/5 Δo for 
every electron in eg orbitals. Thus, the calculated CFSEs for this 
state with four, five, six, and seven 3d electrons, respectively, are: 
6/5 Δo − 3/5 Δo = 3/5 Δo; 3/5 Δo − 3/5 Δo = 0; 0 + 2/5 Δo = 2/5 Δo; 
and 2/5 Δo + 2/5 Δo = 4/5 Δo. In the low-spin state, 
it is energetically more favorable for the electrons to fill  
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Fig. 3.11 Schematic energy level diagram for 3d orbitals of a transition-
metal ion (not to scale): (a) octahedral coordination in a crystal; 
(b) tetrahedral coordination in a crystal. Δo = crystal-field splitting 
parameter for octahedral coordination; Δt = crystal-field splitting 
parameter for tetrahedral coordination; Δt = 4/9 Δo.
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Fig. 3.12 Filling of electrons in 3d orbitals of 3d transition elements in 
octahedral coordination in a crystal and the resulting values of CFSE for 
strong-field (low-spin) and weak-field (high-spin) configurations (not to 
scale). Δo = octahedral crystal-field splitting parameter; CFSE = crystal-field 
stabilization energy. The calculated CFSE must be reduced by the energy 
required to pair two electrons in a t2g orbital. Source of data: Burns and 
Fyfe (1967).
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lower-energy t2g orbitals before eg orbitals, and the calculated 
CFSEs for this state with four, five, six, and seven 3d electrons, 
respectively, are: 6/5 Δo + 2/5 Δo = 8/5 Δo, 8/5 Δo + 2/5 Δo = 10/5 
Δo, 10/5 Δo + 2/5 Δo = 12/5 Δo, and 12/5 Δo − 3/5 Δo = 9/5 Δo. 
Finally, each ion with eight, nine, or ten electrons (e.g., Ni2+, 
Cu2+, and Zn2+, respectively) possesses only one electronic con-
figuration in which t2g and eg orbitals are filled as shown in Fig. 
3.12, along with calculated CFSEs that are identical for both 
low-spin and high-spin states. The distinction between low-spin 
and high-spin states is important in understanding magnetic 
properties of transition-metal compounds. For instance, pyrite 
is diamagnetic (i.e., weakly repelled by magnetic fields), indicat-
ing a low-spin configuration, (t2g)

6, of Fe2+; ferromagnesian sili-
cates, on the other hand, are paramagnetic (i.e., weakly attracted 
to magnetic fields), indicating a high-spin configuration, 
(t2g)

4(eg)
2 (Burns and Fyfe, 1967).

The electronic configurations of 3d transition-metals in tet-
rahedral coordination, and the corresponding CFSEs, can be 
worked out the same way as explained above for octahedral 
coordination, remembering that in a tetrahedral field the 23

z
d  

and 2 23
x y

d
−

 orbitals are more stable (i.e., have a lower energy) 

than the 3dxy, 3dxz, 3dyz orbitals (Fig. 3.11b). The tetrahedral 
crystal-field splitting parameter, Δt, is smaller than Δo. For the 
same transition-metal cation in a tetrahedral coordination 
with identical ligands and identical metal-ligand interatomic 
distances, Δt = 4/9 Δo. The difference between Δo and Δt, referred 
to as the octahedral site-preference energy parameter, is useful 
for the interpretation of cation distributions in mineral-forming 
processes and crystal structures.

3.4.2 Nickel enrichment in early-formed magmatic olivine

It is well documented that Ni in mafic and ultramafic igne-
ous rocks is contained mainly in olivine, the earliest silicate 
 mineral to crystallize from a basaltic magma, followed next 
in importance by orthopyroxene and then by clinopyroxene. 
Furthermore, there is a positive correlation between the 
Mg : Fe ratio and Ni concentration in these minerals, the 
forsterite-rich members of the olivine series, for example, 
being richer in Ni than fayalite-rich members. In the older 
 literature, this correlation has been attributed to the substitu-
tion of Ni2+ (0.69 Å) for Mg2+ (0.72 Å) according to Gold-
schmidt’s rules for ionic substitution (camouflage), but this is 
not  consistent with Ringwood’s rule because of the much 
higher electronegativity of Ni (1.88 compared to 1.31 for 
Mg). Ringwood (1955) argued that the dominant geochemi-
cal characteristic of Ni is its camouflage by Fe2+ (0.78 Å) in 
silicate crystals, as should be expected from their almost 
identical electronegativities (1.83 for Fe compared to 1.88 
for Mg), but the smaller size of Ni2+ facilitates its preferential 
entry into early crystals.

Burns and Fyfe (1964, 1966, 1967) invoked the crystal-field 
theory to explain the Ni enrichment of early magmatic crystals. 
Absorption spectra of transition-metal compounds and their 

melts are similar, indicating that ions receive comparable CFSE 
in the two phases. Moreover, heats of fusion are generally small, 
one to three orders of magnitude lower than lattice energies, 
indicating that bond energies in solid and liquid phases are com-
parable. In silicate melts of basaltic and granitic compositions, 
transition-metal ions occupy both tetrahedral and octahedral 
sites, but almost exclusively octahedral sites in silicate minerals 
crystallizing from such magmas, and the magnitude of the octa-
hedral site-preference energy parameter gives an indication of 
the relative affinity of an ion in a magma for a silicate crystal. 
The predicted orders of uptake arranged in terms of the octahe-
dral site-preference energy (in kcal mol−1) are: 

Divalent cations:  Ni (20.6) > Cu (15.2) > Co (7.4) > Fe (4.0) 
> Mn (0)

Trivalent cations:  Cr (37.7) > Co (19.0) > V (12.8) > Ti (6.9) 
> Fe (0)

Thus, Ni2+ and Cr3+, which have the largest values of the 
octahedral site-preference energy, should be expected to be 
readily accommodated by early-formed olivine and spinel. 
Cu2+ in the above list is an exception; presumably it prefers 
more deformable sites in a magma and is taken up by  late-
stage minerals (Burns and Fyfe, 1967).

3.4.3 Colors of transition-metal complexes

Crystal-field effects are the most common origin of color in 
transition-metal compounds and many minerals. If the 3d 
orbitals of a transition-metal ion in a molecule have been split 
into two sets as described above, absorption of a photon of 
energy in the visible or infrared region of the electromagnetic 
spectrum (see Fig. 13.1) can cause one or more electrons to 
jump momentarily from a lower energy orbital to a higher 
energy orbital, thus creating an excited transient-metal ion. 
The difference in energy between the ground state and the 
excited state is equal to the energy of the absorbed photon. 
Only specific wavelengths of light (or colors) are absorbed, and 
the substance takes on the color of the transmitted light, which 
is the complementary color of the absorbed light (Table 3.5).

Table 3.5 Wavelength absorbed and color observed.

Wavelength (l) absorbed Color observed

400 nm (violet) Green-yellow (λ = 560 nm)
450 nm (blue) Yellow (λ = 600 nm)
490 nm (blue-green) Red (λ = 620 nm)
570 nm (yellow-green) Violet (λ = 410 nm)
580 nm (yellow) Dark blue (λ = 430 nm)
600 nm (orange) Blue (λ = 450 nm)
650 nm (red) Green (λ = 520 nm)

1 nm = 10−9 m = 10 Å.
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3.5  Isomorphism, polymorphism, and solid 
solutions

3.5.1 Isomorphism

The term isomorphism, which was introduced by Mitscherlich 
in 1819, means “equal form.” In practice, two substances are 
called isomorphous if they have similar crystal structures but 
different chemical formulas. A typical pair is sodium nitrate 
(NaNO3) and calcium carbonate (CaCO3), which have almost 
identical crystal structure but very different physical proper-
ties such as hardness and solubility. Isomorphism is wide-
spread among minerals of the spinel group, the garnet group, 
the pyroxene group, and the amphibole group. The basis of 
isomorphism is the similarity in ionic size relations of the dif-
ferent ions, leading to the same coordination and the same 
structure type. Replacement of cations or anions in a crystal 
lattice should be termed “substitution” or “solution” rather 
than isomorphous replacement (Fyfe, 1964).

