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Risk Analysis

7.1 Introduction

In previous chapters two assumptions were made about data needed for suc-
cessful simulation runs. It was first proposed that necessary data is completely
available and second that it is good quality. So it was implicitly concluded that
each model is unique. In practice, this is usually not the case. Data sets have
gaps and the data values often have wide error bars. These uncertainties lead
to the following three types of questions:

1. What is the impact of uncertainties in the input data on the model?
What is the chance or the probability of having special scenarios? How

large is the risk or the probability of failure? Is the simulation result stable or
does a slight variation of some input parameters cause a completely different
result? How sensitive is the relationship between a given parameter variation
and the resulting model variation or how do the error bars of the input data
map to the error bars of the results?

2. What are the important dependencies in our model?
Not every uncertainty of an input parameter has an impact on each un-

certainty of the simulation result values. Which parameter influences which
result? How strong are the different influences? Do they have a special form?
Studying these questions is especially necessary for the understanding of the
model and the processes it contains. Understanding is again necessary if con-
clusions are to be drawn, which go beyond a plain collection of results.

3. Which set of input data leads to agreement when considering additional
comparison data?

Very often additional calibration data are available which cannot be used
directly for the modeling but can be compared to simulation results. Is it
possible to reduce the uncertainty in the input data by excluding models
related to simulation results which are not matching the calibration data?
In the literature, procedures treating this problem are often listed under the
keywords “inversion” or “calibration”.
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342 7 Risk Analysis

This chapter deals with these three topics under the headings “Risking”,
“Understanding”, and “Calibration”.

The classical approach of tackling such problems would be to perform sce-
nario runs. Starting with a first best guess model, which is commonly named
“reference model” or “master run” (Fig. 7.1), model parameters are modi-
fied manually and scenario runs are performed according to the knowledge,
speculations, expectations, and understanding of the modeler (Fig. 7.2).

�

�

�

�

Geometry
Lithologies
Boundary Conditions
...

Input Values:

Simulation

Result

One Input Set One Simulation One Model

Fig. 7.1. Result of one – deterministic – 3D simulation. It is implicitly assumed,
that uncertainties in input data do not exist

An example, with an uncertain temperature history caused by unknowns
in heat flow and thermal conductivity could have this typical form: A high
heat flow scenario and a low heat flow scenario are simulated, whereas other
uncertain input parameters such as thermal conductivities are held at fixed
values. The high heat flow scenario is found to be realistic by looking for
example at the calibration data or through the experience of the modeler.
Next, a high thermal conductivity scenario and a low conductivity scenario
are modeled with a fixed high heat flow. High thermal conductivity matches
the calibration data best. So, a high heat flow combined with high thermal
conductivity is found to be the most realistic scenario.

Two main problems arise with such an approach:
The procedure of variation and selection of the input parameters is not

systematic. There is a possibility of overseeing other realistic scenarios e.g.:
in this example, low heat flow with low thermal conductivity. With a higher
amount of uncertain parameters such mistakes can become normal.

The choice of “probable” scenarios is not very well quantified: A sensitivity
analysis of how precise the heat flow has to be known to match the result is
not performed, a quantification of the reduction of uncertainty is missing and
the repercussions of the variation of other parameters, simultaneously with
the heat flow, is omitted completely.

The reliability of risk results gained by scenario runs is primarily depen-
dent on the knowledge of the involved modelers. Scenarios are usually not
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Fig. 7.2. Approach with “Scenario Runs”. The first run is usually called the “Master
Run” or “Reference Model”

performed systematically and the discussion of the results is qualitative but
not quantitative.

The main goal of this chapter is to describe a systematic approach to deal
with these issues. A more concrete formulation of the tasks involved with the
three topics are:

• Risking: Calculation of probabilities, confidence intervals and error bars.
• Understanding: Calculation and analysis of correlations.
• Calibration: Calculation of the probability of how good a model fits

calibration data and search for the best fitting model.

All topics contain words such as “probability” or “correlation” which are
related to the language of stochastics and statistics. It is possible to treat all
three topics simultaneously with a stochastic method such as a “Monte Carlo
Simulation”. This has the big advantage that expensive and time consuming
simulation runs can be reused for the analysis of three distinct topics.
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An introduction into probabilistic methods of applied basin modeling can
be found in Thomsen (1998). Other approaches are usually less general and
restricted in applicability or assumptions. Nevertheless, the efficiency can be
significantly raised by studying limited problems or tasks with different meth-
ods. Highly specialized methods of inversion, for interpolation and extrapola-
tion of simulation results are discussed in later sections.

7.2 Monte Carlo Simulation

The starting point for a Monte Carlo simulation is a reference model and
a list of uncertainties belonging to the data. The reference model is based
on a parameter set within the limits of these uncertainties, which typically
represents a best first guess. Additionally, a quantification of the uncertainties
must be known. The most precise quantification is a probability distribution
(Fig. 7.3) which defines the probability of a data value to be exact.1

Fig. 7.3. Examples of normally and log. normally distributed uncertainties

Very often the distribution is not known but only some more general state-
ments about the type and size of the uncertainties. It is usually not difficult
and also not critical to construct a distribution from this knowledge. This is
discussed in Sec. 7.2.1 and typical examples are demonstrated.

One important point, which must be mentioned, is that the uncertain
model parameters should be independent. In Sec. 7.2.3 this is discussed in
more detail.

With this setup the “Monte Carlo Workflow” is straightforward: A set of
random numbers according to the distributions is drawn and a simulation run
with this parameter set is performed. This procedure is repeated while the
results are collected (Fig. 7.4). Output parameters are collected, visualized,
and analyzed with statistical tools such as histograms.
1 It more precisely defines a probability density with probabilities of values to be

within certain intervals.



7.2 Monte Carlo Simulation 345

Draw random numbers
according to uncertainty definitions

Simulation run

Collect data for histograms

Enough runs?

Finish

Start

yes

no

Fig. 7.4. Flow chart for Monte Carlo simulation runs
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Fig. 7.5. Monte Carlo simulation with histograms of accumulated petroleum

It will now be shown that the main topics “risking”, “understanding”, and
“calibration” can be solved with the Monte Carlo simulation approach:

Risking

Confidence intervals related to risking can directly be read off from result
histograms. They define the probability to find a result within a given interval.
E.g. it is possible to formulate statements such as “With 80% probability the
accumulated liquid petroleum amount is between 1623 and 1628 million cubic
meters” (Fig. 7.6).
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Fig. 7.6. Histogram of liquid accumula-
tions: “With 80% probability the accu-
mulated liquid petroleum amount is be-
tween 1623 and 1628 million cubic me-
ters”

Fig. 7.7. Decision analysis with tree:
The expected value EV for gains or
losses of the “drill branch” is the aver-
age EV (drill) = 0.2× (−6)+0.5× (−2)+
0.3 × 10 = $ 0.8 MM

Other valuable characteristics of a histogram are the modus, which defines
the location of the most probable result, or the average. The concept of cal-
culating expectation values, such as the average, is extremely important in
economics: For example complex decision procedures in companies are often
analyzed with decision trees (Fig. 7.7). These trees are based on the evident
statistical law, that the optimal decision strategy is found by following the
branches with the highest expectation values, which can be calculated from
averages.

A measure for the width of a histogram is the standard deviation. This
quantity can be set in relation to the less precisely defined error bar. To-
gether, average and standard deviation are often used as “value with error
bar” (Fig. 7.8). Big standard deviations of resulting histograms indicate high
uncertainties and give rise to the conclusion that the master run is not repre-
sentative and therefore not probable.

Fig. 7.8. Gauss distribution with mean
μ = 0 and standard deviation σ = 2. The
standard deviation can be interpreted as
the size of an error bar. About 68% of
numbers drawn from this distribution will
be inside the range of the error bar
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The analysis of the result widths as functions of the uncertainty widths
is called “sensitivity analysis”. More precisely, it can be represented by the
relation between standard deviations of uncertainty and result parameters.
A result is highly sensitive/unsensitive to an uncertainty if its error bar is
large/small compared to the error bar of the uncertainty parameter. Therefore,
sensitivity analysis can be a guiding tool for the understanding of a system.

Understanding

A very important problem arises with the question of where future efforts
concerning the reduction of uncertainties should be spent. A reduction of un-
certainties can be achieved by further data acquisition, which can be very
costly. Sensitivity analysis directly leads to the parameters, which are of im-
portance (Fig. 7.9). So, an expensive collection of unnecessary data could be
avoided.

