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Foreword

This is an important book, which I hope will be studied by everybody
concerned with physics and astronomy. I can guarantee that the student
who works steadfastly through the many splendid examples will end by
knowing a very great deal about relativity and cosmology. I can also
guarantee that the practised expert will find much that is a surprise and a
delight.

Backed by many years of distinguished research, the book is a
masterpiece of clarity. From his earliest days as a graduate student, Jayant
Narlikar has always been an incisive writer and lecturer. The mystery
about a lecture by Narlikar is to understand how he manages to go at such
an apparently leisurely pace, to write on a blackboard with extreme
precision and without haste, and yet at the end of an hour to have covered
an immense amount of ground. The solution to the mystery has to be that
he wastes less time than most of us on irrelevancies, which is just what the
reader of this book will find from the first page to the last. Author,
publisher, and reader are all to be congratulated.

I wrote the above at the time of the first edition of this book. No word
needs changing but a few need adding. This is not only an important book.
It is the best book, and I believe by a considerable margin. Pity the
student who doesn’t work from it.

Fred Hoyle






Preface to the first edition

The progress of modern cosmology has been guided by both observational
and theoretical advances. The subject really took off in 1917 with a paper
by Albert Einstein that attempted the ambitious task of describing the
universe by means of a simplified mathematical model. Five years later
Alexander Friedmann constructed models of the expanding universe that
had their origin in a big bang. These theoretical investigations were
followed in 1929 by the pioneering work on nebular redshifts by Edwin
Hubble and Milton Humason, which provided the observational founda-
tions of present-day cosmology. In 1948 the steady state theory of
Hermann Bondi, Thomas Gold, and Fred Hoye added a spice of
controversy that led to many observational tests, essential for the healthy
growth of the subject as a branch of science. Then in 1965 Arno Penzias
and Robert Wilson discovered the microwave background, which not only
revived George Gamow’s concept of the hot big bang proposed nearly two
decades before, but also prompted even more daring speculations about
the early history of the universe.

The landmarks mentioned above have led to many popular and
technical books on cosmology. In particular, the rapid growth of interest
in the areas of general relativity and cosmology during the 1970s was
reflected in a number of classic textbooks that came out in the early 1970s.
The purpose of the present textbook is to introduce the reader to the state
of the subject in the early 1980s. However, the approach adopted here is
different from that found in most other texts on the subject, and it is
perhaps desirable to state what the differences are and why they have
been introduced.

For example, it is usual to find cosmology appearing at the end of a text
on general relativity, introduced more as an appendage than as a subject
in its own right. Perhaps this is one reason why cosmology still stands

Xiii



AV Freface o the first edition

apart from the rest of astronomy, to which it really belongs. The
astronomer tends to regard cosmology as a playground for general
relativists rather than as a logical extension of extragalactic astronomy. To
correct this tendency, the relative importance of cosmology and general
relativity has been inverted in this text. Chapter 2 introduces general
relativity more as a tool for studying cosmology than as a subject in its own
right. Thus the relativist may find many topics dealt with at a superficial
level or not at all. This chapter covers only those topics that are really
necessary for understanding the large-scale geometrical properties of the
universe. I have taken this approach in the hope that the relatively
elementary treatment of general relativity will not put a newcomer off, as
a more exhaustive treatment might well do. The expert relativist may skip
this chapter and refer to it only for fixing the notation.

Chapters 3 and 4 introduce the standard models of cosmology as
solutions of Einstein’s equations. The tools developed in Chapter 2 will be
found applicable here, and the reader will find the pace more relaxed than
in Chapter 2.

Chapters 5, 6, and 7 concentrate on the physical aspects of standard
cosmology. Gamow’s idea of primordial nucleosynthesis, the current state
of ignorance on galaxy formation, the properties of the microwave
background, and the various recent contributions of particle physics to our
understanding of the early universe are discussed here.

Perhaps this would have been the appropriate stage to move on to
observational cosmology. However, I felt that the reader should also be
taken on a short excursion into nonstandard cosmology. Contrary to the
view propagated (unfortunately) by many experts in cosmology today, the
subject is not a closed book, nor is standard cosmology the only answer to
the problem of the origin and the evolution of the universe. Part III of this
book introduces some alternatives to the standard models.

Although some readers may prefer to see an observational test
discussed immediately after the theoretical prediction, I have left observa-
tions to the last part of the book. This approach has made an overall
assessment of the various models possible. A survey of cosmological
observations shows how better techniques and a better appreciation of
errors and uncertainties have led to frequent reassessments (a classic
example being the value of Hubble’s constant, which is still uncertain!). I
have therefore not gone into very many observational details, but have
emphasized how the observations are made and the likely sources of
errors. In any case it would be unwise to go into too many details in an
introductory text.
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In spite of many remarkable advances, cosmology is still very much an
open subject. On the observational side, the launching of the space
telescope in the mid-1980s is likely to revolutionize our view of the
universe. On the theoretical side, the Grand Unified Theories (GUTs) are
still grappling with the problem of the early universe, while quantum
cosmology is in a rudimentary state. Cosmologists have yet to appreciate
the problems posed by life in the universe. How did life come into
existence? Is it confined to the Earth or is it widespread in the universe? A
text of the future may well devote a large part of its discussion on
cosmology to contributions from biology.

It is assumed that the reader is familiar with standard mathematical
methods like differential equations, vector analysis, Fourier series and
transforms, the calculus of variations, and so on. A knowledge of basic
physics including mechanics, elementary thermodynamics, electromagnetic
theory, atomic structure, and fluid dynamics is also assumed. Similarly,
basic knowledge of elementary astronomy will be useful. The text is
intended for advanced undergraduates, graduate students, and teachers of
astronomy and cosmology.

This book contains over 400 exercises, of which over 80 per cent are of a
computational nature. Many of them are designed to illustrate or amplify
the material described in the text. It is hoped that they serve their
intended purpose.

I thank Art Bartlett for encouraging me to write the book. Comments
received from Bob Gould, Bob Wagoner, Dimitri Mihalas, Richard
Bowers, and Geoff Burbidge were of great help during the preparation of
the manuscript. Last, but not least, it was Fred Hoyle who introduced me
to the fascinating field of cosmology as a graduate student, and I am
indebted to him for agreeing to write the Foreword.

I began writing this book while visiting the Department of Applied
Mathematics and Astronomy at the University College, Cardiff, Wales. I
am grateful to the head of the department, Chandra Wickramasinghe, for
the facilities extended to me at Cardiff. For the prompt typing of the
manuscript I am indebted to Ms Suzanne Ball and Mr P. Joseph. It is also
a pleasure to acknowledge the help I received from the Drawing Office
and Xerox Facility of the Tata Institute of Fundamental Research.

Bombay, India Jayant Narlikar



Preface to the second edition

I am happy that the revised second edition of Introduction to Cosmology
is seeing the light of the day. The motivation and format of this edition con-
tinue to be the same as for the earlier edition and hence this preface only
supplements the more detailed preface of the first edition given above.

The changes incorporated in this edition broadly reflect the new
developments in cosmology that came in the 1980s, e.g. inputs from
particle physics including the inflationary universe, new attempts at
structure formation, recent observations of the large-scale structure and
the improved (more sensitive) limits on the intensity fluctuations of the
microwave background. The observational sections have been updated
although no text book can really keep pace with the rapid advances in
cosmological observations.

A comparison of the two editions will reveal a slight rearrangement of
the chapters including a streamlining of the part devoted to alternative
cosmologies. The final chapter is perhaps more critical of standard
cosmology than before. This is necessary, in my opinion, in order to
cerrect the prevailing impression that the standard hot big bang model
describes the universe so well that no significant new or alternative inputs
are required.

I thank Simon Mitton for encouraging me to proceed with the job of
revising the book for Cambridge University Press. Thanks to speedy
typing by Santosh Khadilkar and help with artwork by Arvind Paranjpye,
the job could be completed within the time frame set by Simon. I also
thank the numerous reviewers of the first edition whose constructive
comments helped in preparing the revised manuscript.

Inter-University Centre for Jayant V. Narlikar
Astronomy and Astrophysics
Pune, India
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1

The large-scale structure of the universe

1.1 Astronomy and cosmology

No branch of science can claim to have a bigger area of interest than
cosmology, for cosmology is the study of the universe, and the universe by
definition contains everything. Although, because of its profound implica-
tions, cosmology had traditionally excited the imaginations of poets,
philosophers and religious thinkers, our approach to the subject will be
through the science of astronomy. Astronomy started as a study of the
properties of planets and stars, and gradually reached out to include the
limits of the Milky Way System, which is our Galaxy. Modern astronom-
ical techniques have taken the subject beyond the Galaxy to distant
objects from which light may take billions of years to reach us.

Cosmology is concerned mainly with this extragalactic world. It is a
study of the large-scale structure of the universe extending to distances of
billions of light-years — a study of the overall dynamic and physical
behaviour of billions of galaxies spread across vast distances and of the
evolution of this enormous system over several billion years.

At first such a study may appear an ambitious task. Are our tools of
observation good enough to provide sufficient scientific information about
the large-scale structure of the universe? Is our knowledge of the laws of
nature sufficiently advanced and mature to interpret this information? We
may answer these questions with a remark of Albert Einstein: “The most
incomprehensible thing about the universe is that it is comprehensible.’
Although our observing techniques are far from perfect and our know-
ledge of physical laws still leaves considerable room for improvement, we
are now in position to make some sense out of what we observe about the
universe. We can begin to study cosmology as a branch of science, just as
we study the structure of the universe. This is what this book is all about.

' 1



2 The large-scale structure of the universe

We will begin with a brief survey of some of the features of the universe
that are pertinent to the subject of cosmology

1.2 Our Galaxy

Figure 1.1 shows a schematic representation of the Milky Way. In
Figure 1.1(a) we see it face-on and in Figure 1.1(b) edge-on. The bright
parts are made of light from many stars, while the dark parts are the
observations produced by absorbing gas and dust clouds. The face-on
picture shows the spiral structure of the galaxy, while the edge-on picture
demonstrates that it is a disc with a central bulge. The disc is also referred
to as the galactic plane.

Although the physicist would prefer the light-year as a unit of
astronomical distance, the astronomer (for historical reasons) has grown
accustomed to using the parsec (pc), the kiloparsec (kpc), and the
megaparsec  (Mpc) as  distance  units. 1pc= 3.26light-years
~3.0856 X 108 cm. Using the kiloparsec as the unit for galactic dimen-
sions, the diameter of the disc is estimated to be '~ 30kpc, and its
thickness ~ 1kpc. The Sun along with all its planets is located ~ 10 kpc
from the centre. The galaxy rotates about its polar axis as shown in

. U
30 kpc N S
Sun
-y

(a) , (b)

Fig. 1.1 The Milky Way, seen (a) face-on as a circular system with spiral arms,
and (b) edge-on as a disc with a central bulge. We (that is, the Sun and its
planets) are located about two-thirds of the way out from the centre. The Galaxy
rotates about a central axis, with N and S the galactic North and South poles. C is
the centre of the Galaxy.
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Figure 1.1, although not as a rigid body. The Sun, for example, takes
~ 200 million years to make one complete orbit. Other stars have highly
eccentric orbits that take them out of the galactic plane and also to the
galactic centre. The former type of stars (like our Sun) with nearly circular
orbits in the disc are called Population I stars, while the latter type of stars
are called Population II stars. From the metal contents of the two types of
stars and the theory of nucleosynthesis it is possible to argue that
Population II stars are older than Population I stars. Astronomers also
refer to an even earlier generation of stars called the Population III stars,
which were very massive and burnt out quickly.

The mass of our Galaxy is estimated at ~ 1.4 x 10! M, where
Mg =mass of the Sun~2x 10¥ g (a convenient mass unit in astro-
nomy.) It is estimated that there are upwards of 10! stars in the galaxy.
However, stars alone do not make up the whole of the galaxy. The dark
lanes in Figure 1.1 show that obscuring matter is also present.

Absorption lines in the spectra of galactic stars show that absorbing
gases are present in the interstellar medium. Gas appears in various forms
— atomic and molecular, hot and cold. Emission nebulae around stars are
made of gas that absorbs the ultraviolet radiation from stars and radiates it
as visible light in spectacular colours. The so-called HII regions are hot
regions near stars and contain hydrogen gas that has been ionized by the
ultraviolet light of the stars. By contrast, the HI regions are cool regions
of atomic hydrogen. The 21-cm observations in radio astronomy were
largely responsible for detecting neutral hydrogen in the galaxy.
Moreover, since the 1960s radio and microwave studies have revealed the
existence of several complex molecules in the interstellar gas clouds.

Dark nebulae in the Galaxy are, by contrast, due to the presence of dust
(see Figure1.2). Interstellar dust may exist in several forms, such as
graphite, silicates, or solid hydrogen. The effect of dust is to reduce the
intensity of light from distant stars in the Galaxy. In the early days
astronomers overestimated stellar distances in the Galaxy because they
failed to correct for interstellar absorption. (Without correction, the
faintness of a star was assumed to be wholly due to its distance from us.)
The early astronomers also mistook dark regions for ‘holes’ or empty
regions in the Galaxy.

The distances between stars in the Galaxy were determined in the early
days by the trigonometric method. Unfortunately, this method loses
accuracy beyond ~ 50 to 100 pc. A more reliable method that made use of
the variable stars called Cepheids became available in 1912. H. Shapley
used this method to measure the distances of remote stars in our galaxy
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Fig. 1.2 The Horsehead Nebula in Orion. The dark shape arises from interstellar
dust. (Courtesy of Kitt Peak National Observatory.)

and showed that our galaxy was much larger than it was previously
thought to be.

A few years later, Hubble discovered that certain bright nebulae
previously considered part of the Galaxy were actually remote objects
lying well beyond it. Hubble’s discovery finally laid to rest the belief that
the whole of the observable universe was contained in our Milky Way, an
island floating in infinite space. The nebulae that Hubble had proved to be
extragalactic turned out to be galaxies in their own right. Today the
astronomer has a much better perspective on the vastness of the
extragalactic world. The following section describes broad features of
various types of galaxies known today. There we shall also see that the
galaxies appear to contain dark matter that extends substantially beyond
their visible boundaries.

1.3 Galaxy types

The spiral structure of our Galaxy shown in Figure 1.1(a) was difficult to
establish cbservationally, since we view it from within. It is easier to see
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this structure in other galaxies, unless we are viewing them edge-on. Our
nearest large galaxy, labelled M31 (see section 1.7 for the meaning of this
label), in the Andromeda constellation, has a similar spiral structure (see
Figure 1.3). Spiral galaxies, as such galaxies are called, are probably the

Fig. 1.3 The Great Galaxy in Andromeda, a spiral galaxy of type Sb. (Courtesy of
Kitt P€ak National Observatory.)
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most numerous among the various bright galaxy types (see Figures 1.4 and
1.5). Like our Galaxy they show rotation, flattening with a central bulge,
and dark lanes of absorbing matter.

In 1926 Hubble classified the various galaxy types in the following way.

Fig. 1.4 Galaxy of type Sb in Ursa Major, M81. (Courtesy of Kitt Peak National
Observatory.)
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Fig. 1.5 Galaxy of type Sc in Pisces, M74. (Courtesy of Kitt Peak National
Observatory.)

%@@

Sa
Sc

Fig. 1.6 The sequence of spiral galaxy types. The shaded region represents the
nucleus.

The various classes of spiral galaxies are called Sa, Sb, Sc, and so on. The
sequence is in decreasing order of the importance of the central nucleus or
bulge in relation to the surrounding disc. Our galaxy and M31 are of type
Sb. Some spirals have bars in the central region. These are called barred
spirals and are categorized as SBa, SBb, SBc, and so on. See Figure 1.6
for schematic illustrations of these types.
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While spirals are most numerous among bright galaxies, the most
numerous among all galaxies are those classified as ellipticals. These are
ellipsoidal in shape, show very little rotation, and have very little gas and
dust (see Figures 1.7 and 1.8). The various types of ellipticals are placed in
the sequence EO, E1,...,E7. This sequence describes progressively
flattened profiles of galaxies, EO being nearly spherical and E7 markedly
flattened lenticular form. These types are illustrated in Figure 1.9.