3.5.2 Polymorphism

The term polymorphism, meaning “many forms”, applies to 
two or more substances (elements or compounds) that have 
the same or closely similar chemical formulas but different 
crystal structures. The difference among the various structural 
forms may involve cation coordination, arrangement of the 
ions, or the nature of bonding. Polymorphism is quite common 
among minerals. Some familiar examples are the polymorphs 
of CaCO3 (calcite, trigonal; aragonite, orthorhombic), FeS2 
(pyrite, cubic; marcasite, orthorhombic), C (diamond, cubic; 
graphite, hexagonal), and Al2SiO5 (andalusite, orthorhombic; 
sillimanite, orthorhombic; kyanite, triclinic). The polymorphs 
have discernibly different physical and chemical properties, 
and different pressure–temperature stability fields (see 
Figs 4.12, 6.4 and 7.10), the high-temperature modifications 
generally showing a higher crystallographic symmetry.

The transformation from one polymorph to another may be 
displacive or reconstructive, or of the order-disorder type. 
Transformations, such as from low-quartz to high-quartz 
(“low” and “high” denoting, respectively, lower and higher 
crystallographic symmetry) are displacive because there is very 
little difference in energy of the two polymorphs so that the 
change can be accomplished quite readily by minor displace-
ment of the ions. The transformation of graphite to diamond, 
on the other hand, is an example of reconstructive transforma-
tion; it is much slower and more difficult, because it involves 
the formation of a new crystal structure with reconstructed 
bonds. In general, higher pressure favors polymorphs with 
high densities and large coordination numbers (e.g., calcite = 
aragonite; sillimanite = kyanite), whereas higher temperature 
favors polymorphs with low densities and small coordination 
numbers (e.g., quartz = tridymite; kyanite = sillimanite).

A crystal structure is said to be “disordered” if the con-
stituent  ions (or atoms) are randomly distributed among 

 crystallographically equivalent sites (sites that are the same in 
terms of crystallographic symmetry), and “ordered” if the 
 distribution is not random. Perfect ordering occurs only at abso-
lute zero temperature; the degree of ordering gradually decreases 
with increasing temperature, and the crystal structure becomes 
completely disordered above a certain temperature characteristic 
of the structure and composition of the crystal. Between these two 
end-states of perfect order and complete disorder, there may be 
stable states of varying degrees of disorder, each of which may be 
considered a separate polymorph. The three polymorphs of 
KAlSi3O8 (potassium feldspar) – microcline, orthoclase, and sani-
dine – are an important example of order–disorder relationship 
with respect to the three Si4+ ions and one Al3+ ion, which occupy 
four tetrahedral sites that differ slightly in size and nearest neigh-
bor configuration. Microcline is the low-temperature, ordered (tri-
clinic) form of KAlSi3O8 in which Al3+ ions occupy one kind of site 
and three Si4+ ions the other three; orthoclase is the medium-tem-
perature, partially ordered form (pseudomonoclinic); and sani-
dine is the high-temperature, disordered form (monoclinic) char-
acterized by more random distribution of the Si4+ and Al3+ ions.

3.5.3 Solid solutions

A solid solution is a solution in the solid state of one or more 
solutes in a solvent whose crystal structure remains unchanged 
by addition of the solutes. Almost all minerals are solid solu-
tions to varying degrees. The range of compositions produced 
by solid solution in a given mineral is known as a solid solu-
tion series and its compositional extremes as end members. 
A solid solution series may be continuous, in which case all 
intermediate members are possible (e.g., the olivine solid solu-
tion series with Mg2SiO4 and Fe2SiO4 as end members) or dis-
continuous, in which case only a restricted range of composi-
tion between the end members is found (e.g., the limited solid 
solution between ZnS and FeS).

Solid solution should not be confused with isomorphism, 
because they are distinct concepts (Mason, 1966). Isomorphism is 
neither necessary to, nor sufficient for, solid-solution formation. 
Many isomorphous substances show little solid solution (e.g., cal-
cite, CaCO3 and smithsonite, ZnCO3), and extensive solid solu-
tion may occur between components that are not isomorphous 
(e.g., FeS and ZnS, which have very different crystal structures).

There are three kinds of solid solutions based on the mecha-
nism that causes their chemical composition to vary (Fig. 3.13):

(1) Substitutional solid solution (Fig. 3.13a), in which one 
or more kinds of ions or atoms are substituted by other 
kinds. This is the most common type in the realm of 
minerals. A very good example is the binary olivine 
solid solution series, (MgFe)2SiO4, that spans all inter-
mediate compositions ranging from the magnesium 
end-member Mg2SiO4 (forsterite) to the iron 
 end- member Fe2SiO4 (fayalite) because of diadochic 
substitution of Mg2+ by Fe2+, which carry the same 
charge and have similar ionic size. Another familiar 
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example is the  plagioclase solid solution series charac-
terized by progressive coupled substitution of Na+ and 
Si4+ by Ca2+ and Al3+ (equation 3.8).

(2) Interstitial solid solution (Fig. 3.13b), in which foreign 
ions or atoms are added to fill unoccupied interstitial 
crystal sites (❑) that exist between ions or ion groups. An 
example of interstitial solid solution is the incorporation 
of Na+ into the structure of cristobalite (a high- 
temperature polymorph of quartz) to compensate for the 
charge imbalance created by the replacement of a small 
amount of Si4+ by Al3+. Minerals such as beryl 
(Be3Al2Si6O18), whose structures provide large openings, 
are particularly susceptible to interstitial substitution. 
Beryl contains large channel-like cavities that can be 
occupied by relatively large monovalent cations, the 
charge balance being maintained by coupled substitution 
of Al3+ or Be2+ for Si4+ in tetrahedral sites:

❑ + Si4+ ⇔ Al3+ + (K+, Rb+, Cs+) or ❑ + Si4+ ⇔ Be2+ 
+ 2(K+, Rb+, Cs+)

 This type of solid solution is very common in metals, which 
easily accommodate small atoms such as H, C, B, and N.

(3) Omission solid solution (Fig. 3.13c), in which some ion 
sites that are normally occupied remain vacant. The best 
example of such a solid solution – actually a type of crys-
tal defect – is the monosulfide mineral pyrrhotite whose 
chemical analysis always shows more sulfur than its theo-
retical proportion in FeS. It is now well established that 
this discrepancy is due to a deficiency of Fe, not an excess 
of S, in the crystal structure, so that the generalized chem-
ical formula of pyrrhotite is written as Fe1−xS, where x var-
ies between 0 and 0.125. The electrical neutrality in this 
structure is maintained by the replacement of three Fe2+ by 
only two Fe3+ leaving one site vacant: 3Fe2+ ⇒ 2Fe3+ + ❑.

The extent of solid solution between given solutes and sol-
vent depend on the factors that affect the degree of substitution 
(see section 3.3). The favorable factors include: similar ionic 
size, charge, and electronegativity; flexibility of the solvent 
crystal structure to accommodate local strains (by bending 
bonds rather than by stretching or compressing them); and high 
temperature and low pressure. Thermodynamic aspects of solu-
tions, including solid solutions, will be discussed in Chapter 5.

3.6 Covalent bonding

3.6.1 Valence bond theory versus molecular orbital theory

Soon after the application of quantum mechanics to the 
hydrogen atom, scientists began applying quantum mechanics 
to molecules, starting with the H2 molecule. The treatment of 
covalent bonding, based on the principles of quantum mechan-
ics, has developed in two distinct, but mutually consistent, 
forms: the valence bond theory, and the molecular orbital 
theory. In the valence bond approach, covalent bonds between 
two atoms A and B are formed by the sharing of valence elec-
trons of opposite spin, resulting from interaction between 
atomic orbitals (AOs) that contain these electrons. In the 
molecular orbital approach, we start with the nuclei of the 
two atoms and feed all the electrons of the molecule into 
molecular orbitals (MOs) that are constructed by appropriate 
combination of atomic orbitals of about the same energy. 
Thus, atomic orbitals are associated with a single atom (or 
ionic species), whereas molecular orbitals are associated with 
the molecule as a whole. It is assumed that electrons would fill 
molecular orbitals following the same principles as followed 
by electrons for filling atomic orbitals:

(1) The molecular orbitals are filled in a way that yields the 
lowest potential energy for the molecule.

(2) Each molecular orbital can accommodate a maximum of 
two electrons of opposite spin (Pauli’s exclusion principle).

