
PHP Data Types

Variables can store data of different types, and different data types can do different things.

PHP supports the following data types:

 String

 Integer

 Float (floating point numbers - also called double)

 Boolean

 Array

 Object

 NULL

 Resource

PHP String

A string is a sequence of characters, like "Hello world!".A string can be any text inside quotes. You

can use single or double quotes:

Example

<?php

$x = "Hello world!";

$y = 'Hello world!';

echo $x;

echo "
";

echo $y;

?>

PHP String Functions

strlen() - Return the Length of a String

The PHP strlen() function returns the length of a string.

Example

Return the length of the string "Hello world!":

<?php

echo strlen("Hello world!"); // outputs 12

?>

str_word_count() - Count Words in a String

The PHP str_word_count() function counts the number of words in a string.

Example

Count the number of word in the string "Hello world!":

<?php

echo str_word_count("Hello world!"); // outputs 2

?>

strrev() - Reverse a String

The PHP strrev() function reverses a string.

Example

Reverse the string "Hello world!":

<?php

echo strrev("Hello world!"); // outputs !dlrow olleH

?>

strpos() - Search For a Text Within a String

The PHP strpos() function searches for a specific text within a string. If a match is found, the

function returns the character position of the first match. If no match is found, it will return

FALSE.

Example

Search for the text "world" in the string "Hello world!":

<?php

echo strpos("Hello world!", "world"); // outputs 6

?>

Tip: The first character position in a string is 0 (not 1).

str_replace() - Replace Text Within a String

The PHP str_replace() function replaces some characters with some other characters in a string.

Example

Replace the text "world" with "Dolly":

<?php

echo str_replace("world", "Dolly", "Hello world!"); // outputs Hello Dolly!

?>

PHP Integer

An integer data type is a non-decimal number between -2,147,483,648 and 2,147,483,647.

Rules for integers:

 An integer must have at least one digit

 An integer must not have a decimal point

 An integer can be either positive or negative

 Integers can be specified in: decimal (base 10), hexadecimal (base 16), octal (base 8), or
binary (base 2) notation

In the following example $x is an integer. The PHP var_dump() function returns the data type and

value:

Example

<?php

$x = 5985;

var_dump($x);

?>

PHP Float

A float (floating point number) is a number with a decimal point or a number in exponential form.

In the following example $x is a float. The PHP var_dump() function returns the data type and value:

Example

<?php

$x = 10.365;

var_dump($x);

?>

PHP Boolean

A Boolean represents two possible states: TRUE or FALSE.

$x = true;

$y = false;

Booleans are often used in conditional testing. You will learn more about conditional testing in a

later chapter of this tutorial.

PHP Array

An array stores multiple values in one single variable.

In the following example $cars is an array. The PHP var_dump() function returns the data type

and value:

Example

<?php

$cars = array("Volvo","BMW","Toyota");

var_dump($cars);

?>

PHP Object

An object is a data type which stores data and information on how to process that data.In PHP, an

object must be explicitly declared.

First we must declare a class of object. For this, we use the class keyword. A class is a structure that

can contain properties and methods:

Example

<?php

class Car {

 function Car() {

 $this->model = "VW";

 }

}

// create an object

$herbie = new Car();

// show object properties

echo $herbie->model;

?>

PHP NULL Value

Null is a special data type which can have only one value: NULL.A variable of data type NULL is a

variable that has no value assigned to it.

Tip: If a variable is created without a value, it is automatically assigned a value of NULL.

Variables can also be emptied by setting the value to NULL:

Example

<?php

$x = "Hello world!";

$x = null;

var_dump($x);

?>

PHP Resource

The special resource type is not an actual data type. It is the storing of a reference to functions and

resources external to PHP.A common example of using the resource data type is a database call.

PHP Constants

A constant is an identifier (name) for a simple value. The value cannot be changed during the

script.A valid constant name starts with a letter or underscore (no $ sign before the constant name).

Note: Unlike variables, constants are automatically global across the entire script.

Create a PHP Constant

To create a constant, use the define() function.

Syntax

define(name, value, case-insensitive)

Parameters:

 name: Specifies the name of the constant

 value: Specifies the value of the constant

 case-insensitive: Specifies whether the constant name should be case-insensitive. Default is
false

Example

Create a constant with a case-sensitive name:

<?php

define("GREETING", "Welcome to W3Schools.com!");

echo GREETING;

?>

Example

Create a constant with a case-insensitive name:

<?php

define("GREETING", "Welcome to W3Schools.com!", true);

echo greeting;

?>

PHP Operators

Operators are used to perform operations on variables and values.

PHP divides the operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Increment/Decrement operators

 Logical operators

 String operators

 Array operators
 Conditional assignment operators

PHP if...else...elseif Statements

Conditional statements are used to perform different actions based on different conditions.