Unlike star images, which tend to be pointlike, galaxies have nebulous
shapes like those described above. Astronomers can measure the distribu-
tion of light across a galaxy with great accuracy using solid-state
instruments like the charge-coupled device (CCD). The light distribution
is conveniently described by isophotes, or contours of equal intensity. In
many galaxies, especially the ellipticals, increasing sensitivity of measure-
ment shows that the boundary of a galaxy does not come to an abrupt end;
rather, there is a gradual diminution of intensity of light outwards from
the centre. In this connection astronomers often use the so-called
Holmberg radius, which corresponds to the isophote at which the surface
brightness drops to 26.5m,, (photographic magnitude) per square arc

Fig. 1.7 Elliptical galaxy of type EO in Virgo, M87. its nucleus is believed to
contain a highly collapsed mass of the order of 5 x 10° M. (Courtesy of Palomar
Observatory, California Institute of Technology.)
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Fig. 1.8 Elliptical galaxy of type E2 in Andromeda, M32. (Courtesy of Kitt Peak
National Observatory.)

() @
G <=

Fig. 1.9 The sequence of elliptical galaxy types. Not all types between EO and E7
are shown.

second, as some kind of observational limit to a galaxy size. (Magnitude is
a measure of the brightness of a celestial object. For quantitative details
see section 3.6.)

For many decades since the discovery of galaxies it was believed that
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they extend as far as they are visible. Thus the Holmberg radius was taken
as the extent of a typical galaxy. However, in the seventies the orbits of
neutral hydrogen clouds circling around a spiral galaxy indicated that the
masses enclosed within them far exceeded the visible mass of the galaxy.
Figure 1.10 shows the typical rotation curve of a spiral galaxy. At a
distance r from the centre O of the galaxy, a Keplerian orbit will have

velocity
1/2
\ - [SHe0)” )

where M(r) is the galactic mass up to radius r from the centre. The point
A represents the visible extent of the galaxy. If all the mass were visible

200

100

Rotational velocity (inkm s -1 )

10 20
| 1
A : B
—_— Distance from the centre
(inkpe)
Fig. 1.10 The rotation curve of a spiral galaxy is flat right up to point B, well
beyond the visible extent up to A.
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then M(r) = constant beyond A and v should have dropped as r~'2. In
reality, v is more or less constant as far as point B, which may be two or
three times farther away from O than A.

If Newtonian laws of gravity and mechanics hold then we have to
conclude that M(r) keeps on increasing beyond A; in other words, there
is unseen matter present well beyond the visible radius of the galaxy. This
dark matter poses many problems for cosmological theories which we shall
encounter later in this book.

Another type of galaxy, called SO, is intermediate between the ellipticals
and the spirals (see Figure 1.11). Like the ellipticals, the SO galaxies have
little gas and dust, while their isophotes are more like those of the spirals
(see Figure 1.12). These galaxies may have formed from collisions of
spirals and ellipticals. Galactic collisions are not uncommon, especially in
rich clusters of galaxies. Stars may go through a collision relatively
unscathed, since they are widely spaced, but interstellar gas and dust may
be spewed out into intergalactic space. In such a case the isophotes (which
arise from starlight) may remain intact.

Fig. 1.11 Galaxy of type SO in Virgo, M84. (Courtesy of Kitt Peak National
Observatory.)
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S

Elliptical Spiral
(a) (b)

Fig. 1.12 The isophotes (contours of equal brightness) of an SO galaxy are more
like those of a spiral (b) than an elliptical (a).

In addition to the types of galaxies already mentioned, there are others
that are broadly classified as ‘irregular’. However, some rarer species of
galaxies in this group stand out because of certain special features. For
example, in 1943 Seyfert investigated a class of galaxies in which the nuclei
show many features common to stars, such as broad emission lines. (The
spectra of galaxies as a rule show absorption lines from interstellar gas.)
The Seyfert galaxies also have a large amount of infrared emission; in
some cases the infrared luminosity may be as much as 100 times the visual
luminosity of our Galaxy. (See Figure 1.13.)

Another group of galaxies with bright nuclei like the Seyferts are the
so-called N-galaxies. These galaxies emit radio waves and have large
redshifts, whereas Seyferts are radio quiet and have small redshifts. (For a
discussion of redshifts, see sections 1.5 and 1.8.) There is considerable
similarity between Seyferts, N-galaxies, and another class of astronomical
objects, the quasars (described in section 1.5).

Apart from these morphological types, galaxies are also classified by
their spectral features and luminosities. W. W. Morgan introduced the
formal spectral classification, while van den Bergh introduced the luminos-
ity classes. We will not go into details of these classifications here.

1.4 Radio sources

The advent of radio astronomy led to the discovery of strong sources of
radio emission outside the Galaxy. As we shall see in Chapter 10, these
radio sources also serve as useful probes of the structure of the universe.
The first extragalactic radio source, Cygnus A, was discovered by J. S.
Hey, S. J. Parsons, and J. W. Phillips in 1946. When the position of the
radio source in the sky could be accurately specified, W. Baade and R. M.
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Fig. 1.13 Seyfert galaxy NGC 1068. The bottom picture is underexposed to show
the nucleus only. (Courtesy of the Indian Institute of Astrophysics.)



14 The large-scale structure of the universe

Minkowski, at the Mt Wilson and Palomar Observatories, located what
looked like a pair of colliding galaxies at the position of the radio source
(see Figure 1.14). This process of identifying an object on the photo-
graphic plate at (or very close to) the position of the radio source is known
as optical identification of the radio source. The discovery of Cygnus A led
to the early view that radio sources arise from collisions of galaxies.

Eventually, however, it turned out that Baade was wrong in considering
the optical object at Cygnus A a pair of colliding galaxies. In the seventies
it became possible to study structures of radio sources in great detail.
(Very-long-baseline interferometry can detect structures at the angular
scale of less than a milliarc second.) The picture that has emerged not only
for Cygnus A but for a majority of extragalactic radio sources is shown in
Figure 1.15.

Fig. 1.14 The radio source Cygnus A is located around the optical object at the
centre of the photograph. (Courtesy of Palomar Observatory, California Institute
of Technology.)
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Central
region

Radio e N Radio
iobe = T—e - lobe

Fig. 1.15 The most common type of extragalactic radio source is a double source
with two radio-emitting blobs located symmetrically on the opposite sides of a
central region. The central region is believed to be the source of activity that
generates fast particles moving out along the broken lines.

Here we have two radio-emitting blobs on opposite sides of a central
component, usually located close to, and on opposite sides of, a galaxy or
a quasar. It is believed that radio emission takes place in the blobs from
the acceleration of fast-moving electrons by ambient magnetic fields, a
process known as synchrotron emission. The particles themselves may
have been fired in an explosion in the central region of the object. The
source of the explosion is still a mystery. In 1963 F. Hoyle and W. A.
Fowler suggested that gravitational energy in a collapsed object may
somehow have been converted into the kinetic energy of the electron. In
the late 1970s several scenarios were proposed involving a supermassive
black hole of mass ~ 108 M. As first pointed out by G. Burbidge in
1958, a powerful energy machine is needed to generate energy reservoirs
of 10° to 10% erg in these radio sources. The potential energy of two
colliding galaxies falls far short of this target.

1.5 Quasars

The term quasar is a short form for the full name ‘quasi-stellar radio
source’. Quasars were first discovered in 1963 as a result of the optical
identification programme. The radio position of the quasar 3C273 (see
section 1.7 for the meaning of these catalogue numbers) was accurately
determined by lunar occultation. If the Moon happens to cross the line of
sight to a source, the source is said to be occulted. The drop in the
intensity of a radio source as it is blocked by the Moon and the rise when
the Moon has moved out of its way give accurate indication of when it is
occulted and hence where it is located on the sky. The optical identifica-
tion of this object (see Figure 1.16) and of another radio source, 3C48,
revealed starlike objects with emission lines, and it was originally asumed
that these were radio stars in the galaxy. When their spectra were carefully
examined, however, it became clear that the wavelengths were strongly
redshifted.
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Fig. 1.16 The quasar 3C 273. (Courtesy of Kitt Peak National Observatory.)

If the wavelength of an emission line in the laboratory is 4y and if the
observed wavelength is A > Ay, then the line is said to be redshifted by a
fraction z given by '

A=A

P
It is usual to call z the redshift of the object. For 3C273, z = 0.158, while
for 3C48, z = 0.367. (The word redshift is used to indicate a shift to the
red end of the visual spectrum.)

These were high values of z for stars in the galaxy, which have values
< 107>. What were these objects? In 1964 Terrell suggested that they were
high-velocity stars ejected from the galaxy. The more popular interpreta-
tion, however, has been that the redshifts arise from the expansion of the
universe, a concept we will discuss in section 1.8.

If this latter interpretation is correct, it implies that quasars are very
distant objects, and since from such large distances they look bright
enough to be mistaken for stars, they must be intrinsically very powerful.
Many quasars show rapid variation in their light and radio output. This
fact places a limit on their physical size; for if an object shows variability
on a characteristic time scale 7T, its size must be limited by ¢7, where

z (1.2)
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Table 1.1. Some rich clusters of galaxies

Name of cluster Distance from Earth®
(Mpc)

Virgo 21

Pisces 82

Perseus 100

Coma 122

Hercules 190

Gemini 430

Hydra II 1110

¢ Distances corresponding to Ho = 50kms~! Mpc~!.

¢ = the speed of light. This limitation, arising from the special relativistic
result that no physical disturbance can propagate with a speed > ¢, makes
quasars very compact indeed. We saw in section 1.2 how big our galaxy is.
A quasar by comparison may emit a comparable amount of energy per
unit time from a volume whose linear extent may be only a few
light-hours!

By now more than 5000 quasars are known. Only a few per cent of the
total quasar population emit radio waves. Thus the early qualification
‘radio source’ is not applicable to the bulk of the quasar population, and
although the term ‘quasar’ is used today also for radio quiet objects, the
purist may prefer the term ‘quasi-stellar object’ (QSO). More recently, the
X-ray astronomy satellite ‘Einstein Observatory’ has revealed that X-ray
emission is also a common feature among quasars, indeed is much more
common than radio emission.

1.6 Structures on the largest scale

A galaxy that is not a member of a group of galaxies is called a field
galaxy. Other galaxies are members of groups or clusters that may contain
from a handful to hundreds of big galaxies. Our galaxy, for example, is a
member of a group of ~ 20 galaxies, known as the Local Group, that are
separated by distances of up to ~1Mpc. The nearest members of the
group are the Large and Small Magellanic Clouds, which are located
~ 50 kpc from us.

Table 1.1 lists a few of the larger clusters (see Figure1.17). The
distances quoted in this table are not exact because of the uncertainty
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Fig. 1.17 The Coma Cluster of galaxies. (Courtesy of Kitt Peak National
Observatory.)

surrounding the measurements of extragalactic distances. The extra-
galactic distance scale is related to the magnitude of Hubble’s constant
(see section 1.8). Currently there is disagreement among astronomers as
to the true value of this constant. The ratios of these numbers should,
however, give us reliable estimates of the relative distances of these
clusters.

G. Abell has catalogued clusters out to distances of the order of that of
Hydra II using strict criteria of what constitutes a cluster. In order to pick
out a cluster one has to look for an enhancement of the number density of
galaxies within a specified region compared with the overall background
density. The order of ‘richness’ of a cluster is accordingly fixed by
specifying the size, brightness range, and background. F. Zwicky has also
catalogued clusters of galaxies, but with less strict criteria than those
adopted by Abell.

How much matter is contained in a cluster? We will attempt to answer
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this question in section 9.4. For the time being we may say that a cluster
may contain a mass of the order of ~ 10" M. Further, if we try to
estimate the mean density of matter in the universe by taking account of
how much matter we see in clusters of galaxies then we come up with a
figure lying between 103! and 1073° gcm 3. However, as we shall see in
Chapters 7 and 9, even clustérs may have dark matter in substantial
amounts. Thus these density estimates may have to be enhanced.

The mean density of matter in a galaxy, on the other hand, is
~10"% gem™3. Thus the volume occupied by galaxies is <107® of the
total volume of the universe. This also explains why galaxies are
considered as points when cosmological models are constructed.

Apart from optical emission, clusters of galaxies also show radio and
X-ray emission. These arise not only from individual sources located in the
clusters, but also in a diffuse fashion throughout the clusters.

Does a structure larger than clusters exist in the universe? This can be
decided by studying the distribution of galaxies across the sky and looking
for nonrandomness (that is, grouping or clumping) on larger and larger
scales. Such studies have revealed the existence of larger structures on the
scale of ~ 50 Mpc, compared to cluster scales of ~5Mpc. These larger
units are referred to as superclusters.

For example, G. de Vaucouleurs has found that our Local Group is a
member of a supercluster centred on the Virgo cluster of galaxies. C. D.
Shane and co-workers at the Lick Observatory found similar clumpiness in
other regions of the sky. Abell also found clumpiness in an analysis of the
plates in the National Geographic—Palomar Sky Survey.

In the 1970s and 1980s there were considerable improvements in the
techniques of observing discrete extragalactic objects. With distances
determined by Hubble’s law (section 1.8) it became possible to have
three-dimensional perspective of matter distributions in the universe.
These are beginning to indicate that discrete objects show a large-scale
inhomogeneity “of distribution. There are, for example, the following
features revealed by such surveys:

1. Superclusters: As was seen above, these are on the scales of ~ 50 Mpc or
more and contain several thousand galaxies. For example, the Local Super-
cluster containing the Local Group is shaped like a flattened ellipsoid which
has a plane of symmetry called the supergalactic plane. It passes through the
centre of the Virgo cluster and the centre of our own Galaxy.

2. Voids: These are gaps in the distribution of large superclusters, with sizes of
the' order of 100-200 Mpc. There are apparently no galaxies in these regions
(see Figure 1.18)
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¢ distribution across 4y,
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Fig. 1.18 Galaxy distributions show giant voids and long filaments. The above
region contains the Perseus and Pegasus superclusters. The circles are galaxies
while the closed dashed curves enclose the Abell clusters. (After J. O. Burns,
Scientific American, July 1986, p. 40.)

‘sky. The typical streaming velocity is around 600 kms

. Filaments: The boundaries of voids are filamentary distributions of galaxies in

clusters and superclusters. Figure 1.18 indicates this feature clearly.

The Great Attractor and the Great Wall: In the late 1980s it became apparent
that galaxies in and around the Local Group seem to have a large-scale
streaming motion towards the Hydra—Centaurus supercluster in the Southern
-1, against the refer-
ence frame in which the cosmic microwave background (see section 1.9) is
isotropic. This motion is believed to have been caused by a ‘great attractor’
mass of some tens of thousands of galaxies. The volume of the attractor is as
large as 10% Mpc®. Such massive structures may be present elsewhere in the
universe also.
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Mapping of the universe on a large scale also indicates the presence of a
large but thin sheet of mass. Known as the ‘great wall’, it has an extent of
60 % 170 Mpc? (using a Hubble constant of 100kms~! Mpc™). Figure 1.19
shows its existence. These structural inhomogeneities therefore span distances
as large as 10 percent of the characteristic size of the universe as given in
section 1.10.

In the 1920s and 1930s the general belief was that the universe is
homogeneous on the large scale. The cosmological models which arose in
those days make this simple assumption. In Chapters 3 and 4 we will
outline these models. But it is now becoming apparent that these models
were too simplistic. They face the problem of explaining how such a
large-scale structure came into existence.

Fig. 1.19 The distribution of galaxies in a thin sheet called the ‘great wall’.
(Source: M. J. Geller and H. P. Huchra, Science, 246, 897 (1989)).

4
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1.7 Coordinates and catalogues of astronomical objects

Before proceeding further we will describe how the astronomer locates the
position of a heavenly body in the sky. In general the astronomer does not
know the distance of the body from us; he sees it projected on the sky, on
what is known as the celestial sphere. Two coordinates, akin to longitude
and latitude, are therefore needed to specify the position of the body on
the sphere.

