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1 HEAT TRANSFER 

1.1 Introduction 

What is Heat Transfer 

Heat transfer is the process of the movement of energy due to a temperature difference.  The 

calculations we are interested in include determining the final temperatures of materials and how 

long it takes for these materials to reach these temperatures.  This can help inform the level of 

insulation required to ensure heat is not lost from a system.  Typically, heat loss is proportional to a 

temperature gradient (driving force or potential). 

 

Heat transfer can be achieved by conduction, convection or radiation. 

 

Conduction 

Conduction is the form of heat that exists due to direct contact without movement.  A temperature 

gradient within a substance causes a flow of energy from a hotter to colder region.  These gradients 

can exist in solids, liquids and gases; provided there is no movement in the fluid phases, i.e. fluids 

which are not well mixed.  Over time the temperature difference will reduce and approach thermal 

equilibrium (same temperature).  Conduction occurs in a solid, liquid or gas; provided there is no 

bulk movement. 

 

Examples of conduction include the end of a metal rod placed in a fire heating up from one end to 

the other, hot coffee heating through the mug or ice-cream cooling the bowl it is placed in. 

 

Convection 

Convection is the transfer of heat due to the bulk movement of fluids.  As such convection only 

applies to heat transfer within a fluid or between a solid and a fluid but not the heat transfer within 

a solid.  This heat transfer is achieved by the movement of molecules within the fluid.  The term 

convection can refer to either mass transfer and/or heat transfer.  Typically, when referred to as 

“convection”, heat transfer is meant. 

 

Convection is the sum of advection and diffusion: 

Advection is the heat transported by large-scale movement of currents in the fluid; and 

Diffusion is the random Brownian motion of individual particles in the fluid. 

 

Examples of convection include the effect of hot air rising and falling (convection currents) or the 

large scale convection currents of the atmosphere and oceans. 

 

Radiation 

Radiation is the transfer of energy due to electromagnetic waves when thermal energy is converted 

by the movement of the charges of electrons and protons in the material.  When a body radiates, 

the energy comes from the entire depth of the body, not just the surface.  Radiation does not 
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require a temperature gradient.  A person standing some distance from the source will still feel the 

effects of the heat, e.g. a person near a fire is heated by the fire, not by the air surrounding them. 

 

Examples include infra-red radiation such as, an incandescent light bulb emitting visible-light, the 

infrared radiation emitted by a common household radiator or electric heater, as well as the sun 

heating the earth. 
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1.2 Conductive Heat Transfer 

Fourier’s Law 

Conduction is governed by Fourier’s Law:  The energy flux (rate of energy transfer per unit area; 

W/m) is proportional to the temperature gradient. 

 q′ ∝
∆T

∆x
 1.1 

 

where: 

 q’ = Heat flux (W/m2) 

 T = Temperature difference (K) 

 x = direction in which there is a temperature gradient (direction of heat transfer) (m) 

 

Including a proportionality constant, this can be written as: 

 q′ =  −k
dT

dx
 1.2 

 

where: 

 k = thermal conductivity (W/(m.K)) 

 

Or more conveniently: 

 q̇ =  −k. A
dT

dx
 1.3 

 

where: 

 q̇ = Heat (W) 

 A = Cross sectional area (m2) 

 

 

Assumptions: 

- Thot is at the same temperature across entire Area 

- Use area perpendicular to the direction of heat transfer 

- x is the direction from hot to cold (direction of temperature gradient 

Thermal Conductivity 

The constant k, is the thermal conductivity of the material through which heat is transferring.  

Simply, thermal conductivity is the property of a material to conduct heat.  Materials with a good 

Thot 

Tcold 
q, x 

A 
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heat transfer ability (e.g. metals) have a high conductivity, while those with a poor conductivity 

(gases) have a low k value. 

 

Some examples of thermal conductivities are given in  

 

Table 1.1: Typical Thermal Conductivities 

Material Thermal conductivity (W/(m.K)) 

Air 0.025 

Wood 0.04 - 0.4 

Hollow Fill Fibre Insulation 0.042 

Alcohols and oils 0.1 - 0.21 

Polypropylene 0.25 

Mineral oil 0.138 

Rubber 0.16 

LPG 0.23 - 0.26 

Cement, Portland 0.29 

Water (liquid) 0.6 

Thermal grease 0.7 - 3 

Thermal epoxy 1 - 7 

Glass 1.1 

Soil 1.5 

Concrete, stone 1.7 

Ice 2 

Stainless steel 12.11 ~ 45.0 

Lead 35.3 

Aluminium 237 (pure) 

120 — 180 (alloys) 

Gold 318 

Copper 401 

Silver 429 

 

In reality, k is not a constant but dependent on temperature: 

k =  k0 +  βT, therefore need to integrate with respect to temperature 

 

Good conductors have high thermal conductivity, e.g. copper. 

Poor conductors (i.e. good insulators) have low thermal conductivity, e.g. asbestos. 

 

 

 

Conduction Through a Wall 

Case 1: Conduction through a single slab 

Consider the heat transfer across a single slab. 
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where: 

 Th: Hot temperature on one side of the slab (K) 

 Tc: Cooler temperature on other side of the slab (K) 

 q̇: Heat Flow (W) 

 L: Length of the slab (m) 

 x: Direction in which heat flows (m) 

 k: Thermal conductivity of the slab (W/(m.K)) 

 

From Fourier’s Law: 

q̇ =  −k. A
dT

dx
 1.3 

Assumptions: 

- Area through slab is constant 

- k is constant 

- Steady state conditions 

- Energy in one face of the slab = Energy out other face of the slab 

 

This is a separable differential equation: 

Rearranging: 
q̇

−kA
dx = dT 1.4 

 

Therefore: 

∫
q̇

−kA

x=L

x=0
dx = ∫ dT

Tc

Th
 1.5 

 

Since none of q̇, k or A are functions of temperature or x, we can remove these from the integral: 
q̇

−kA
∫ dx

x=L

x=0
= ∫ dT

Tc

Th
 1.6 

 

And integrate: 
q̇

−kA
(L − 0) = (Tc − Th) 1.7 

 

Therefore: 

q̇ =
kA(Th−Tc)

L
 1.8 

x = 0 x = L L 

Th Tc 

k 
q̇ 
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Example: 

An aluminium plate (k = 215 W/m°C) is heated to 300°C.  If the heat flux 

is 8.6 MW/m2, how hot is the other face, if the metal is 5 mm thick? 

 

Solution: 

𝑞′ =  −k
dT

dx
 

Assuming constant k and A: 

𝑞′ =  
k(Th − Tc)

L
 

∴
𝑞′L

k
=  Th − Tc 

∴ Tc = Th − 
𝑞′L

k
=  300 − 

(8600000)(0.005)

215
 

∴ Tc = 100 
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Case 2: Conduction through 2 slabs 

Consider the heat transfer across two slabs. 