Fig. 7.9. Tornado diagram depicting the influence of some uncertainties on the
porosity at a defined location in a well. Spearman rank order correlation coeffi-
cients (Press et al., 2002) are plotted as bars. As expected, the permeability shift
(highlighted) (anti–)correlates mostly with the porosity

Understanding can be improved by searching for dependencies, e.g. via
cross plots (Fig. 7.10). Correlations can be visualized and with the help of
correlation coefficients quantified. In case of strong correlations, it is possible
to interpolate the results and for forecasting purposes state formulas of de-
pendency. For expensive simulation runs this is very valuable. Generalizations
of such techniques are discussed in Sec. 7.5.

Calibration

It is obvious that calibration could be performed with Monte Carlo simula-
tions in a simple way by just looking at the model that best fits the calibration
data. The investigation of uncertainty space is performed by sampling the un-
certainties according to their probability distributions. Random combinations
of parameters are used for the Monte Carlo models. This method ensures a
global sampling of the space of uncertainty. The risk of missing regions with
good calibration, becomes small with a high number of Monte Carlo runs.
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Fig. 7.10. Cross plot of temperature
against heat flow shift. A correlation is
visible and a linear interpolation might
be performed

The Monte Carlo method is not intelligent in a way that it searches for
models with good calibration. Search algorithms would be more efficient but
obviously cannot be performed simultaneously in combination with risking
and understanding. Additionally, these algorithms often search in local re-
gions of space so it could be that they end up with an erroneous calibration.
Therefore, a global investigation of the uncertainty space such as with a Monte
Carlo analysis has to be performed as a first step before beginning with a
search algorithm. Global stability and the prevention of extra simulation runs
are often of higher importance compared to high–quality calibration. How-
ever, in Sec. 7.5 more sophisticated calibration methods, which combine the
advantages of both approaches are discussed.

7.2.1 Uncertainty Distributions

Uncertainty distributions must be specified for Monte Carlo simulations. The
properties of some well known distributions are now discussed with regard to
their usage in Monte Carlo simulations.

Normal Distribution

The normal or Gauss distribution

p(x) =
1

σ
√

2π
exp

[−(x − μ)2

2σ2

]
(7.1)

with mean μ and standard deviation σ is the most widely used distribution
in science (Fig. 7.3). Assume that a quantity X is measured independently
N times with the values x1 . . . xN . Following the central limit theorem of
statistics, the average

x =
1
N

N∑
i=1

xi (7.2)

is Gauss distributed for N → ∞ with2

2 In practice N > 7 is enough for high numerical accuracy.
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μ =
1
N

N∑
i=1

μi and σ2 =
1
N

N∑
i=1

σ2
i . (7.3)

Here, μi and σi are the means and the standard deviations of the proba-
bility distributions for each measurement i. They are often the same for all
i. Parameters which are used in large scale basin models are often provided
as upscaled averages of higher resolution data or averages of multiple mea-
surements. Assuming independency, it is often possible to assign a Gauss
distributed uncertainty to such a parameter.

Logarithmic Normal Distribution

This distribution is also called lognormal or lognorm distribution and has the
form

p(x) =
1

σx
√

2π
exp

[
− (ln x − μ)2

2σ2

]
for x > 0 and p(x) = 0 else ,

(7.4)
compare with Fig. 7.3. It has similar properties to the normal distribution. If a
quantity Y is normally distributed then X = expY is lognormally distributed.
The central limit theorem for the arithmetic average of some Yi becomes a
geometric average for the related Xi namely

x =
N∏

i=1

x
1/N
i . (7.5)

The equations for μ and σ stay the same as in (7.3) but it should be remem-
bered that μ and σ are not the mean and standard deviation of the lognormal
distribution, they are only the mean and standard deviation of the related
normal distribution.

A lognormal distribution is of special interest to “scale quantities”, which
by definition cannot be negative. The logarithm of a scale quantity can be
calculated every time and the distribution is zero for negative values. Many
physical quantities especially material properties such as thermal conductivi-
ties are limited to positive values. And the calculation of averages e.g. upscal-
ing, is often performed with geometrical averaging (Chap. 8). The lognorm
distribution can be a proper choice for the description of uncertainties related
to such quantities.

Uniform Distribution

The uniform distribution (Fig. 7.11) is defined by

p(x) =
1

b − a
for a ≤ x ≤ b and p(x) = 0 else (7.6)
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with a < b. The uniform distribution is a good choice if nothing except some
limiting statements can be made about the form of the uncertainty. The two
discontinuities of the distribution are often the subject of criticism: They have
sharp edges and are therefore argued to be in contradiction to the assumption
of ignorance about the “tails” of the distribution. Additionally, it often seems
unreasonable that the central inner parts of an uncertainty have the same
probabilistic weight as the more outer parts.

Fig. 7.11. Examples of uniform and triangular distributions

Triangular Distribution

The triangular distribution (Fig. 7.11) does not have the principal problems,
which come with the uniform distribution. It is given by

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2(x − a)
(c − a)(b − a)

for a < x ≤ b,

2(c − x)
(c − a)(c − b)

for b < x < c,

0 else

(7.7)

with a < b < c. The distribution is zero at a and c and its median is located at
b. A triangular uncertainty distribution can be directly constructed when the
uncertainty limits and also the most probable value are known. It can also be
used as an “easy to use” approximation to normal and lognorm distributions
(Lerche, 1997; Thomsen, 1998).

Other distributions, such as exponential or beta distributions, are more
sophisticated alternatives to uncertainty descriptions (Figs. 7.12, 4.5, Rinne
1997). They are only used under special circumstances.
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Fig. 7.12. Examples of exponential and beta distributed uncertainties

Nominal Distributions

Sometimes it is necessary to assign uncertainties to discrete parameters
(Fig. 7.13). In the most general case these parameters are without order re-
lation, which signifies that there are no “less than” or “bigger than” defined
between them. Then they are called nominal parameters. Typical examples
are lithologies or kinetic type assignments as lithologies and kinetics are usu-
ally specified by a large number of parameters. Therefore uncertain nominal
parameters often imply strong result variations.

An interpretation of results derived from nominal uncertainties can be
difficult especially if nominal and continuous uncertainties are mixed in the
same sequence of risk runs. This should therefore be avoided.

Fig. 7.13. Discrete distributed lithologies

7.2.2 Derived Uncertainty Parameters

An uncertainty is described as a distribution of one number, e.g. the thermal
conductivity of shale. But very often it is associated with more than only one
number. For example a heat flow uncertainty is related to the complete basal
heat flow, which is space and time dependent and cannot be described with
one number only.

However, the basal heat flow of the master run can be shifted, tilted,
twisted, etc.. A restriction to special forms of variation which can be described
with one number only allows the assignment of an uncertainty to this “derived
parameter”.
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It is well known from mathematics that arbitrary variations can often
be decomposed into infinite series of orthogonal functions which would yield
infinite uncertainty parameters. In practice, one is thus restricted to the most
important variations, which are often defined by the first terms of such series.

The simplest form of basal heat flow variations is a value shift in a defined
time interval (Fig. 7.14). Therefore, it is possible to assign an uncertainty
distribution to a shift of the whole basal heat flow.

50 mW/m^2

45 mW/m^2

55 mW/m^2

40 mW/m^2

60 mW/m^2

55 mW/m^2

65 mW/m^2

50 mW/m^2

Shift of 10 mW/m^2

Fig. 7.14. Shift of (gridded) basal heat flow map

Complex structural uncertainties can easily be risked with the prize of
restriction to special forms of variation (Fig. 3.36).

7.2.3 Latin Hypercube Sampling (LHC)

Arbitrary random sampling of the uncertainty distributions has some draw-
backs. Clusters of drawn numbers can occur (Fig. 7.15) and low probability
tails of distributions are often not sampled, although they might contribute
significantly to the analysis (e.g. calculation of moments) especially if they
have a wide range. The statistics (e.g. estimating a mean with the average
over a set of random numbers) becomes increasingly better, as less clusters
exist and the smoother the sampling is.

x xxx x x xx x x x

Fig. 7.15. Clustering of random numbers
in one and two dimensions. The variables
x and y are uncertainty parameters e.g. a
heat flow and a SWI temperature shift
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Latin hypercube sampling is a technique which helps to avoid clustering
and samples low probability tails without affecting basic statistics. It consists
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of primarily two parts: The first part is an improved drawing algorithm in
the series drawn from one distribution. The second part refers to the “hyper-
cube” and deals with multiple drawings in the multi–dimensional uncertainty
“hyperspace”.

