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Figure 1: Cross Section.

Chapter 3

3.8 Mean Free Path and Diffusion

In a gas, the molecules collide with one another. Momentum and energy are conserved
in these collisions, so the ideal gas law remains valid.

The mean free path λ is the average distance a particle travels between collisions.
The larger the particles or the denser the gas, the more frequent the collisions are and
the shorter the mean free path. If the particle were all by itself, then the mean free path
would be infinite. If 2 particles, each of radius R, come within 2R of each other, then
they collide. The collision cross section is defined as the collision area σ = π(2R)2 that
it presents as it moves through space.

The mean free path λ is related to the cross section σ and the number density n of
particles by

λ ≈ 1

nσ
(1)

To see this, notice that a particle that undergoes a large number N of collisions will
exhibit a zig-zag pattern of total length L = Nλ, since the average distance between
collisions is λ. We can think of the particle as sweeping out a volume

V = Lσ = Nλσ (2)

The number density of particles in this volume is n:

n =
N

V
=

N

Nλσ
=

1

λσ
(3)

where we are assuming that the number of collisions in the volume is the same as the
number of molecules in the volume, and that the number density in the volume is the



same as the number density in the sample as a whole. We can rewrite this equation as

λ ≈ 1

nσ
(4)

which is the desired result. Notice that the mean free path goes down as the number
density and the cross section go up, as expected.

Example

Given that the mean radius of an air molecule (either O2 or N2) is about R=0.15 nm,
what is the approximate mean free path λ of the molecules in air at atmospheric pressure
and room temperature? (1 atm ≈ 1.01× 105 Pa)

Solution: Use Eq. (4):

λ ≈ 1

nσ
(5)

We can obtain the number density n from the ideal gas law:

n =
N

V
=

P

kT
=

1.01× 105 Pa

(1.38× 10−23 J/K)× (300 K)
= 2.45× 1025 m−3 (6)

The collision cross section is

σ = π(2R)2 = 4π(0.15× 10−9 m)2 = 2.8× 10−19 m2 (7)

So we have

λ ≈ 1

nσ
=

1

(2.45× 1025 m−3)(2.8× 10−19 m2)
= 1.4× 10−7 m = 140 nm (8)

This is about 40 times greater than the average distance between nearest-neighbor
molecules in the gas.

The convoluted zig-zag trajectory of a particle is an example of diffusive motion or
diffusion. It is also an example of a random walk. Think of a drunk coming out of
a bar and staggering around, each step being in a random direction. It turns out that
the average magnitude of the displacement D of a particle undergoing a random walk is
proportional to the square root of the time t that is has been moving:

Ddiff ∝
√
t (9)

This is in contrast to ballistic motion where D = vt, i.e., D is proportional to the time
of travel:

D ∝ t (10)

To see why the displacement is proportional to
√
t for a random walk, consider a

random walk in 1, 2 or 3 dimensions consisting of steps of length d in random directions
described by the vectors di. The net displacement is given by

D =
N
∑

i=1

di (11)
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If we sum these vectors, we’d get zero on average because they are in random directions.
If the random walk was in 1D, then we’d be adding positive and negative numbers and
they would tend to cancel out, but that doesn’t mean the particle doesn’t get anywhere.
Let’s square the displacement so that we are just adding positive numbers. Then we have

D ·D = D2 =

(

N
∑

i=1

di

)

·




N
∑

j=1

dj





=
N
∑

i=1

d2

i +
∑

i 6=j

di · dj

= Nd2 +
∑

i 6=j

di · dj (12)

When we take an ensemble average, then the second term cancels out because it is a sum
of positive and negative terms. So we get

〈D2〉 = Nd2 (13)

The root-mean-square average distance Drms is

Drms =
√

〈D2〉 =
√
Nd (14)

If we let the mean free path λ be the step size d, then

Drms =
√
Nλ (15)

If τ is the mean time between collisions, then the number of steps is

N =
t

τ
(16)

and

Drms =

√

t

τ
λ ∝

√
t (17)

As desired, we see that the rms displacement is proportional to the square root of the
time of travel. We can write this in terms of the rms velocity vrms using

vrms =
λ

τ
(18)

or

τ =
λ

vrms

(19)

Drms =

√

t

τ
λ =

√

vrmst

λ
λ =

√

λvrms

√
t (20)
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From the equipartition theorem,

1

2
m〈v2〉 = 3

2
kBT (21)

or

vrms =

√

3kBT

m
(22)

so we can write

Drms ≈
1√
nσ

(

3kBT

m

)1/4 √
t (23)

This is useful because many of these quantities can be measured experimentally.
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