(3) Orbitals of equal energy are half filled with electrons 
having parallel spin before they begin to pair up with 
electrons of opposite spin (Hund’s rule).

The molecular orbital approach is more powerful because the 
orbitals reflect the geometry of the molecule to which they are 
applied. The downside is that it is a more difficult concept to 
visualize.

The essence of covalent bonding can be explained by the 
formation of the simplest of all molecules, the homonuclear 
diatomic H2 molecule. An isolated H atom has the ground-
state electron configuration 1s1, and the probability density for 
this one electron is distributed spherically about the H nucleus. 
When two hydrogen atoms approach each other, the electron 
charge clouds represented by the two 1s atomic orbitals begin 
to merge (which is referred to as overlap of atomic orbitals), 
and the electron charge density begins to shift. Due to the 
attraction between the electron of one H atom and the posi-
tively charged nucleus of the other H atom, the overlap 
 gradually increases with decrease in the internuclear distance 
(R) between the two atoms. How close to each other the two 
atoms can get is determined by the short-range repulsion 
between the two positively charged nuclei. The merger reaches 
its limit when the potential energy of the system (Ep) reaches a 
 minimum; this is the position of closest approach of the two 
atoms and it defines the equilibrium internuclear distance (R0). 
At this point, we have formed a H2 molecule consisting of two 

(a) Substitutional (b) Interstitial (c) Omission

Fig. 3.13 Schematic representation of the three kinds of solid solutions: 
(a) substitutional solid solution; (b) interstitial solid solution; 
and (c) omission solid solution.
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nuclei held together by a covalent bond comprised of two 
shared electrons with opposite spins. This system has a lower 
potential energy than the system comprised of the two isolated 
H atoms (Fig. 3.14), and thus is more stable. For each such 
covalent bond, there is a condition of optimal overlap that 
results in maximum bond strength (bond energy) at a particu-
lar internuclear distance (bond length).

The formation of a covalent bond between the two H atoms 
can be rationalized in two ways. Viewed from the perspective 
of the valence bond theory, the two electrons occupy the region 
of highest density of electron negative charge between the two 
nuclei, the region where the two orbitals overlap (Fig. 3.15a). 
Both electrons are now in the orbitals of both H atoms, and 
each H atom may be considered to have the stable electron 
configuration of He (1s2). In terms of the molecular orbital 
theory, the two 1s atomic orbitals merge into a bigger electron 
cloud, a molecular orbital (MO). The MO may be visualized as 
the volume within which we should find a high percentage of 
the negative charge generated by the electrons (Fig. 3.15b). The 
two electrons are shared equally between the nuclei and are 
identified with the entire H2 molecule, not with either of the 
nuclei. This sharing of the electron pair forms a covalent bond.

3.6.2 Covalent radii

As in the case of ionic bonding (see Fig. 3.2), R0 in Fig. 3.14 
represents the sum of the covalent radii of the two H atoms, the 
bond length, from which the covalent radius of each atom can 
be determined. In the case of the H2 molecule, the covalent 
radius will just be the one-half of R0, and it is applicable only to 
crystal structures in which H is covalently bonded. The covalent 
radius of an atom varies with the number of bonds the atom has 
with its neighbors and the distortion of its atomic orbitals as a 
result of hybridization (see section 3.6.3). Tabulated values of 
covalent radii represent either average or idealized values.

The covalent radius of an atom, unlike its ionic radius, should 
not be visualized as the radius of a spherical atom; the concept 
of covalent radius is applicable only to interatomic distances 
between atoms joined by covalent bonds and not to distances 
between atoms of the same kind when not so joined (Evans, 
1966). For example, the single-bond covalent radius of Cl atom 
is 0.99 Å, which is one-half of the measured Cl–Cl interatomic 
distance of 1.99 Å in the covalent Cl2 molecule. In the crystal 
structure of solid chlorine, however, the interatomic distance 
between neighboring Cl atoms of different molecules, which are 
bound together only by weak van der Waals forces (see section 
3.8), is about 3.6 Å, giving about 1.8 Å as the van der Waals 
radius of the Cl atom, the same as the ionic radius of Cl− in 
octahedral coordination. In general, the covalent radius of an 
element is much smaller than its ionic radius because of greater 
penetration of unpaired electron orbitals in covalent bonding.

3.6.3 Hybridization of atomic orbitals

The formation of molecular orbitals is not all that happens to 
atomic orbitals when atoms approach each other. Before 
combining across atoms, atomic orbitals that are close to 

Fig. 3.14 Potential energy (Ep) diagram for the diatomic molecule H2. 
For large values of internuclear distance (R), the potential energy of the 
system, which consists of two isolated hydrogen atoms, is arbitrarily 
assigned a value of zero. R0 represents the equilibrium internuclear 
distance at which the potential energy reaches a minimum and the 
system attains maximum stability; at smaller values of R, the strong 
repulsion between the nuclei causes the potential energy to rise sharply. 
For the formation of a covalent H2 molecule, R0 = 0.74 Å, and the 
corresponding minimum potential energy is −435 kJ mol−1 (which 
corresponds to −7.23 × 10−19kJ per H2 molecule). The energy D closely 
approximates the experimental dissociation energy of the molecule into 
its component atoms in their ground states.
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Fig. 3.15 Formation of a covalent bond in a H2 molecule by sharing of 
electrons: (a) Overlap of two 1s atomic orbitals (valence bond theory); 
(b) Formation of a molecular orbital by merger of two 1s orbitals 
(molecular orbital theory).
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each other in energy within the same atom have the ability to 
combine in an additive way, forming a new set of orbitals 
that is at a lower total energy in the presence of the other 
atoms than the pure atomic orbitals would be. This process 
of blending of atomic orbitals is called hybridization, and the 
newly formed orbitals are called hybrid orbitals. (1s and 2s 
orbitals do not hybridize because of the large difference in 
their energy levels.) The number of hybrid orbitals formed 
always equals the number of atomic orbitals involved in the 
hybridization (Companion, 1964, p. 59). The hybrid orbitals 
of an atom (or ionic species) can overlap with orbitals on 
other atoms (or ions) to share electrons and form covalent 
bonds. The importance of hybrid orbitals lies in the fact that 
they usually  provide a better description of the experimen-
tally observed geometry of the molecule (or ionic species), 
especially for molecules formed with carbon, nitrogen, or 

oxygen (and to a lesser extent phosphorous and sulfur). This 
is why the main application of hybridization lies in the field 
of organic chemistry.

To illustrate the concept of hybridization, let us consider the 
covalent bonding in CH4 (methane gas). Experimental results 
tell us that the C in this compound is bonded to the four H 
atoms by four equivalent covalent bonds, but the ground-state 
electronic configuration of C (Z = 6), 1s2 2s2 2px

1 2py
1, sug-

gests that the two p orbitals with unpaired electrons should 
result in the formation of only two covalent bonds. This dis-
crepancy can be resolved by invoking hybridization of the 2s 
orbital with the three 2p orbitals (whose energy level is not 
that different from that of the 2s orbital) to form four sp3 
hybrid orbitals, each with one unpaired electron:

3 3 3 3     
1 2 2 2 2 hybridization 1s s p p p s sp sp sp sp
↑↓ ↑↓ ↑ ↑ ⇒ ↑↓ ↑ ↑ ↑ ↑

Ground-state C atom        Four sp3 hybrid orbitals

The four sp3 orbitals are directed in space toward the four cor-
ners of a regular tetrahedron. When four H atoms, each with an 
unpaired 1s electron, approach such a C atom, the overlap of 
the four 1s AOs of H and the four hybrid AOs of C form the 
CH4 molecule with four equivalent covalent bonds. The shape 
of the CH4 molecule would consequently be like that of a tetra-
hedron (Fig. 3.16); experiments have confirmed that is the case.

There are many types of hybridization that give rise to 
 characteristic molecular configurations; some common con-
figurations are listed in Table 3.6 and illustrated in Fig. 3.17.