Latin Hypercube Sampling in One Dimension

The interval within which the uncertainty parameter is defined can be divided
into intervals of the same cumulative probability which are called “strips”
(Fig. 7.16). Drawing a random number is now performed in two steps: First, a
strip is selected. Then, a random number is drawn according to the probability
distribution in this strip (Fig. 7.17). It is not allowed to use a strip again until
all others have been selected for drawing. The best efficiency is obviously
achieved if the number of drawings equals the number of strips or is a small
integer multiple.
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Fig. 7.16. Segmentation into ten equal probable intervals

LHC sampling is three times more efficient for the calculation of basic
statistical quantities such as means or confidence intervals (Newendorp and
Schuyler, 2000). When considering the huge size of simulation efforts for big
basin models, this is a good deal for the price.

On the other hand it is easy to see, that this method does not reproduce
auto–correlations between successive drawings. In practical implementations,
the additional effort for the calculation of the strips and for the bookkeeping
of used and unused strips has also to be taken into account.

Latin Hypercube Sampling in Multiple Dimensions

In more than one dimension, each distribution is segmented into the same
number of strips. When drawing the random numbers, it is necessary to avoid
correlations between the selection of the strips. Therefore the strips must be
selected randomly too.

The final result is a subdivision of uncertainty space into equal probable
hypercubes (Fig. 7.17). In the case that the number of drawings equals the
number of strips, each cube contains only one drawn number at maximum.



354 7 Risk Analysis

In two dimensions each column or row contains one drawn number and in N
dimensions each N − 1 subspace contains exactly one number.

x x xx x x xx x x x- - - - - - - - - -
Fig. 7.17. Latin hypercube segmenta-
tion with random numbers in one and two
dimensions. Compare with Fig. 7.15
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Again, bookkeeping of strips has to be performed but the advantages are
the same as in the one–dimensional case. LHC is a very efficient method for
global sampling of the uncertainty space.

7.2.4 Uncertainty Correlations

Up to now, it was assumed that the uncertainty parameters were independent.
The opposite of independence is dependency. This does not need to be further
discussed, as a dependent uncertainty parameter can obviously be eliminated
from the list of uncertainties and treated like a simulation result. Besides these
two extremes, the region of correlation exists where specified combinations of
the drawn numbers are favored above others.

An example could be the thermal conductivity of two layers which are
known to have similar lithologies but it is not known what they are. So, for
heat flow analysis a modeler would prefer to study combinations of similar
conductivities.

A complete joint probability distribution, which defines the probability
for all combinations of all values of the uncertainty parameters, would be the
most thorough description. However, data and theoretical foundations of cer-
tain joint probability distribution forms usually do not exist. In practice it is
sufficient to deal with correlation coefficients which are used to link marginal
distributions. The rest of the joint probability distribution remains unspeci-
fied.

Nevertheless, drawing random numbers of correlated distributions is prob-
lematic enough. Explicit formulas exist for correlated Gauss distributions. The
simplest case are two correlated Gauss distributions which have the following
form (Beyer et al., 1999)

p(x) =
1

2π
√|Σ|e

− 1
2xT Σ−1x . (7.8)

with two variables xT = (x1, x2). The correlation is defined by the covariance
matrix
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Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
(7.9)

which is symmetric and positive definite (Fahrmeir and Hamerle, 1984). Here
σi =< x2

i > are the variances and ρ =< x1x2 > /σ1σ2 is the correlation
coefficient with −1 ≤ ρ ≤ 1. Without loss of generality σ1 = σ2 = 1 is further
assumed. The correlation matrix can be Cholesky decomposed (Beyer et al.,
1999; Press et al., 2002) into

Σ = AT A with A =
(

1 ρ

0
√

1 − ρ2

)
. (7.10)

Thus x∗ = Ax = (x1 + ρx2,
√

1 − ρ2x2)
T is Gauss distributed without corre-

lation. Obviously, this can easily be generalized to higher dimensions.
Correlations of arbitrary marginal distributions can be forced with numer-

ical methods. At least three different algorithms are known to exist (Miller,
1998). In the case of many distributions with many correlations, these algo-
rithms become computationally very expensive. Especially, if one parameter
is correlated multiple times with other parameters, these methods are not
affordable anymore. Another disadvantage of these algorithms is their incom-
patibility with latin hypercube sampling. Abdication of LHC sampling reduces
the performance significantly.

A new approximative method to get correlated random numbers is now
described: All random numbers can be drawn before performing the risk runs
if the total number of simulation runs is known at the beginning and correla-
tions are ignored. These random numbers can be sorted afterwards with the
following algorithm: An uncertainty parameter is randomly selected and after
that two random numbers out of its sequence are randomly selected again.
These numbers are swapped, if the resulting covariance matrix approximates
the target covariance matrix more closely than before. This procedure can be
repeated until a high degree of accuracy is reached. The sum of the squared
deviations of all correlation coefficients can be taken as a measure for the total
deviation.

It is clear that this permutation procedure certainly does not lead to a
sufficient approximation and never to the exact reproduction of all correlation
coefficients if the number of simulations is small.3 But experience has shown
that an almost exact numerical agreement can be reached very fast on modern
computers in practical relevant examples. Even for about twenty runs with a
few correlated parameters a good numerical agreement could be achieved.
3 An extension of this method with some acceptance/rejection probability of a

number swap would transfer it into a “Markov chain Monte Carlo” (MCMC) al-
gorithm. It can be proved that such an algorithm finds the optimal approximation
over longer time intervals. Due to rejection the MCMC algorithm shows generally
a poorer performance. By experience, the authors found the MCMC algorithm
here not necessary. MCMC algorithms in general will be discussed in more detail
in Sec. 7.5.
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Another big advantage of this procedure is its compatibility with latin
hypercube sampling. Hypercubes and therefore higher performance coming
from a lower number of necessary risk runs can be conserved.

An example of a correlation matrix constructed with this permutation
method is given here: the matrix which links some marginal probability dis-
tributions of uniform, triangular, normal, and lognorm form is defined as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1
0 0.2 1
0 0.3 0 1

−0.1 0 0 0 1
−0.7 0 −0.1 0.1 0 1

0 −0.2 0 0 0 0 1
−0.6 0.2 0 0 0 0 −0.5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Because of symmetry, only the lower triangular part of the matrix is shown
here. For 20 random numbers, which correspond to 20 simulation runs, the fol-
lowing approximation could be achieved with a maximum deviation of 0.0321
of any correlation value

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−0.0085 1
−0.0092 0.2088 1

0.0131 0.3004 −0.0008 1
−0.0978 −0.0060 −0.0005 0.0057 1
−0.6705 −0.0063 −0.0973 0.1091 0.0006 1

0.0178 −0.1956 0.0008 −0.0033 −0.0015 0.0172 1
−0.5679 0.1957 −0.0102 −0.0078 0.0024 0.0310 −0.4865 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and for 100 runs
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−0.0009 1

0.0004 0.2000 1
0.0000 0.2998 0.0002 1

−0.1000 −0.0002 0.0002 0.0005 1
−0.6938 0.0000 −0.0998 0.0999 −0.0002 1

0.0031 −0.1997 0.0001 0.0000 0.0016 −0.0023 1
−0.5928 0.1992 0.0005 0.0000 0.0011 0.0051 −0.4965 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with a maximum deviation of 0.0072. The maximum relative error of any
correlation coefficient with an absolute value bigger than 0.1 is then less than
2%. This error is usually far beyond the accuracy of the knowledge of the
correlation coefficients.
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7.2.5 Analysis of Results

Many good textbooks are available about probability theory and statistics,
e.g. Beyer et al. (1999) or Spiegel and Stephens (1999). Due to some specific
problems associated with basin modeling some subjects are reviewed here.

An introduction to statistical analysis has already been given in Sec. 7.2.
Histograms and cross plots are used to visualize the data while numbers, such
as average values, can be calculated for further analysis. Statements can be
quantified, e.g. with percentiles. A histogram is a binned approximation of
a probability distribution. The width of a bin should neither be too narrow
nor too wide because the visualization would become meaningless or group-
ing errors would become an issue (Spiegel and Stephens, 1999). Especially
the calculation of percentiles for risking directly from histograms yields only
“gridded values” (Fig. 7.18). In this case it is often better to use a linear inter-
polated form of cumulative probability. It is more precise for the calculation
(e.g. percentiles) and has a smoother visualization (Fig. 7.18) but the data
have to be available in raw form. This corresponds to a higher allocation of
resources in a computer implementation.

