ALIPHATIC NUCLEOPHILIC SUBSTITUTION REACTIONS

$$R \stackrel{\frown}{=} X + Y: \longrightarrow R - Y + X:$$

Types of Nucelophilic Substitution Reactions

Type I
$$R-I + OH^- \longrightarrow R-OH + I^-$$

Type II $R-I + NMe_3 \longrightarrow R-NMe_3 + I^-$

Type III $R-NMe_3 + OH^- \longrightarrow R-OH + NMe_3$

Type IV $R-NMe_3 + H_2S \longrightarrow R-SH_2 + NMe_3$

NUCLEOPHILIC SUBSTITUTION BIMOLECULAR REACTIONS (S_N2)

1. Kinetic Evidence

$$Rate = k[RX][Y]$$

Rate = k[RX] If nucleophile is in excess e.g. solvent (Pseudo-First Order Reaction)

rate = k_2 [MeSNa][MeI]

If [MeSNa] is constant, the equation becomes

rate =
$$k_a$$
[MeI] where $k_a = k_2$ [MeSNa]

If [MeI] is constant, the equation becomes

rate =
$$k_b$$
[MeSNa] where $k_b = k_2$ [MeI]

If you examine the graphs you will see that the slopes are different because

slope
$$1 = k_a = k_2$$
[MeSNa], but slope $2 = k_b = k_2$ [MeI]

energy diagram for an S_N2 reaction

The rate of $S_N 2$ reaction depends upon

2. Stereochemical Evidence

• Inversion of Configuration occurs

3. S_N2 reactions cannot occur at bridgehead

NUCLEOPHILIC SUBSTITUTION UNIMOLECULAR REACTIONS (S_N1)

Step 1
$$R - X \xrightarrow{slow} R^+ + X$$
Step 2 $R^+ + Y \xrightarrow{fast} R - Y$

1. Kinetic Evidence

$$Rate = k[RX]$$

rate =
$$k_1[t\text{-BuBr}]$$

$$RX \xrightarrow{k_1} R^+ + X$$

$$R^{+} + Y \xrightarrow{k_{2}} RY$$

$$Rate = \frac{k_{1}k_{2} [RX][Y]}{k_{1}k_{2} [RX][Y]}$$

 $k_{-1}[X] + k_2[Y]$

(i) The carbon skeleton (Structure of substrate)

The rate of $S_N 1$ reaction depends upon

(ii) The leaving group

- If other than first step is the slow step then $S_N 1$ reactions may show complex kinetics.
- The complex kinetics can be treated by Steady State Approximation for example.

2. Stereochemical Evidence

planar structure for the t-butyl cation

less repulsion between bonding pairs of electrons

tetrahedral structure for the t-butyl cation

more repulsion between bonding pairs of electrons

Ion Paris in S_N1 Mechanism

$$R^+X$$
 \longrightarrow $R^+X^ \longrightarrow$ $R^+|_{X^-}$ \longrightarrow R^++X^- Contact Solvent separated Dissociated ion pair ion pair

Complete Racemization to Partial Racemization

3. S_N1 reactions cannot occur at bridgehead

• It is because carbocation is sp^2 -hybridized and therefore must be planar. However, planarity cannot be achieved at bridgehead

4. Mass Law Effect or Common Ion Effect

Step 1
$$R - X \xrightarrow{slow} R^+ + X$$

Step 2
$$R^+ + Y \xrightarrow{\text{fast}} R - Y$$

- Adding a salt having common ion, X^- , would push the first step in backward direction.
- Hence, the rate of $S_N 1$ reaction will decrease.

5. Salt Effect

- Since polar ions are produced in this reaction, therefore, increase in polarity of solvent increases the rate of reaction.
- The ionic strength or the polarity of the medium can be increased by adding salts that don't have common ion.

 The S_N2 reaction goes with inversion of configuration at the carbon atom under attack but the S_N1 reaction generally goes with racemization

NUCLEOPHILIC SUBSTITUTION INTERNAL REACTIONS (S_Ni)

- Second Order i.e. Rate = k(ROH)[SOCl₂]
- Retention of Configuration

The Mechanism

- Reaction of ROH and SOCl₂ is second order
- Simple heating of ROSOCI is first order

• Adding pyridine shifts the reaction to normal $S_N 2$ mechanism.

$$Cl^{\Theta} + Ph \qquad C-OSCl \rightarrow \begin{bmatrix} Me & O \\ S^{-} & Me \\ Cl & OSCl \end{bmatrix} \xrightarrow{A} Cl-C \qquad H + SO_{2} + Cl^{\Theta}$$

- Second Order i.e. Rate = k(ROH)[SOCl₂]
- Inversion of Configuration

$$ROSOCI + C_5H_5N \rightarrow ROSONC_5H_5CI \rightarrow ROSONC_5H_5 + CI_{Free nucleophile}$$

Nucleophilic Substitution at an Allylic Carbon: Allylic Rearrangements

 $S_N 1'$

$$R \xrightarrow{Y} R \xrightarrow{Y} + R \xrightarrow{Y} (S_{N}1)$$

$$Y \xrightarrow{\uparrow} \qquad Y \xrightarrow{\uparrow}$$

$$R \xrightarrow{\Psi} X \qquad \Longrightarrow \qquad R \xrightarrow{\oplus} \qquad \Longrightarrow \qquad R \xrightarrow{\oplus}$$

Ion Pairs in S_N1'

S_N2'

S_Ni'

S_N1cA or A1 mechanism & S_N2cA or A2 mechanism

- The First step above incorporate the symbol cA (conjugate acid)
- The next step will decide whether it is $S_N 1$ or $S_N 2$ mechanism