Figure 1.20 shows two different coordinate systems, both useful to the
astronomer in different contexts. The system in Figure 1.20(a) uses right
ascension (RA, denoted by «) and declination (J), coordinates fixed by
the geometry of the Sun—Earth system. Here the poles are the points N, S
on the celestial sphere where the Earth’s axis of rotation intersects it. The
celestial equator is the great circle on the celestial sphere whose plane is
perpendicular to NS. The plane in which the Sun appears to go round (as
seen from the Earth) intersects the celestial sphere in another great circle
called the ecliptic. The ecliptic and the celestial equator intersect in two
points y and 2, corresponding to the position of the Sun on 21 March and
22 September, respectively. Now « and 6 are the longitude and latitude of
a celestial object measured with respect to the celestial equator and the
great circle through N, v, S, and Q. This latter circle, known as the
celestial meridian, plays the role of the Greenwich meridian on the Earth,

—_————

Direction trom Earh

1o gatactic contte__3

Cetestial eavat®’

s
(a)

(b)

Fig. 1.20 This figure demonstrates how to measure (@, 8) and (J, b) for an object
Q in the sky using two different coordintate systems. (a) The coordinate system
based on the geometry of the Sun—Earth system. (b) The coordinate system based
on the geometry of our Galaxy.
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Table 1.2. Some catalogues of use in cosmology

Name Type of object Catalogue code

Messier Nebulae and M followed by catalogue number.
galaxies

New General Nebulae and NGC followed by catalogue number in
galaxies increasing RA.

Abell Clusters A followed by catalogue number in increas-

ing RA.

Cambridge Radio sources 3C, 4C, 5C followed by catalogue number

(3rd, 4th, 5th in increasing order of RA.

surveys)

Ohio source

Radio sources

O followed by a letter (B to Z omitting O)

and a number. The letter gives hours of
RA, the first digit the declination in 10°
intervals, and the last two digits the decimal
part of the RA to two places. Thus
1443 + 101 is OQ 172.

with y the point of zero «. It is customary to measure « in hours and
minutes, with the range 360° corresponding to 24 hours. The declination is
written in degrees, minutes, and seconds, with + for North, — for South.

While («, 8) coordinates are convenient for measurements made from
the Earth, the cosmologist is often interested in knowing how the object is
located vis-a-vis the plane of the Galaxy. For such purposes the galactic
coordinates are useful. These are illustrated in Figure 1.20(b). The galactic
equator is the great circle where the plane of the Galaxy intersects the
celestial sphere. N, S are the North and South galactic poles, while the
‘zero’ meridian is the one passing through the points N, S, and the point C
where the direction from Earth to the centre of the Galaxy meets the
celestial sphere. This meridian is also called the galactic meridian. The
galactic longitude is denoted by /, and latitude by b. In terms of the («, 6)
system, the point C has the coordinates a =~ 17742™.4, § ~ —28°55'. It is
possible to convert from one coordinate system to another using spherical
trigonometry.

Astronomical objects are catalogued in many ways. Table 1.2 lists some
of the catalogues referred to in this book and their code letters. This is not
an exhaustive list, but is given as an illustration of how sources are
numbered and listed. A more systematic method common in recent
compila‘tions is to list the object by its («, ) values in the form a(*)4.
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Thus the object 1143-245 has right ascension 11743™ and declination
—24°30" (= —24.5°).

1.8 Expansion of the universe

We now come to the observations that launched modern cosmology.
Between 1912 and 1925, V. M. Slipher measured the shifts in the spectra
of more than 20 objects that later turned out to be galaxies. Slipher was
surprised that all shifts were towards the red end. Later, E. Hubble and
M. Humason extended Slipher’s list of observations to more galaxies and
to the brightest cluster galaxies. An example of the pattern that emerged
when the redshift was plotted against distance of a galaxy is shown in
Figure 1.21 (see also Figure 1.22).

If all galaxies seen are equally bright, then the magnitudes are
proportional to the logarithm of distances. Thus the straight line drawn
through the cluster of points corresponds to the linear relation

V=cz=HyD, (1.3)

Ursa Major 2 o
Bootis
Ix 10

10

3 x 108

Velocity in km s~ (on a logarithmic scale)

0 2 e 16 e
Photographic magnitude

Fig. 1.21 Hubble’s plot for the fifth brightest member in clusters of galaxies. The
magnitudes are photographic. In Chapter 9 we will see how to convert magnitudes
into distances. The velocities are obtained by multiplying the observed redshifts
by c. (After E. Hubble, The Realm of the Nebulae (New Haven, Conn.: Yale
University Press, 1936).)
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Cluster

! Distance in Redshifts
nebulain . -
light-years H+ K
n 78,000,000
Virgo 1,200 km 5_1

1,000,000,000

Ursa Major 15,000 km s™'

1,400,000,000

Corona
Borealis

2,500,000,000

Bootes

3,960,000,000

Hydra 61,000 kms™

Fig. 1.22 The relationship between redshift and distance for extragalactic nebu-
lae. Redshifts are expressed as velocities, ¢ dA/A. Arrows indicate shift for calcium
lines H and K. Distances are based on an expansion rate of 50 kms~!Mpc~!.
(Courtesy of Palomar Observatory, California Institute of Technology.)

Where D is the distance of the galaxy and z its redshift. If the redshift
were due to the Doppler effect, then we could ascribe to the galaxy a
velocity of recession V relative to us. (Since z < 1 in the observations of
Hubble and Humason, and the Newtonian Doppler shift formula is valid.)
The constant H is now known as Hubble’s constant.

If instead of plotting z against the distance D, log z is plotted against
the apparent magnitude m of the galaxy, then another straight-line
re.lation shows up (see section 3.6 for a definition of apparent magnitude).
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For,

m = Slog D + constant, (1.4)
and (1.3) implies

m = 5log z + constant. (1.5)
Since the distances of remote galaxies are determined through their
apparent magnitudes (as discussed in Chapter 9), (1.5) is the practical
form of Hubble’s linear relation (1.3).

The relation (1.3) is called Hubble’s law. It was published as a linear
law by Hubble in 1929, and it caused great excitement. For the prima facie
interpretation of Hubble’s law seemed to be that there was a great
explosion in our neighbourhood of the universe from which galaxies were
thrown out. However, the linearity of Hubble’s law shows that we need
not consider ourselves in any special position in the universe. If we viewed
the population of galaxies from any other galaxy, we would notice the
same Hubble’s law. The combination of this fact with the homogeneity
and isotropy of the distribution of the population of galaxies suggests a
highly regular structure of the universe.

Imagine a piece of dough with self-raising flour being baked in the oven,
and suppose we have spread caraway seeds uniformly throughout the
dough. As the dough bakes it expands, and the seeds move away from
each other. The phenomenon of the recession of galaxies might be looked
upon in the same light. They are points embedded in space that is
expanding. This notion of galaxies embedded in expanding space led to
the concept of the expanding universe.

The rate of expansion is characterized by Hubble’s constant. Hubble
obtained a value for H in the neighbourhood of 530 kms~! Mpc~!. (Note
that these units arise because H, is velocity divided by distance. The
dimensions of H " are simply those of time.) As we will discuss in section
9.2, Hubble had grossly underestimated the galactic distances, with the
result that his value of H, was too high. The value of H is now believed
to lie in the range of 50 to 100 kms™'Mpc™!. We will write it as
100h¢ km s"!Mpc~!, where h, lies between 0.5 and 1. Notice that if we
assume Hubble’s law we can estimate the distance of an extragalactic
object from its redshift.

1.9 The radiation backgrounds

Apart from matter in its visible form, we may look for radiation at various
frequencies. In general, measurements of the electromagnetic radiation at
a given frequency (or in a given range of frequencies) reveal peaks that
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Table 1.3. Radiation background at different levels

Wavelength, A

Frequency, v Energy density
Type of radiation Energy range, E (ergem™3)
Radio v < 4080 MHz <10°18
Microwaves Ain 80 cm to 1 mm ~=4x 10718
Optical A in 4000 A to 8000 A ~3.5% 10715
X-rays E in1to 40 keV ~ 1016
y-rays E =100 MeV <2x107V

are associated with relatively nearby discrete sources, many of which can
be identified in specific directions. However, after these peaks are
eliminated, there is still a residual background of radiation. This back-
ground radiation could also arise from discrete sources that are located
much farther away and therefore cannot be resolved, or it could arise from
processes in the intergalactic spaces. Table 1.3 gives a rough estimate of
the energy densities in the various wavelength ranges. It should be
remembered that the measurements in X-rays, y-rays, and so on became
possible only from the early 1960s with the advent of space astronomy.

One thing is immediately clear from Table 1.3. Compared with the
estimates of matter density, the radiation energy density is less by about
three orders of magnitude. This observation is often expressed by the
statement that the universe is at present ‘matter-dominated’.

It is also clear from Table 1.3 that the most dominant form of radiation
background is in the microwaves. The spectrum of the microwave
background is very nearly that of the blackbody radiation of temperature
~ 3 K. Moreover, the extreme homogeneity of this radiation on small
angular scale seems to rule out the possibility that it could have arisen
from discrete sources. As we shall see in Chapter 5, the most popular
interpretation of this radiation is that it is a relic of an early hot epoch
when the universe was much denser than it is now. Unlike the matter
distribution, this.relic radiation is extremely homogeneous. This contrast
further exacerbates the difficulty of understanding the origin of discrete
structures against a smooth radiation background.

1.10 Relativistic cosmology

If Hubble’s observation launched modern observational cosmology, it was
Einstein’s general theory of relativity that laid the foundations of modern
theoretical cosmology. We will discuss in Chapter 3 the details of how the
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Table 1.4. Spatial dimensions and masses of astronomical systems

Object Linear size Mass

Sun 7 x 10 ¢m (radius) 2x10¥ g= Mg
Galaxy =~ 15kpc ~ 10" Mg
Cluster =~ 5Mpc ~ 10810 Mo
Supercluster =~ 50 Mpc =108 Mg
Universe == 3000 Mpc ~10° Mg

theoretical developments in cosmology actually began more than a decade
before Hubble’s exciting observations. We conclude the present chapter
by considering the general question of why relativity is taken to be so
important for cosmology.

Table 1.4 shows the orders of magnitude involved in the large-scale
structure of the universe. The last entry refers to the characteristic
distance scale ¢/H, that emerges from Hubble’s constant and the mass
contained in the ‘observable’ volume of radius c¢/H, if the density were
that seen for visible matter in our neighbourhood. Similarly, the time scale
characteristic of the universe is Hg !~ 10'° years.

What interaction in physics is likely to be influential over such long
distances and such large masses? Of the four known interactions, only
gravity and electromagnetism are of long range. Although the electromag-
netic interaction is much stronger than gravity on the scale of atoms, it is
ineffective in determining the large-scale structure of the universe, since
all indications are that an electric charge balance is preserved in galaxies,
clusters, and intergalactic space. Nor is there any evidence for large-scale
electric currents that could interact with the magnetic fields in the universe
to produce large forces. By contrast, the enormous masses of astronomical
objects generate huge gravitational fields. Gravity is therefore the most
relevant force in cosmology.

Given that we need a theory of gravity for cosmology, what is wrong
with the Newtonian framework? It has worked well in the theory of stellar
structure. It is even used in stellar dynamics in the Galaxy. Why not use it
in cosmology? Let us try to understand the answer with the help of the
entries in Table 1.4.

Newtonian gravity is a theory of instantaneous action at a distance. As
such, it is inconsistent with the special theory of relativity, in particular
with the limit (¢) placed by that theory on the speed with which any
interaction can propagate across space. In those parts of astronomy where
the distances across which gravity is suppose to act are relatively small, the
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use of Newtonian gravity is permissible. As seen in Table 1.4, however,
the distances in cosmology are so large that action at a distance with
infinite speed is unrealistic. This is not so with stellar dimensions or even
for galaxies.

Special relativity itself is suspect in the presence of gravity. The
concepts of the inertial frame and the inertial observer (on whom no force
acts), which are so basic to special relativity, are unrealizable in the
presence of gravity. Gravity seems to be an ever-present force that cannot
be switched off altogether. Since all matter attracts gravitationally, an
inertial observer cannot exist at all! Nevertheles, it was shown in 1934 by
E. A. Milne and W. H. McCrea that with suitable compromise Newtonian
gravity and special relativity can describe cosmology in an adequate
manner. Although Newtonian cosmology is simple to understand, it is
based on insecure foundations. It is preferable instead to resort to a
framework that is free from conceptual difficulties and compromises.

As we shall see in Chapter 2, general relativity provides a framework
that is free from the difficulties of Newtonian gravity with respect to
special relativity and of special relativity with respect to gravity. It is for
these conceptual reasons, apart from the experimental successes of general
relativity in the various solar system experiments (see section 2.10), that
cosmologists feel at home with the use of this theory.

It is therefore appropriate that we begin our discussion of cosmology by
outlining the general theory of relativity.
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General relativity

2.1 Space, time, and gravitation

Every major scientific theory carries its own mark of distinction. The
distinctive feature of Newtonian gravitation is the radial inverse square
law. To those uninitiated in the laws of dynamics, the fact that a planet
goes round the Sun under a force of attraction towards the Sun comes as a
surprise. The major achievement of Maxwell’s electromagnetic theory was
the unification of electricity and magnetism and the demonstration that
light itself is an electromagnetic wave. The unique place held by the speed
of light characterizes Einstein’s special theory of relativity, while quantum
mechanics can point to the uncertainty principle as the crucial feature that
sets it apart from classical mechanics.

To what distintive feature can general relativity lay its own special
claim? A clue to the answer to this question is provided in the title of this
section.

Let us compare gravitation with electricity. We know that two unlike
electric charges attract each other through the Coulomb inverse square
law, just as any two masses attract each other gravitationally by the
Newtonian inverse-square law. To this extent, electricity and gravitation
are similar. However, we can go no further! We also know that two like
electric charges repel each other and that this property seems to have no
parallel in gravitation. Every bit of matter attracts every other bit and, as
yet, we do not have any instance of gravitational repulsion.

We can express this difference between electricity and gravitation in
another, more practical way. The existence of repulsion as well as
attraction enables us to construct a closed chamber whose interior is
completely sealed from any outside electrical influence. Not so with
gravitation! We cannot point to any region of space as being totally free

30
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from external gravitational influences. Gravitation is permanent: it cannot
be switched off at will.

This ever-present nature of gravitation plays the key role in Einstein’s
general theory of relativity. Einstein argued that because of its perma-
nence, gravitation must be related to some intrinsic feature of space and
time. And, with a master stroke of genius, he identified this feature as the
geometry of space and time. He suggested that any effects we ascribe to
gravitation actually arise because the geometry of space and time is
‘unusual’. Let us now try to understand what is meant by the word
‘unusual’, and how this property of space and time leads to gravitational
effects — for therein lies the distinctive characteristic that sets general
relativity apart from other physical theories.

The ‘usual’ geometry of space, the geometry that we learn at school and
learn to apply in so many ways, is the geometry whose foundations were
laid by the Greek mathematician Euclid around 300 BC. Euclidean
geometry is a logical structure wherein theorems about triangles,
parallelograms, circles, and so on are proved on the basis of postulates
that are taken as self-evident. Thus the results shown in Figure 2.1 follow
as theorems in Euclid’s geometry, based on the original postulates of
Euclid.

It was only in the last century that mathematicians realized that there is
nothing sacrosanct about Euclid’s postulates. Provided they are not
mutually contradictory, a new set of postulates can lead to a new type of
geometry. Indeed, as the work of mathematicians like Gauss (1777-1855),
Bolyai (1802-60), Lobachevsky (1793-1856), and Riemann (1826-66)
showed, a host of such new geometries can be constructed. These are
collectively called non-Euclidean geometries. For instance, the geometry
on the surface of a sphere is non-Euclidean. If we define a straight line on
the surface of a sphere as the line of shortest distance between two points,
it is easy to see that these lines are great circles and that any two straight
lines intersect. Thus there are no parallel lines in the geometry. Figure 2.2
demonstrates how the theorems of Figure 2.1 break down when applied to
the non-Euclidean geometry of the surface of the sphere.

The concept of the geometry of space can be extended to the geometry
of space and time, thanks to the foundations laid by Einstein’s special
theory of relativity. Let us first recall a familiar result from special
relativity in the following form. Let (x, y, z) denote a Cartesian coordin-
ate system and ¢ the time measured by an observer O at rest in an inertial
frame. (That is, an observer who is acted on by no force. We will return to
a discussion of such observers later.) Let two neighbouring events in space



32 General relativity

A

80° A+B+C=180°
70° 50°

B Cc
@)
A
AC? = AR? + BC?
5
3
ap°

B 4 ¢

(b)

Fig. 2.1 (a) The three angles of any triangle ABC add up to 180°. (b) The
well-known theorem of Pythagoras for a typical right-angled triangle ABC.

and time be labelled by the coordinates (x,y,z,t) and (x + dx,
y +dy,z+dz,t +dt). The resulting analogue of the Pythagorean
theorem shown in Figure 2.1(b) is as follows. The square of the ‘distance’
between the two events is given by

ds? = c%2dr? - dx? — dy? - dz2. (2.1)
The distance ds is invariant in the sense that another inertial observer O’
using a different coordinate system (x’, y’, z', ¢t') to measure this distance
will find the same answer.