Nevertheless, the binning width of a well sampled histogram indicates the
statistical error of extracted quantities such as mean values or percentiles.
Analysis (Fig. 7.18) shows that at least about 100 data values and therefore
100 risk runs are necessary for statistics with an acceptable relative error of
around a few percent.

Fig. 7.18. Histogram with cumulative frequency of 100 drawn temperature values
on the left and linear interpolated cumulative probability based on the same data
on the right

Correlation coefficients are usually calculated for the analysis of possible
dependencies. One should not forget that correlation is necessary but not
sufficient for dependency. So, finding dependencies is not only part of analysis
but also interpretation. Unfortunately, dependencies can have a variety of
forms. Standard approaches of statistics test only for special forms.

Most commonly used is the Pearson correlation coefficient. It is a measure
for the deviation of a cross plot from a straight line. If its correlation value is 1
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then the cross plot fits perfectly to a straight line, which is positively inclined,
and if it is −1 to a line, which is negatively inclined. If the correlation is 0
then there is no similarity to a straight line at all. Intermediate values indicate
an approach to a straight line which becomes better with increasing absolute
values (Fig. 7.19).

A straight line is the most important form of dependency but it is also
a strong restriction to a special form. The Spearman rank order correlation
coefficient is more general. It models the order of data points and is a measure
of the deviation to an arbitrary monotonic increasing or decreasing correlation.
Even a little more general but nearly the same is “Kendall’s tau”. It relies
more on relative ordering and less on ranks. Some example cross plots with
different correlation coefficients are shown in Fig. 7.19.

Pearson: 1
Spearman: 1
Kendall: 1

Pearson: 0.98
Spearman: 1.00
Kendall: 1.00

Pearson: 0.83
Spearman: 1.00
Kendall: 1.00

x x x

y

y y

y

x

Pearson: -1
Spearman: -1
Kendall: -1

Pearson: 0
Spearman: 0
Kendall: Not Defined

y

xx x

Pearson: 0.383
Spearman: 0.015
Kendall: -0.104

y

Pearson: 0.99
Spearman: 0.99
Kendall: 0.92

Pearson: 0.04
Spearman: 0.05
Kendall: 0.04

y
Pearson: 0.69
Spearman: 0.68
Kendall: 0.49

y y

x x x

Fig. 7.19. Some examples of cross plots and their correlation coefficients

Spearman’s rank order coefficient ranges also from −1 to 1 but it is overall
known to be more robust than Pearson’s correlation coefficient (Press et al.,
2002). Commonly, it is used for tornado diagrams where lists of correlations
are ranked and visualized (Fig. 7.9).

The existence of correlation can generally not be determined with a cor-
relation coefficient alone. It only describes the strength of the correlation of a
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specific data set. For example a small dataset can be randomly correlated. The
most extreme case are two points which fall on a straight line every time. But
fortunately it is often possible to estimate significance levels for the existence
of correlation. For a more detailed discussion see Press et al. (2002).

Nominal distributions must be treated differently. Because of missing order
relations a correlation cannot be defined properly anymore. Instead, associ-
ations are calculated. Typical association values are Cramer’s V or the con-
tingency coefficient C. Their interpretation can be complicated. Alternative
measures of association exist and are based on entropy (Press et al., 2002).

The values of association reach from 0 to 1 from no– to full– association.
They cannot be negative just like their continuous counterparts, which must
be kept in mind when plotted e.g. in tornado diagrams. Similar to continuous
correlations, significance levels can also be estimated for associations.

If a uncertain nominal parameter is associated with a result distribution of
the corresponding model, the result distribution must obviously be available
in discretized, e.g. binned, form.

7.2.6 Model Data

Basin models are usually very large in size and contain a vast amount of data.
It is not possible to store all the data of each Monte Carlo run completely.
Only selected and restricted amounts of data can be handled and therefore
not all statistical methods can be used for analysis every time.

The calculation of the average is exceptional. It can be obtained just by
adding the results of each run and finally, after the last run, by dividing
through the number of runs. Hence a storage of all results of all runs can
be avoided. Variance can be treated in a similar way. More precisely, average
and variance of a quantity need only resources of the same size necessary
for the storage of the corresponding result values of two simulation runs. It
is therefore possible to store them for all quantities of interest even for grid
based spatial overlays on huge three dimensional models.

Sophisticated statistical analysis can only be performed if the complete
data sets or at least histograms are available. They are usually collected only
at some special points or for quantities of special interest. In basin modeling
it is common to collect all the results of the different simulation runs at all
well locations with logging information because calibration against these mea-
surements might be performed. Additionally, the sizes of petroleum accumu-
lations and column heights as primary targets of petroleum systems modeling
are tracked over all risk runs.

It is common to define “risk points” which are special points of interest,
where additionally all the data of all runs is collected. These are usually points
in source rocks which are of interest for maturation and expulsion timing or
points located at faults which can e.g. be important for petroleum migration.

If the spatial density of these points, with full risk data, is high and the
intermediate behavior of the fields belonging to the stored values smooth, then
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it is possible to interpolate the data through space for full reconstruction of
each risk run. Especially, in combination with predictive methods for risking,
which are discussed later in Sec. 7.5, these methods can be used to estimate
full modeling results without performing the accordant expensive risk run.
Such forecasted data sets can be generated very fast and used for further
more sophisticated statistical analyses.

Besides the risk points it is also common to explicitly track hydrocar-
bon mass amounts related to layers, facies, faults or individual structures
such as introduced in Sec. 6.10. Especially the characteristic HC masses of a
petroleum system are subjected to statistical analysis (Sec. 6.10.2). Analyses
of individual reservoir structures and accumulations raise similar problems for
identification and tracking of a structure in different risk runs as in different
events (Sec. 6.10.3). It can be solved in the same manner as in Sec. 6.10.3 just
by treating a risk run similarly as a paleo event. Again, the same structure
and accumulation tracking problems arise but are assumed to decrease with
an increasing number of grouped drainage areas.

7.3 Bayesian Approach

Calibration can be non–unique or numerically unstable dependent on the
available data. A bayesian approach for generalized calibration is presented in
this section. It can be read almost independently from the rest of this chapter
and can also be skipped if calibration topics are not of special interest.

In the following, it is assumed that N calibration data values dT =
(d1, . . . , dN ) are available. They are measured values and have an error, so
they can be described by di ±Δi. Further, it is assumed that M uncertainties
xk exist. Performing a simulation run with fixed values xT = (x1, . . . , xM )
yields a model with simulation results fi(x) as model data, which can be
compared to the calibration data.

In arbitrary calibrations it is possible to calculate the probability of how
calibration data fit a given model. Under the assumption of small error bars
and a statistical independency of measurements belonging to the data points,
it is postulated that the measurement values are normally distributed. So, the
probability of how well a model fits the calibration data is given by

p(d|x) ∝
N∏

i=1

exp

[
−1

2

(
di − fi(x)

Δi

)2
]

. (7.11)

Calibration does now imply a search of the values x, which fit the cali-
bration data best. An obviously good criterion for the best fit is looking for
the highest probability, which is called the “Maximum Likelihood” method in
statistics (Beyer et al., 1999). Caused by the minus sign in the exponent of
(7.11) it is equivalent to the search for the minimum of
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χ2 =
N∑

i=1

(
di − fi(x)

Δi

)2

(7.12)

which is the classic chi–square formula for fitting models to data. Its interpre-
tation is easy and can be visualized for simple cases: Equation (7.12) becomes
a linear regression of a straight line with the assumption of M = 2, a simple
“simulator” fi = x1ri + x2 and data values measured at some locations r
namely di = dri

(Fig. 7.20).

Fig. 7.20. Regression for the fit of a
straight line through a “cloud” of measure-
ment data. The inverse of the error bar size
determines the weight of each point r

f = x r + x
1 2

f

Some problems can arise with (7.12) in practice. Often it occurs that a
calibration is not unique (Fig. 7.21). In such a case the practitioner would
choose a value somewhere out of the middle or at the highest probability of
the according uncertainty distribution of the heat flow.

