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Lecture 4

Objectives:

1. Understand the need for auxiliary functions.

2. Be able to derive the differential functions from the Gibbsian equations.

3. Explain the chemical potential in physical terms.

1. Begin by reviewing the first and second law fundamental equation for a closed, pure system:

dU = TdS − PdV

dU = δQ+ δW

Recall that dU is an exact differential:

dU =

(

∂U

∂S

)

V

dS +

(

∂U

∂V

)

S

dV ⇒ T =

(

∂U

∂S

)

V

;P = −

(

∂U

∂V

)

S

Note that U is a homogeneous function of first order. That is

U = U(S, V )

is a complete function (completely described by S and V ) and that

U(mS,mV ) = mU(S, V )

2. Auxiliary energy functions. We have some kind of feel for the internal energy. For a closed,
pure component system, with no chemical reactions, the functions V , U and S form a complete
basis, that is, we can describe all of thermodynamics by manipulating these three functions.
Unfortunately, nature will not let us get away with just using U , S, and V . The problem
is that we can’t easily measure S, so it is difficult to develop an equation for U = U(S, V ).
Suppose that we measure U as a function of say T and V . Is that good enough?

U = U(T, V )

but

T =

(

∂U

∂S

)

V

so

U = U

[(

∂U

∂S

)

V

, V

]

= U(T, V )
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Does this function carry the same amount of information as U = U(S, V )? Suppose that we
need to know the value of S for some reason (e.g., we want to know if dS > 0). Can we find
S from our function U = U(T, V )? Solve for

(

∂U

∂S

)

V

=

(

∂U(T, V )

∂S

)

V

= F (U, V )⇒

(

∂S

∂U

)

V

=
1

F (U, V )
⇒ S(T )− S(T1) =

∫ T

T1

1

F (U, V )
dT

or

S(T ) =

∫

1

F (U, V )
dT + C

We can’t find S because we only know how S changes at constant volume. The unknown
constant of integration in the last equation is actually a function of V . Therefore we don’t
know how S depends on volume. In other words,

U = U(T, V )

contains less information than

U = U(S, V )

and we no longer have complete knowledge of the system.

For this reason people have introduced (at least) three auxiliary energy functions. They are
enthalpy:

H ≡ U + PV

Helmholtz free energy:

A ≡ U − TS

and Gibbs free energy:

G ≡ U + PV − TS

The set of equations for U , H, A, and G are called the Gibbsian equations.

Here is a mnemonic to help you remember how these four energy functions are related:

U
+PV
−→ H

+TS ↑ ↓ −TS

A
−PV
←− G

Here is a mnemonic device to remember the mnemonic device: U Have Great Articulation.
Go clockwise around, then do +PV on top, −PV on bottom, +TS on left, −TS on right.
For example,

H = U + PV
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Work out the derivative form of A given the derivative form of U and the relationship between
A and U given above.

A = U − TS

dA = dU − TdS − SdT = TdS − PdV − TdS − SdT = −PdV − SdT

Likewise,

dH = TdS + V dP

dG = −SdT + V dP

3. Mixtures and open systems. A new function: the chemical potential.

Chemical potential, and the related functions activity, activity coefficient, fugacity and fu-
gacity coefficient are among the more difficult functions to understand. I will attempt to
rationalize (not derive) the chemical potential in physical terms.

(a) Consider a mixture of H2, O2, and Pt in a closed, rigid container with adiabatic walls.
What happens? Does the temperature change? If we consider the pressure low enough
and the temperature high enough then the gases will be ideal. Does the internal energy
change? Are there work and/or heat interactions? How does this conform to dU =
δQ+ δW? We need another function to describe the system.

(b) Consider an open system and write down

dG = −SdT + V dP

Now add small amount of one of the components, but do so at constant temperature
and pressure. Does the Gibbs free energy change? Yes, because G is extensive. How is
this accounted for in dG = −SdT + V dP?

