ALIPHATIC NUCLEOPHILIC SUBSTITUTION REACTIONS
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Types of Nucelophilic Substitution Reactions
Type 1 R—I + OH —— R-OH + T
®
Type 11 R—I + NMey; — R—-NMe; + 1
S
Type III R—-NMe; + OH  — R-OH + NMe;

® @
Type IV R—NMe; + H,S —  R—SH, + NMej



NUCLEOPHILIC SUBSTITUTION BIMOLECULAR REACTIONS (S\2)
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1. Kinetic Evidence

Rate = k[RX]
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rate = ko[MeSNa]J[Mel]

Rate = k[RX]
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If nucleophile is in excess e.g. solvent
(Pseudo-First Order Reaction)

rate

slope 1

If [MeSNa] is constant, the equation becomes [Mel] [NaSMe]
rate = ko[Mel] where k; = ko[MeSNal]
If [Mel] is constant, the equation becomes energy disgr " for an Sy2 reaction
rate = ky[MeSNa] where ki, = ko[Mel] . N e [1s |2 Nu—Me + 17
If you examine the graphs you will see that the slopes are different because T e
slope 1 = kg = ko[MeSNa], but slope 2 = ky = ko[Mel] S
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The rate of S\2 reaction depends upon progress of reaction
(1) The nucelophile (ii) The carbon skeleton (Structure of substrate) (iii) The leaving group



2. Stereochemical Evidence * Inversion of Configuration occurs
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3. S\ 2 reactions cannot occur at bridgehead
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NUCLEOPHILIC SUBSTITUTION UNIMOLECULAR REACTIONS (S,1)

slow

Slﬂp l R_X e S R+ + X

fast

Slﬂp 2 R+ + Y - R_Y

1. Kinetic Evidence Rate = k[RX]
rate
>L ECII:-H The rate of S, 1 reaction depends upon
(CBr — ™ Ol (i) The carbon skeleton (Structure of
substrate) slope
_ . (ii) The leaving group /
rate = k4[F-BuBr] [t.BuBr]

Step-| slow
>L — = ® rate
Br slope =0
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Step-lI )'@\ﬁCDH fast >L same rate at any [NaOH]
OH

[NaOH]
ki
RX ————— R* + X
kot * If other than first step is the slow step then
RE 4y k2 RY S\1 reactions may show complex kinetics.
o  The complex kinetics can be treated by
Rate = kikz [RX]IY] Steady State Approximation for example.

ko [XT + k2lY]



2. Stereochemical Evidence
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lon Paris in Sy1 Mechanism
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3. S\ 1 reactions cannot occur at bridgehead

P D S

Cl

» |t is because carbocation is sp?-hybridized and therefore must be planar.
However, planarity cannot be achieved at bridgehead

4. Mass Law Effect or Common lon Effect

slow

Step 1 R-X =—= R" + X « Adding a salt having common ion, X, would
push the first step in backward direction.
Step 2 R* + Y st R-y °* Hence, the rate of S\1 reaction will decrease.

5. Salt Effect

* Since polar ions are produced in this reaction, therefore, increase in polarity of solvent
increases the rate of reaction.

* The ionic strength or the polarity of the medium can be increased by adding salts that
don’t have common ion.



® The Sy2 reaction goes with inversion of configuration at the carbon atom
under attack but the Sy1 reaction generally goes with racemization

Syl - » racemization
\% SUEIF \-)\ \)i
{+H Srsecbutanol racemic
tﬁ;}*ﬂgﬁg (+}-secbutanol
TsCl
pyridine
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(5)-secbutyl tosylate {R)-sec-butyl acetate [-HR}-sec-butanol

SN2 - = inversion



NUCLEOPHILIC SUBSTITUTION INTERNAL REACTIONS (Si)

Me
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The Mechanism
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Cl *  Reaction of ROH and SOCl, is second order

Simple heating of ROSOCI is first order
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Adding pyridine shifts the reaction to normal S,2 mechanism.

Me
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* Second Order i.e. Rate = k(ROH][SOCI,]
* Inversion of Configuration

+ - + —
ROSONC.H.CI > ROSONCH, + ClI

Free nucleophile

Me

/
> \/ _.ph‘> \ “‘
|

H // |

Cl

o

Me

*/ O
Ph**

H
Alkyl chloroformate ¢j

— 0O - > cl + CO,
Ph**



Nucleophilic Substitution at an Allylic Carbon: Allylic Rearrangements
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Sy1cA or A1 mechanism & Sy 2cA or A2 mechanism

H+
R——OH — R—OH;

* The First step above incorporate the symbol cA (conjugate acid)

* The next step will decide whether it is S\1 or Sy2 mechanism