 

 

where: 

 Th: Hot temperature on one side of the slab (K) 

 T1: Temperature at the end of slab 1 (K) 

 Tc: Cooler temperature at the end of the slabs (K) 

 q̇: Heat Flow (W) 

 L1: Length of slab 1 (m) 

 L2: Length of slab 2 (m) 

 x: Direction in which heat flows (m) 

 k1: Thermal conductivity of slab 1 (W/(m.K)) 

 k2: Thermal conductivity of the slab 2 (W/(m.K)) 

 

Assumptions: 

- Area through slab is constant 

- k1 ≠ k2 

- Steady state conditions; therefore Energy in one face of the slab = Energy out other face of 

the slab 

 

From single slab calculation: 

q̇ =
kA(Th−Tc)

L
 1.9 

 

Therefore: 

Slab 1:  q̇ =
k1A(Th−T1)

L1
 1.10 

Slab 2:  q̇ =
k2A(T1−Tc)

L2
 1.11 

 

Re-arranging, this gives:  

Th − T1 =  
q̇L1

k1A
 1.12 

T1 − Tc =  
q̇L2

k2A
 1.13 

x = 0 x = L1 

L1 

Th 

T1 

Tc 

L2 
x = L1 + L2 

k1 k2 

q̇ 
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Adding these equations, we are left with an expression without T1 and are able to calculate q̇: 

Th − T1 + T1 − Tc =  
q̇L1

k1A
+ 

q̇L2

k2A
 1.14 

Th − T1 + T1 − Tc =  
q̇L1

k1A
+ 

q̇L2

k2A
 1.15 

Th − Tc =  
q̇

A
(

L1

k1
+

L2

k2
) 1.16 

q̇

A
=  

Th−Tc

(
L1
k1

+
L2
k2

)
 1.17 

 

In order to determine T1, either of the original heat transfer equations can then be used. 

 

 

  

Example: 

The wall of a furnace is constructed from an inner steel layer of 0.5 cm (k = 40 W/m.K) and a 

brick outer layer of 10 cm (k = 2.5 W/mk).  The inner surface temperature is 900K and the 

outside surface temperature is 460K.  What is the temperature between the steel and the 

brick? 

 

Solution: 

Assumptions: 

- Steady State (energy in = energy out) 

- Linear heat transfer (ignore the effects of edges) 

 

From Fourier’s Law:  𝑞   = −𝑘𝐴
𝑑𝑇

𝑑𝑥
 

For 2 slabs this simplifies to:   
𝑞

𝐴
    =      

𝑇𝑖𝑛−𝑇𝑜𝑢𝑡
𝐿1
𝑘1

+
𝐿2
𝑘2

 

 

Therefore: 

𝑞

𝐴
 =  

(900 − 460)

0.005
40

+
0.1
2.5

 =  
440

(0.000125 + 0.04)
=  10965.732 …  𝑊/𝑚2 

 

If we let 𝑇1 be the temperature between the steel and the brick and: 

𝑇1 = 𝑇𝑖𝑛 −
𝑄.𝐿1

𝐴.𝑘1
= 900 − (10965)(0.000125)   = 898.629 … 𝐾 

 

The temperature between the brick and steel is approximately 625°C 
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Case 3: Conduction through n-slabs 

Consider the heat transfer across multiple slabs. 

 

where: 

 Th: Hot temperature on one side of the slab (K) 

 Ti: Temperature at the end of slab i (K) 

 Tc: Cooler temperature at the end of the slabs (K) 

 Li: Length of slab i (m) 

 x: Direction in which heat flows (m) 

 ki: Thermal conductivity of slab i (W/(m.K)) 

 n: Number of slabs 

 

Assumptions: 

- Area through slab is constant 

- ki ≠ ki +1 

- Steady state conditions; therefore Energy in one face of the slab = Energy out other face of 

the slab 

 

As before we can solve for the heat flow through each slab: 

Slab 1:  q̇ =
k1A(Th−T1)

L1
 1.18 

Slab 2:  q̇ =
k2A(T1−T2)

L2
 1.19 

Slab 3:  q̇ =
k3A(T2−T3)

L3
 1.20 

Slab n:  q̇ =
knA(Tn−1−Tc)

Ln
 1.21 

 

 

 

 

Rearranging as before: 

Th − T1 =  
q̇L1

k1A
 1.22 

q̇ 

... k1 k2 k3 kn k3 kn Th Tc 

L1 
x = 0 x = L1 

L2 L3 Ln 

x = L1 + L2 

x = L1 + L2 + L3 

x = L1 + L2 + L3 + … + Ln 

T1 T2 T3 Tn Tn-1 



 

10 
K. Harding University of the Witwatersrand, Johannesburg 

T1 − T2 =  
q̇L2

k2A
 1.23 

T2 − T3 =  
q̇L3

k3A
 1.24 

Tn−1 − Tc =  
q̇Ln

knA
 1.25 

 

Adding these equations, we are left with an expression without Ti and are able to calculate q̇: 

Th − Tc =  
q̇

A
(

L1

k1
+

L2

k2
+

L3

k3
+ ⋯ + 

Ln

kn
) 1.26 

 

This is more commonly written as: 

Th − Tc =  q̇ (
L1

k1A
+

L2

k2A
+

L3

k3A
+ ⋯ + 

Ln

knA
) 1.27 

 

Which can also be expressed as: 

q̇ =
∆T

∑  
Li

kiA
n
i=1

 1.28 

 

Temperature profile through n-slabs 

From the calculation of heat transfer in one slab it was show that: 

Example: 

On a cold winters day you decide to add on a few layers of clothes to stay warm.  

What heat flux do you experience for each successive layer added as below?  