Fig. 7.21. Example with M = 5, N = 19, and objective χ2 plotted against heat
flow shift, which is known to be the most sensitive parameter. The calibration of
heat flow is not unique in the range of −5 . . . 3 mW/m2
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Even worse, occasionally a calibration is numerically unstable or yields
completely unrealistic results caused by insufficient data points combined with
some outliers. Such awkward effects can already be found in mathematically
very simple situations: Without loss of generality σi = 1 is assumed for the
following discussion. Further a simple “linear simulator” with

fi =
M∑

j=1

Rijxj or f = R · x (7.13)

is studied. The matrix R describes this simple “linear simulator”. It is easy
to show that minimizing (7.12) directly leads to

Rx = d (7.14)

which is a set of linear algebraic equations with x as unknowns. This leads
directly to the following statements:

1. The inverse R−1 does not exist in general, especially if M > N which
denotes that a unique calibration is not possible.

2. If R−1 exists it could be numerically unstable (Press et al., 2002).
3. If a solution is found, it is not ensured to be physically or geologically

meaningful.

The first statement means that calibration data could be insufficient for cali-
bration. For example present day temperature data alone is never sufficient for
paleo–heat flow calibration. The second statement expresses that calibration
data might be inconsistent leading to possibly different calibration scenarios
and the third states that calibration might be optimal outside of the allowed
parameter range of the model, e.g. a negative thermal conductivity.

The problem now, is how to get rid of these possibly awkward calibration
behaviors and introduce a method which is at least as good as the workflow
of the practitioner.

A possible solution could be a so called “Singular Value Decomposition”
of the matrix R (Press et al., 2002). This is a projection on parameters which
can be calibrated numerically stable with the available data. The rest of the
uncertainty parameters are ignored. This method has two drawbacks: First of
all it is only well defined for linear problems such as the “linear simulator”. A
generalization to non–linear problems would be very complicated if possible
at all. Second, there is still a problem with the parameters which cannot be
calibrated. Which value should they have?

Regularization is another attempt which can be tried. Instead of minimiz-
ing χ2 it is proposed to minimize

χ2 + λ
(
xT x

)
(7.15)

with a number λ which has to be selected properly. It is easy to see that
at least the first and second statement are solved with this method because
(7.14) changes to
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(
RT R + λ1

)
x = RT d

which are regularized normal equations of (7.14).4 But which value should be
taken for λ? A few ideas can be found in (Press et al., 2002) but in general
the problem remains unsolved.

All three problems are of principle nature and it is necessary to go back
to the basics of the probability definition (7.11). It is written in conditional
form stating a probability of calibration data fitting a given model. Instead it
is possible to evaluate the probability of models fitting given calibration data
following Bayes law

p(x|d) = p(x)
p(d|x)
p(d)

(7.16)

which leads down to the roots of probability theory and logic (Jaynes, 2003;
Robert, 2001). The term on the left side is called the “posterior”, the classical
probability (7.11) is situated in the nominator and called the “likelihood” and
the first term p(x) on the right side the “prior”. The term in the denominator
does not play a central role, it is for normalization only.

It is possible to evaluate (7.16) similar to (7.11) under the assumption that
all distributions have Gaussian form. One yields a minimization rule for the
objective function Φ with

Φ =
N∑

i=1

(
di − fi(x)

Δi

)2

+
M∑
i=1

(
xi − μi

σi

)2

(7.17)

where μi and σi are means and standard deviations of the uncertainty distri-
butions. The first term on the right side is the “classical” χ2 followed by an
additional term. It is derived from the uncertainty distributions and implies
that the knowledge for the definition of their shape has the same value as
the knowledge about error bars of calibration data and should be taken into
account with the same weight for calibration. The knowledge entering the def-
inition of the uncertainty distributions is therefore called “prior information”
and the distributions often just “priors”.

In case of the linear simulator, the objective

Φ =
N∑

i=1

(
di −

∑M
j=1 Rijxj

Δi

)2

+
M∑
i=1

(
xi − μi

σi

)2

must be minimized. This formula has basically the same form as (7.15). In
case of μi = 0 and σi = σ for all i they are the same with λ = 1/σ2.5 It is

4 This is only half of the truth because it is known that normal equations usually
have worse numerical properties than their “non–normal” counterparts. Depend-
ing on the numeric value of λ, the stability can still be a problem.

5 This relation yields some additional hints to how parameters such as λ should be
chosen in regularization problems.
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easy to see that the first and second statements concerning the existence and
numerical stability of R−1 vanish with the usage of (7.17).

The term associated with the prior tries to move the calibration in the
direction of the μi where the center of the distribution is located. The most
extreme case would be if there were no given calibration data. Then (7.17)
would lead to xi = μi. In general, one can assume that the priors are defined
for physically and geologically meaningful parameter ranges. The attraction
of the parameters into this region by the prior therefore ensures meaningful
solutions and solves for the problem of the third statement. This behavior
automates the procedure of the practitioner.

On the other hand if either a huge amount of data or qualitatively very
good calibration data is available the prior term can be neglected and cali-
bration approaches the classical χ2 method. In the intermediate region both
terms balance Φ in the same way as different data points balance pure χ2

calibration.
The discussion is the same for the nonlinear case (7.17) and therefore it is

expected that the prior term removes the problems associated with all three
statements in almost all cases.

The formula (7.17) provides the very simple interpretation that an un-
certainty parameter is used for calibration in exactly the same manner as a
calibration data point. For example, if definitions of uncertainty distributions
are deduced from measurements, there is no reason why they should not be
used for calibration in the same way as calibration data.

A calibration with the classical χ2 takes only calibration data into account,
whereas calibration with the objective Φ calibrates the whole model including
parameter uncertainties as well as calibration data uncertainties.

The important point about a Bayesian approach for calibration is the
definition of the prior distribution. If it is derived from measurements with
error bars, everything is o.k. But very often priors are defined just through the
experience of the modeler. So, e.g. the basement heat flow is simply known
not to be below 20mW/m2 and never to be above 140mW/m2. With the
definition of a prior such knowledge is taken quantitatively into account and
must now withstand critical considerations.

An iterative refinement of uncertainties as feedback of risk results is not
allowed in the Bayesian approach because independency of all calibration data
values must be ensured. This is completely different to the classic approach
where calibration error bars are usually mapped to uncertainty parameter
ranges. These ranges are afterwards often taken as “obvious” limits for un-
certainty distribution definitions. Distributions constructed in such a way are
not allowed to be used as priors in objective functions. Nevertheless, they are
often a good choice for Monte Carlo simulations in general.
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7.3.1 Prior Information of Derived Parameters

It is sometimes problematic to use the Bayesian approach with uncertain
derived parameters. For example the shift of a whole basement heat flow in
a huge basin model is taken into account with the same weight as e.g. one
measured bottom hole temperature value by (7.17). The weights are only given
by the size of the uncertainty but one shift of a basement heat flow, shifts many
grid values. Its prior knowledge is not based on experience alone but form a
variety of argumentations, consistency arguments, indirect observations, etc.
So the prior information which enters the calibration is obviously larger than
assumed by (7.17). For that reason it should be possible to increase the weight
of such a parameter.

There is no fixed rule for how much the weight should be increased. If the
relative uncertainties of the calibration data and the model parameter are of
the same size, then the prior term should be multiplied by approximately the
number of correlated calibration data points. If it would be much less, the
prior term would not affect the calibration and if it would be much bigger,
the calibration data would not show significant contributions. In balance, the
prior information is believed to be as important as the calibration data itself,
which is a reasonable starting point in many cases.

In the example which is shown in Figs. 7.21 and 7.22 the uncertainty in the
heat flow shift could be reduced by about two thirds by using the Bayesian
approach.

7.3.2 Correlations of Priors

Correlations of priors can be directly taken into account in the Bayesian ap-
proach. Instead of using only the diagonal elements of the covariance matrix
in (7.17) the whole matrix Σ which is explicitly written down in the two
dimensional case in (7.9) must be used:

Φ = (d − f(x))T C−1(d − f(x)) + (x − μ)T Σ−1(x − μ) . (7.18)

Here a matrix notation with Cij = Δiδik with δik = 1 for i = j and δik = 0
else was chosen.

7.3.3 Prior Information of Nominal Uncertainties

Nominal distributions (Fig. 7.13) need a special treatment in the Bayesian
framework. For example, one continuous uncertainty of the objective is

Φ = χ2 + Φpc (7.19)

with the continuous prior term

Φpc =
(

x − μ

σ

)2

(7.20)
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Fig. 7.22. The same example as Fig. 7.21 but with Bayesian objective Φ plotted
against the heat flow shift. The calibration is almost unique with a shift in the range
of −2 . . . 1mW/m2. An extra prior weight of 19 was assumed for the heat flow shift
and further rise narrows the range and moves it continuously into the direction of
the master run without shift

but for nominal distributions a mean μ or a variance σ does not exist by
definition.