However, when we make a transition from special to general relativity
and quantify Finstein’s idea that the geometry of space and time is
unusual in the presence of gravitation, we abandon the simple form of
(2.1) in favour of a more complicated form. This is comparable with the
transition from Figure 2.1(b) to Figure 2.2(b). The more complicated form
is still quadratic, and we may state it formally as follows:

3
ds? = > gy dx’ dxk. (2.2)
i.k=0
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Fig. 2.2 (a) On the surface of a sphere the three angles of any triangle add up to
more than 180°. For the triangle shown, the three angles add up to 270°. (b) The
Pythagorean theorem breaks down for a finite spherical right triangle (shown
inside A ABC), but it looks more complicated in spherical coordinates (8, ¢): ds?
= a%(d6? + sin? 0d¢?), where a = radius of the sphere.

Here we have modified the notation as follows. The coordinates are now
called x‘, with i =1, 2, 3 representing the three space coordinates and
i = 0 the time coordinate. The coefficients g; are functions of x’ with the
property that the matrix ||g;|| has the signature —2. (This means that if
the quadratic equation (2.2) is diagonalized, it has one square term with a
positive coefficient and three square terms with negative coefficients. The
signature equals the number of positive terms minus the number of
negative terms.) It is convenient to refer to this unified structure of space
and time as spacetime.
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Clearly, the geometry of spacetime in which the basic invariant distance
is given by (2.2) instead of by (2.1) is going to be ‘unusual’. Its properties
will depend on the function g;. But do these properties tell us about the
presence of gravitation? In what way can we interpret manifestly
gravitational phenomena like the motion of planets as effects of geometry?
The remainder of this chapter attempts to answer these questions.

2.2 Vectors and tensors

Let us consider again the example of geometry on the surface of a sphere
of radius a. If we consider the sphere as embedded in a three-dimensional
space with the Cartesian coordinates x, y, z, we may write the equation of
the surface of the sphere as

x?2 + y2 + 722 =a’. (2.3)

For describing the geometry on the surface of the sphere it is, however,
more convenient to use coordinates intrinsic to the surface of the sphere.
Such coordinates are available and are like the latitude and longitude used
to locate a point on the Earth. More specifically,

x = asin 0 cos ¢, y =asinfsin¢g, z=acos0, 2.4)

so that for any (8, ¢) with 0 < 6 <7 and 0 < ¢ < 27 we can locate a point
(x, y, z) on the surface of the sphere. Spherical trigonometry tells us how
to measure and relate the angles, sides, and so on of triangles drawn on
this surface. The rules of Euclid’s geometry do not apply to these
measurements.

In our example above, the square of the distance between two
neighbeouring points (8, ¢) and (6 + d6, ¢ + d¢) is given by

do? = dx? + dy? + dz2 = a?(d6? + sin? 6 d¢?). 2.5)

Thus we have examples of g that are not constants. (The coefficient of
d¢? is a’sin? 9.)

However, the nonconstancy of g; or its nondiagonal nature do not
guarantee that we are dealing with a non-Euclidean geometry. For
example, in three-dimensional Euclidean space, the transformation

x = rsin 0 cos ¢, y = rsin @ sin ¢, Z=rcos0, (2.6)
with (8, ¢) as defined before and 0 < r < o« gives

do? = dx? + dy? + dz2 = dr? + r2(d6? +sin2 0 dg?).  (2.7)
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Again we have g; as functions of r and 6. But now we know that we are
dealing with Euclidean geometry and that the dependence of g; on r and
@ is purely a coordinate effect.

Thus we clearly have to devise a means of extracting essential
geometrical information as distinct from pure coordinate effects. In a
qualitative way we can see that the essential information must survive
even when we change from one coordinate system to another. In order to
extract such information, we must devise machinery that tells us what
things remain unchanged under coordinate transformations. Such ma-
chinery is provided by the invariants, the vectors, and the tensors, which
we will now study.

Let us first introduce a summation convention. We will frequently
encounter sums like

3
; P EER, ...

3 3
D AB, 2 AuBk,
i=0 k=0 0

[

It is convenient in such cases to drop the summation symbol and write
these quantities as

A;B', AyB*, PyEEx, ..,

the rule being that whenever an index appears once as a subscript and
once as a superscript in the same expression, it is automatically summed
over all the values (from 0O to 3). Thus we can rewrite (2.2) in the more
compact form

dS2 = Sik dxi dx". (28)

A warning must be issued here: the summation convention does not apply
under any other circumstances. Thus it does not apply to quantities like

A; B, Ax B; C;, . ..

However, such expressions do not arise in most relativistic calculations.

We will assume that the Latin indices i, j, k, . .. will run over all four
values 0, 1, 2, 3. On some (infrequent) occasions we may want to refer to
index values 1, 2, 3 only. These values are usually reserved for space
components, and we will use Greek indices p, v . . . to represent these.

It is worth pointing out here that many other textbooks use the
convention of denoting the spacetime coordinates by Greek indices A, u,
v, etc. and the space coordinates by Latin indices i, j, k, etc. Also, many
authors prefer to write (2.1) with the opposite sign for the right-hand side.
These differences are of cosmetic nature and do not affect the ‘physics’
being described.
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2.2.1 Scalars

A scalar or an invariant does not change under any change of coordinates.
Thus, if ¢(x?) is a function of coordinates, then it is invariant provided it
retains its value under a transformation from x’ to new coordinates x'*:

Px)) = ¢lx'(x"F)] = ¢'(x""). 2.9

Note that the form of the function may change, but its value does not.

2.2.2 Contravariant vectors

Suppose we are given a curve in space and time, which is parametrized by
A. Thus, the points along the curve have coordinates
xt = xi(4), (2.10)
where x' are given functions of A. The direction of the tangent to the curve
at any point on it is given by a vector with four components,
. dx!
=
Al= TR ' (2.11)
Notice that the direction of a tangent to the curve is an invariant concept:
a change of coordinates should not alter this concept, although its four
components in the new coordinates will be different. Suppose the new
coordinates are x’‘ and the new components are A’/. Then

o dx'?
At = . 2.1
m (2.12)
Unless otherwise stated, we will assume that the transformation functions
xt=xi(x'k),  x'k=x"k(x) (2.13)

are continuous and possess at least second derivatives. It is then easy to
see that A'' and A’ are related by the linear transformation
1k i tk
Ak =X oxTE (2.14)
dxt di ax!
We use (2.14) as the transformation law for any vector A’. Quantities that
transform according to the above linear law are called contravariant
vectors. The four components of a contravariant vector are specified by a
superscript. '
For example, consider the curve parametrized by

x9 = constant, x! = constant, x2 =4, x3 =72
The tangent to this curve is specified by the contravariant vector A¢, with
components
A'=0, Al'=0, A?=1, A’=2Ar
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2.2.3 Covariant vectors

Consider next a scalar function ¢(x*). The equation
¢(x*) = constant (2.15)

describes a hypersurface (that is, a surface of three dimensions) whose
normal has the direction given by the four quantities
_ %9

"~ axd’

Again, the concept of a normal to a hypersurface should be independent
of the coordinates used. Under (2.13), the new components are

B; (2.16)

B; = a—¢ (2.17)
Ax'"
It is easy to see that B} <> B; is a linear transformation:
B, - dx! B 51
k= axrk i ( . 8)

Again, we generalize (2.18) as a transformation law of any vector B;.
Quantities that transform according to this rule are called covariant
vectors.
For example, the normal to the unit sphere given by
o= (1) + (12 + (x*) =1
has the covariant components
By =0, By =2x!, B, = 2x?, B3 = 2x3.

2.2.4 Tensors

The concept of a vector can be generalized to that of a tensor. Thus a
contravariant tensor of rank 2 is characterized by the following transfor-

mation law:
. Ox't Jx'k
7k =X X (2.19)
3x™ ax"
A covariant tensor of rank 2 is similarly characterized by the transforma-
tion law

3x™ ox"
Th=— e, (2.20)
dx’t Ax'k
It is also possible to have mixed tensors. Thus 7% is a mixed tensor of rank
2, with one contravariant index and one covariant index. It transforms as

X X pm 2.21)

n

B dx™ Jx'k

2

k
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Again, these concepts are easily generalized to tensors of higher rank
than 2. The rule is to introduce a transformation factor dx’//dx™ for each
contravariant index Z and a factor 3x"/dx’* for each covariant index k.

Example I The quantities gy transform as a covariant tensor. This result
follows from the assumption that ds? as given by (2.8) is invariant. For

ds? = gy dx’ dx*

3 i 3 k
= gik( a dx’”’)( ad dx’”)
x'm Ax'"n

dx! axk

dx’'™ 3x’'"
— ’ rm n
= gmpdx’™dx’",

that is,
dx’ ax*
mn = k- 2.22
g S0 o Sk (222)
This tensor is called the metric tensor. The quadratic expression for ds?

is called the line element of spacetime or the spacetime metric.

Example 2 The Kronecker delta defined by
i=1 if i=k, otherwise &) = (2.23)
is a mixed tensor of rank 2.

Example 3 Define ||g*|| to be the inverse matrix of ||g;/|, assuming that
g = determinant of ||g;|| # 0. (Since g; has signature —2, g is negative.)
Thus we have

gug* = &}, (2.24)
It can be shown that g transforms as a contravariant tensor of rank 2.
(See Exercise 6.)

2.2.5 Symmetric and antisymmetric tensors
If tensors S, and A;; satisfy the relations
S = Suy  Aw = ~Au (2.25)
then they are respectively symmetric and antisymmetric tensors of rank 2.
These ideas can be generalized to higher-rank tensors, and we will

encounter specific tensors having the properties of symmetry and antisym-
metry with respect to some or all indices.
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Example1 gy and g* are symmetric tensors.

Example 2 Consider the symbol &;;; with the following properties:
g = +1 if (ijkl) is an even permutation of (0123),
g = —1 if (ijkl) is an odd permutation of (0123),
€ =0 otherwise. (2.26)
We will show that
€ijkl = (_g)l/zgijkl 2.27)
transforms as a tensor. First take the determinant of (2.22). Let J denote
the Jacobian 3x‘/dx'™. Then, using the rule that the determinant of a
product of matrices is equal to the product of their determinants, we get
g =Jg. (2.28)
However, we have from the definition of a determinant
dxi dx/ axk ax!
ax'™ dx'" 3x'P dx'e
Using (2.28) and (2.29), the result follows: e;;; is a tensor that is totally

antisymmetric. Strictly speaking, e;; is a pseudotensor, since it changes

sign under transformations involving reflection; for example, x'% = —x?°

—x,
x't=x!,x"2=x%,and x'® = x3.

€ mnpq J = Eijki (2 29)

Exercises 3 to 10 at the end of this chapter will help in understanding
the operation of vectors and tensors. We end this section with one
important operation.

2.2.6 Contraction

Contraction consists of identifying a lower index with an upper index in a
mixed tensor. This procedure reduces the rank of the tensor by 2.

Thus A‘B, is a tensor of rank 2 if A’ and B, are vectors. The
identification i = k gives a scalar:

A‘B;= A°By + A'B, + A’B, + A3B;.
As in special relativity, we define a vector A’ to be spacelike, timelike, or
null according to
g AlAk <0, guAlA* >0, guAlA* = 0.
It is convenient to define associated tensors by the relations
A; = gaAX, Ak = g*A, (2.30)



40 General relativity

Thus giA‘A* = A A*. The operations embodied in (2.30) are called
lowering and raising the indices. We may frequently refer to A’ and A, as
the same object.

From the above manipulations of tensors it is clear (and can be easily
proved) that the product of two tensors is a tensor. A reverse result is
sometimes useful in deducing that a certain quantity is a tensor. This result
is known as the guotient law. It states that if a relation such as

PO =R
holds in all coordinate frames, where P is an arbitrary tensor of rank m
and R a tensor of rank m + n, then Q is a tensor of rank ».

2.3 Covariant differentiation

A vector field is a vector function of position defined over a subspace of
spacetime. Thus B;(x*) is a covariant vector field whose four components
transform according to the rule in (2.18) at each point (x*) where it is
defined. Suppose B; is a differentiable function of (x¥). Do the derivatives
3 B;/ax* transform as a tensor?

We have already seen that the derivatives 3¢/dx* of a scalar transform
as a vector. So at first sight the answer to the above question might be
‘ves’. Indeed, in special relativity we do encounter such results. For
example, if A; is the 4-potential of the electromagnetic field (described in
the four-dimensional language of special relativity), then 3A4,/0x*, for
Cartesian coordinates (x, y, z) and the time ¢ of (2.1), do transform as a
tensor. In our more general spacetime with an arbitrary coordinate
system, however, the answer to the above question is in the negative.

This result is easily verified by differentiating (2.18). We get

3B,  ax' ax" 3B, 3%xi
3x'™  ax'k 3x'm ax"  Ax'm3x'k

Thus, whereas the first term on the right-hand side does appear in the
right form to make 3B;/3x" a tensor, the second term spoils the effect. It
also gives a clue as to why this happens. The second derivative

%!
dx'max'k
is in general nonzero and indicates that the transformation coefficients in

equation (2.18) vary with position in spacetime. Thus when we seek to
construct the derivative 3 B;/dx", we are forced to define it as a limit:
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9B, _ Bi(x* + 6x¥) — Bi(x¥)
m .

3x"  anta ox"
However, the two terms in the numerator do not transform as vectors at
the same point because of the variation of the transformation coefficients
with position. Therefore their difference is not expected to be a vector.

This situation is illustrated in Figure 2.3. P and Q are the two
neighbouring points (x*) and (x* + 6x*), with the vectors B; shown there
with continuous arrows. In order to describe the change in the vector from
P to Q, we must somehow measure this difference at the same point. How
can this be achieved?

This is achieved by a device known as parallel transport. Assume that
the vector B; at P is moved from P to Q as if its magnitude and direction
did not change. In Figure 2.3 this is shown by a dotted vector at Q. The
difference between the vector B;(x* + 8x*) and this dotted vector is a
vector at Q. So we may after all be able to define a process of
differentiation of vectors, provided we know what happens to B; during a
parallel transport from P to Q.

First we have to note that the dotted vector need not have the same
components as the undotted vector at P. It is only with Cartesian
coordinates that the components are the same. Consider, for example, the
Euclidean plane with a polar coordinate system. A vector A at a point P
with coordinates (r, 8) has components A, and Ay in the radial and
transverse directions. If we now move from P to a neighbouring point Q
with polar coordinates (r + ér, 0+ 60), the radial and transverse
directions at Q will not necessarily be parallel to those at P. Hence after
parallel transport of A from P to Q, its radial and transverse components
at Q will be different from A, and A,.

8; +dB;

0u* + &)

Pix*")

Fig. 2.3 The vector field has the components B; at P and B; + dB; at Q. If B,
were transported parallel to itself along an infinitestimal curve connecting P to Q,
its components at Q would be B; + 6B,.
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A simple calculation (see Exercise 11) shows that the components of A
at Q are A, + 88Ay and Ay — 86 A,. To return to our general case, there
will be changes in B; that are proportional to the original components and
also to the displacement in position from P to (0. We may express the
change in general as

8B; = T}, B, ox*, (2.32)

where the coefficients I‘fk are, in general, functions of space and time.
These quantities are called the three index symbols or the Christoffel
symbols.

Notice that the introduction of (2.32) is something new in addition to
the introduction of the metric. The metric tells us how to measure distance
between neighbouring points, whereas (2.32) tells us how to define
parallel vectors at neighbouring points. This property of local parallelism
is often called the affine connection of spacetime.

Returning to (2.32), we see that the difference between the continuous
and the dotted vectors at Q is given by

(xk kY — [B.(xk 1= a_B,-_ I p s k
Bi(x* + 6x*) — [Bi(x*) + 6B] 3k TyBr) 6x*.  (2.33)
X

We may accordingly redefine the derivative of a vector by

3B,
By = ek TiB = By ~ Ty B, (2.34)

This derivative, by definition, must transform as a tensor. It is called the
covariant derivative and will be denoted by a semicolon, as against the
ordinary derivative, which is denoted by a comma.

If B;x must transform as a tensor, the coefficients I'}; have to transform
according to the following law:

,; _ dx't 9x" oxF —_— 3%xP  3x' 5 35
“17 axm ax'k ax't ™ ax'kax'! axP (235)
This result can be verified after some straightforward but tedious
calculation.