Assume your skin is at 36°C and the temperature outside is at 4°C: 

1) T-Shirt (k = 0.05 W/mK; Thickness = 0.75 mm) 

2) Jersey 1 (k = 0.06 W/mK; Thickness = 2 mm) 

3) Jersey 2 (k = 0.05 W/mK; Thickness = 2 mm) 

4) Jacket (k = 0.005 W/mK; Thickness = 3 mm) 

5) Overcoat (k = 0.02 W/mK; Thickness = 4.5 mm) 

 

It is estimated that the body released between 90-140 W of heat.  Further, the 

body has an average surface area of between 1.6 and 1.9m2.  Given this 

information comment on the answer above 

 

Solution: 

q̇ =
∆T

∑  
Li

kiA
n
i=1

 OR 𝑞′ =
∆T

∑  
Li
ki

n
i=1

 

 

1) 𝑞′ =
∆T
L1
k1

 =
32

0.75×10−3

0.05

= 2133.3 𝑊/𝑚2 

2) 𝑞′ =
∆T

L1
k1

+
L2
k2

=
32

0.75×10−3

0.05
+

2×10−3

0.06

= 662.1 𝑊/𝑚2 

3) 𝑞′ =
∆T

L1
k1

+
L2
k2

+
L3
k3

=
32

0.75×10−3

0.05
+

2×10−3

0.06
+

2×10−3

0.05

= 362.2 𝑊/𝑚2 

4) 𝑞′ =
∆T

L1
k1

+
L2
k2

+
L3
k3

+
L4
k4

=
32

0.75×10−3

0.05
+

2×10−3

0.06
+

2×10−3

0.05
+

3×10−3

0.005

= 46.5 𝑊/𝑚2 

5) 𝑞′ =
∆T

L1
k1

+
L2
k2

+
L3
k3

+
L4
k4

+
L5
k5

=
32

0.75×10−3

0.05
+

2×10−3

0.06
+

2×10−3

0.05
+

3×10−3

0.005
+

4.5×10−3

0.02

= 35 𝑊/𝑚2 

 

From the average body data, it can be shown that the body releases between 47 

and 87 W/m2.  Therefore is would be a reasonable assumption that the average 

person would be most comfortable with four layers as calculated. 
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q̇ =
kA(Th−Tc)

L
 1.8 

 

Rearranging: 

q̇L = kA(Th − Tc) 1.29 
q̇L

kA
= Th − Tc 1.30 

Tc =  
−q̇L

kA
+  Th 1.31 

 

When 𝑦 =  𝑚𝑥 + 𝑐, plot of T vs. L gives a straight line temperature profile (for a constant k, as 

steady state).  An insulator has a LOW thermal conductivity, therefore (-q̇/k.A) is LARGE, and the 

slope is great, i.e. not much temperature change.  NOTE:  Only applicable for a constant heat 

transfer constant. 

 

 

In the same way this can be extended for n-slabs in series.  The temperature profile in each slab is 

linear (provided k is constant), with a different linear slope depending on the value of k. 

 

Conduction through a Cylinder 

Case 1: Conduction through a single cylinder 

Consider the heat transfer across a single cylinder. 

q̇ 

... k1 k2 k3 kn k3 kn Th Tc 

L1 
x = 0 x = L1 

L2 L3 Ln 

x = L1 + L2 

x = L1 + L2 + L3 

x = L1 + L2 + L3 + … + Ln 

T1 T2 T3 Tn Tn-1 

x = 0 x = L L 

Th Tc 

k 
q̇ 
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where: 

 Tin: Temperature on the inside of the cylinder (K) 

 Tout: Temperature on the outside of the cylinder (K) 

 q̇: Heat Flow (W) 

 ri: Inner radius of the cylinder (m) 

 ro: Outer radius of the cylinder (m) 

 k: Thermal conductivity of the slab (W/(m.K)) 

 

Assumptions: 

- Cylinder thickness is constant throughout 

- k is constant 

- Steady state conditions; therefore Energy in one face of the slab = Energy out other face of 

the slab 

- No axial heat flow 

- Area through which heat flows is NOT constant! 

 

From Fourier’s Law: 

q̇ =  −k. A
dT

dx
 1.3 

 

But we do not have an x-direction in a cylinder.  Therefore convert Fourier’s Law into cylindrical 

equivalent: 

 

q̇ =  −k. A
dT

dr
 1.32 

 

The area is that which is perpendicular to the direction of heat transfer.  Therefore: 

A = 2π.r.L (circumference of a cylinder x length) 1.33 

 

And Fourier’s Law becomes: 

q̇ =  −k. (2πrL)
dT

dr
 1.34 

 

L 

ri 

Ro 

Tin Tout 

q̇ 

k 
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Assuming k is constant and solving the separable differential equation: 
q̇

−k2πL
∫

dr

r

ro

ri
=  ∫ dT

Tout

Tin
 1.35 

 

Integrating: 
q̇

−k2πL
ln (

ro

ri
) =  Tout − Tin 1.36 

 

Or: 

Tin −  Tout =
q̇

k2πL
ln (

ro

ri
) 1.37 

 

 

  

Example: 

Water enters a pipe at a temperature of 60°C.  Assuming the 

pipe is made of stainless steel (k = 30W/m2) and that the pipe 

has an inner and outer diameter of 20 and 25 cm respectively, 

what is the outer temperature of the pipe if heat is lost at a 

rate of 15kJ/m.s? Assume the temperature is constant down 

the length of the pipe. 

 

Solution: 

𝑇𝑖𝑛 −  𝑇𝑜𝑢𝑡 =
�̇�

𝑘2𝜋𝐿
𝑙𝑛 (

𝑟𝑜

𝑟𝑖
) 

𝑇𝑜𝑢𝑡 = 𝑇𝑖𝑛 −
�̇�

𝑘2𝜋𝐿
𝑙𝑛 (

𝑟𝑜

𝑟𝑖
) =  60 −

15000

(30)2𝜋
𝑙𝑛 (

25

20
) 

𝑇𝑜𝑢𝑡 = 42.2°𝐶 
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Conduction through an Irregular Shape 

When the heat flows through a material which is not a uniform shape, the area term can no longer 

be taken out of the integral term as was done previously. 

 

From the Fourier form as before: 

∫
q̇

−kA

x=L

x=0
dx = ∫ dT

Tc

Th
 1.5 

 

Now: 
q̇

−k
∫

1

A

x=L

x=0
dx = ∫ dT

Tc

Th
 1.38 

 

Typically, area will be given as a function of x (e.g. A = x +3; or A = 2x2 – 4 or others) and needs to be 

integrated as appropriate. 

 

 

Conduction when Thermal Conductivity is Not Constant 

Typically, thermal conductivity is not constant, but a function of temperature.  As such: 

 

From the Fourier form as before: 

Example: 

In a particular building in a hot climate (45°C), the inside of a building is cooled to 15°C.  The walls 

of the building include an irregular shaped steel girder which forms a structural member of the 

wall.  Assuming that no heat is lost or gained to or from the insulation through the sides of the 

girder, calculate the heat flow from the room from a single girder. 