In Sec. 7.2.5 association was used instead of correlation. Variance is an
“auto–correlation” so it is obvious to try

Φpn =
n∑

i=1

(Ni − ni)
2

ni

(7.21)

with n defined as the number of bins of the distribution, ni = Npi with N
as the number of samples, pk the probability of the bin k and Ni the number
of samples in bin i. It is

∑N
i=1 pi = 1. Equation (7.21) is known to follow χ2

statistics as well as its continuous counterpart Φpc (Press et al., 2002).
The prior must be calculated for one run so N = 1 and Ni = δik with k

as the bin of the drawn sample. Evaluation of (7.21) yields

Φpn =
1
pk

− 1 . (7.22)

This is a reasonable choice because the objective Φpn is decreasing with in-
creasing pk similar as Φpc with σ2. With rising uncertainty the prior becomes
less important.

In practice, it is possible to add a constant which does not influence the
minimization procedure of the objective and use
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Φpn =
1
pk

− 1
pm

(7.23)

with m as the index of the bin of the master run instead of (7.22). This has
the advantage that Φpn = 0 for the master run. If x = μ is chosen in the
continuous case then it is analogously Φpc = 0 and Φ = χ2 for the master run.

7.4 Deterministic Sampling

In the previous section it was shown that the Monte Carlo method is very
general. Many topics such as risking, calibration and understanding could
be treated simultaneously by just analyzing the results of one Monte Carlo
simulation. Occasionally, one is interested only in special questions which are
not related to the topic of general risking. In these cases a random and global
sampling of the space of uncertainty is often not necessary anymore and it is
possible to avoid expensive simulation runs.

The most extreme cases are special algorithms for highly specialized ques-
tions, e.g. one is only interested in classical calibration. This can be seen as a
minimization problem of one χ2 function. Special algorithms exist to optimize
such a minimization (Press et al., 2002). Expensive simulations are avoided
and high numerical accuracy is achieved. However, such algorithms have some
serious drawbacks. First, in basin modeling high numerical accuracy is usu-
ally not needed because of many uncertainties. Second, these algorithms are
so specialized that expensive simulations performed for a minimization of χ2

are not reusable for a minimization of Φ, which is also often an issue.
Other disadvantages are technical in nature (e.g. bad parallelization prop-

erties) because many sophisticated algorithms are of primarily sequential na-
ture, e.g. following a gradient downhill to the minimum.

Thus one is looking for methods, which are more efficient than arbitrary
Monte Carlo simulations, for the price of losing generality and which are
less special than sophisticated algorithms with high numerical accuracy. Ob-
viously, the targets of interest must be specified exactly before starting to
search for appropriate methods.

Risking is the part of Monte Carlo simulations which is most dependent
on the random structure of sampling caused by the nature of probabilities.
Thus one has to dispense with risking in its general form. On the other hand,
one does not need to dispense with “simple” risking such as the calculation
of minimum and maximum scenarios. Meaningful targets are hence “simple”
risking, calibration, and “simple” understanding as far as understanding can
be found without the calculation of statistical quantities.

Other targets, which will be treated more explicitly in Sec. 7.5, are inter–
and extrapolation techniques between different simulations for forecasting re-
sults. Abdication of risking is not necessary anymore. It can be studied with
forecasted models.
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7.4.1 Cubical Design

The most simple uncertainty sampling design, which fulfills the conditions of
the previous discussion, is simply sampling all combinations of minimum and
maximum choices of all uncertainty parameters. In uncertainty space this has
the form of a (hyper)cube (Fig. 7.23) and is therefore called cubical design.6

Fig. 7.23. Example of cubical design
in uncertainty space with three param-
eters. The bold circles depict the param-
eter choices for the simulation runs Heat Flow
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Cubical sampling can be used for “simple” risking, calibration, “simple”
understanding, and forecasting (Sec. 7.5): the topic of “simple” risking is
solved under the assumption of “non–pathological” behavior of the simulator.
In such a case, minimum and maximum values of uncertainty parameters
would map to minimum and maximum simulation results and thus to result
ranges similar to error bars. It is clear that complicated processes such as
migration cannot be treated this way.

Calibration is performed analogously. Cubical design samples the uncer-
tainty space regularly and so simulation results are easy to interpolate for
good calibration.

Understanding is improved because at least all extreme combinations are
simulated. Again under the assumption of smoothness it is possible to cal-
culate interaction effects out of the results (Montgomery, 2001). In general,
all results can be inter– and extrapolated, e.g. linearly, which is forecasting.
More about this in Sec. 7.5.1.

Nevertheless, cubical design has the serious drawback that the number
of simulation runs to be performed increases exponentially with the number
of uncertain parameters. For that reason one is often forced to omit certain
combinations. There exists a whole theory of “Design of Experiments (DOE)”
treating problems such as this (Montgomery, 2001). Keywords are “fractional
factorial design” for omitting special combinations of uncertainty parameters
or “screening”. Screening is important because it tries to find the important
6 It is exactly cubical if the units of the uncertainties are chosen so that the mini-

mum and maximum values have the same numerical value for all parameters.
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and sensitive parameters. The other parameters could be omitted, which dras-
tically reduces the number of combinations. “Blocking” is another important
method, which omits sensitive parameters for the better recognition of the
effects of the less important parameters. Other designs such as pure cubi-
cal designs are proposed, too, e.g. cubical face centered, which obviously can
be very valuable. But the theory was created for engineering needs based on
real experiments and not on deterministic reproducible computer simulations.
Thus only basic ideas such as screening or blocking can be transferred.

Simulation runs for the cubical design can be performed in parallel. The
number of parallel runs is restricted to one cube. Multiple cubes themselves
are evaluated sequentially if their design is iteratively refined as proposed in
Montgomery (2001). Thus simulation runs can to some degree be performed in
parallel but not in such a general way as for arbitrary Monte Carlo simulations.

Cubical designs are very valuable for fast uncertainty analyses especially
if the number of uncertainties is small.

7.4.2 Other Deterministic Designs

A method that is similar to latin hypercube sampling is Sobol’ sequence of
“quasi–random” numbers (Press et al., 2002). It guarantees a smoother and
more homogeneous sampling than pure “pseudo–random” sampling.7 The
sampling is smoothly refined by increasing numbers in the sequence and it
is not influenced by extra parameters such as strip widths.

Sobol’ sequence generates quasi–random numbers, which are calculated in
any case with a deterministic algorithm, whereas LHC sampling is based on
pseudo–random numbers.8 It can therefore be expected, that LHC sampling
generates random numbers with better statistical properties.9 Additionally,
an implementation of Sobol’ sequence, such as in Press et al. (2002), does not
allow an arbitrary number of independent and different sampling realizations,
which can be achieved easily for LHC sampling by different initialization of the
random number generator. Independently created samplings can thus usually
not be merged to one large with better statistical properties. In practical
work this is e.g. a drawback for parallel processing or merging of different
risk scenarios. Workarounds, such as sequential precalculation of the random
numbers, must be performed (Bücker et al., 2008).

7 “Pseudo–random” numbers are deterministic numbers which are generated in
a way that they pass statistical tests for random numbers. Therefore they are
random in practice. “Quasi–random” numbers only appear to be “random”.

8 Obviously, it is even possible to combine LHC sampling with real random num-
bers.

9 Better statistical properties are here defined as a larger number of passed statis-
tical tests.
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7.5 Metamodels

Interpolation and extrapolation of results between different simulations is fore-
casting. A method which forecasts all important results is called a “meta-
model” or a “surrogate” (Simpson et al., 1997). A metamodel can be used for
everything that can be done with the corresponding “real model”, e.g. risking.

Metamodels are very important in basin modeling because of the high
simulation effort, especially the long simulation times of 3D basin models. In
contrast, forecasting is usually very fast, often by a factor of more than a
million.

Forecasting does usually not produce the exact results but only approxi-
mations. Thus metamodels are often restricted in their applicability. Highly
non–linear effects such as hydrocarbon spilling can usually not be forecasted
with metamodels.

An overview of common metamodeling methods is given in the following.
After this the usage of metamodels for calibration is discussed. Based on
the high performance of response surface based metamodels, it is shown that
Markov chain Monte Carlo algorithms can be applied.