A scalar, of course does not change under parallel transport, which is
why 3¢/3x* transform as a vector. If we use this result we see that for a
vector A;, (A;A’) ; is a vector. This property enables us to construct the
covariant derivative of a contravariant vector A':

Al = ek + Al = Al + TjA" (2.36)
x
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The rule of covariant differentiation of a tensor of arbitrary rank is
easily obtained: we introduce a (+T) term for each contravariant index
and a (—T) term for each covariant index. Thus for the metric tensor we
have

9gik

Py gk — T80 (2.37)

8ik;1 =

2.4 Riemannian geometry

Einstein used the non-Euclidean geometry developed by Riemann to
describe his theory of gravitation. The Riemannian geometry introduces
the additional simplification that

Tiy=Th  Gux=0. (2.38)

Going back to (2.37), we see that g, = 0 gives us 40 linear equations for
the 40 unknowns I'};,. These equations have a unique solution. For, from
(2.37) and (2.38) we get

Uit + Vi = 8kt
where
Cra = guilh
Rotate the indices cyclically to obtain two more relations:
Uiei + Ui = 8uais Ciw + Do = k-
Use the symmetry condition (2.38) to eliminate I'j; = T’y and Ty, =
['4;; from the above three relations to get
i = ikt + 8k — Buii-
Raising the index i, we get the required solution:
i1 i [O8mk  O8m  O8u
W28 ( dx'! * dx* - Sx"’).

(2.39)

We next consider some particular properties of these symbols that are
useful in various manipulations. If we differentiate the determinant of the
metric tensor we get

dg = gg™* dg. (2.40)

This relation is useful in expressing some I'}; and covariant derivatives in
relatively simple forms. Thus, using (2.39) and (2.40), it is possible to
prove the following relations:
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1

rl{l _( )1/2 ax ( g)1/2
1 3
rig* =~ Co? axm [(—8)"2g™;
(2.41)
. 1 ] ,
A =(—_5§5—a—,~ [(-&)V2AT;
. 1
Fif=— o ok [( )2 F*]for F* = — FX.

(Here A’ and F* are respectively vector and tensor fields.) For example,
to prove the first relation note that (2.39) gives

b= 58" (Gmiy t &mii — 8ilm)-
Since (g — 8um) is antisymmetric in (i,m), its product with the
symmetric g vanishes. The result then follows when we recall (2.40).
The symmetry condition (2.38) enables us to choose special coordinates
in which the Christoffel symbols all vanish at a given point. Suppose we
start with T}/, #0 in the coordinate system (x‘) at point P. Let the

coordinates of P be given by x),. Now define new coordinates in the
neighbourhood of P by
x'k = ~Irk (x" — xB)(x™ - x}). (2.42)
Then we have, at P,
. dx'i 3%x'!
xllP — 0’ = 0, _ = -—F’,,m,
ax™ Ax"3x™
with the result that, from (2.35),
I"i lp =0.

Further, by a linear transformat1on we can arrange to have a coordinate
system with
gik = Ny = diag(+1, —1, -1, —1), =0 (2.43)
at any chosen point P. Such a coordinate system is called a locally inertial
coordinate system, for reasons that will become clear later. Apart from its
physical implications in general relativity, the locally inertial coordinate
system is often useful as a mathematical device for simplifying calcula-
tions. We also warn the reader that the operative word is ‘local’: the
simplifications implied in (2.43) cannot be achieved globally. What
prevents us from achieving a globally inertial coordinate system? In
seeking an answer to this question we encounter the most crucial aspect in
which a non-Euclidean geometry differs from its Euclidean counterpart.
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2.5 Spacetime curvature

Figure 2.4 repeats the previous example of non-Euclidean geometry on
the surface of a sphere. We have the triangle ABC of Figure 2.2(a) whose
three angles are each 90°. Consider what happens to a vector (shown by a
dotted arrow) as it is parallelly transported along the three sides of this
triangle. As shown in the figure, this vector is originally perpendicular to
AB when it starts its journey at A. When it reaches B it lies along CB. So
it keeps pointing along this line as it moves from B to C. At C it is again
perpendicular to AC. So, as it moves along CA from C to A, it maintains
this perpendicularity with the result that when it arrives at A it is pointing
along AB. In other words, one circuit around this triangle has resulted in a
change of direction of the vector by 90°, although at each stage it was
being moved parallel to itself!

A similar experiment with a triangle drawn on a flat piece of paper will
tell us that there is no resulting change in the direction of the vector when
it moves parallel to itself around the triangle. So our physical triangle
behaves differently from the flat Euclidean triangle.

The phenomenon illustrated in Figure 2.4 can also be described as
follows. If we had moved our vector from A to C along two different
routes — along AC and along AB followed by BC — we would have found
it pointing in two different directions. In fact, if we had taken any
arbitrary curves from A to C we would have found that the parallel
transport of a vector from A to C varies from curve to curve; that is, the
outcome depends on the path of transport from A to C.

Fig. 2.4 Parallel transport on a spherical surface.
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This is one of the properties that distinguishes a curved space from
a flat space. Let us consider it in more general terms for our four-
dimensional spacetime. Let a vector B; at P be transported parallelly to O
and let us ask for the condition that the answer should be independent of
the curve joining P to Q. We have seen that under parallel transport from
a point {x'} to a neighbouring point {x’ + 6x'}, the components of the
vector change according to (2.32). If it were possible to transport B; from
P to Q without the result depending on which path is taken, then we
would be able to generate a vector field B'(x¥), satisfying the differential

equation
L =1.B, (2.44)

So the answer to our question depends on whether we can find a nontrivial
solution to (2.44).

The necessary condition for the existence of a solution is easily derived.
We differentiate (2.44) with respect to x” to get

3%B; 3 ark, 3B,
dx"axk - ox" (rl{kBl) - dx" Bi ka ax"
ary
X

We now interchange the order of differentiation with respect to x" and x*
and use the result B, = B;x,. We then get the required necessary
condition as
m — ar”;‘l arg I rm I Tm
R™ i = ax”  aek T Dl — Tl = 0. (2.45)
It is not obvious simply from the above expression that R;™,, should be
a tensor. Yet our result, in order to be significant, must clearly hold
whatever coordinates we employ to derive it. So we do expect R;”;, to be
a tensor. A simple calculation shows that, for any twice differentiable
vector field B;,

Biwk = Bitn = R nBp- (2.46)
Since the left-hand side is a tensor, so is the right-hand side, and, B,,
being an arbitrary vector, we have by the quotient law (see Exercise 10)
the result that R;,, are the components of a tensor.

This tensor, known as the Riemann Christoffel tensor (or, more
commonly, the Riemann tensor), plays an important role in specifying the
geometrical properties of spacetime. Although we have derived (2.45) as a
necessary condition, a slightly more sophisticated technique shows that
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(2.45) is also the sufficient condition that a vector field B;i(x*) can be
defined over the spacetime by parallel transport.

Spacetime is said to be flar if its Riemann tensor vanishes everywhere.
Otherwise, it is said to be curved. Exercises 26 and 27 illustrate two other
ways in which this tensor distinguishes the properties of a curved
spacetime from those of a flat spacetime.

2.5.1 Symmetries of Ry,

It is more convenient to lower the second index of the Riemann tensor to
study its symmetry properties. Since the symmetry or antisymmetry of a
tensor does not depend on what coordinates are used, it is more
convenient to write (2.45) in the locally inertial coordinates (2.43). We
then get

Riam = 7(8ktim + Gimit — &km,it = it km)- (2.47)
From this expression the following symmetries are immediately obvious:
Rikim = = Riitm = — Ritmt = — Rymik- (2.48)
We also get relations of the following type:
Riim + Rimiz + R = 0. (2.49)

If we take all these symmetries into account, we find that of the
4* =256 components of the Riemann tensor, only 20 at most are
independent! Moreover, we will soon see that there are identities linking
their derivatives.

2.5.2 The Ricci and Einstein tensors
By the process of contraction we can construct lower rank tensors from
Rium- The tensor’
R = 8" Riam = R tam (2.50)
is called the Ricci tensor. If we use the locally inertial coordinate system,
we see immediately that

Rkl = le. (251)
Owing to the symmetries of (2.48), there are no other independent

second-rank tensors that can be constructed out of Rxjm,.
By further contraction we get a scalar:

R = R; = RX. (2.52)
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R is called the scalar curvature. The tensor

G = g¥Ryy — 18R (2.53)
will turn out to have a special role to play in Einstein’s general relativity.
This tensor is called the Einstein tensor.

2.5.3 Bianchi identities

The expression (2.47) suggests another symmetry for the components of
Rium- This symmetry is not algebraic, but involves calculus. In covariant
language we may express it as follows:
Riklm;n + Riknl;m + Rikmn;l = (. (254)
These relations are known as the Bianchi identities. Their proof is most
easily given in the locally inertial system, as in (2.47).
But multiplying (2.54) by g™g*", and using (2.50)-(2.52), we can
deduce from these identities another that is of importance to relativity:
(R* — 3g*R), = 0. (2.55)
In other words, the Einstein tensor G* has zero divergence.

2.6 Geodesics

So far we have talked about non-Euclidean geometries without mention-
ing whether they have the equivalents of straight lines in Euclidean
geometry. We now show how equivalent concepts do exist in the
Riemannian geometry under consideration here.

There are two properties of a straight line that can be generalized: the
property of ‘straightness’ and the property of ‘shortest distance’. Straight-
ness means that as we move along the line, its direction does not change.
Let us see how we can generalize this concept first.

Let x'(4) be the parametric representation of a curve in spacetime. Its
tangent vector is given by
_dyf
S di
Our straightness criterion demands that u' should not change along the
curve. In going from A to A + 82, the change in u‘ is given by

. dut
Aul =
YT

(2.56)

uw

SA + Tiuk 8x'.

The second expression on the right-hand side arises from the change
produced by parallel transport through a coordinate displacement &x’.
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However, dx' = u' 5A. Therefore the condition of no change of direction
«' implies Au’ = 0; that is,

du’ ikl

E{ + Fk,u u' =0. (257)
This is the condition that our curve must satisfy in order to be straight.

The second property of a straight line in Euclidean geometry is that it is

the curve of shortest distance between two points. Let us generalize this
property in the following way. Let the curve, parametrized by A, connect
two points P; and P, of spacetime, with parameters 4; and A, respect-
ively. Then the ‘distance’ of P, from P, is defined as

hy dxi dxk \1/2 A
S(Pz, Pl) = J'M (gik -87 —dT) dA= J;l L dA. (258)

We now demand that s(P,, P;) be ‘stationary’ for small displacements
of the curve connecting P; and P,, these displacements vanishing at P,
and P5.

This is a standard problem in the calculus of variations, and its solution
leads to the familiar Euler—Lagrange equations
d (3L AL
—|—])——=0, 2.59
da (8)&’) axi 259
where ii = dxi/dA and L = [gu(dxi/dA)(dx*/dA)]"? is a function of x* and
1!, It is easy to see that (2.59) leads to

d ( 1 dxk) ) 1 dx™ dx"

dA ik T ar 28mn,i T di da =
If we substitute
ds = LdA (2.60)
and use (2.39), we get the above equation in the form
d2x! . dx* dxf
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ds? Hods ds (2.61)

There are a few loose ends to be sorted out in the above derivation. First,
L would be real only for timelike curves. Thus if we want to use a real
parameter along the curve, then for spacelike curves we must replace ds
by
do =ids, i=(-1)". (2.62)
For null curves, L = 0. The above treatment therefore breaks down. It
is then more convenient to replace the integral (2.58) by another:

I= fMdell (2.63)
A‘ b



and consider 81 = 0. We can always choose a new parameter A’ = 1’(4)
such that the equation of the curve takes the same form as (2.61), with A’
replacing s.

It is easy to see that (2.61) is the same as (2.57). Although s in (2.61)
has the special meaning ‘length along the curve’, while 4 in (2.57) appears
to be general, it is not difficult to see that if (2.57) is satisfied then A must
be a constant multiple of s. This is because (2.57) has the first integral

dx’ dx* c B
8ik o C = constant. (2.64)
These curves of ‘stationary distance’ are called geodesics. For timelike
curves C > 0, for spacelike curves C <0, while for null curves C =0. 4 is

called an affine parameter.

Example Let us calculate the null geodesics from ¢ =0, r = 0 to the point
t=T,r=R, 0=0,, ¢= ¢ in the de Sitter spacetime
ds? = ¢2de? — e2'[dr? + r?(d6? + sin? 8d¢?)],
where H = constant. It is not difficult to verify that the 6 and ¢ equations
of (2.61) are satisfied by 6 = 6, ¢ = ¢,. That is, our straight line moves in
the fixed (8, ¢) direction. The ¢ equation simplifies to
2

dr  H e (97) ¢

da? ¢ da
The first integral (2.64) gives, on the other hand,

2 [9L zzeth dr 2.
dA di

The two equations can be easily solved to give
f=— (142 c 4
= 7 P r =—— ’
H Ao H A+ 4

where A is determined from the boundary condition that when r = R,
t = T. Note that a solution is possible only if R and T are related by the
condition

C
R=-5(1-eHT).
g d-e™)

We next consider the special role played by geodesics in general relativity.

2.7 The principle of equivalence

Having described the machinery of vectors and tensors, and having
outlined the salient features of Riemannian geometry, we now make our
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first contact with physics and introduce the so-called principle of equi-
valence, which has played the key role in general relativity.

Let us go back to the purely mathematical result embodied in the
relations shown in (2.43) and attempt to describe their physical meaning.
These relations tell us that special (locally inertial) coordinates exist in the
neighbourhood of any point P in spacetime that behave like the
coordinates (¢, x, ¥, z) of special relativity. Physically, these coordinates
imply a special frame of reference in which a momentary illusion is created
at P and in a small neighbourhood of P that the geometry is of special
relativity. The illusion is momentary and local to P because we have seen
that the relations of (2.43) cannot be made to hold everywhere and at all
times.

In view of the assertion made in section 2.1 that gravitation manifests
itself as non-Euclidean geometry, we would have to argue that in the
above locally inertial frame gravitation has been transformed away
momentarily and in a small neighbourhood of P. How does this happen in
practice? Consider Einstein’s celebrated example of the freely falling lift.
A person inside such a lift feels weightless. The accelerated frame of
reference of the lift provides the locally inertial frame in the small
neighbourhood of the falling person. Similarly, a spacecraft circling
around the Earth is in fact freely falling in the Earth’s gravity, and the
astronauts inside it feel weightless.

It should be emphasized that this feeling of weightlessness in a falling
lift or a spacecraft is limited to local regions: there is no universal frame
that transforms away Earth’s gravity everywhere, at all times. If we
demand that the relations of (2.43) hold at all points of spacetime, we
would need to have 3I'{,/3x™ = 0 everywhere, leading to Ri, =0 — that
is, to a flat spacetime. Thus a curved spacetime with a non-vanishing
Riemann tensor is necessary to describe the genuine effects of gravitation.
(See Exercise 27.)

The weak principle of equivalence states that effects of gravitation can
be transformed away locally and over small intervals of time by using
suitably accelerated frames of reference. Thus it is the physical statement
of the mathematical relations given by (2.43). It is possible, however, to
go from here to a much stronger statement, the so-called strong principle
of equivalence, which states that any physical interaction (other than
gravitation, which has now been identified with geometry) behaves in a
locally inertial frame as if gravitation were absent. For example, Maxwell’s
equations will have their familiar form (of special relativity) in a locally
inertial frame. Thus an observer performing a local experiment in a freely
falling lift would measure the speed of light to be c.
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The strong principle of equivalence enables us to extend any physical
law that is expressed in the covariant language of special relativity to the
more general form it would have in the presence of gravitation. The law is
usually expressed in vectors, tensors, or spinors in the Minkowski
spacetime of special relativity. All we have to do is to write it in terms of
the corresponding entities in curved spacetime. Thus in the flat spacetime
of special relativity, the Maxwell electromagnetic field F* is related to the

current vector j* by
F* = 4k, (2.65)

In curved spacetime the ordinary tensor derivative is replaced by the
covariant derivative:

Fi% = 4mj*. (2.66)

Notice that the effect of gravitation enters through the T', terms that are
present in (2.66). This generalization of (2.65) to (2.66) is called the
minimal coupling of the field with gravitation, since it is the simplest one
possible. ‘

So in order to describe how other interactions behave in the presence of
gravitation, we use the covariance under the general coordinate transfor-
mation as the criterion to be satisfied by their equations. It is immediately
clear from the example of the electromagnetic field that a light ray
describes a null geodesic.