Given: Thickness of the wall, 20 cm; k = 45 W.m-1.K-1; A = -50.x2 +3 

 

Solution: 

�̇� =  −𝑘. 𝐴
𝑑𝑇

𝑑𝑥
 

�̇� =  −𝑘. (−50𝑥2 + 3)
𝑑𝑇

𝑑𝑥
 

�̇�

−𝑘(−50𝑥2 + 3)
𝑑𝑥 = 𝑑𝑇 

∫
�̇�

−𝑘(−50𝑥2 + 3)

𝑥=𝐿

𝑥=0

𝑑𝑥 = ∫ 𝑑𝑇

𝑇ℎ

𝑇𝑐

 

�̇�

𝑘
∫

1

50𝑥2 − 3

𝑥=𝐿

𝑥=0

𝑑𝑥 = ∫ 𝑑𝑇

𝑇ℎ

𝑇𝑐

 

�̇�

𝑘
[

2

√4×50×3
𝑡𝑎𝑛−1 2×3𝑥

√4×50×3
]

0

𝐿
= 𝑇ℎ − 𝑇𝑐 

�̇�

45
[

2

√600
𝑡𝑎𝑛−1

6𝑥

√600
]

0

0.2

= 45 − 15 = 30 

�̇� =
(30 × 45)

(
2

√600
𝑡𝑎𝑛−1 6(0.2)

√600
) − (

2

√600
𝑡𝑎𝑛−1 6(0)

√600
)

 

�̇� =
1350

(0.081 𝑡𝑎𝑛−1 1.2
24.5

) −  0
 

�̇� =
1350

1.665
= 810.6 𝑊 
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∫
q̇

−kA

x=L

x=0
dx = ∫ dT

Tc

Th
 1.5 

 

Now: 

−
q̇

A
∫

1

A

x=L

x=0
dx = ∫ kdT

Tc

Th
 1.39 

 

Typically, k will be given as a function of x (e.g. k = x +30; or A = 2x2 – 4 or others) and needs to be 

integrated as appropriate. 

Thermal Resistance 

From the slab calculations, it was shown that: 

Th − Tc =  q̇ (
L1

k1A
+

L2

k2A
+

L3

k3A
+ ⋯ + 

Ln

knA
) 1.40 

 

Or: 

q̇ =  
Th−Tc

(
L1

k1A
+

L2
k2A

+
L3

k3A
+⋯+ 

Ln
knA

)
 1.41 

q̇ =
∆T

∑  
Li

kiA
n
i=1

 1.42 

 

This can be simplified to: 

q̇ =
∆T

R
 1.43 

 

where: 

T: Temperature difference (K) 

R: Thermal resistance (K/W) 

 

For slab calculations, R =  ∑  
Li

kiA
n
i=1 , however, R can represent the resistance for any range of 

shapes. 
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Example: 

A circular pipe of 20 cm is enclosed centrally in a square section insulator of side 36 cm.  The 

thermal conductivity of the material is given as 8.5W/mK.  The inside surface is at 200°C; while 

the outside is at 30°C.  Determine the heat flow for a length of 5 m. 

 

Additional information: 

𝑅 =  
1

2𝜋𝑙
[
1

𝑘
𝑙𝑛

1.08𝑎

2𝑟
] 

 

where: 

a = side length of length of square section 

l = length 

r = radius of inner portion 

 

 
 

Solution: 

�̇� =
∆𝑇

𝑅
 

𝑅 =  
1

2𝜋 × 5
[

1

8.5
𝑙𝑛

1.08 ×  0.36

2.
0.2
2

] = 0.002489362 °C/W 

∴ �̇� =
∆𝑇

𝑅
=  

200 − 30

0.002489 …
= 68290.59 = 68 000 W 

a = 0.36m 

b = 5 m 

0.2 m 

200°C 

30°C 
k = 8.5 W/m.K 
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Example: 

A pipe of 30 cm OD is insulated by a material of thermal conductivity 0.45 W/mK.  Due to space 

restrictions, the inner pipe is placed slightly off-centre (5cm), resulting in a portion of insulation 

thicker than the rest of the pipe (see diagram).  The inner surface is at 250°C and the outer surface is 

at 60°C.  Determine the heat loss for a 5 m length of pipe. 

 

Additional information: 

𝑅 =  
1

2𝜋. 𝑘. 𝑙
𝑙𝑛

√[(𝑟2 + 𝑟1)2 − 𝑒2] + √[(𝑟2 − 𝑟1)2 − 𝑒2]

√[(𝑟2 + 𝑟1)2 − 𝑒2] − √[(𝑟2 − 𝑟1)2 − 𝑒2]
 

where: 

 e = eccentricity, m 

 

 
 

Solution: 

�̇� =
∆𝑇

𝑅
 

𝑅 =  
1

2𝜋 × 0.45 × 5
𝑙𝑛

√[(0.15 + 0.3)2 − 0.052] + √[(0.15 − 0.3)2 − 0.052]

√[(0.15 + 0.3)2 − 0.052] − √[(0.15 − 0.3)2 − 0.052]
 

𝑅 =  
1

2𝜋 × 0.45 × 5
𝑙𝑛

0.4472 + 0.14142

0.4472 − 0.14142
= 0.046325 ℃/W 

∴ �̇� =
250 − 60

0.046325
= 4101 W 

0.3 m 

0.15 m 

0.05 m 

250°C 

60°C 

k = 0.45 W/m.K 
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1.3 Convective Heat Transfer 

Newton’s Law of Cooling 

Convection (film) heat transfer occurs through the bulk movement of fluid within a fluid or between 

a solid and a fluid. 

 

Conduction is governed by Newton’s Law of Cooling: 

q̇ = h. A. ∆T 1.44 

 

where: 

 h = Heat Transfer Coefficient (W/m2.K) 

 A = Area (m2) 

 T = Temperature difference (K) 

 

Convection (and Conduction) Through a Wall 

Case 1: Convection from a single slab: 

Consider the convective heat from a single slab. 

 

 

where: 

 δ = thickness of stationary boundary layer 

 Ts = Surface temperature 

 Tb = Bulk temperature 

 

If we assume that there is no movement in a boundary layer between the slab and bulk fluid (δ – 

Greek delta), we can approximate the heat transfer to Fourier’s Law: 

q̇ =
kA(Ts−Tb)

δ
 1.45 

 

Defining a heat transfer coefficient as h: 

Film of fluid; stationary 

(boundary layer) 

Ts 

So
lid

 s
u

rf
ac

e Tb 

Approximation: Linear temperature flow 

through boundary layer 
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h =  
k

δ
 1.46 

 

And equation [the one above] becomes: 

q̇ = hA(Ts − Tb) 1.47 

 

where: 

 h = Heat Transfer Coefficient (W/m2.K) 

 

Note: 

It is harder to measure wall temperatures compared to the bulk fluid temperatures.  Therefore, the 

equations below are developed to use the bulk fluid temperatures and not intermediate wall 

temperatures. 
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Case 2: Convection on either side of 2 slabs: 

Consider the heat across two slabs, taking into account both conduction and convection. 