3.6.4 Sigma (s), pi (p), and delta (d) molecular orbitals

There are three kinds of molecular orbitals (MOs) that are of 
interest to us: (i) sigma (s) MOs; (ii) pi (p) MOs; and (c) delta (d) 
MOs. Only s MOs can be constructed from s AOs; only s and 

Fig. 3.16 Hybridization of atomic orbitals in the formation of a CH4 
molecule: (a) overlap between a carbon atom with sp3 hybrid orbitals 
and four 1s orbitals of four H atoms; (b) the tetrahedral symmetry of the 
CH4 molecule with four equivalent s bonds.
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Table 3.6 Some common hybrid orbital configurations.

Hybrid1 Number of bonds
Orbitals on the 
hybridized atom Configuration of bonds Examples

sp 2 s + p Linear CO2, C2H2

sp2 3 s + two ps Trigonal–planar (to corners 
of an equilateral triangle)

C2H4, C 
(graphite)

sp3 4 s + three ps Tetrahedral (to corners 
of a regular tetrahedron)

CH4, C 
(diamond)

dsp2 4 s + two ps + d Square planar (to corners 
of a square)

Ni(CN)4
2−

d2sp3 6 s + three ps 
+ two ds

Octahedral (to corners 
of a regular octahedron)

SF6

d4sp 6 s + p + four ds Trigonal prismatic (to corners 
of a trigonal prism)

MoS2

1 Hybridization at the central atom (e.g., C in CH4 molecule).
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p MOs can be constructed from p AOs; and s, p, and d MOs can 
be constructed from d AOs (Companion, 1964). Some typical 
examples of molecular orbital formation are described below.

The MO formed by the overlap of s orbitals is designated as 
a s MO (Fig. 3.18a), and for the H2 molecule as 21s

σ  since it is 
occupied by two electrons due to the merger of two 1s AOs. 
The distinguishing criterion of s MOs is that it has no nodal 
plane (a plane of zero electron density) containing the internu-
clear axis. The strongest kinds of covalent bonds are  associated 
with s MOs. Actually, the covalent bonding is more compli-
cated because of the formation of complementary bonding 
and antibonding molecular orbitals (see Box 3.2); for simplic-
ity only bonding MOs are shown in Fig. 3.18.

When larger atoms are involved in the formation of cova-
lent molecules, s MOs can also form when two p AOs overlap 
end-on (e.g., in a diatomic molecule such as O2, F2, or N2), or 
when a p orbital in one atom interacts with an s orbital in 
another atom (e.g., in a molecule of HF). As can be seen in 
Fig. 3.18, the s MO formed by end-on overlap of two pz orbit-
als has two nodal planes (the xy and xz planes), but neither 
contains the internuclear axis; the p MO formed by sideways 
overlap of two pz orbitals has only one nodal plane (the xy 
plane) and it contains the internuclear axis; and the d MO 
formed from face-to face overlap of two 2 2—x y

d  orbitals has 
two nodal planes (the xz and yz planes) each of which  contains 
the internuclear axis.

3.6.5  The degree of ionic character of a chemical bond: 
Electronegativity

In pure ionic bonding the transferred electron(s) should be asso-
ciated solely with, and distributed symmetrically around, the 
nucleus of the anion so formed. Pure ionic bonds, however, do 
not exist in nature. In reality, the coulombic attraction exerted by 

Fig. 3.18 The formation of bonding molecular orbitals: (a) s molecular 
orbital by end-on overlap of two 2pz atomic orbitals; (b) p molecular orbital 
by sideways overlap of two 2pz atomic orbitals; and (c) d molecular orbital 

by face-to-face overlap of two 2 23
x y

d
−

 atomic orbitals. For molecules larger 

than H2, the z direction is assumed to be the internuclear axis, but the 
labeling of x axis and y axis is arbitrary. (After Companion, 1964.)

Isolated pz  atomic orbitals

Head-on overlap of pz  orbitals

σ molecular orbital boundary diagram

z z

(a)  σ molecular orbital from pz  atomic orbitals

z z

Isolated pz
atomic orbitals 

Sideways overlap
of pz  orbitals

π molecular orbital
boundary diagram

(b)  π  molecular orbital from pz  atomic orbitals

y y

x x

z

Isolated dx2–y2 atomic orbitals δ molecular orbital boundary diagram

(c)  δ  molecular orbital from dx2–y2 atomic orbitals

Nucleus

Fig. 3.17 The bond configurations corresponding to some simple 
hybrid orbitals. The solid dot in each represents the central atom (e.g., 
C in a CH4 molecule) for the bonds. sp, linear; sp2, to corners of an 
equilateral triangle; dsp2, to corners of a square; sp3, to corners of a 
regular tetrahedron; d2sp3, to corners of a regular octahedron; d4sp, to 
corners of a trigonal prism. (From An Introduction to Crystal 
Chemistry, 2nd edition, by R.C. Evans, Figure 4.01, p. 60; Copyright 
1966, Cambridge University Press.  Reproduced with permission of the 
publisher.)
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Box 3.2 Bonding and antibonding molecular orbitals

The wave properties of the electron cause variation in the intensity of negative charge generated by the electron. Just as in-phase superposition of 
light waves leads to an increase in the light intensity and out-of-phase superposition a decrease, the intensity of the negative charge is enhanced 
by in-phase interaction of electron waves and decreased by out-of-phase interaction.

Let us consider the molecular orbital (MO) formation from two 1s atomic orbitals (AOs). The model of MO formation assumes that two 1s AOs 
can overlap in two extreme ways – in-phase and out-of-phase interaction – to form two MOs. The in-phase interaction creates an increase in the 
negative charge between the two nuclei, leading to an increase in the attraction between the electron and the atoms in the bond, and thus to lower 
potential energy, which makes it energetically preferable to the two separate 1s AOs. This orbital is called a bonding molecular orbital, and is designated 
as s1s in which the symbol s (sigma) stands for the fact that the orbital is cylindrically symmetrical about the internuclear (or bond) axis (Fig. 3.19).

The out-of-phase interaction creates exactly the opposite situation, a MO of higher potential energy and, therefore, energetically less favorable 
compared to the separate 1s AOs. A molecular orbital of this type, in which the electrons tend to destabilize the bond between atoms, is called an 
antibonding molecular orbital. It is also symmetrical about the bond axis, and to distinguish it from a bonding orbital is designated with an 
asterisk as s*1s (Fig. 3. 19).

Bonding and antibonding orbitals are also formed by the overlap of p and d AOs. For example, when two O atoms combine to form a O2 
molecule, the end-on overlap of the two 2pz AOs generates the s2p(z) (bonding) and s*2p(z) (antibonding) MOs (the z direction is assumed to be the 
internuclear axis). If the remaining p orbitals overlap, they must do so sideways, forming what are designated as p MOs. Thus, the sideways 
overlap of the two 2px AOs would generate p2p(x) (bonding) and p*2p(x) (antibonding) MOs, and the sideways overlap of the two 2py AOs would 
generate another pair of p2p(y) (bonding) and p*2p(y) (antibonding) MOs of the same potential energy.

Bonding and antibonding configuration of molecular orbitals are commonly depicted in diagrams such as Fig. 3.19 and Fig. 3.20. Figure 3.19 
is for the H2 molecule, the simplest case; Fig. 3.20 represents a generalized framework of the expected molecular orbital diagram resulting from 
the overlap of 1s, 2s, and 2p AOs, and is applicable to molecules such as O2, F2, CO, and NO. Because they meet head-on, the interaction between 
2pz orbitals is stronger than the interaction between 2px or 2py orbitals, which meet edge-on. As a result, the s2p orbital has a lower energy than 
the p2p orbitals, and the s*2p orbital has a higher energy than the p*2p orbitals.

The procedure for filling electrons in the MOs is as follows:

(1) Find out (or work out) the electronic configuration of the atoms involved (for the F atom, for example, it is 1s2 2s2 2p5).
(2) Fill the molecular orbitals from bottom to top until all the electrons are added, remembering that the number of MOs generated must equal 

the number of AOs being merged (because we must have the same number of places to put electrons in the molecule that we had in the atoms) 
and that MOs of equal energy are half-filled with parallel spin (↑) before they are paired with opposite spin (↑↓).