In the same vein we can now describe a moving object that is acted on
by no other interaction except gravitation — for example, a probe moving
in the gravitational field of the Earth. In the absence of gravity, this object
would move in a straight line with uniform velocity; that is, with the
equation of motion,

d _ 0, u' = 4-velocity. (2.67)
ds
In the presence of gravity, (2.67) is modified to our geodesic equation
(2.61).
We end this section with another example that provides a clue about
how gravitational effects show up in spacetime geometry according to

general relativity. Consider the Minkowski spacetime with the standard
line element

ds? = ¢2dr? — dx? — dy? — dz2. (2.68)

If we make the coordinate transformation for a constant g,
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2 ' '
x = c—(cosh—g—t— — 1) + x'coshg—,
g c

c (2.69)
tl !
y=y', z2=12z, t=isinhg—+x—,
g c c
this leads to the line element
gx, 2 12 12 12 2
ds? = 1+>=-) dr'* —dx'® —dy’® —dz'". (2.70)
c

What interpretation can we give to (2.70)? The origin of the (x', y', z’)
system has a world line whose parametric form in the old coordinates is
given by

2 ’ ’
x = c—(coshi - 1), y=0, z=0, =Ssmm&  @71)
g c g c

Using the kinematics of special relativity, we can easily see that (2.71)
describes the motion of a point that has a uniform acceleration g in the
x-direction, a point that is momentarily at rest at the origin of (x, y, z) at
t = 0. We may interpret the line element (2.70) and the new coordinate
system as describing the spacetime in the rest frame of the uniformly
accelerated observer.

Direct calculation shows that not all '}, are zero in (2.70) at x’ =0,
y' =0, z' = 0. The frame is therefore non-inertial. For the neighbourhood
of the origin, the metric component

go=1+-""=1+— (2.72)

c

where ¢ is the Newtonian gravitational potential for a uniform gravita-

tional field that induces an acceleration due to gravity = —g. We have

here the reverse situation to that of the falling lift: we seem to have

generated a pseudogravitational field by choosing a suitably accelerated

observer. The prefix ‘pseudo-’ is used because the gravitational field is not

real - it is an illusory effect arising from the choice of coordinates. The

Riemann tensor is zero. Nevertheless, the relation (2.72) is also suggestive
of the real gravitational field, as we will see in section 2.9.

2.8 Action principle and the energy tensors

Before examining relativity proper, let us see how we can write the laws of
physics in the covariant language in Riemannian spacetime using the
strong principle of equivalence. We take the familiar example of charged
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particles interacting with the electromagnetic field. The physical laws can
be derived from an action principle. First we write the action in
Minkowski spacetime:

ea .
A= Ecma fdsa — —— | FyF*d*x — —fAida'; (2.73)
c
here A; are the components of the 4-potential, which are related to the
field tensor Fy by
Api — Ajk = Fy, (2.74)

while e, and m, are the charge and rest mass of particle a, whose
coordinates are given by a’ and the proper time by s, with

ds2 = ny da’ da*. (2.75)

How do we generalize (2.73) to Riemannian spacetime? First, we note
that n; in (2.75) are replaced by gy. Next, starting from the covariant
vector A;, we generate Fy by the covariant generalization of (2.74):

Ak;i - Ai;k = Fik' (276)

However, since the expression (2.76) is antisymmetric in (i, k), the extra
terms involving the Christoffel symbols vanish and we are back to (2.74)!
The volume integral in (2.73) is modified to

fFika(— 2)12 dx. 2.77)

The extra factor (—g)'/2 has crept in because the combination
(—g)"? dx' dx?dx?dx® = Lejy dx’ dx/ dx* dx’

acts as a scalar. We therefore have the generalized form of (2.73):

A=~ Sem, [ds, ~—— [FuP* (~g)2atx - 3 fA dai.  (2.78)
The yarlatlon of the world line of particle a gives its equation of motion,
d?q . da* da'¢ e, _,dd
i, — — = F! .
ds? Ko ds, ds, my, “ds,’ (2.79)

while the variation of A; gives the field equations (2.66).

The transition from (2.73) to (2.78) has, however, introduced an
additional independent feature into the action, besides the particle world
lines and the potential vector. The new feature is the spacetime geometry
typified by the metric tensor g;. What will happen if we demand that the
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gi are also dynamical variables and that the action & remains stationary
for small variations of the type

gik —> 8k + 08k (2.80)

From the generalized action principle, should we expect to get the
equations that determine the spacetime geometry? Let us investigate.

A glance at the action (2.78) shows that the last term does not
contribute anything under (2.80) if we keep the worldlines and A; fixed in
spacetime. The first two terms, however, do make contributions. Let us
consider them in that order. First note that

8(ds?%) = 8gy da’ da*.

That is,
da' da*
d — ds,.
5( sa) Zégzk dSa dSa dsa
Therefore,
da’ da
oS am, fds,, P> f e L 2.81)

Let us consider this variation in a small 4-volume V" near a point P. If
we consider a locally inertial coordinate system near P we can identify the
above expression in a more familiar form. Let us first identify
da’
ds,
as the 4-momentum of particle a. Then cp?a) = E, = energy of the
particle, and we get

1m 99 da’ da* s c?

2Ma 45, a5, T 2E, 2E

Figure 2.5 shows the volume V" as a shaded region in the neighbourhood
of P, t being the local time coordinate and x*(u=1,2,3) the local

rectangular coordinates. The expression (2.81) can then be looked upon as
a volume integral over V' of the form

1
da=——J'6 x Tkd*x, 2.82
62cmaJ' s e v 8ik (2.82)

(m)

p(a) cm,

P(a)P(a) ds, P(a)p(a) dxg.

where T is the sum of expressions
(m)
2

C . k
E PP (a)

for each particle a that crosses a unit volume of the shaded region near P.
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x*

XH

XH

Fig. 2.5 Three cases of particle motion in the locally inertial region T near a
typical point P of spacetime. The thick line on the x#-axes in each case represents
a unit 3-volume. All particles a, b, c, d, . . . crossing this volume are counted for
computing T%. (a) Particle world lines a, b, c, . . . are nearly parallel. This is the
dust approximation. (b) The particles move at random with speeds near the speed
of light, frequently changing directions through collisions. This is the relativistic
case. (c) The intermediate situation, in which the particles collide, change
directions, and generate pressures, but their motions are nonrelativistic. This is
the case of a fluid.

2.8.1 Energy tensor of matter

This expression for Ty is none other than the usual expression for the
energy tensor of matter. Since we will need this tensor frequently, it is
derived below for three different types of matter.
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Dust: This is the simplest situation, in which all the world lines going
through the shaded region in Figure 2.5(a) are more or less parallel,
indicating that the particles of matter are moving without any relative
motion in the neighbourhood of P. If we write the typical 4-velocity as u!
and using a Lorentz transformation to make u'=(1,0,0,0) (that is,
transforming to the rest frame of the dust) then the only non-zero
component of the energy tensor is

T = Zmac2 = poc?,
a

where the summation is over a unit volume in the neighbourhood of P.

Here py is the rest mass density of dust. In any other Lorentz frame we get
T = pyc?uiuk, (2.83)
(m)

an expression that is easily generalized to any (non-Lorentzian) coordinate

system.

Relativistic particles: This situation represents the opposite extreme. Here
we have highly relativistic particles moving at random through V' (see
Figure 2.5(b)). The 4-momentum of a typical particle is then approxi-
mated to the form

) E
pl= (—, P), E? = c?P? + m%c* = c?P?, P =Pl
c

Using the fact that the particles are moving randomly, we find that the
energy tensor has pressure components also:

T = > E=¢,
2E=¢ (2.84)

P2c2

3E

The factor { comes from randomizing in all directions. These are the only

nonzero pressure components. Here & is the energy density. Thus for
extreme relativistic particles we get

(T;" = diag (¢, 1¢, 1, e). (2.85)

T = T22 = T33 :Z

This form is also applicable to randomly moving neutrinos or photons.

Fluid: This situation is illustrated in Figure 2.5(c) and consists of a
collection of particles with small (nonrelativistic) random motions. If we
choose the frame in which the fluid as a whole is at rest as the frame of
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reference, we can evaluate the components of T as follows. Let a

typical particle have the momentum vector given by ™
mc? mv
pO = 2 12 ° pt= 2 12 (.u =12, 3) (286)
f-d [

Then
2\ ~1/2 2
T® = > mc? 1-Z ~ > mc? 1+—U—)=pc2,
c? 2¢?
2.87)

p2\~1/2
TW=T2=7T%=1>mp’ (1 — c—z) ~ p.
Here p and p are the density and pressure of the fluid. In a frame of
reference in which the fluid as a whole has a 4-velocity u’, the energy
tensor becomes

T* = (p + pcHuiuk — pyi. (2.88)
(m) '

The generally covariant form of (2.88) is obviously
(T;k = (p + pc®)uiuk — pgi. (2.89)

Note that p is not just the rest-mass density, but also includes energy
density of internal motion, as seen in (2.87).

We may now relax our restriction to the locally inertial coordinate
system at P. The generalized form of (2.82) is then

1
863 cm, f dsy =5~ f T (~g)'" g d'x. (2.90)
a C m

2.8.2 Energy tensor of the electromagnetic field

We next consider the variation of the second term of (2.73). If we keep A;
fixed, the Fy, as given by (2.76) or (2.74), remain unchanged under the
variation of g;. Hence
S(FuF*(—g)"?) = FuFind(8"8*"(—8)""?).
From (2.24) we get o
og*gu = — g% dgu;
that is,
ik —

og = —g"g"" Sgmn- (2.91)
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Also, from (2.40) we have
5 (—g)" = 38™(—8) " o8u. (2.92)
Substituting these expressions into the variation of the second term of the
action gives
1 . 1 .
5__—f FuFk(—g) 2 dix = — | Tk (—g)28g, d*x, (2.93
e J,FuF"(=8) 3¢ b L) (78) 708 (2.93)
with the electromagnetic energy tensor given by
. 1 ) .
Tzk=_lF Fmn lk__FlFlk )
(m) 47 (4 mn 8 ! ) (2 94)
It is obvious from our two examples that the energy tensor of any term
in the action of the form A is related to the variation of A by

1 ,
5A=—fT'k— 128g., d*x. 2.
e (A)( g)/“ogydx (2.95)

In theories defined only in Minkowski space the appearance of energy
tensors is somewhat ad hoc. They do not enter explicitly into any dynamic
or field equations. They appear only through their divergences, the typical
conservation of energy and momentum being given by

T* = 0. (2.96)
In our curved spacetime framework the T% find a natural expression
through the variation of g;. It was this variation of the metric tensor that
led Hilbert to derive the field equations of general relativity shortly after
Einstein had proposed them from heuristic considerations. We now turn
our attention to this topic.

2.9 Gravitational equations

The preceding section showed that the variation of the action # with
respect to gi leads us to the energy tensor of various interactions. We still
do not have dynamic equations that tell us how to determine the gy in
terms of the distribution of matter and energy. It was Einstein’s conjecture
that the energy tensors should act as the ‘sources’ of gravity. Following the
general trend of nineteenth-century physics, especially the Maxwell
equations, Einstein looked for an expression that would act like a wave
equation for g;,, with Ty as the source. It is immediately clear that the
standard wave equation in the covariant form

gmngik;mn = K-Tika (297)
where k is a constani, will not do, for the left-hand side vanishes
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identically. Is there a second-rank tensor symmetric in its indices (like the
Ti) that involves second derivatives of gy? Clearly, if the tensor is to
bring out the special feature of curvature of spacetime, it must be related
to the Riemann tensor. After trial and error, Einstein finally arrived at the
tensor Gy, of (2.53). His field equations of general relativity, published in
1915, took the form

Rik - %g,'kR = Gik = _KTik' (298)

These equations have the added advantage that in view of the Bianchi

identities in (2.55) we must have

Tk, = 0. (2.99)
That is, the law of conservation of energy and momentum follows
naturally from (2.98).

Although there are 10 Einstein equations for 10 unknown g;, the
divergence condition of (2.99) reduces the number of independent
equations to 6. This underdeterminacy of the problem is due to the
general covariance of the theory: if g is a solution, then so is any tensor
transform of g; obtained through a change of coordinates.

The expression (2.99) follows for any T% obtained from an action
principle by the variation of g; (see Exercise 33). It is therefore pertinent
to ask whether the Einstein tensor can also be derived from an action
principle. This problem was solved by Hilbert soon after Einstein
proposed his equations of gravitation. Hilbert’s problem can be posed as
follows. Consider the variation of the term

ﬁVR (—g)2d*x

for g% — g* + 8g™ with the restriction that g and 8g¥ ; vanish on the
boundary of . It can be shown (see Exercise 34 and 35) that

(Sf‘vR('g)l/z dix = f”ifagik(Rik ~ JguR)(—g)"* d*x
= - [ Bgu(R* — 1g*R)(~g) " d*x. (2.100)

Thus it follows that Einstein’s equations can be derived from an action

principle if we add to & the term
1 f :
R(— )2 d%x. 2.101
2kc JV (-8 ‘ ( )

If to the scalar R we add a constant (24, say) that is trivially a scalar, we
get a modified set of field equations:

Ry — 18uR + Agi = — kT (2.102)
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We will consider these equations only when we discuss cosmology, since
the extra term (the A-term) has cosmological significance. For the time
being we return to (2.98) and relate x to known physical constants.

2.9.1 Newtonian approximation

We now come to the important question of the magnitude of x and the
relationship between general relativity and Newtonian gravitation. The
first hint of the connection between Newtonian gravitation and the present
theory was provided by (2.72), where we saw that provided gy did not
differ significantly from unity then the difference (ggo — 1) is proportional
to the Newtonian gravitation potential. We now seek to formalize this
relationship and thereby determine x. We will show that in the so-called
slow motion + weak field approximation, general relativity reduces to
Newtonian gravitation.
This approximation is specified by the following assumptions:

1. The motions of particles are nonrelativistic: v << c. In this case we are back
to Newtonian mechanics.

2. The gravitational fields are weak in the sense that

8ik = M T hu, [ael << 1. (2.103)

The inequality suggests that we ignore powers of h; higher than 2 in the
action principle and higher than 1 in the field equations.

3. The fields change slowly with time. This means we ignore time derivatives in
comparison with space derivatives.

Let us now see how the action is simplified under these approximations.
First note that with x° = ¢,
ds? = (nu + hy)dx! dx*
= (1 + hg)c?de? — v2ds?,
that is,

c?

' p2\ 12 2
ds~(1+h00———) Cdt’*‘(l‘i"zl‘hoo_z—z')Cdt. (2104)

c
We next look at the term involving the scalar curvature. The linearized

expression for the Riemann tensor [see (2.47)] is

Ricim = 3(Pitiom + Pimps = Piomit = Pt fom)- (2.105)
The corresponding values of R can also be calculated. However, care is
needed if we are to look at the action principle rather than the field

equations in this approximation, for we anticipate quadratic expressions in
the Ay to appear in the geometrical term (2.101).
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Item 3 above eliminates time derivatives altogether. Further, the ratios
of typical space and time displacements are 8x*/8x? = p#/c, where v* are
typical Newtonian velocities. Thus Ag is more important than any other
hy, at least by the factor (¢/v). We will henceforth ignore all other Ay in
comparison with A2o. We then get

g% =1~ hy, (2.106)
(—8)2 =1+ Jhe (2.107)

and
R(=g)"V* = —(1 — 3ho0)Vheo. (2.108)

Using these relations we finally get the approximate action as

: H 1
~—— (|(1 = Lho)V2ho d3xdt — DL th dr
o 2 )1 = 2ho) V2 koo dxdt = 3 3me? | hoo (2.109)

+ E%mfvz dt + constant.