7.5.1 Response Surfaces

The usage of response surfaces for interpolation and extrapolation is very
popular in many fields of science. Very good textbooks are available (My-
ers and Montgomery, 2002; Box and Draper, 1987; Khuri and Cronell, 1996;
Montgomery, 2001). The method is also becoming popular in basin modeling
(Wendebourg, 2003).

Response surfaces are low order multivariate polygons which are fitted with
least squares regression techniques to the simulation results. Thus, for example
a model f(x1, x2) with two uncertainty parameters, is typically approximated
by

f ≈ b0 + b1x1 + b2x2 + b11x
2
1 + b22x

2
2 + b12x1x2 (7.24)

with bi and bik calculated from a least squares fit (Fig. 7.24).

Fig. 7.24. Illustration of a response sur-
face with two uncertainty parameters x1

and x2. Crosses indicate simulation re-
sults for given xi e.g. temperatures for
given heat flow and bulk conductivity
values. Generally, they do not match the
response surface exactly
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Therefore response surfaces are ideal for approximating smooth and con-
tinuous dependencies. Discontinuities and oscillations cannot be reproduced.

It is common to introduce a short hand notation for quadratic terms so
that (7.24) becomes

f ≈ b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 with x3 = x2x2, b3 = b22, . . . .

In general there are k parameters xj with j = 1, . . . , k. The number k is
determined by the number of uncertainties M and it is k = M for linear
response surfaces or k = M(M +3)/2 for approximations including quadratic
terms.

For the fit, some data values yi = fi(xi1, . . . , xik) of already performed
simulations are needed. So finally a vector bT = (b0, . . . , bk) for optimization
of approximation

yi ≈ b0 + b1xi1 + b2xi2 + . . . + bkxik

or in vector notation y ≈ Xb with Xij = xi,j−1 for j > 1 and Xi1 = 1
is searched. A least squares fit results in minimization of (y − Xb)2 and
evaluation yields 10

b = (XT X)−1XT y . (7.25)

A measure of goodness σg of this approximation can be evaluated by

σ2
g =

(y − Xb)2

N
. (7.26)

This simply denotes the quality of a fit by summing up the quadratic devia-
tions and dividing through the number of points.11 A safer alternative, which
takes outliers into account, can be defined by the maximal deviation

σg = max
i

∣∣∣∣∣yi −
∑

k

Xikbk

∣∣∣∣∣ . (7.27)

Design forms of cubical type are very often used as the “natural” sam-
pling procedure for the creation of response surfaces (Myers and Montgomery,
2002; Montgomery, 2001). Under the assumption of smooth behavior of the
approximated model, it is obvious that cubical design is an effective sampling
10 Equation (7.25) is known to be highly unstable and badly conditioned in many

practical examples. More robust for the solution of b is a decomposition of X into
singular values and direct solution of y = Xb in appropriate subspaces (Press
et al., 2002).

11 At first glance this seems to be in contradiction to unbiased estimators of variance
such as σ2 = (y−Xb)2/(N−k−1) and defined in Myers and Montgomery (2002).
But this formula is linked tightly to the variation of b under random variation of
X due to measurement uncertainties. This is a completely different objective.
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strategy as all minimum–maximum combinations are studied. Additionally,
the number of unknowns to be determined for a quadratic response surface
k + 1 = M(M + 3)/2 + 1 almost matches, in cases of small numbers of uncer-
tainties, M the number of simulations 2M + 1 which have to be performed:12

M 1 2 3 4 5 . . .
k + 1 3 6 10 15 21 . . .

2M + 1 3 5 9 17 33 . . .

Thus only an optimal small number of simulations have to be performed
and good matches at the points of simulation itself, leading to small σg, are
enforced.

In Figs. 7.25 and 7.26 two typical diagrams of response surface models are
shown. The formulas describing these isolines can easily be extracted and used
for further studies. A high value of the coefficient of a cross term, e.g. x1x2,
indicates an interaction between the impact of the corresponding uncertainty
parameters. This is information which may help to better understand a model.

In Fig. 7.26 negative values for the transformation ratio appear. This is due
to the polygonal form of the method. It can therefore not be used in these
regions. Generally, it often occurs that simulation results vary faster than
can be approximated with simple polygons. In such cases response surface
modeling is often performed only in limited regions with adapted sampling of
the uncertainty space (Montgomery, 2001).

Another example, which could not be treated in general by response sur-
faces, are pressure calibrations via variation of permeabilities, especially if
permeability is expressed in logarithmic units. Pore pressure is restricted to
the lower limit by hydrostatic pressure and to lithostatic pressure at the up-
per limit but a polynomial fit of response surface type is generally unlimited
for infinitely increasing or decreasing uncertainty parameters. However, in a
limited region of permeability variations a smooth behavior of pore pressure
with good fitting response surfaces can be obtained.

The creation of a metamodel is mainly determined by the solution of a
linear set of equations of dimension (k+1)×(k+1) for each result point which
is modeled. In case of calibration purposes this number is given by the number
of calibration points N . Thus, the creation of a response surface metamodel
is performed within seconds on modern computers because in practice mostly
M < 10 and N < 1000.

The calculation of response surface metamodel results is an evaluation of
simple polygons and this is extremely fast. In most computer applications this
appears to be almost instantaneous.

7.5.2 Fast Thermal Simulation

Fast thermal simulation is a special method of fast heat flow analysis (Nielsen,
2001). It is based on the approximative linear form of the partial differential
12 All combinations plus master run.
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Fig. 7.25. Response surface isolines for
temperature in Celsius in a source rock.
Dependent on heat flow and SWI tem-
perature variations the isolines are lin-
ear as expected

Fig. 7.26. Response surface isolines
for transformation ratio in [%] at same
point as in Fig. 7.25. Negative values
indicate a region where the response
surface method cannot be used

equation

ρc
∂T

∂t
− ∇ · (λ · ∇T ) = Q (7.28)

of heat flow. Here T is the temperature, λ are the thermal conductivities, t is
the time, ρ the density, c the specific heat capacity, and Q are external heat
sources. For a unique compilation of heat flow analysis, boundary and initial
conditions must be specified. At the top of the basin usually the temperature
is given, at the sides, a condition of prohibited horizontal heat flow is applied
and at the bottom, basement heat flows are specified:

T = TSWI on top,
∇T = 0 at the sides,

−λ · ∇T = q at the bottom,
T |t=initialtime = T0 at initial time

(7.29)

with TSWI the “Sediment Water Interface” temperature at top of the basin,
q the basement heat flow, and T0 the temperature profile at initial time.

If λ, ρ, and c are assumed to be smooth and weakly temperature–
dependent then (7.28) is almost linear. This property can be utilized:

Firstly, one should take a look at the following boundary value problem:

ρc
∂T̃

∂t
− ∇ · (λ · ∇T̃ ) = 0 with

T̃ = 0 on top,
∇T̃ = 0 at the sides

−λ · ∇T̃ = q̃ at the bottom and
T |t=initialtime = 0 at initial time.

(7.30)
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A temperature profile T +xqT̃ with T as the solution of (7.28) with boundary
and initial conditions (7.29) and T̃ , a solution of (7.30) is a solution of (7.28)
with boundary and initial conditions such as (7.29), which must only be mod-
ified at the bottom by −λ · ∇T = q + xqq̃. Herein, xq is just an arbitrary
number, which can be interpreted as a derived uncertainty parameter for a
variation of form q̃.

The important point is that with only two solutions T and T̃ one can
construct multiple solutions T + xqT̃ for heat flow variations q + xqq̃ for
any value xq just by linear combination. The form of xqq̃ defines the space
of possible heat flow variations. Obviously, multiple variations xq,iq̃i can be
combined just by summing up the solutions xq,iT̃i. Hence it is possible to
quickly create flexible variations of the original heat flow and temperature
pattern.

It has been proposed by Nielsen (2001) to vary the heat flow below each
of the four model corners.13 Each paleo–heat flow map is calculated by inter-
polation with two dimensional form functions analogously to (8.22). A corner
variation with its shape function states one variation q̃i with i = 1, . . . , 4 for
all four corners. The sum of all four corner variations describes tilting and
twisting variations of the original heat flow distribution. The method should
not be applied in cases when mismatches to the measured data require heat
flow shifts very differently in many locations, e.g. from well to well. For such
cases methods as described in Sec. 3.9 are more advantageous.

Additionally it must be noted, that q̃ can vary independently to q through
time. Hence heat flow variations in time can be incorporated. For example,
it is possible to shift the heat flow of each of the four corner points linearely
with time.