 

 

where: 

 Th: Hot temperature on one side of the slab (K) 

 T1: Temperature at the end of slab 1 (K) 

 Tc: Cooler temperature at the end of the slabs (K) 

 q̇: Heat Flow (W) 

 L1: Length of slab 1 (m) 

 L2: Length of slab 2 (m) 

 x: Direction in which heat flows (m) 

 k1: Thermal conductivity of slab 1 (W/(m.K)) 

 k2: Thermal conductivity of the slab 2 (W/(m.K)) 

 hh: Heat Transfer coefficient on the hot side (W/m2.K) 

 hc: Heat Transfer coefficient on the cold side (W/m2.K) 

 

Assumptions: 

- The slabs have thermal conductivities (k); the fluids have heat transfer coefficients (h) 

- Area through the slabs is constant 

- k1 ≠ k2 (k1 and k2 are constant) 

- Steady state conditions; therefore Energy in one face of the slab = Energy out other face of 

the slab 

 

Heat transfer equations from inside to outside: 

For inside convective film:  q̇ = hhA(Th − T0) 1.48 

Slab 1 (conduction):  q̇ =
k1A(T0−T1)

L1
 1.49 

Slab 2 (conduction):  q̇ =
k2A(T1−T2)

L2
 1.50 

For outside film: q̇ = hcA(T2 − Tc) 1.51 

 

Rearranging for each in terms of temperature: 

Th Tc 

k1 k2 

L2 

hh hc 

T0 T1 T2 

q̇ 

x = 0 x = L1 

L1 L2 

x = L1 + L2 
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Th − T0 =  
q̇

hhA
  1.52 

T0 − T1 =  
q̇L1

k1A
  1.53 

T1 − T2 =  
q̇L2

k2A
  1.54 

T2−Tc =  
q̇

hcA
  1.55 

 

Then adding the last four equations, we are left with an expression without Tc and are able to 

calculate q̇: 

Th − T0 + T0 − T1 + T1 − T2 + T2−Tc =  
q̇

hhA
+

q̇L1

k1A
+

q̇L2

k2A
+

q̇

hcA
 1.56 

Th − T0 + T0 − T1 + T1 − T2 + T2−Tc =  
q̇

hhA
+

q̇L1

k1A
+

q̇L2

k2A
+

q̇

hcA
 1.57 

Th−Tc =  
q̇

A
(

1

hh
+

L1

k1
+

L2

k2
+

1

hc
) 1.58 

q̇

A
=  

Th−Tc

(
1

hh
+

L1
k1

+
L2
k2

+
1

hc
)
 1.59 

 

Given the area, heat transfer coefficients ad thermal conductivities, only need to know inner and 

outer temperatures (NOT any of the inside temperatures) to solve for q. 

 

Reminder: 

q̇ =
∆T

R
 1.60 

 

For the above equation: 

q̇ =  
∆T

( 
1

hhA
+

L1
k1A

+
L2

k2A
+

1

hcA
)
 1.61 

q̇ =  
∆T

( R1+R2+R3+R4)
 1.62 

 

where: 

 Ri = individual thermal resistances for different layers 

 

Compare this to U as defined later!!! 
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Case 3: Convection on either side of n-slabs: 

Consider the heat transfer across multiple slabs. 

 

 

Using similar derivations as above: 
q̇

A
=  

Th−Tc

( 
1

hh
+∑

Li
ki

n
i=1 +

1

hc
)
 1.63 

 

 

 

 

 

 

 

 

 

 

  

q̇ 

... k1 k2 k3 kn k3 kn Th Tc 

L1 
x = 0 x = L1 

L2 L3 Ln 

x = L1 + L2 

x = L1 + L2 + L3 

x = L1 + L2 + L3 + … + Ln 

T1 T2 T3 Tn Tn-1 T0 

hh hc 
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Convection (and Conduction) Through a Cylinder 

Case 1: Convection (and conduction) through concentric cylinders 

Consider the heat transfer across multiple layers of a cylinder. 

 

 

where: 

 Tin: Temperature on the inside of the cylinder (K) 

 Tout: Temperature on the outside of the cylinder (K) 

 q̇: Heat Flow (W) 

 r0: Inner radius of the cylinder (m) 

 r1: Outer radius of the 1st cylinder (pipe) (m) 

 r2: Outer radius of the 2nd cylinder (insulation) (m) 

 k1: Thermal conductivity of cylinder 1 (W/(m.K)) 

 k2: Thermal conductivity of cylinder 2 (W/(m.K)) 

 hin: Heat Transfer coefficient on the inside (inside) (W/m2.K) 

 hout: Heat Transfer coefficient on the outside (outside) (W/m2.K) 

 

Assumptions: 

- Cylinder thickness is constant throughout 

- Steady state conditions; therefore Energy in one face of the slab = Energy out other face of 

the slab 

- Area through which heat flows is NOT constant! 

- k1 ≠ k2 

- No axial heat transfer 

 

 

Convection on inner surface: 

q̇ = hinA0(Tin − T0) 1.64 

A0 = 2πr0L 1.65 

Pipe wall 

Insulation 

k1 k2 hin hout 

Tin 
Tout 

r0 

r1 
r2 

T0 T1 T2 
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Area is the area in contact with the film (we don’t know how thick the film is so can’t use any other 

area) 

∴ q̇ = hin2πr0L(Tin − T0) 1.66 

Tin − T0 =  
q̇

hi2πr0L
   1.67 

 

Conduction across pipe: 

q̇ =  −k1. (2πrL)
dT

dr
 1.68 

 

Assuming k is constant and solving the separable differential equation: 

∴  
q̇

−k12πL
∫

dr

r

r1

r0
=  ∫ dT

T1

T0
 1.69 

 

Integrating: 

T0 −  T1 =
q̇

k12πL
ln (

r1

r0
) 1.70 

 

Conduction across insulation: 

As above for conduction through pipe:  T1 − T2 =
q̇

k22πL
ln (

r2

r1
) 1.71 

 

Convection on outer surface: 

As for convection on inner surface: 

q̇ = hout2πr2L(T2 − Tout)  1.72 

Therefore: 

T2 − Tout =  
q̇

ho2πr2L
   1.73 

 

Consolidating for each layer: 

Tin − T0 =  
q̇

hin2πr0L
   1.74 

T0 −  T1 =
q̇

k12πL
ln (

r1

r0
) 1.75 

T1 − T2 =
q̇

k22πL
ln (

r2

r1
) 1.76 

T2 − Tout =  
q̇

hout2πr2L
   1.77 

 

Adding equations these four equations: 