The constant represents path-independent terms that can be ignored in a
variational problem. Here we have dropped particle labels a, b, ... and
used the 3-vector x to denote x* (u=1,2,3). We can use Green’s
theorem and ignore surface terms. Thus in
[ (1~ Jho) V2o dx = |
3-volume

2-surface

(1 — 1hoo)VhgodS

1 2433
+ 2J'S-volume(VhOO) d*x

we can ignore the surface term. Hence
o~ - % [[oho2 axar = Sime2 [t + Simfo?dr. @.110)
Now compare this with the Newtonian action
oy = — éff(v‘f’)z Fxdt — Smpdt + Simfodr, @.111)

with ¢ as the gravitational potential. Clearly, (2.110) becomes the same as
(2.111) if we put

87 G

¢ = 3cthy, K= (2.112)

c

Thus we have completed our project of evaluating k and relating the
relativistic framework to Newtonian gravitation. Assumptions 1 to 3 above
are known as the Newronian approximation. It leads to the linear
gravitation theory of Newton, which has wide applications ranging from
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the tidal phenomenon of the Earth’s oceans to motions of planets of the
Solar System to motions of stars and galaxies in clusters. Provided these
three assumptions hold, general relativity does not add anything new. If
assumptions 1 and 3 are dropped but 2 is retained then we are in the
domain of the weak field theory of gravitational radiation. For, in the
weak field limit it is seen that spacetime curvature effects propagate as
waves with the speed of light. If this text were devoted primarily to
general relativity, we would have discussed this intriguing phenomenon in
detail. A few properties of gravitational radiation are outlined in Exercises
37 to 40. To get the full effects of general relativity, however, we must
drop all three assumptions and face the nonlinear equations of (2.98) in
their most general form. Naturally this is a complicated task, and after
more than six decades of this theory there are only a handful of exact
solutions of direct physical relevance. We will end this chapter with a
discussion of the earliest, simplest and the most important of these
solutions.

2.10 The Schwarzschild solution

Shortly after Einstein published his equations of general relativity, Karl
Schwarzschild solved them to find the spacetime geometry outside a
spherical distribution of matter of mass M. The corresponding problem in
Newtonian gravitation yields the solution for the gravitational potential as
GM
¢=— , (2.113)

r

r being the distance from the centre of the spherical distribution.
At a large distance from the centre, we expect the gravitational field to
be weak. So under the Newtonian approximation we expect
8w ~1- 2G2M (2.114)
' cr
We will now show how the Schwarzschild solution is obtained and how
this exact solution takes the above form.

The problem can be solved by making use of symmetry arguments. If
the spacetime outside such a spherical distribution is empty, then its
geometry should be spherically symmetric about the centre O of the
distribution. So we start with the most general form of the line element
that fulfils this requirement of spherical symmetry.

It can be shown that the most general form of such a line element is

ds? = evc?dr? — e*dr? — r2(d6? + sin? 6dg¢?), (2.115)
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where v and A are functions of r and ¢. If v= 1= 0, we get the Minkowski
line element in spherical polar space coordinates. The non-Euclidean
effects are therefore contained in the functions A and v. Although in this
case r ceases to measure the radial distance from O, it still has the
meaning that the spherical surface r = constant = r, (for example) has the
surface area 4rr3. The arguments leading to (2.115) are group-theoretic,
involving the invariance of spacetime under rotations about the point O.
The techniques describing these arguments are beyond the scope of this
text: see the classic book by Eisenhart listed in the bibliography for these
details.

Given the line element (2.115), the next step is to calculate g, (—g)'/2,
and I'};,, We then calculate Ry, which are given by (2.50) and are
expressible in the following form:
aly  3*(In(—g)'?)

- +
Ax dx*ax!

3
Ry =— +Ipry, — —— (In(—g)"?) T,
ax”

(2.116)

Since the space outside the distribution is empty, it has T, = 0. Therefore
the contraction of the field equations in (2.98) gives R =0, and these
equations reduce to

Ry = 0. (2.117)
The (00) and (11) components (r = x!) give, after some manipulation, the
following equations:

e (£ - i) + 1 = 0. (2.118)
rop2 r2
—eH (V7 ;15) + % =0. (2.119)
From these we get
vV +A =0,
that is,
v+ A= f(1).

(Here a prime denotes differentiation with respect to r, and an overdot
denotes differentiation with respect to ¢.) The arbitrary function f(¢) can,
however, be set to equal zero since we still have an arbitrary time
transformation

t=g()
at our disposal, which changes v to
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v=v+2In d—g
de
and preserves the form of the line element (2.115). Therefore we can take
without loss of generality

v+ A=0. (2.120)
However, we also have, from Ry, =0,
i=0. (2.121)
Thus both A and v (= —A) are functions of r only. The equations (2.118)
and (2.119) then yield the solution
ev=et=1- i?, A = constant. (2.122)

However, if we are given the mass of the object to be M, we may use the
boundary condition (2.114) to set A = 2GM /c?.
Thus we get out required solution as the line element

2GM 2GM
ds2=(1— )czdtz—(l—

2 2

-1
) dr? — r2(d6? + sin? 0d¢?).
c°r c°r

(2.123)

This is known as the Schwarzschild line element. It turns out that because
of the symmetries of the problem the other field equations are automatic-
ally satisfied: we only need the (11), (00) and (01) components to arrive at
the solution. Also, the solution (2.123) is manifestly static. Thus there is
no scope for a dynamic solution such as one involving gravitational
radiation, even if our spherical source is expanding, contracting, oscillat-
ing. This remarkable result is known as Birkhoff’s theorem.
We now consider a few implications of this solution.

2.10.1 Experimental tests of general relativity

Most of the present tests of general relativity are based on the
Schwarzschild solution, and they seek to measure the fine differences
between the predictions of Newtonian gravitation and those of general
relativity. These are discussed briefly below.

Before confronting the experimental situation, however, it is necessary
to clarify how to attach meanings to measurements in a spacetime that is
non-Euclidean. We have already seen that coordinates have no absolute
status and hence to rely on them blindly might lead to incorrect results.
The Schwarzschild metric (2.123) can be used to illustrate the concept of
measurement.
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Suppose, for example, an observer is located at a point with r = con-
stant, 8 = constant, ¢ = constant. How does he relate the time kept by his
watch to the coordinate ¢? From the principle of equivalence we know that
since dr = ds/c measures the observer’s proper time in a locally inertial
frame, being a scalar, it does so in all frames. For our observer, dr =0,
de =0, d¢ =0, so from (2.123) we get

1/2
2GM ) dr.

c?r

dr=(1—

This gives the required answer.

If instead of being stationary the observer is moving radially and his
radial coordinate at time ¢ is given by r = f(¢), his proper time interval
corresponding to dt is

dr = (1 _ 2GM)1/2 a {1 [ @df(n/deye? 2} 1/2'

2 1 — 2GM/ctf(t)

c°r

The gravitational redshift

Consider any static line element — that is, one in which g do not depend
on x° = ct. Suppose we have two observers A and B with world lines
x# = constant = a*, b# (2.124)
respectively. Let T be a null geodesic from A to B, with parametric
equations given by
xt = xI(A), (2.125)
with x#(0) = a#, x*(1) = b*, x°(0)=cty, x°(1) = ctz. What does our
geodesic correspond to in physical terms?
It describes a light ray leaving observer A at time t, and reaching
observer B at time tg. Because of the static nature of the line element, we
also have another null geodesic solution given by

xh=xH(h), u=1,2,3, (2.126)
x%=x%A)+ A, A = constant.
This describes a light ray leaving A at t4 + A/c and reaching B at
tg + AJc.
Now. in the rest frame of A, the time interval A/c corresponds to a
proper time interval (measured by A) of

2 lgolan)2.

If n light waves have left A in this time interval, then the frequency of
these waves as measured by A is
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V4= —ZL [goo(a™)] V2.

Since the same number of waves are received by B in the corresponding
time interval, we get the ratio of frequencies measured by B and A as

v goo(a®) 112
e =[ wl@®) 17 (2.127)
Va gwo(b*)

This is also the ratio of the wavelengths A,4:15 measured by A and B

respectively.

If in the Schwarzschild solution A is an observer located on the surface
of a star, at r = ry, say, and B is a distant observer with r > 2GM/c?, we
get

- (2.128)
cr

Ap (1 2GM)-1/2
Thus spectral lines from a massive compact star should be redshifted. For
2GM/c?r,; small compared to unity, the redshift

ds— s GM
g=2 A2 (2.129)
Aa cr,

White dwarf stars like Sirius B and 40 Eridani B do show redshifts in the
range of 10™* to 107>, which are of the right order of magnitude. More
reliable and quantitatively accurate measurements, however, are possible
only in a terrestrial experiment. For example, in 1960 Pound and Rebka
measured the change in the frequency of a y-ray photon emitted by an
excited iron nucleus as it fell from a height of 60 to 70 feet. As such a
photon falls through a height 4, the Newtonian potential increases by gh,
where g is the acceleration due to gravity on the Earth’s surface. From
(2.129) we see that the photon should undergo a blueshift; that is, its
frequency increases by a fraction gh/c?. Although this fraction is as small
as 107, it can be measured by modern laboratory techniques. The
Pound-Rebka experiment and later work have confirmed the gravitational
redshift effect.

The perihelion precession of Mercury

If we treat the Sun as the mass M in the Schwarzschild solution and the
planets as probes moving in the curved spacetime around the Sun, then in
the first approximation each planet will move along a timelike geodesic.
The equations of motion of a planet are therefore easily obtained (see
Exercise 45). In the Newtonian approximation, the planet describes an
ellipse given by its polar equation
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l
- = 1+ ecos(8 — 6y). (2.130)

Here [ is the semi latus retum, e the eccentricity, and 6, the direction in
which its perihelion (point of closest approach to the Sun) lies.

A more careful solution of the equations (see Exercise 47) shows,
however, that 6, is not a constant, but changes its magnitude at a steady
rate illustrated in Figure 2.6. This precession of perihelion is at a rate

6rGM

ITc?
where M = mass of the Sun and T = period of the planet. The value of
n is largest for Mercury, which of all the planets has the most eccentric
and closest orbit to the Sun. The rate for Mercury, n = 43 arc second per
century, explained exactly the rate of precession, which had long remained
unaccounted for in the Newtonian theory.

Recently a more dramatic example of such a precession was observed
for the binary star system that houses the pulsar PSR 1913 + 16. Here the
gravitational effects are stronger than in the Sun—-Mercury system, and the
precession rate is as high as 4.23 degrees per year — about 3.6 x 10* times
the value of Mercury.

n , (2.131)

The bending of light

Just as timelike geodesics determine the tracks of planets, we can calculate
the track of a light ray by determining the equations of null geodesics.
These equations are straightforward to write down (see Exercise 48) and
integrate (see Exercise 49). The most dramatic effects arise when a null
geodesic goes very close to the mass distribution.

For a light ray grazing the solar limb, the spatial direction of the ray
changes by an angle

P,

Pl

Fig. 2.6 P is the point of closest approach to the Sun (S) in the orbit of Mercury.
As successive orbits are completed, the point P advances steadily from P; to P,
and so on. (The advance rate per orbit is actually much smaller than shown here.)
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_4GMo

- C 2R I0)
where Rg = radius of the Sun. The bending angle is indeed very small,
and its measurement was first attempted by Eddington and his colleagues
in 1919 at the time of a solar eclipse. (The experiment involves measuring
the apparent change in the direction of a star as its line of sight grazes the
solar limb. For obvious reasons, optical astronomers have to wait for a
total solar eclipse to perform this experiment.) That measurement and
subsequent attempts by optical astronomers have yielded somewhat
inconclusive results, largely because the refractory effects of the gas in the
outer parts of the Sun also contribute to the bending. In the 1970s
measurements with microwaves (for which the effects of refraction are
very small), confirmed the above bending angle much more precisely with
only about 5 per cent experimental error.

It is worth pointing out with regard to the gravitational redshift and the
bending of light that since the strict Newtonian theory did not predict any
effects of gravity on light, their observation implies a disproof of
Newtonian gravitation. However, it is possible to enlarge the scope of the
Newtonian framework and argue that light is made of particles (photons)
that are also subject to the inverse-square law. (Indeed, Newton himself
had speculated on this possibility.) We can then show that such an
enlarged theory gives (2.129) for gravitational redshift (see Exercise 52),
the same as in relativity, but half the relativistic value for the bending of
light (see Exercise 51). The observed bending of microwaves therefore
rules out such a theory.

= 1.75 arc second, (2.132)

Radar echo delay

Just as the direction of a light ray is altered by the Sun’s gravity, so is its
apparent - travel time. This effect can also be calculated in a straight-
forward manner. In the 1970s measurements were made by bouncing
radar signals emitted from the spacecrafts Mariner 6 and 7 off the surface
of the Earth as the signals grazed the solar limb. The expected delays on
the order of 200 microseconds were observed within 3 per cent error bars.

The equality of inertial and gravitational mass

An important conrequence of the principle of equivalence is the equality
of inertial and gravitational mass. A little thought will convince us that
Galileo’s experiment from the Leaning Tower of Pisa, which demon-
strated that all bodies fall freely with equal rapidity, is an essential part of
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Einstein’s thought experiment involving the freely falling lift. Both
experiments are possible because the same quantity enters the law of
motion as inertial mass and the law of gravitation as gravitational mass.

Recent experiments with lunar laser ranging have been successful in
measuring the distance of the Moon from the Earth within a few
centimeters. Such experiments also demonstrate that the Moon moves
around the Earth as predicted by the equations of general relativity. In
particular, these experiments ruled out certain alternative theories of
gravitation, like the Brans—-Dicke theory, that allow for the variation of
inertial mass with distance from another mass.

Laboratory experiments of the torsion balance type have been con-
ducted very accurately with different materials to establish this equality
with high sensitivity. Such experiments place stringent upper limits on the
possible presence of a ‘fifth force’ operating at a range of a few metres.

Precession of a gyroscope

Although the Schwarzschild solution describes the gravitational effects of
the Sun or the Earth with great accuracy, there is scope for further
improvement. For instance, a rotating mass would introduce a d¢ d¢ term
in the metric. Although the effects of such terms are very small for the
Earth or the Sun, modern technology can measure them.

One experiment that can measure the effect of a rotating mass makes
use of gyroscopes. The axis of a gyroscope sent on an equatorial orbit
around the Earth will slowly precess. An estimated rate of precession of
~ 7 arc seconds per year can be detected with present technology, and
such an experiment has been planned.

Gravitational radiation

Calculations based on the weak field theory show that the magnitude of
gravitational radiation from terrestrial apparatus is extremely small and
beyond the scope of present technology. Celestial objects, however, can
and do emit appreciable quantities of gravitational radiation, and attempts
are being made to devise detectors to measure them. Typical sources of
gravity waves are supernova explosions, binary stars, and, possibly,
primordial developments in the very early universe (see Chapter 6).

2.10.2 Black holes

All the effects discussed above are those of weak gravity. For the Sun the
ratio 2GM/c?Rg is as low as 4-107%, and for the Earth it is even
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smaller. Can we visualize an object that is so compact that its mass M and
radius R are related by

2GM

c’R
A glance at the Schwarzschild solution will show that for such an object
the spacetime geometry near the surface will be markedly non-Euclidean.
Several unexpected results arise if such objects exist (see, for example,
Exercises 53 and 54).
An object whose Schwarzschild radius R satisfies the condition

2GM
2

~1?

R =<

- (2.133)

is called a black hole. As its name implies, such an object is dark because
its strong gravity traps light and prevents it from getting away. A glance at
(2.128) shows that the gravitational redshift of a black hole is infinite.
Since redshift, z, implies a decrease in the energy of a light photon by the
factor (1 + z)~!, no photon with finite energy can come out of a black
hole.

Considerable work was done between 1965 and 1975 in attempts to
study black holes and their weird properties. Since the emphasis of this
text is on cosmology, we must be content with the superficial description
given here. It is to a discussion of cosmology that we must now proceed.

Exercises

1 Verify that a piece of string stretched across the spherical globe of
the Earth lies along the arc of a great circle, which is a ‘straight
line’ on the spherical surface. Check whether lines of latitude and
longitude are straight.

2 One of the ‘self-evident truths’ on which Euclid’s geometry is
based is the so-called parallel postulate. This states that given a
straight line / and a point P not on it, one and only one line
parallel to / can be drawn through P (that is, a line that does not
meet [ if both lines are extended indefinitely.) What happens to
this postulate in the geometry on the surface of a sphere and on a
saddle-shaped surface?