The number of electrons in the bonding and antibonding MOs can be used to calculate the bond order (BO) and predict the stability of the 
covalent molecule. The bond order is defined as

Bond order (BO) =  0.5 (number of electrons in bonding MOs − number of electrons in antibonding MOs) (3.9)

Bond order values of 0, 1, 2, and 3 correspond to classical no bond, single, double, and triple bonds. If for a molecule BO = 0, the molecule is 
unstable; if BO > 0, the molecule is stable. The higher the bond order, the more stable is the covalent bond. We can also use the molecular orbital 
diagram to predict whether the molecule is paramagnetic (i.e., weakly attracted to magnetic fields) or diamagnetic (i.e., weakly repelled by magnetic 
fields). Molecules that contain unpaired electrons are paramagnetic; those that contain only paired electrons are diamagnetic. The H2 molecule 
(see Fig. 3.19), for example, is diamagnetic and its bond order is 0.5 (2–0) = 1, indicating that it is stable.

Fig. 3.19 Molecular orbital diagram for the H2 molecule (Z = 1) 
showing sigma bonding and antibonding molecular orbitals (MO) 
formed from the overlap of 1s atomic orbitals (AO).
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Fig. 3.20 Generalized framework of expected molecular 
orbital diagram from the overlap of 1s, 2s, and 2p orbitals 
for covalent molecules such as O2, F2, CO, and NO.
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42 Chemical Bonding

the neighboring cations forces the electron density of the anion 
to be concentrated to a small extent in the region between the 
nuclei. This distortion, referred to as polarization of the anion, 
results in a degree of electron sharing, or partial covalency, in 
any real ionic bond. The larger the ionic potential (charge to 
radius ratio) of a cation, the stronger is the polarization.

Polarization of a covalent bond occurs when the electron 
density becomes asymmetric around the atoms because one of 
the atoms exerts greater attraction on the shared electrons than 
the other, giving that atom a slight negative net charge (and 
leaving a complementary small positive charge on the other 
atom). This, in effect, amounts to transferring a fraction of an 
electron from one atom to another and imparting a degree of 
ionic character to the predominantly covalent bond. Such 
bonds, as in the heteronuclear diatomic molecule HF, formed by 
unequal sharing of electron pairs, are called polar covalent 
bonds, as opposed to nonpolar covalent bonds, in all homonu-
clear diatomic molecules (such as H2, O2, N2, F2, Cl2, etc.) in 
which the bonding electron pairs are shared equally between 
the nuclei. In the case of HF, for example, the F atom (which has 
a higher electronegativity) attracts the shared  electron pair more 
strongly than does the H atom. This causes a distortion of the 
electron density, and its small shift toward the F atom leaves the 
H-end of the HF molecule slightly  positive and the F-end slightly 
negative. The polar HF molecule is commonly represented as

+
H  — F
δ δ −

where the d+ over the H atom and the d− over the F atom indi-
cate that the “H-end” of the molecule is more positive relative 
to the “F-end,” and vice versa (not that H has a charge of +1 
and F a charge of −1). The separation of charge in a polar cova-
lent bond creates an electric dipole, whose strength is expressed 
in terms of its electric dipole moment (m), which is defined as

m = dd (3.10)

where d is the distance separating the charges of equal magni-
tude and opposite sign, and d is the magnitude of the charge. 
All molecules whose positive-charge and negative-charge 
 centers do not coincide possess an electric dipole moment.

Realizing that there must exist a continuous progression 
between purely covalent bonds and dominantly ionic bonds, 
the American Nobel laureate Linus Pauling (1901–1974) 
introduced the concept of electronegativity in 1932 to quanti-
tatively express the degree of ionic character of a mixed ionic–
covalent bond. Electronegativity (c) is a parameter that 
describes the tendency of an atom in a molecule to attract 
 electrons towards itself when chemically combined with 
another atom. (The equivalent property of a free atom is its 
electron affinity – see section 2.4.1.) Thus, electronegativity, 
which is related to ionization potential and electron affinity, is 
a measure of the ability of an atom to compete for  electrons 
with other atoms to which it is bonded. For example, the 
 electronegativity of chlorine is higher than that of hydrogen in 
an HCl molecule, which means that the chlorine atom displays 
greater attraction for electrons than does the hydrogen atom. 

Whereas the chemical applications of ionization potential are 
limited to elements that lose electrons to form cations, the 
concept of electronegativity is applicable to all kinds of 
 elements and the bonds they form. However, unlike ionization 
potential, electronegativity cannot be measured and has to be 
calculated from other atomic or molecular properties.

Several methods of calculation have been proposed, but the 
most commonly used method is the one originally proposed 
by Pauling based on measured electric dipole moments. 
Pauling’s electronegativity is a dimensionless quantity that is 
estimated on an arbitrary scale ranging from 0 (helium) to 4.1 
(fluorine) (see Appendix 3). In general, electronegative values 
increase within a period of the Periodic Table with increasing 
atomic number – e.g., from c = 0.98 for Li (Z = 3) to c = 3.98 
for F(Z = 9) – and decrease from top to bottom within a 
group – e.g., from c = 3.98 for F (Z = 9) to c = 2.2 for 
At (Z = 85). The inert gases (He, Ne, etc.) have zero (or close 
to zero) electronegativity values, and the peak values belong to 
the halogens (F, Cl, Br, I; see Fig. 2.9). Cation-forming elements 
(electron donors) with low values of electronegativity, such as 
alkali and alkaline earth metals, are called electropositive; 
anion-forming elements (electron acceptors) characterized by 
high values of electronegativity, such as the halogens and 
oxygen (c = 3.44), are called electronegative.

Although electronegativity is not a precisely defined atomic 
property, the electronegative difference between two atoms pro-
vides a useful measure of the polarity and ionic character of the 
bond between them in solid compounds. The larger the elec-
tronegativity difference between two atoms, the greater is the 
probability of them forming an ionic bond in which the more 
electronegative element represents an anion and the less elec-
tronegative element a cation. Between elements with similar 
electronegativity values, neither has a stronger preference for 
electrons, and they tend to share electrons by covalent bonding. 
Typically, a bond is considered ionic if the electronegativity dif-
ference between the two bond-forming elements is > 2.1. Thus, 
the Na–Cl bond (|cNa − cCl| = |0.93−3.16| = 2.23) should be ionic 
whereas the Fe–S bond (|cFe−cS| = |1.83−2.58| = 0.75) should be 
covalent. The Mg–O bond (Δc = 2.13) and Ca–O bond (Δc = 
2.44), which are common in rock-forming silicate minerals, are 
also ionic. However, Si–O and Al–O bonds (Δc = 1.54 and 1.83, 
respectively) in the same minerals should be considered covalent 
by this definition, although they are generally regarded as ionic 
for the purpose of silicate mineral crystal structures.

Based on the premise that elements having different 
 electronegativities form bonds whose ionic character is 
 proportional to the magnitude of electronegativity difference 
(Fig. 3.21), Linus Pauling suggested the following empirical 
relation to calculate the percentage ionic character of a bond 
(PIC) between two atoms A and B:

PICA−B = 16|cA − cB| + 3.5|cA − cB|
2 (3.11)

where cA and cB are the electronegativities of the two atoms 
(see Appendix 3). According to this formulation, the Na–Cl 
bond (PIC = 53.1%) is only slightly more ionic than covalent 
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3.7 Metallic bonds 43

(although NaCl is often cited as a typical example of an ionic 
compound), the Ca–O bond (PIC = 59.9%) is mostly ionic, 
the Mg–O bond (PIC = 50%) is as much ionic as covalent, and 
the Si–O bond (PIC = 32.9%) is dominantly covalent. Thus, 
electronegativity alone does not provide accurate predictions 
about the bonding character and coordination numbers in all 
kinds of compounds.

Example 3.3: Calculation of the percentage ionic 
character of the bond between H and F in the HF 
molecule, using the electronegativity values and empirical 
relation given by Pauling

cH = 2.20 ; cF = 3.98 (Appendix 3)
PICH−F = 16|cH − cF| + 3.5|cH − cF|

2

   = 16|2.20 − 3.98| + 3.5 |2.20 − 3.98|2

   = (16 × 1.78) + (3.5 × (1.78)2) = 28.48 + 11.09 = 39.57

So, the H–F bond in the HF molecule is about 40% ionic 
and 60% covalent.