PHP Conditional Statements

Very often when you write code, you want to perform different actions for different conditions. You

can use conditional statements in your code to do this.

In PHP we have the following conditional statements:

 if statement - executes some code if one condition is true

 if...else statement - executes some code if a condition is true and another code if that

condition is false

 if...elseif...else statement - executes different codes for more than two conditions

 switch statement - selects one of many blocks of code to be executed

PHP - The if Statement

The if statement executes some code if one condition is true.

Syntax

if (condition) {

 code to be executed if condition is true;

}

Example

Output "Have a good day!" if the current time (HOUR) is less than 20:

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

}

?>

PHP - The if...else Statement

The if...else statement executes some code if a condition is true and another code if that condition

is false.

Syntax

if (condition) {

 code to be executed if condition is true;

} else {

 code to be executed if condition is false;

}

Example

Output "Have a good day!" if the current time is less than 20, and "Have a good night!"

otherwise:

<?php

$t = date("H");

if ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

PHP - The if...elseif...else Statement

The if...elseif...else statement executes different codes for more than two conditions.

Syntax

if (condition) {

 code to be executed if this condition is true;

} elseif (condition) {

 code to be executed if first condition is false and this condition is true;

} else {

 code to be executed if all conditions are false;

}

Example

Output "Have a good morning!" if the current time is less than 10, and "Have a good day!" if the

current time is less than 20. Otherwise it will output "Have a good night!":

<?php

$t = date("H");

if ($t < "10") {

 echo "Have a good morning!";

} elseif ($t < "20") {

 echo "Have a good day!";

} else {

 echo "Have a good night!";

}

?>

PHP switch Statement

The switch statement is used to perform different actions based on different conditions.

The PHP switch Statement

Use the switch statement to select one of many blocks of code to be executed.

Syntax

switch (n) {

 case label1:

 code to be executed if n=label1;

 break;

 case label2:

 code to be executed if n=label2;

 break;

 case label3:

 code to be executed if n=label3;

 break;

 ...

 default:

 code to be executed if n is different from all labels;

}

This is how it works: First we have a single expression n (most often a variable), that is evaluated

once. The value of the expression is then compared with the values for each case in the structure.

If there is a match, the block of code associated with that case is executed. Use break to prevent

the code from running into the next case automatically. The default statement is used if no match

is found.

Example

<?php

$favcolor = "red";

switch ($favcolor) {

 case "red":

 echo "Your favorite color is red!";

 break;

 case "blue":

 echo "Your favorite color is blue!";

 break;

 case "green":

 echo "Your favorite color is green!";

 break;

 default:

 echo "Your favorite color is neither red, blue, nor green!";

}

?>

PHP Functions

The real power of PHP comes from its functions. PHP has more than 1000 built-in functions, and

in addition you can create your own custom functions.

PHP Built-in Functions

PHP has over 1000 built-in functions that can be called directly, from within a script, to perform a

specific task.

PHP User Defined Functions

Besides the built-in PHP functions, it is possible to create your own functions.

 A function is a block of statements that can be used repeatedly in a program.

 A function will not execute automatically when a page loads.

 A function will be executed by a call to the function.

Create a User Defined Function in PHP

A user-defined function declaration starts with the word function:

Syntax

function functionName() {

 code to be executed;

}

Note: A function name must start with a letter or an underscore. Function names are NOT case-

sensitive.

Tip: Give the function a name that reflects what the function does!

In the example below, we create a function named "writeMsg()". The opening curly brace ({)

indicates the beginning of the function code, and the closing curly brace (}) indicates the end of

the function. The function outputs "Hello world!". To call the function, just write its name followed

by brackets ():

Example

<?php

function writeMsg() {

 echo "Hello world!";

}

writeMsg(); // call the function

?>

PHP Function Arguments

Information can be passed to functions through arguments. An argument is just like a variable.

Arguments are specified after the function name, inside the parentheses. You can add as many

arguments as you want, just separate them with a comma.

The following example has a function with one argument ($fname). When the familyName()

function is called, we also pass along a name (e.g. Jani), and the name is used inside the function,

which outputs several different first names, but an equal last name:

Example

<?php

function familyName($fname) {

 echo "$fname Refsnes.
";

}

familyName("Jani");

familyName("Hege");

familyName("Stale");

familyName("Kai Jim");

familyName("Borge");

?>

The following example has a function with two arguments ($fname and $year):

Example

<?php

function familyName($fname, $year) {

 echo "$fname Refsnes. Born in $year
";

}

familyName("Hege", "1975");

familyName("Stale", "1978");

familyName("Kai Jim", "1983");

?>

