

Buy three roundtrip tickets for the first three weeks only— $\cos t = 3 \times 400 = 1200$. Though the cost is cheaper, it is not feasible because it covers only three out of the required five weeks.

4 cont.

East	Crossing	West
5,10	$(1,2) \rightarrow (\mathbf{t} = 2)$	1,2
1,5,10	(t = 1)←(1)	2
1	$(5,10) \rightarrow (t=10)$	2,5,10
1,2	$(t=2)\leftarrow(2)$	5,10
none	$(1,2) \rightarrow (t=2)$	2,5,10
Total =	2+1+10+2+2=17 m	inutes

Given a string of length L:

(1)
$$h = .3L$$
, $w = .2L$, Area = $.06L^2$

(2)
$$h = .1L$$
, $w = .4L$, Area = $.04L^2$

Solution (2) is better because the area is larger

$$L = 2(w + h)$$
$$w = L/2 - h$$

$$z = wh = h(L/2 - h) = Lh/2 - h^2$$

$$\delta z/\delta h = L/2 - 2h = 0$$

Thus, h = L/4 and w = L/4.

Solution is optimal because z is a concave function

(a)

Let T = Total tie to move all four individuals to the other side of the river. the objective is to determine the transfer schedule that minimizes T.

(b)

Let t = crossing time from one side to the other. Use codes 1, 2, 5, and 10 to represent Amy, Jim, John, and Kelly.

		Jim		
		Curve	Fast	
Joe	Curve Fast	.500	.200	
	Fast	.100	.300	

(a)

Alternatives:

Joe: Prepare for curve or fast ball. Jim: Throw curve of fast ball.

(b)

Joe tries to improve his batting score and Jim tries to counter Joe's action by selecting a less favorable strategy. This means that neither player will be satisfied with a single (pure) strategy.

The problem is not an optimization situation in the familiar sense in which the objective is maximized or minimized. Instead, the conflicting situation requires a compromise solution in which neither layer is tempted to change strategy. Game theory (Chapter 14) provides such a solution.

continued.

Recommendation: One joist at time gives the smallest time. The problem has other alternatives that combine 1, 2, and 3 joists. Cutter utilization indicates that cutter represents the bottleneck.