3.7 Metallic bonds

Most metallic elements display close-packed structures (spheres, 
representing atoms, touching all their immediate neighbors), 
which represent the geometrically most compact arrangement 
of spheres in space (see Evans, 1966, fig. 5.01, p. 81). The 

 close-packed arrangement results in crystal structures with 
 hexagonal or cubic (face-centered and body-centered) symme-
try (Fig. 3.22).

Metallic bonding is the bonding that exists among the 
atoms within the crystal structure of a metallic element. The 
bonding cannot be ionic because a metal is not composed of 
cations and anions. Van der Waals bonds (see section 3.8) are 
too weak to account for the high melting points of metals, and 
localized covalent bonds are unlikely in view of the fact that 
each atom in the crystal structure of metals has 12 to 14 near 
neighbors. Moreover, the bonding in metals must explain their 
special properties, such as electrical and thermal conductivity 
and malleability, which are not characteristics of ionic or 
covalent compounds.

Most metals have s electrons external to filled or partially 
filled inner shells – for example, the two 4s electrons in Ni (1s2 
2s2 2p6 3s2 3p6 3d8 4s2). These s electrons are “delocalized,” 
partly because they are most easily ionized and partly because 
they occupy a large volume in space relative to other electrons 
and present an overall low electron density to the positive 
nucleus (Companion, 1964). For a simple model to explain 
metallic bonding, it is assumed that the lattice sites in the 
metal crystal are occupied by the relatively small positive ionic 
cores (e.g., Ni2+), which are surrounded by a “sea” of delocal-
ized (loosely bound) electrons. This is why atoms or layers of 
atoms are allowed to slide past each other, resulting in the 
characteristic properties of malleability and ductility.

Metallic bonding is the electrostatic attraction between the 
ionic cores and the delocalized electrons. The latter are not 
associated with a single atom or a covalent bond; they are 
contained within a molecular orbital that is shared with all the 
ionic cores in the crystal and extends over the entire crystal in 
all directions with equal probability. These electrons are free 
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Fig. 3.21 The degree of ionic character of a single chemical bond 
between an element (A) and oxygen (B) as a function of the 
electronegativity difference |cA − cB|. An electronegativity difference of 
about 1.7 corresponds to a bond that is 50% ionic; bonds with larger 
electronegativity difference are primarily ionic, those with a smaller 
difference are primarily covalent, but there are exceptions. Source of 
data: Faure (1998).

(a) (b) Hexagonal
close-packed
structure

(c) Body-centered
cubic
structure

Cubic
close-packed
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Fig. 3.22 Crystal structures of metallic elements. (a) Cubic close-packed 
structure (face-centered cubic), in which each atom is surrounded by 12 
neighbors (e.g., Cu, Ni, Au). (b) Hexagonal close-packed structure, in 
which each atom is surrounded by 12 neighbors, 6 at a slightly greater 
distance than the other 6 (e.g., Mg, Ti, Zn). (c) Body-centered cubic 
structure, in which each atom is surrounded by 8 neighbors at the 
corners of a cube (e.g., Li, Na, Mo). Assuming the atoms to be perfect 
spheres, the packing efficiency (volume of the spheres occupied by 
the sphere/total volume) is 74.05% for both cubic and hexagonal 
close-packed structures; the body-centered cubic structure is not a 
close-packed array and its packing efficiency drops to 68.02%.
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44 Chemical Bonding

to move around throughout the crystal structure and thus are 
capable of conducting electricity. Without any particular 
direction for a net movement of electrons in the crystal struc-
ture, there is no flow of electricity in an isolated piece of metal, 
but a current will flow through the metal piece if it is con-
nected to the terminals of a battery, confirming the presence of 
delocalized electrons. The thermal conductivity of metals 
arises from the fact that their loosely bound electrons can 
transfer heat energy at a faster rate than the tightly bound 
electrons in substances with covalent bonding. (There are a 
few nonmetals that can conduct electricity: graphite because, 
like metals, it has free electrons, and molten and aqueous ionic 
compounds because they have moving ions.)

Atomic radii of metals can be derived from measurements 
of their cell dimensions. In the case of metals with 
 close-packed structures, the atomic radius is half the distance 
of the interatomic distance. In structures of lower coordina-
tion, such as the cubic body-centered structure of the alkali 
metals, a similar definition of atomic radius is applicable, but 
the values so obtained are not immediately comparable with 
those derived from close-packed structures (Evans, 1966). 
The radius of an isolated atom is not a meaningful concept 
unless the coordination is specified because a small but sys-
tematic decrease in the atomic radius occurs with decreasing 
coordination. In general, atomic radii of metals are compara-
ble to their covalent radii; the corresponding ionic radii are 
smaller because outer electrons are stripped away during the 
formation of an ion and those that remain are bound closely 
to the nucleus.

3.8 Van der Waals bonds

As early as 1873, Johannes Diderik van der Waals (1837–
1923), a Nobel laureate from the Netherlands, postulated 
the existence of weak attractive and repulsive forces among 
the molecules of a gas and attributed the observed devia-
tions from the ideal gas law to these forces (see section 
4.1.1). Although the application of his postulate was limited 
to correcting the gas law through empirically derived 
 constants, it is now recognized that van der Waals bonds 
operate between all atoms, ions, and molecules in all solids, 
and add a small contribution to the binding forces in ionic 
and covalent solids.

The van der Waals bonds are associated with energies of 
only about 10–50 kJ mol−1, and their effect is largely masked 
in any crystal structure held together by other interatomic 

bonds, which are much stronger (see Table 3.7). The only sol-
ids in which the properties of the van der Waals bonds can be 
studied in isolation are the inert gases in the solid state to 
which they condense at sufficiently low temperatures. Such 
solids have a spatially undirected, cubic and hexagonal close-
packed arrangement of atoms, similar to those found in metals 
(see Fig. 3.22).

The van der Waals radius of an atom is the radius of an 
imaginary hard sphere that can be used to model the atom for 
many purposes. Van der Waals radii are determined from 
measurements of atomic spacing between pairs of unbonded 
but touching atoms in crystals. Some examples are listed in 
Table 3.7.

3.9 Hydrogen bond

The hydrogen bond is a special kind of intermolecular bond 
that forms between the hydrogen atom in a polar bond such 
as O–H and an electronegative atom such as oxygen, hydro-
gen, or fluorine in a neighboring molecule. The fact that the 
hydrogen bond is found only between the atoms of strongly 
electronegative elements such as fluorine, oxygen, nitrogen, 
and (occasionally) chlorine suggests that it must be essen-
tially ionic in character (Evans, 1966). Hydrogen is the only 
 element capable of forming such bonds because the H+ ion is 
unique in terms of both its very small size and its lack of 
extranuclear electrons. The typical hydrogen bond, with 
energy in the order of about 20 kJ mol−1, is considerably 
weaker than covalent or ionic bonds, but stronger than van 
der Waals bonds.

The most ubiquitous, although not completely understood, 
example of a hydrogen bond is found between molecules of 
water, which has many anomalous physical and chemical 
properties (such as a high boiling point compared to other 
covalent molecules of similar molecular weights such as CO 
and NO) because of this kind of bonding (see section 7.1). 
Let us examine how a hydrogen bond forms between water 
molecules.

As shown below, there are eight valence electrons involved 
in a molecule of water, six associated with oxygen atoms and 
one with each of the hydrogen atoms:

                                       
2 2 2 2 1 1s p p p s s
↑↓ ↑↓ ↑ ↑ ↑ ↑

Ground-state O atom       Ground state H atoms

Table. 3.7 Van der Waals radius (Å) of some elements.

Element Radius Element Radius Element Radius Element Radius

H (Z = 1) 1.20 N (Z = 7) 1.55 F (Z = 9) 1.35 S (Z = 16) 1.85
C (Z = 6) 1.7 O (Z = 8) 1.52 P (Z = 13) 1.9 Cl (Z = 17) 1.8
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3.11 Goldschmidt’s classification of elements 45

Two pairs of electrons are shared between the oxygen atom 
and two hydrogen atoms forming covalent bonds (H–O–H); 
the other two pairs are nonbonding or lone pairs because they 
are not shared with another atom (Fig. 3.23a). Because of 
repulsion between negative charges, the pairs of electrons 
would move as far apart as possible. The maximum separa-
tion is achieved if the four pairs are arranged in a tetrahedral 
configuration within the sphere of influence of the oxygen 
atom, one pair at each corner of the tetrahedron. The two lone 
pairs of electrons occupy a smaller volume and have a greater 
repulsive effect than the two bonding pairs, which causes the 
H–O–H bond angle to be reduced from the theoretical value 
of 109.5° for tetrahedral coordination to 104.5°.