We deduce that for a mixture of C components, or an open system

U = U(S, V, n1, n2, . . . , nC)

dU is still an exact differential, so

dU =

(

∂U

∂S

)

V,ni

dS +

(

∂U

∂V

)

S,ni

dV +
C
∑

i=1

(

∂U

∂ni

)

S,V,nj 6=i

dni

Note that the subscript nj 6=i means that all mole fractions except i are held constant, e.g.,
if C = 3, i = 2, then j = 1, 3. The temperature and pressure definitions are still valid, i.e.,
(

∂U
∂S

)

V,ni

= T and
(

∂U
∂V

)

S,ni

= −P . Let us now define the chemical potential as

µi =

(

∂U

∂ni

)

S,V,nj 6=i
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Then our fundamental equation becomes

dU = TdS − PdV +
C
∑

i=1

µidni

The equation can be written in terms of intensive variables:

dU = d(nŨ) = Td(nS̃)− Pd(nṼ ) +
C
∑

i=1

µid(xin)

where xi = ni/n. This can be re-written using the product rule as

n

(

dŨ − TdS̃ + PdṼ −
C
∑

i=1

µidxi

)

+ dn

(

Ũ − T S̃ + PṼ −
C
∑

i=1

µixi

)

= 0

Since dn and n are independent and arbitrary, each grouping of variables must independently
vanish. Hence, the integrated form of the internal energy equation is

Ũ = T S̃ − PṼ +
C
∑

i=1

µixi

or

U = TS − PV +
C
∑

i=1

µini

The chemical potential plays an analogous role to temperature and pressure. A temperature
gradient gives rise to the flow of heat, i.e., a temperature difference is like a potential for
heat transfer. Likewise, a pressure gradient is a potential for mechanical work (no pressure
differences, no PV work). A gradient or difference in chemical potential is the potential to
perform chemical work, either by chemical reaction or by mutual diffusion. In other words, if
all the components of a mixture have the same chemical potential no chemical reactions will
take place, and no mutual diffusion will occur, because there is no driving force.

∆T = potential for heat flow

∆P = potential for mechanical work

∆µ = potential for chemical work

An electrical analogue is the voltage. A voltage difference (120 V relative to ground) is the
potential to do electrical work (turn a fan, light a room), but voltage and chemical potential
are intensive so it is the amount of electricity (number of amps) and the amount of chemical
(number of moles) reacted that tells you how much work is done.
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4. What are the integrated and differential Gibbsian equations for multi-component, open sys-
tems?

Use the mnemonic device to derive them.

H = . . .

G = . . .

A = . . .

dH = . . .

dG = . . .

dA = . . .

5. Returning to the problem of H2, O2, and Pt in a closed, rigid container with adiabatic walls.

Start with the integrated combined first & second law. Assume that the reaction goes to
completion and that we have a stoichiometric mixture of H2 and O2:

∆U = T2S2 − T1S1 − V (P2 − P1) +
C
∑

i=1

final

µini −

C
∑

i=1

init.

µini = 0

Where the last equality comes from the first law. For an ideal gas we can write

µi = G̃i +RT ln yi = H̃i − T S̃i +RT ln yi

Also, V (P2 − P1) = R (nH2OT2 − niT1), where ni = nH2
+ nO2

. So,

0 = −R (nH2OT2 − niT1) + T2S2 − T1S1 + nH2O

[

H̃H2O(T2)− T2S̃H2O(T2, P2) +RT2 ln(1)
]

−nH2

[

H̃H2
(T1)− T1S̃H2

(T1, P1) +RT1 ln yH2

]

−nO2

[

H̃O2
(T1)− T1S̃O2

(T1, P1) +RT1 ln yO2

]

Now we note that S2 = nH2OS̃H2O(T2, P2) and

S1 = nH2

[

S̃H2
(T1, P1)−R ln yH2

]

+ nO2

[

S̃O2
(T1, P1)−R ln yO2

]

.

Therefore,

R (nH2OT2 − niT1) = HH2O(T2)−HH2
−HO2

Now, if T1 = 298 K, P1 = 1 bar, then we can write

HH2O(T2)−HH2
−HO2

= nH2O

[

∆H̃◦
f,H2O

+

∫ T2

T1

C̃P,H2OdT

]

Using ∆H̃◦
f,H2O

= −2.418×105 J/mol and C̃P,H2O = 29.163+1.449×10−2T−2.02×10−6T 2 (in
J/mol K). nH2O = 1 mol, and ni = 1.5 mol, we can solve for T2. Matlab gives T2 = 6203.6 K.