Tin − T0 + T0 −  T1 + T1 − T2 + T2 − Tout =  
q̇

hin2πr0L
+

q̇

k12πL
ln (

r1

r0
) +

q̇

k22πL
ln (

r2

r1
) +  

q̇

hout2πr2L

 1.78 

Tin − T0 + T0 −  T1 + T1 − T2 + T2 − Tout = q̇ (
1

hin2πr0L
+

1

k12πL
ln (

r1

r0
) +

1

k22πL
ln (

r2

r1
) +

  
1

hout2πr2L
) 1.79 

Tin − Tout = q̇ (
1

hin2πr0L
+

1

k12πL
ln (

r1

r0
) +

1

k22πL
ln (

r2

r1
) +   

1

hout2πr2L
) 1.80 

q̇  =  
Tin−Tout

 (
1

hin2πr0L
+

1

k12πL
ln(

r1
r0

)+
1

k22πL
ln(

r2
r1

)+  
1

hout2πr2L
)
 1.81 
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Log Mean Radius and Log Mean Area 

We define the log mean radius as follows: 

rLM =  
r2−r1

ln
r2
r1

 1.82 

 

where: 

 rLM = Log mean radius 

 r2 = outer radius 

 r1 = inner radius 

 

Note: 

 
r2− r1

ln
r2
r1

≠
r2− r1

2
 1.83 

 

From this we can define the log mean area: 

ALM =  2πrLML 1.84 

 

where: 

 ALM = Log mean area 

 

From the heat flow through two cylinders, (conduction and convection, it was shown that: 

q̇  =  
Tin−Tout

 (
1

hin2πr0L
+

1

k12πL
ln(

r1
r0

)+
1

k22πL
ln(

r2
r1

)+  
1

hout2πr2L
)
 1.85 

 

Which we can re-write as: 

q̇  =  
Tin−Tout

 (
1

hin2πr0L
+

1

k12πL
ln(

r1
r0

).
(r1−r0)

(r1−r0)
+

1

k22πL
ln(

r2
r1

).
(r2−r1)

(r2−r1)
+  

1

hout2πr2L
)
 1.86 

 

From the definition of RLM, and converting wherever possible to surface area instead of radius, this 

becomes: 

q̇  =  
Tin−Tout

 (
1

hinA0
+ 

1

k12πL
.
(r1−r0)

rLM,10
+

1

k22πL
.
(r2−r1)

rLM,21
+  

1

houtA2
)
 1.87 

q̇  =  
Tin−Tout

 (
1

hinA0
+ 

(r1−r0)

𝑘1ALM,10
+

(r2−r1)

𝑘2ALM,21
+  

1

houtA2
)
 1.88 

 

For n concentric circles: 

q̇ =  
Tin− Tout

(
1

hinA0
+∑

∆Ri
kiALM,i

n
i=1  +

1

houtAn
)
 1.89 
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1.4 Overall Heat Transfer Coefficient 
Previously, heat transfer was expressed in terms of thermal resistance as: 

q̇ =
∆T

R
 1.90 

 

where: 

T: Temperature difference (K) 

R: Thermal resistance (K/W) 

 

For multiple slabs in series the thermal resistance was shown to be: 

R =  ∑  
Li

kiA
n
i=1  1.91 

 

Which can be re-written to include the convection as: 

R =
1

hhA
+  ∑  

Li

kiA
n
i=1 +

1

hcA
 1.92 

 

And for cylindrical systems: 

R =  
1

hinA0
+ ∑

∆Ri

kiALM,i

n
i=1  +

1

houtAn
 1.93 

 

A new term is now introduced for the Overall Heat Transfer Coefficient (U): 

U =
1

A.R
 1.94 

∴ q̇ =  UA(Tin − Tout) 1.95 

 

Note:  Thermal resistance (R) includes the term for area (A), while the overall heat transfer 

coefficient (A) does not.  Further, R and U are inverse relationships. 

 

Defining the overall heat transfer coefficient for cylinders: 

q̇ =  UA(Tin − Tout) 1.96 

 

We can measure heat and temperatures independently; UA can be calculated as a combined 

measured value. 

 

UA =  
1

(
1

hin
+∑

∆ri
ki

n
i=1  +

1

hout
)
 1.97 

 

We can then define different U values: 

UA = U0A0 = UiAi 1.98 

U0 =  
UA

A0
  For outer cylinder 1.99 

Ui =  
UA

Ai
  For inner cylinder 1.100  
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1.5 Heat Transfer through Composite Walls 

Heat transfer through series configuration 

It is possible to relate thermal resistance to the resistance in an electrical circuit.  In this way the 

resistance through solid slabs can be represented as below. 

 

 

 

Where: 

 R = Thermal resistance through each layer (including convection and conduction) 

 

Reminder: 

q̇ =
∆T

R
 1.90 

 

Therefore for the slab above: 

q̇ =
∆T

Rhh+R1+R2+R3+Rhc
 1.101 

 

q̇ =
∆T

hhh.A+
L1

k1A
+

L2
k2A

+
L3

k3A
+hhc.A

 1.102 

 

  

q̇ 

1 2 k3 3 

hh hc 

Rhh Rhc R1 R2 R3 
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Heat transfer through parallel configuration 

In a similar way, heat transfer through a parallel configuration can be equated to an electrical circuit. 

 

Scenario 1:  Assuming the surfaces normal to the direction of heat flow are isothermal (i.e. the entire 

length of slabs 1 and 4 have the same temperature), this gives: 

 

Where: 

 R = Thermal resistance through each layer (including convection and conduction) 

 

q̇ =
∆T

R
 1.90 

 

In a similar manner to calculating electrical resistance, the resistance through the parallel section 

can be written as: 

R2/3 = (
1

R2
+

1

R3
)

−1
 1.103 

R2/3 = (
k2A

L2
+

k3A

L3
)

−1
 1.104 

 

Therefore: 

q̇ =
∆T

hhh.A+
L1

k1A
+(

k2A

L2
+

k3A

L3
)

−1
+

L4
k4A

+hhc.A
 1.105 

 

  

q̇ 

1 2 

3 

hh hc 

4 

Rhh Rhc R1 R2 R4 

R3 
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Scenario 2:  However, if we assume that the surfaces parallel to heat flow are adiabatic (i.e. no heat 

flows from slab 2 to 3), a better approximation is given by: 

 

Now: 

q̇ =
∆T

R
 1.90 

 

Adding all the sections which are in series, inverting to account for addition of multiple parallel 

sections and again inverting the sum of this: 

 

q̇ =
∆T

(
1

hhh.A+
L1

k1A
+

L2
k2A

+
L4

k4A
+hhc.A

+
1

hhh.A+
L1

k1A
+

L3
k3A

+
L4

k4A
+hhc.A

)

−1 1.106  

Rhh Rhc R1 R2 R4 

Rhh Rhc R1 R3 R4 
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1.6 Heat Transfer from Extended Surfaces 

Introduction 

To cool something down, we may have a cooling fin.  A hot object may have a long flat (or thin) piece 

protruding from it to increase surface area and also the conductive and convective heat transfer, 

thereby cooling the object down faster. 