Being more electronegative than hydrogen, oxygen attracts 
the shared bonding pair of electrons more strongly than does 
hydrogen. The result is a slight negative charge on the oxygen 
atom and a slight positive charge on each of the two bonding 
hydrogen atoms; the extra negative charge is concentrated on 
the two lone pairs of electrons (Fig. 3.23b). In other words, the 
two corners of the tetrahedron occupied by hydrogen atoms 
carry a positive charge, whereas the two remaining corners 

carry a negative charge. We can thus picture the water  molecule 
behaving like a dipolar molecule, with a net positive charge on 
one side and a net negative charge on the other. The polarity 
of the water molecules is responsible for its remarkable sol-
vent properties (see section 7.1).

A hydrogen bond forms by dipole–dipole interaction when 
the positively charged end of a water molecule is electrostati-
cally attracted to the negatively charged end of a neighboring 
water molecule (Fig. 3.23c). This electrostatic bond is called 
a hydrogen bond. Each water molecule can be involved in four 
hydrogen bonds: two hydrogen bonds to the oxygen via its 
lone pairs, and a hydrogen bond between each hydrogen and 
the oxygen in a neighboring water molecule (Fig. 3.23d). This 
kind of linkage creates an open structure by holding the water 
molecules apart in fixed positions (O’Neill, 1985).

3.10 Comparison of bond types

A comparison of the bond types associated with solids is sum-
marized in Table 3.8, with a comparison of dissociation ener-
gies (ED) for various bond types in Table 3.9.

3.11 Goldschmidt’s classification of elements

The distribution of the elements in a gravitational field, such 
as that of the Earth, is controlled not by their densities or 
atomic weights, but by their affinities for the three major 
groups of phases that can be formed — metals, sulfides, and 
silicates. Early in the 19th century, V.M. Goldschmidt (1888–
1947), the famous Norwegian geochemist, reached this con-
clusion on the basis of three kinds of observations: (i) the com-
position of chondritic meteorites (see section 12.1), which are 
believed to have an average composition similar to that of the 
primordial Earth and to have undergone similar differentia-
tion; (ii) analyses of metal, slag (silicates), and matte (sulfides) 
produced during smelting of sulfide ores for metal extraction; 
and (iii) the compositions of naturally occurring silicate rocks, 
sulfide ores, and native metals. The conclusion can also be 
supported from a comparison of free energies of reactions 
involved in the formation of various alloys, sulfide com-
pounds, and silicate compounds. The concept of free energy 
and the calculation of free energy change for reactions will be 
discussed in Chapter 4.

Based on the way in which the elements distribute them-
selves among iron liquid, sulfide liquid, silicate liquid, and a 
gas phase, Goldschmidt (1937) classified the elements into 
four groups (Table 3.10): (i) siderophile (iron-loving) ele-
ments, which prefer to form metallic alloys (e.g., Fe–Ni alloy); 
(ii) chalcophile (sulfur-loving) elements, which most easily 
form sulfides; (iii) lithophile (rock-loving) elements, which 
readily combine with oxygen to form silicate and oxide miner-
als; and (iv) atmophile elements, which are commonly found 
in a gas phase. The geochemical character of an element is 
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Fig. 3.23 Structure of the water molecule and the linkage of water 
molecules through hydrogen bonds. (a) Tetrahedral distribution of the 
four pairs of electrons (two bonding pairs shared with hydrogens and 
two lone pairs) surrounding the oxygen in a water molecule. (b) Charge 
distribution in a water molecule (δ+ with the hydrogens and δ− with the 
lone pairs). (c) Formation of hydrogen bonds between lone pairs on the 
oxygen and the hydrogens of neighboring molecules; (d) Linkage of a 
water molecule to four neighboring water molecules through hydrogen 
bonds. (After O’Neill, 1985.)
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46 Chemical Bonding

Table 3.10 Goldschmidt’s geochemical classification of elements.1

Siderophile  Chalcophile  Lithophile  Atmophile

Fe, Co, Ni Cu, Ag, (Au) Li, Na, K, Rb, Cs H, N, (C), (O)
Ru, Rh, Pd Zn, Cd, Hg Be, Mg, Ca, Sr, Ba, (Pb) (F), (Cl), (Br), (I)
Re, Os, Ir, Pt, Au Ga, In, Tl B, Al, Sc, Y, REE He, Ne, Ar, Kr, Xe
Mo, Ge, Sn, C, P (Ge), (Sn), Pb (C), Si, Ti, Zr, Hf, Th
(Pb), (As), (W) As, Sb, Bi (P), V, Nb, Ta

S, Se, Te O, Cr, W, U
(Fe), (Mo), (Re) (Fe), Mn

F, Cl, Br, I
    (H), (Tl), (Ga), (Ge), (N)   
1Elements in parentheses belong primarily in another class. For example, Fe is dominantly siderophile, but 
also behaves as a chalcophile element as well as a lithophile element.
Source of data: Goldschmidt (1937).

Table 3.8 Comparison of properties of solids with different kinds of bonding.

Property  Ionic  Covalent  Metallic  Van der Waals

Formation Commonly by combination of two 
elements with quite different 
electronegativities, usually a 
metal and a nonmetal

Commonly by combination 
of two elements 
with similar 
electronegativities, 
usually nonmetals

Within the crystal 
structures of metallic 
elements

Present in all solids 
as a contributing 
binding force

Crystal structure Spatially nondirected; structures 
of high coordination and 
symmetry

Spatially directed; 
structures of low 
coordination and low 
symmetry

Spatially nondirected; 
structures of high 
coordination and 
symmetry

Formally analogous 
to metallic bond

Mechanical strength Strong, giving hard crystals Strong, giving hard crystals Variable; gliding 
common

Weak, giving soft 
crystals

Dissociation energy 
(see Table 3.9)

Similar values (400–1300 kJ mol−1) Much smaller values 
(< 50 kJ mol−1)

Melting point Fairly high (typically 400 to 
3000°C)

High (1200–4000°C) Variable (−39° to 
3400°C)

Low

Electrical conductivity Molten compounds and solutions 
in polar solvents are good 
conductors (because they 
contain mobile ions)

Molten compounds and 
aqueous solutions are 
poor conductors (because 
they do not contain 
charged particles)1

Good conductors 
(because they contain 
delocalized electrons)

Insulators in solid 
and in melt

1 Exceptions: diamond is a good conductor of heat; graphite is a good conductor of electricity.

Table 3.9 Comparison of dissociation energies (ED) for various bond types.

Bond type Reaction  ED (kJ mol−1) Bond type  Reaction  ED (kJ mol−1)

Ionic NaCl(s) ⇒ Na+
(g) + Cl −

(g) 761* Metallic Na(s) ⇒ Na(g) 109
Ionic NaCl(s) ⇒ Na(g) + Cl(g) 640 Metallic Pb(s) ⇒ Pb(g) 194
Ionic CaO(s) ⇒ Ca(g) + O(g) 1075 Metallic Ni(s) ⇒ Ni(g) 423
Covalent C(diamond) ⇒ C(g) 720 van der Waals S(s) ⇒ S(g) 13
Covalent H2O(g) ⇒ 2H(g) + O(g) 932 van der Waals Ar(s) ⇒ Ar(g) 6
Covalent  SiC(s) ⇒ Si(g) + C(g)  1197  Hydrogen bond H2O(ice) ⇒ H2O(g) 50

* The lattice energy of NaCl crystal.
Sources of data: Compilations in Fyfe (1964) and Gill (1996).
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largely governed by the electronic configuration of its atoms 
and hence is closely related to its position in the Periodic 
Table. Comparison of Table 3.10 with the Periodic Table 
(Fig. 2.8) shows that in general siderophile elements are con-
centrated at the center of the Periodic Table, lithophile 
 elements to the left of the center, chalcophile elements to the 
right, and atmophile elements to the extreme right (Krauskopf 
and Bird, 1955) It can also be correlated with electrode poten-
tials (see Chapter 8): siderophile elements are mostly noble 
metals with low electrode potentials; lithophile elements have 
high electrode potentials; and chalcophile elements have inter-
mediate values. Goldschmidt’s classification also included a 
fifth group named biophile elements (such as C, H, O, N, P, S, 
Cl, I), which are concentrated by living organisms.