The set T and T̃ can be interpreted as a metamodel for forecasting mani-
fold heat flow histories.

A response surface which is created as an interpolation of two different
solutions T1 and T2 of (7.28) with the boundary conditions (7.29) once with
bottom heat flow q and the other with q+ q̃, yields almost the same results as
the fast thermal simulation caused by the linearity of the differential equation
system. The main difference between both methods comes from the fact, that
the differential equation is usually not exactly linear. Parameters such as
the thermal conductivity are typically weak but non–linearly temperature
dependent. The response surface can then be interpreted rather as a “secant
approach”, whereas the fast thermal simulation is following more a “tangent”
(Fig. 7.27). Response surfaces can incorporate smooth non–linearities to some
degree of accuracy with their quadratic terms (7.24). On the other hand,
as they are caused by the linear regression, they do not need to match the
simulation results from which they were created exactly, whereas fast thermal
13 It is assumed here that the model has a rectangular base area. Generally, it does

not matter if the corner points are not inside of the model.
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simulations reproduce, at least in a region of small variation, the original
models exactly.

Fig. 7.27. Illustration of the differences
between response surface and fast ther-
mal simulations. The curvature of tem-
perature, which comes from the nonlin-
earities is exaggerated for demonstra-
tion. Due to quadratic terms the re-
sponse surface is able to approximate
non–linearities whereas the fast thermal
simulation approximation is restricted
to a straight “tangential” line. The re-
sponse surface does not in general need
to match the temperature exactly at any
point whereas the fast thermal simula-
tion matches at T = T1

Simulated

Temperature

Response

Surface
Fast Thermal

Approximation

T
2

T =T
1

T

q

q~

~

Heat Flow

Te
m

p
e

ra
tu

re

The calculation of T and T̃ needs about the same effort. The evaluation of
a forecast is just the evaluation of T +xqT̃ and thus can be performed almost
instantaneously. Thus the effort and the needed resources for the creation
of the metamodel as well as the evaluation performance of the fast thermal
simulation and the response surface are almost the same.

Fast thermal simulations are not limited to heat flow variations only but
can also be applied to thermal conductivity variations. This is achieved by
introducing a derived uncertainty parameter xλ for the variation of thermal
conductivity according to λ + xλλ̂ with a λ̂ describing the form of the varia-
tion. The solution T̂ of the differential equation

∇ · (λ · ∇T̂ ) = −∇ · (λ̂ · ∇T ) (7.31)

with boundary conditions such as (7.29) but with q = 0 can be added to the
solution T in the same manner as T̃ to construct valid heat flow histories for
thermal conductivity variations. Here, the fast thermal simulation is restricted
to “small” variations in conductivity because quadratic terms are neglected
in the deviation of (7.31).

7.5.3 Kriging

Kriging is another method for interpolation and extrapolation in multi dimen-
sional spaces. It is based on the minimization of statistical correlations and
derived as the best linear unbiased estimator. Originally it was developed for
spatial inter– and extrapolation only but it can also be applied to abstract
uncertainty spaces. Various different methods of kriging exist. To the authors
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knowledge it has not been applied up to now in any case as a metamodel in
basin modeling and thus we refer only to the literature of geostatistics (Davis,
2002). However, it can be expected that kriging might yield good results in
many cases especially when simple functions such as (7.24) are not appropriate
at all for the description of the model or process of interest.

7.5.4 Neural Networks

Neural Networks can be interpreted as metamodels.
Neural Networks must be trained. They learn. Three classes of learning

are usually distinguished (Zell, 1997):

• supervised learning
• reinforcement learning
• unsupervised learning

Supervised learning is based on comparison with correct results. These
results are simulation results in basin modeling. Supervised learning is usually
the fastest way of learning. Nevertheless many expensive simulation runs must
be performed for this way of learning.

Reinforcement learning is based on reduced feedback. The network is
taught only with information about the correctness of its output but not the
correct result itself. Therefore reinforced learning networks need even more
training than supervised learning networks. Although the amount of feedback
data is small it, too, must be available. This means that many expensive
simulation runs must be performed for this method.

Unsupervised learning is performed without feedback. The network should
learn by classifications in its own right e.g. by “self organization”. Caused by
the complexity of a typical basin model, it is expected that unsupervised
learning neural networks will be improper for result predictions.

The high effort for learning leads to the conjecture that neural networks
are not the best alternative for basin metamodeling.

7.5.5 Other Methods for Metamodeling

Methods such as rule based expert systems or decision trees are obviously
limited in their applicability for forecasting. Under special circumstances they
can be interpreted as metamodels but not in general.

Other special techniques are based on analysis in frequency space. Due to
the complex geometry in geology, these methods cannot usually be applied to
basin modeling.

7.5.6 Calibration with Markov Chain Monte Carlo Series

The Markov chain Monte Carlo (MCMC) method is designed for the sampling
of multi–variate probability distributions (Neal, 1993; Besag, 2000).
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Calibration is a search of high probability regions where data fits the model
which is not trivial in high dimensional spaces. So MCMC can be misused to
find the regions of calibration. Additionally, the sampling allows the error
bars of measurement values to be mapped to uncertainty distributions.14 The
whole subject of search and mapping is called “inversion” and thus MCMC is
also a method for inversion.

Several different algorithms for MCMC exist, which can be shown to be
directly related (Neal, 1993; Besag, 2000). This section is restricted to the
classical Metropolis algorithm. It basically works as follows:

According to a distribution, with some special properties which are of
no interest here, random jumps are performed in uncertainty space. If the
probability density of the distribution, which should be sampled increases, the
jump is accepted. If the density decreases it can be rejected or accepted by a
special criterion with a random level of acceptance. This ensures that MCMC
also samples low probability regions but it focuses primarily on the highly
probable regions. In Fig. 7.28 such a MCMC “random walk” is illustrated.
Sampling can only be performed on a small fraction of jumps typically every
100th or less to ensure independency of the samples.

Fig. 7.28. Illustration of Markov chain
Monte Carlo sampling with a random walk.
Isolines indicate the probability density in
the x1 – x2 uncertainty diagram. The “ran-
dom walk” is attracted by the region of
high probability
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Obviously, it is clear that MCMC is not very efficient in sampling because
most of the jumps which are model results are ignored for sampling, some of
the jumps are rejected and additionally, the random walks can become very
long before reaching their high probability calibration targets. Proper MCMC
sampling can become a delicate choice of the start point and jump width.
Therefore, in basin modeling MCMC is only usable with fast metamodels
such as response surfaces or fast thermal simulations. On the other hand, in
theory MCMC guarantees to find the regions of interest.
14 These distributions are not allowed to be used in a Bayesian approach, see Sec. 7.3.
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Summary: Models are usually constructed on the basis of uncertain data.
These uncertainties cause additional tasks during comprehensive model anal-
ysis. Firstly, modeled results must be classified according to their probability.
For example, confidence intervals of special output scenarios should be spec-
ified or even more concrete a risk of failure must be quantified. Secondly, the
behavior of model results with the variation of uncertain parameters should
be understood. Which parameter affects which part of the result? Finally,
uncertainties should be reduced by comparison with additional calibration
data. The three tasks are “risking”, “understanding”, and “calibration”.

Obviously, all three tasks can be studied with multiple simulation runs.
Uncertain parameters must therefore be varied according to their range of
uncertainty. Monte Carlo simulations are an effective method of treating all
three tasks simultaneously. Multiple simulation runs with randomly drawn
uncertainty parameters, according to their probability of occurrence, are per-
formed. Another advantage of the approach is the possibility of unrestricted
parallel processing. This is especially valuable because simulation runs are
often very time consuming and therefore expensive. The method can fur-
ther be optimized with latin hypercube sampling, which avoids clustering of
parameter combinations.

A model can be calibrated in two different ways, with and without consid-
eration of information which describes data uncertainties of the model, e.g.
limits or ranges of an uncertain input parameter. This “prior” information
is taken into account in the Bayesian approach. Ambiguous and geologically
meaningless calibrations can be avoided with this approach.

Simulation runs are very time consuming. Response surfaces are a method
for fast interpolation between simulation results. Other methods for rapid
result prediction, such as the fast thermal simulation, are also discussed.
Particularly with regard to heat flow problems, response surfaces and fast
thermal simulations can be used efficiently for calibration. A very robust
algorithm concerning inversion is the Markov Chain Monte Carlo (MCMC)
sampling, which in principal guarantees the best possible calibration due to
random jumps in the uncertainty space.
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