 

Fins may come in various forms: 

- Straight Fins 

o Rectangular 

o Triangular 

o Parabolic 

- Annular Fins 

- Pin Fins 

o Rectangular 

o Triangular 

o Parabolic 

 

Fins of Uniform Cross-Sectional Area 

These could be rectangular or pins.   

 

 
Figure 1.1: Graphical representation of a rectangular fin protruding from a wall 

 

Simplifying assumption: Assume thin slice of fin that has a temperature profile in x-direction only, 

NOT in y-direction. 

 

By an energy balance: 

Energy in (left) = energy out (right) + energy out (top + bottom)  1.107 

TA 
Ts 

Tw 

Conduction  

w 

y 

x x +x 
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q̇|x = q̇|x+∆x + h(2w∆x)(Ts − TA)   1.108 

 

(Multiplied by 2 because there are 2 surfaces) 

 

where: 

 q̇: Conductive heat transfer 

 h: convective heat transfer coefficient 

 x: element through which heat flows 

 Ts: surface temperature 

 TA: Ambient/air temperature 

 

Replacing q̇ terms with conductive heat flow terms: 

−kA
dT

dx
|
x

= −kA
dT

dx
|
x+∆x

+ h(2w∆x)(Ts − TA)   1.109 

−k(w. y)
dT

dx
|

x
= −k(w. y)

dT

dx
|

x+∆x
+ h(2w∆x)(Ts − TA)  1.110 

 

Rearrange and divide by x 

−k(w.y)
dT

dx
|
x+∆x

+k(w.y)
dT

dx
|
x

∆x
= −h(2w)(Ts − TA)   1.111 

 

Taking limits as x  0 

lim
x→0

−k(w.y)
dT

dx
|
x+∆x

+k(w.y)
dT

dx
|
x

∆x
= −h(2w)(Ts − TA)   1.112 

d

dx
[−k(w. y)

dT

dx
] = −h(2w)(Ts − TA)   1.113 

 

Assuming k is constant: 

−k(w. y)
d2T

dx2 = −h(2w)(Ts − TA)   1.114 

 

Simplifying: 

ky
d2T

dx2 = 2h(Ts − TA)   1.115 

 

And since there is no temperature profile in the y-direction, Ts = T at all x 

Therefore Ts = T 

 

And: 

ky
d2T

dx2 = 2h(T − TA)   1.116 

d2T

dx2 =
2h

ky
(T − TA)   1.117 

 

Let: 

= T – TA   1.118 

AND 

m = √2h/ky   1.119 
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d2θ

dx2 = m2θ   1.120 

 

D2 − m2θ = 0  1.121 

(D − m)(D + m)θ = 0  1.122 

θ = C1emx + C2e−mx  1.123 

 

We have two constants, therefore need two boundary conditions: 

BC1: At x = 0,   = 1 Known temp at wall 

BC2: At x = L,  d/dx = 0 Temp has stationary point at x = L 

 

From BC1: 

1 = C1 + C2 [1] 

 

From BC2: 

dθ

dx
= C1memx − C2me−mx 

0 = C1memL – C2me-mL 

C2 = C1e2mL [2] 

 

C1 =  
θ1

1 + e2ml
 

C2 =  
θ1. e2ml

1 + e2ml
 

 

θ =
θ1. emx

1 + e2ml
+  

θ1. e2ml. e−mx

1 +  e2ml
 

θ =
θ1

1 + e2ml
[emx + e2ml. e−mx] = θ1

eml(e−ml. emx + eml. e−mx)

eml(e−ml + eml)
  

θ

θ1
=

e−ml. emx + eml. e−mx

e−ml + eml
 

θ

θ1
=

cosh m. (L − x)

cosh mL
 

 

Re-introducing the temperature and h, k and y terms: 

Reminder: 

 = T – TA  

 m = √2h/ky  

 

T − TA

Tw − TA
=

cosh √2h/ky. (L − x)

cosh √2h/ky. L
 

 

where: 

Tw = Wall temperature 
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∴ T = (Tw − TA) (
cosh √2h/ky.(L−x)

cosh √2h/ky.L
) + TA  
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1.7 Heat Exchangers 

Introduction 

In order to transfer heat efficiently, both for energy and cost savings, industrial processes require 

heat transfer equipment.  Hot fluids may also need to be cooled before being discarded to the 

environment – either for environmental and/or personal safety reasons. 

 

Various heat transfer equipment exists.  These include: 

- Heat Exchanger 

- Fin Fan Cooler 

- Cooling Towers 

- Plate Heat Exchangers 

- Radiators 

- OTHERS….. 

 

A heat exchanger is a piece of equipment built for efficient heat transfer from one medium to 

another. 

 

A shell and tube heat exchanger is a class of heat exchanger most commonly used in oil refineries 

and other large chemical processes.  It consists of a shell with a bundle of tubes inside.  One fluid 

runs through the tubes, and another fluid flows over the tubes (through the shell) to transfer heat 

between the two fluids. 

 

Co-current Heat Exchangers 

Two streams of fluid enter at the same end of the heat exchanger – one hot and one cold.  The two 

fluids exchange energy with the hotter getting colder and the colder getting hotter.  The 

temperature of the cold stream can never be greater than the hot stream and vice versa. 

 

 

Counter Current Heat Exchangers 

Two streams of fluid enter on opposite ends heat exchanger – one hot and one cold.  The two fluids 

exchange energy with the hotter getting colder and the colder getting hotter.  The temperature of 

the cold stream exiting can be hotter than the temperature of the hot stream exiting. 

 

Temperature 

Length 
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Typically, the maximum temperature difference at any point can be no lower than 10°C.  Note in the 

counter current setup that the outlet temperature difference can be less than this. 

 

If there is a phase change, deal with each phase separately 

The TLM calculation can only be done on a fluid which does not have a phase change OR if there is a 

phase change ONLY. 