It is clear from the many overlaps among the groups in 
Table 3.10 that the classification scheme is not perfect. Some 
elements show affinity for more than one group, because the 
distribution of any element is dependent to some extent on 
temperature, pressure, and chemical environment of the sys-
tem (e.g., oxygen fugacity, competing atoms, etc.). It is, how-
ever, a useful qualitative guide to the behavior of elements dur-
ing geochemical processes.

3.12 Summary

1. Chemical bonds hold the atoms or ions in a crystal struc-
ture together and determine the physical and chemical 
properties of the crystal. There are five kinds of chemical 
bonds: ionic bonds, covalent bonds, metallic bonds, van 
der Waals bonds, and hydrogen bonds.

2. Ionic bonds arise from electrostatic attraction between 
cations and anions, covalent bonds from sharing of 
 electrons between atoms, and metallic bonds from the 
electrostatic attraction between the ionic cores of atoms at 
lattice positions and the delocalized electrons. Van der 
Waals bonds are weak attractive and repulsive forces that 
operate between all atoms, ions, and molecules in all sol-
ids. The hydrogen bond is a special kind of intermolecular 
bond that forms between the hydrogen atom in a polar 
bond such as O–H and an electronegative element such as 
oxygen on a neighboring molecule.

3. In ionic compounds, the number of oppositely charged 
nearest neighbors surrounding an ion is called its coordi-
nation number (CN). The coordination number and, 
therefore, the geometry of packing in ionic crystals can be 
predicted from the radius ratio rc/ra, where rc and ra are the 
cation and anion radius, respectively.

4. The lattice energy (UL) of a perfectly ionic crystal is 
defined as the amount of energy required at absolute zero 
(i.e., −273°C) to convert one mole of the solid into its con-
stituent ions at infinite separation in the gas phase. For 1 
gram-mole of a binary ionic compound it can be calcu-
lated using the equation

2
c

L
1

1az z e
U MA

R n
⎛ ⎞= −⎜ ⎟⎝ ⎠

 where zc and za are the charges on cations and anions 
(expressed as a multiple of the electron charge e), R is the 
interionic distance separating the ions, n is a constant for 
the particular crystal structure, A is the Avogadro’s number, 
and M is a numerical quantity called the Madelung con-
stant, the value of which depends on the crystal structure.

 5. The crystal structures of silicate minerals can be rational-
ized in terms of different patterns of linkages among 
 silicon–oxygen tetrahedra (SiO4

4−).
 6. The extent of ionic substitution in minerals is governed by the 

nature of the crystal structure and how similar the ions are 
in terms of size, charge, and electronegativity. Elevated tem-
peratures and lower pressures favor increased substitution.

 7. Crystal-field theory, which describes the effects of elec-
trostatic fields on the energy levels of the valence  electrons 
(electrons in the outermost orbitals) of a transition-metal 
when it is surrounded by negatively charged ligands in a 
crystal structure, provides reasonable explanations for 
some magnetic properties, colors, hydration enthalpies, 
and spinel structures of transition metal complexes.

 8. Isomorphism refers to substances having similar crystal 
structures but different chemical formulas, whereas poly-
morphism refers to substances having similar chemical 
formulas but different crystal structures.

 9. A solid solution is a solution in the solid state of one or 
more solutes in a solvent whose crystal structure remains 
unchanged by addition of the solutes. Solid solutions 
form: by substitution of ions of one kind by another in 
the lattice, by interstitial accommodation of ions, or by 
omission of ions from the lattice leaving vacant sites.

10 Covalent bonding is best explained through the forma-
tion of bonding and antibonding molecular orbitals (s, p, 
and d) from the overlap of atomic orbitals on the atoms 
in the molecule.

11. Before combining across atoms, atomic orbitals that are 
close to each other in energy within the same atom have the 
ability to combine with one another to form hybrid cova-
lent bonds. The concept of orbital hybridization is useful 
for explaining the bonding in some molecules such as CH4.

12. Anomalous physical and chemical properties of water, such 
as its high boiling point and high solvent capacity, are due 
to hydrogen bonding within and between water molecules.

13. Goldschmidt classified the elements into four groups: (i) 
siderophile (iron-loving) elements, which prefer to form 
metallic alloys (e.g., Fe–Ni); (ii) chalcophile (sulfur- 
loving) elements, which most easily form sulfides; (iii) 
lithophile (rock-loving) elements, which readily combine 
with oxygen to form silicate and oxide minerals; and (iv) 
atmophile elements, which are commonly found in a gas 
phase. This classification scheme is not perfect, but it is a 
useful qualitative guide to the behavior of elements dur-
ing geochemical processes.
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3.13 Recapitulation

Terms and concepts

Antibonding molecular orbital
Atomic orbital
Atomic radius
Avogadro’s number
Bond length
Bond order
Bonding molecular orbital
Born–Haber cycle
Close-packed crystal structures
Coordination number
Coupled substitution
Covalent bond (polar and nonpolar)
Covalent radius
Crystal-field theory
Crystal-field stabilization energy (CFSE)
Delocalized electrons
Diadochy
Diamagnetism
Dipole moment
Dissociation energy
Electric dipole moment
Electronegativity
Energy of crystallization
Geochemical coherence
Goldschmidt’s classification of elements
Goldschmidt’s rules of ionic substitution
Hybridization
Hydrogen bond
Ionic bond
Ionic potential
Ionic radius
Isomorphism
Lanthanide contraction
Lattice energy
Molecular orbitals (s, p, and d)
Madelung constant
Metallic bond
Ordered structure
Paramagnetism
Polarization
Polymorphism
Radius ratio
Rare earth elements
Silicon–oxygen tetrahedron
Solid solution
Silicate crystal structures
Valence bond theory

Van der Waals bond
Van der Waals radius

Computation techniques

 ● Lattice energy using the Born–Haber cycle.
 ● Percent ionic character of a bond.

3.14 Questions

 1. Which of the following series of ions are isoelectronic? 
Justify your answer.

 (a) Au+, Hg2+, Tl3+, and Pb4+

 (b) Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+

 (c) Li+, Be2+, B3+, C4+, and N5+

 2. From the data given in Table 3.3, what generalizations 
can you make about the trends in variation of lattice 
energy?

 3. Calculate the lattice energy and the energy of crystalliza-
tion of 1 mole of KCl crystals using equation (3.4). Given: 
n = 9; +K

1.38r = , − =
Cl

1.81r , A = 6.02 × 1023, e = 4.80 × 

10−10 Coulomb, and MKCl = 1.747.
 4. Calculate the lattice energy of one mole of solid LiCl 

(ULiCl) by constructing a Born–Haber cycle of appropri-
ate reactions based on the heat data given below:
First ionization potential of lithium (ILi) = 520 kJ mol−1

Electron affinity of chlorine (ECl) = 348 kJ mol−1

Heat of sublimation of lithium (SLi) = 159 kJ mol−1

Heat of dissociation of chlorine (DCl) = 236 kJ mol−1

Heat of formation of LiCl (QLiCl) = −409 kJ mol−1

[Hint: see Fig. 3.2 and Example 3-2.]
 5. Applying the principles of molecular orbital formation, 

explain why oxygen forms a stable O2 molecule whereas 
helium does not form a stable He2 molecule. Is oxygen 
paramagnetic or diamagnetic?

 6. Determine the percent ionic character of the following 
bonds between: (i) Na and Cl; (ii) Cl and O; and (iii) Zn 
and O.

 7. Explain why the following substitutions are not common 
in minerals: Cu+ for Na+: Cl− for F−, and C4+ for Si4+.

 8. Name three elements you would expect to find in trace 
quantities in calcite (CaCO3) substituting for Ca. Justify 
your answer.

 9. Explain why both lithium and cesium are concentrated in 
the late mica minerals of pegmatites, although their ionic 
radii are very different.

10. Explain why boron minerals are more common than 
vanadium minerals in igneous and sedimentary rocks, 
although vanadium is a more abundant element than 
boron.
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