 

 

Can use TLM calculation 

 

 

Can use TLM calculation 

 

Phase change; no 

temperature change 

Temperature 

Length 
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CAN NOT use TLM calculation BUT: If we break the problem into 3, can use 

TLM calculation 

 

 

Steam; phase change, 

water 

Steam; phase change, 

water 

TLM,a 
TLM,b 

TLM,c 

Example: 

Calculate the log mean temperature given the following information: 

Temperature hot in: 90C 

Temperature hot out: 65C 

Temperature cold in: 40C 

Temperature cold out: 70C 

 

Solution: 

 
 

T1 = 25C; Thot,in – Tcold,in = 65 – 40C 

T2 = 20C; Thot,out – Tcold,out = 90 – 70C 

 

∆𝑇𝐿𝑀 =  (
∆𝑇1 − ∆𝑇2

𝑙𝑛
∆𝑇1
∆𝑇2

) =   (
20 − 25

𝑙𝑛 (
20
25

)
) = 22.4℃ 

 

This is not the same as average temperature: 

∆𝑇𝐴𝑉𝐸 =  (
20 + 25

2
) = 22.5℃ 

 

Temperature 

Length 

90C 

70C 

65C 

40C 

T2 

T1 
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Example: 

Calculate the log mean temperature given the following information: 

Temperature hot in: 90C Temperature cold in: 40C 

Temperature hot out: 60C Temperature cold out: 70C 

 

Solution: 

 

 
 

T1 = 20C; Thot,out – Tcold,in = 60 – 40C 

T2 = 20C; Thot,out – Tcold,out = 90 – 70C 

 

∆𝑇𝐿𝑀 =  (
∆𝑇1 − ∆𝑇2

𝑙𝑛
∆𝑇1
∆𝑇2

) =  (
20 − 20

𝑙𝑛 (
20
20

)
) = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 

 

Since TLM is undefined, can use TAVE.  Also: since T is constant across the 

length of heat exchanger (and also equal to TAVE), TAVE can be used. 

 

∆𝑇𝐴𝑉𝐸 =  (
20 + 20

2
) = 20℃ 

 

Temperature 

Length 

90C 

70C 
60C 

40C 

T2 

T1 
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1.8 Heat Generation 
Heat generation in terms of heat transfer: 

 

Energy can be generated in a solid element by: 

- Nuclear reaction; 

- Catalyst and exothermic reactions; and 

- Electrical current 

 

Nuclear Reactions (Bird, Stewart and Lightfoot, p296) 

Given in terms of G (per volume of radioactive material) 

 

Catalysts (Bird, Stewart and Lightfoot, p300) 

Metals are expensive.  In order to maximize the surface area to volume ratio of a catalyst, we 

typically use metal oxide supports which have a large surface area, e.g. activated carbon.  Reactants 

adsorb an react in the pores; products desorb and are released. 

 

 

Electric Current (Bird, Stewart and Lightfoot, p292) 

 

Example: 

Consider an electric wire of circular cross section with radius R and electrical conductivity ke ohm-

1cm-1.  Through this wire an electric current is passed with a current density of I amp/cm2.  This 

process is an irreversible process, converting some electrical energy into heat (thermal energy).  The 

rate of heat production per unit volume is given by the expression: 

 

𝑆𝑒 =  
𝐼2

𝑘𝑒
 

 

The quantity Se is the heat source resulting from electrical dissipation.  It is assumed that the 

temperature rise in the wire is not so large that the temperature dependence of either the electrical 

or thermal conductivity need be considered.  The surface of the wire is maintained at temperature 

T0.  

Find the radial temperature profile within the wire. 
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Solution: 

 

For the system we take a cylindrical shell of thickness r and length L. 

 

The contributors to the energy balance across this shell are: 

Rate of heat across the cylinder at r (2πrL)(qr|r) = (2πrLqr) |r 

Rate of heat out across cylindrical surface at r + r (2π(r + ∆r)L)(qr|r+∆r) =  (2πrLqr) |r+∆r 

Rate of thermal production by electrical dissipation (2πr∆rL)Se 

 

By an energy balance:  Energy in + Energy generated = Energy out 

(2πrLqr) |r + (2πr∆rL)Se =  (2πrLqr) |r+∆r 

 

Re-arranging 

(2πrLqr) |r+∆r − (2πrLqr) |r = (2πr∆rL)Se 

 

÷ 2Lr 

(rqr) |r+∆r − (rqr) |r

∆r
= Ser 

 

Taking limits as r  0 

lim
∆r→0

(rqr) |r+∆r −  (rqr) |r

∆r
= Ser 

d

dr
(rqr) = Ser 

 

This is a first order DE and can be integrated to: 

qr =
Ser

2
+

C1

r
 

 

The integration constant C1 must be zero, since at r = 0, qr is not infinite 

r 

R 

r 

L 
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qr =
Ser

2
 

 

Now, from Fourier’s Law for heat transfer: 

qr = −k. (dT/dr ) 

 

Equating: 

−k. (
dT

dr
) =

Ser

2
 

 

Assuming k is constant, integrating: 

T =  
Ser2

4k
+  C2 

 

At r = R; T = T0 

C2 =  
SeR2

4k
+  T0 

T − T0 =  
SeR2

4k
[1 − (

r

R
)

2

] 

 

Maximum temperature is at r = 0 

Tmax − T0 =  
SeR2

4k
 

Tmax =  
SeR2

4k
+  T0 

 

Average temperature: 

〈T〉 − T0 =  
∫ ∫ (T(r) − T0)rdr. dθ

R

0

2π

0

∫ ∫ rdr. dθ
R

0

2π

0

 =  
SeR2

8k
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1.9 Radiative Heat Transfer 

Black Body 

A perfect idealized physical body which absorbs all incident electromagnetic radiation and is also the 

best possible emitter of thermal radiation. 

 

q̇ = AσT4 Stefan Boltzmann Law 1.124 

 

where: 

 q̇: Heat Flux (W) 

 A: Cross Sectional Area (m2) 

σ: Stefan Boltzmann Constant = 5.67 × 10-8 W.m-2K-4 

=  
2π5kB

4

15h3c2
 

kB = Boltzmann constant – 1.38 × 10-23 J/K; 

h = Plank constant – 6.626× 10-34 J.s 

c = speed of light m/s 

T = Temperature (K) 

 

 

Given that the Stefan Boltzmann constant is very small, radiative heat transfer only plays a part at 

high temperatures (approx. greater than 400°C), while conduction and convection describe heat 

transfer at lower temperatures. 

 

  

Example: 

What is the radiative heat transfer per square meter for a body 

at the following temperatures? 

a) 100°C 

b) 400°C 

c) 800°C 

 

Solution: 

�̇�/𝐴 = 𝐴𝜎𝑇4 

�̇�/𝐴 = 𝜎𝑇4 

�̇�/𝐴 = 5.76 × 10−8. 𝑇4 

 

a) �̇�/𝐴 = 1.12 kW/m2 

b) �̇�/𝐴 = 11.8 kW/m2 

c) �̇�/𝐴 = 76.4 kW/m2 
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