3 Calculate tangent vectors at typical points on the curves in
spacetime given by the following relations (x' = x, x> =y, x3 = z,
and x° = cr):
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(a) x = ctocos(t/tg), y = ctosin (¢/ty),

Z = ct, ty = constant.
(b) x=0,y=0,z2-c**=0.
(c) x = ctcos(t/ty), y = ctsin(t/ty), z = constant, ¢y = constant.
Determine whether these tangent vectors are spacelike, timelike,
or null in Minkowski spacetime.
Calculate the components of the normals of the following surfaces
and determine whether they are spacelike, timelike, or null in
Minkowski spacetime (x! = x,x2 =y, x3=2z,x" = ¢cr):
(a) x%+ y?+ z%2 — A%? = constant, A = constant.
(b) x?+ y? — A?£2 = constant, A = constant.
(c) x? — A?t? = constant, A = constant.
Which of the following expressions are invalid with respect to the
summation convention? Simplify those expressions that are valid.
(a) A;B* Ay (b) gug®. (©) Rugi- (d) eugme™™.
(e) T*gy.
Ay is a tensor such that the matrix [|A;]| is nonsingular. Show that
the components of the inverse matrix transform as a tensor. (An
example of this result is the tensor g**.)
Show that the property of symmetry or antisymmetry with respect
to indices of a tensor is invariant under coordinate transforma-
tions.
Construct, with the help of g; only, a fourth-rank tensor that is
symmetric with respect to the interchange of any two of its indices.
Verify that if F is an antisymmetric tensor field, then Fj , +
Fy; + Fj . is a third-rank tensor.
Prove the quotient law in the following form: if A;B* is a vector
for any arbitrary vector B*, then A; must transform as a tensor.
Use two-dimensional polar coordinates (r, 8) on a Euclidean
plane. Let A, and A, be the radial and transverse components of a
vector A at a typical point P chosen with respect to locally
Cartesian axes, with directions coinciding with 6 = constant and

~ r = constant, respectively. Show that a parallel transport of the

vector at P to a neighbouring point Q(r + ér, 8 + 56) gives the
two components of the vector at Q as

A, + 660A,, Ay — 80A,.
By using the requirement that B, transforms as a tensor, deduce

the transformation relation (2.35) for ['%,.
Deduce the form (2.36) for A’.,, using (2.34) for B, and assuming
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that the covariant derivative of a scalar equals its ordinary
derivative.
Suppose two metrics are defined on the same spacetime, and let
Iy, and T, be the two corresponding Riemannian affine connec-
tions. Deduce that the quantities

Q=T —Tl
transform as a tensor. (The coordinates are the same in the two
cases.)
Show that to arrive at a locally inertial system it is necessary to
have [, = T'%.
Deduce the relations shown in (2.41) from first principles.
Show that for a scalar field ¢, the wave operator takes the form

_ kg L 9 2 ik OF
¢ =g pu = o o ((‘g)l/ g* a—x,)
The line element on the surface of a sphere of radius a in
Euclidean space is given by
ds? = a?(d6? + sin? 8 d¢?).
For this space calculate T%; i, k, [ = 1,2 (with 8 = x! and ¢ = x?)
and verify the result discussed in the text regarding the change of
direction of a vector under parallel displacement around the
3-right-angled triangle ABC.
Prove from first principles that B;.,.x — Bixn = R/ tnB-
For an antisymmetric tensor field Fj, show that F ’f‘k =0.
A; is a vector field satisfying A’;=0. If Fy = Ag; — A, show
that
Fi% = gmA*, . + RLA™.
Deduce the form (2.47) taken by Ry, in the locally inertial
coordinate system. Use the same coordinates to deduce the
symmetric nature of R;.
Show by direct enumeration that the number of algebraically
independent components of Ry, is 20.
Using a locally inertial coordinate system, deduce the Bianchi
identities. From these identities in their covariant form show that
Ric;l = % R k.
Show that the first integral of (2.57) is
dx’ dx*

8ik a —(ﬁ_ = constant.
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Show that the change in the direction of a vector under a parallel
displacement around a closed infinitesimal curve can be expressed
in terms of the Riemann tensor and the area spanned by the curve.
Let a bundle of geodesics be specified by a parameter u, so that a
typical point on the w-geodesic has the coordinates x*(A, u), i
being the affine parameter. The vector vk = 3x*/3u denotes the
rate of deviation from one geodesic to another across the bundle.
Deduce the following relations:

(a) vfu' =uk v, where uf = ox*/3A.

(b) d2vk/dA? + Rk, utvmu™ = 0.

The latter is the equation of geodetic deviation.

Construct a Newtonian analogue of geodetic deviation by compar-
ing the deviation of two test particles falling on the (spherical)
Earth along two neighbouring radial trajectories.

Verify the existence of the 1 factor in (2.84).

Show that the results of (2.87) are based on standard kinetic
theory. .

Calculate the form of the energy tensor for a plane electromagnetic
wave.

Show that if the Lagrangian density of a physical interaction in
curved spacetime is L, so that its contribution to action is

JL(g) aix,

then, provided L depends on the geometry only through gy, g,
the energy tensor of the interaction is given by

o _ 2 [8L(—g)1/2 _ (aL(—g)l/Z) ]
(=) g 3w Jul

Show that from the scalar nature of L in Exercise 32 above it is
possible to deduce that

Tﬂ’.ck = 0

- Hint: Use (2.95) and the fact that an infinitesimal change in the

coordinates x — x’ + &' gives 8gy = —(&ix + Eri)-
Show that under gy — gy + Ogi, OI"4, transforms as a tensor.
Show that

of R(~)"" a%x = [ (Ry — 1guR)58%(~ )" dx

for variations of the metric that vanish along with their derivatives
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on the boundary of V. Hint: Write R = R;g* so that R = 6R;;
+ R;8g™. Use a locally inertial coordinate system to deduce that

(—8)"2g™* SRy = —(—8)"?[(8% 8T'y)y — (8" 8T§y). ]
= (—g)l/zwk;k,
where w (from Exercise 34) is a vector. Then use Green’s
theorem.
From the Newtonian approximation of Einstein’s field equations
and the geodesic equations, deduce Poisson’s equation and the
Newtonian equations of motion in a gravitational field.
Show that in the weak field approximation for gravitational
radiation it is possible to make a coordinate transformation to
ensure a gauge condition,
Yl =0,
where
vk = b= 4nf of.
Further, show that the ¥ satisfy the wave equation in flat space
X 167G

Tk,

l=
c4

Compare the above linearized theory of gravitational waves with
the electromagnetic theory of Maxwell. Construct plane wave
solutions in the case T¥ = 0.
In a plane wave solution of the gravitational wave equation,
estimate the components of the Riemann tensor. Show that in
principle a gravitational wave can be detected by the measurement
of the components of the Riemann tensor with the help of the
equation of geodetic deviation.
Just as the second time derivative of a changing electric dipole
moment acts as the elementary source of electromagnetic radi-
ation, the third time derivative of a changing quadrupole moment
(of mass) acts as the simplest source of gravitational radiation. Use
this result and dimensional arguments to show why the emission of
gravitational waves is energetically very weak in laboratory condi-
tions.
Show that if we apply the line element (2.115) to the interior
(r < r,) of the spherically symmetric matter distribution, we get
from the (00) component of the field equations

2GM(r)

e =1 —

Cc
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where M(r) = [(Anp* T{dp. The quantity M(r,) may be identified
with the gravitational mass M that appears in the exterior solution
(r > ry).

Discuss gravitational redshift and blueshift.

Calculate the ratio GM/c’r, in order that the entire visible
spectrum (4000 A to 8000 A) in the light from the surface of the
spherical object is just about redshifted out.

Calculate the proportionate increase in the frequency of a y-ray
photon as it descends a vertical height of 100 metres to the surface
of the Earth.

Show that the equations of a timelike geodesic in the
Schwarzschild spacetime are given by

d?t dv dr dt

ds2+dr ds ds
d%e 2 dr d6 ) (d¢)2

— +
ds? r ds ds
d’¢ 2 dr %

—_— +2cot@——=0,
ds? r ds ds co ds ds

ds? 2 dr \ds ds ds
1 dv [ dr\?
+__ 2v | 2_0
2 ar (ds) ’
2
withe* =1 — GM
c2r

Show that the equations in Exercise 45 may be integrated as
follows without loss of generality:

T drt 26M\! do
o=—, L_[1- 259 _
2’ ds ( 2 ) E, " ds ’

c‘r
where E and & are constants of motion. What other integral of
these equations is known?

Show that for the Sun—Mercury system an approximate solution of
the equations of Exercise 46 is provided by

r=1I[1+ ecos(¢ — ¢o)] !

where ¢y is a slowly increasing function of time. Evaluate d¢,/d¢
and relate the result to the observed precession of the perihelion of
Mercury.
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Show that null geodesics (describing light rays, for example) in the
Schwarzschild spacetime are given by the following equations:

d2¢r dv dr dt

a2 A a @

d2e 2 dr de6 ) de\?
 —sinb 01— =

e + PP TRT) sin 6 cos (dk) 0,

d?¢ 2 dr do d¢ do

—— 4+ ———+4+2cot——=0

a2 T e T e T

dr \? dr\? do\? do 2
21 =" V— a—V{____ + 2177 + 2 aim? 1.
C (dk) e e (dk) r (dk) r< sin G(dk)

Show how to obtain first integrals of the equations in Exercise 48,
analogous to those of Exercise 46.

Show that the following is an approximate solution of the null
geodesic equations:

rcos¢ = ry — fz—M (r cos? ¢ + 2rsin? ¢).
Interpret this solution as describing bending of light by a massive
object.
Considering the light photon as a projectile moving under the
Newtonian inverse-square law, calculate the bending of light
produced by a massive object. Show that the net bending is half
that given by general relativity.
Show how Newtonian gravitation can be adapted suitably to
describe the phenomenon of gravitational redshift.
A star of solar mass slowly contracts from initial radius Rg. Show
how its gravitational redshift increases as a function of its radial
coordinate r,. What happens when r, <2GM o/c??
A light ray describes a circular trajectory around a black hole.
Show how this is possible and calculate the size of the orbit.
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From relativity to cosmology

3.1 Historical background

In 1915 Einstein put the finishing touches to the general theory of
relativity. The Schwarzschild solution described in Chapter 2 was the first
physically significant solution of the field equations of general relativity. It
showed how spacetime is curved around a spherically symmetric
distribution of matter. The problem solved by Schwarzschild is basically a
local problem, in the sense that the distortions of spacetime geometry
from the Minkowski geometry of special relativity gradually diminish to
zero as we move further and further away from the gravitating sphere.
This result can be easily verified from the line element (2.123) by letting
the radial coordinate r go to infinity. In technical jargon, a spacetime
satisfying this property is called asymptotically flat. In general any
spacetime geometry generated by a local distribution of matter is expected
to have this property. Even from Newtonian gravity we expect an
analogous result: that the gravitational field of a local distribution of
matter will die away at'a large distance from the distribution. Can the
universe be approximated by a local distribution of matter?

Einstein felt that the answer to the above question would be in the
negative. Rather, he expected the universe to be filled with matter,
however far we are able to probe it. A Schwarzschild-type solution cannot
therefore provide the correct spacetime geometry of such a distribution of
matter. Since we can never get away from gravitating matter, the concept
of asymptotic flatness must break down. A new type of solution is
therefore needed to describe a universe filled everywhere with matter.
Einstein published such a solution in 1917.

Before we consider Einstein’s solution, it is worth noting that more than
two centuries earlier Newton also had attempted a solution describing a
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matter-filled universe of infinite extent. A highly symmetric distribution of
matter does lead to a solution in Newtonian gravity. Imagine, for
example, a uniform distribution of matter filling the infinite Euclidean
space. An observer viewing the universe from any vantage point will find
that it looks the same in all directions and that it presents the same aspect
from all vantage points. These two properties are known as isotropy and
homogeneity, and they will turn out to play simplifying roles in relativistic
cosmology as well. Newton found that such a universe would be static, for,
any particle of matter is being attracted equally in all directions, so it
should stay put where it is.

On the other hand, homogeneity precludes any pressure gradients in the
universe. And we know that any finite distribution of pressure-free matter
would tend to shrink under its own gravity. Stars are able to maintain a
stationary shape only because they have large enough pressure gradients
inside to withstand their own gravity. Clearly, in going from a finite to an
infinite universe something new has entered the argument: the boundary
conditions at infinity. Considerable ambiguity arises in Newtonian theory
when we try to interpret these boundary conditions.

Newton also found his solution to be unstable: any local inhomogeneity
would precipitate gravitational contraction that would tend to augment the
local inhomogeneity. Newton compared the instability of the solution to
that of a set of needles finely balanced on their points.

Nevertheless, in 1934 E. A. Milne and W. H. McCrea showed how
some of the problems of Newtonian cosmology can be resolved. The
reader interested in this approach may find some properties of Newtonian
cosmology outlined in Exercises 1 to 3 at the end of this chapter and also
in Chapter 4.

We will now return to Einstein’s solution of 1917.

3.2 The Einstein universe

It is evident from the field equations of general relativity derived in
Chapter 2 that their solution in the most general form - the solution of an
interlinked set of nonlinear partial differential equations — is beyond the
present range of techniques available to applied mathematics. It is
necessary to impose simplifying symmetry assumptions in order to make
any progress towards a solution. Just as Schwarzschild assumed spherical
symmetry in his local solution, Einstein assumed homogeneity and
isotropy in his cosmological problem. He further assumed, like
Schwarzschild, that spacetime is static. This enabled him to choose a time
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coordinate ¢ such that the line element of spacetime could be described by
ds? = c?dr? — a,,dx*dx”, (3.1)

where a,, are functions of space coordinates x*(u,v=1,2,3) only.

Note that constraint of homogeneity implies that the coefficient of d¢?
can only be a constant, which we have normalized to c?. Similarly, the
condition of isotropy tells us that there should be no terms of the form
drdx* in the line element. This can be seen easily in the following way. If
we had terms like go,dzdx* in the line element, then spatial displace-
ments dx* and —dx* would contribute oppositely to ds? over a small time
interval d¢, and such directional variation is forbidden by isotropy. Can we
say anything more about «,,?

Einstein believed that the universe has so much matter as to ‘close’ the
space. And this assumption led him to a specific form for a,,. We will now
elaborate a little on the notion of closed space and on how to arrive at «,,.
Let us begin with examples from lower-dimensional spaces.

As the simplest example of an open space is the Euclidean straight line
extending indefinitely in both directions, we can use a real variable r to
denote a typical point on the line with —o < r < . Figure 3.1(a) shows
such a straight line. Figure 3.1(b) shows an example of a closed curve Z;.
It has no boundary, but if we use a real variable r to denote points on the
curve then we will find that a finite range of r will suffice. If we go beyond
this range we will begin to go over the curve again and again. A familiar
simple example of this is the circle S; of radius S shown in Figure 3.1(c). If
we use the Euclidean measure of distance to locate a point and denote by
r the distance of this point from a fixed point N, we find that the range
0 = r <27S describes all the points on the circle.

While both the curves in Figure 3.1(b) and 3.1(c) are closed, the circle
evidently has more symmetries than the curve Z;. This can be
demonstrated as follows. If we take a small section (an arc) of the circle
and slide it along the circle, it will always lie flush on it. We cannot do the
same for the curve X;. We can express this by saying that the circle S,
describes homogeneous space, while the curve Z; does not.

Figure 3.2 illustrates the corresponding situation in two dimensions.
Two coordinates r and ¢ (0 <r <, 0 < ¢ <2r) are needed to locate a
point on the Euclidean plane of Figure 3.2(a). The surface =, shown in
Figure 3.2(b) and the sphere S, of radius S shown in Figure 3.2(c) are
closed surfaces, of which S, is homogenous but Z; is not. This latter
property can be easily verified by our technique of sliding a small section
of each surface along itself.
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-0 - 0 — ®

Fig. 3.1 Curves in one-dimensional space. (a) A straight line extending from —oo
to . This is an example of open space. (b) A closed curve X,. Starting from a
point N on it as the origin, we can use the length r along the curve to label points
on it. If the length of the curve is L, when r = L we come back to the starting
point. This is a closed space. (c) A closed space §; that is homogeneous: it is a
circle, If it has radius S, L = 27S.

There is another symmetry inherent in the spherical surface, which can
be demonstrated as follows. At any point O on it draw a small arc lying on
the surface and then rotate this arc around the point O, trying all the
while to keep the arc lying flush on the surface. Again the spherical
surface S, allows you to do this, but X, does not. This means that the
surface S, shows isotropy about O.

We can now see how to construct the homogenous and isotropic closed
space of three dimensions that Einstein wanted for his model of the
universe. It is S3, the 3-surface of a four-dimensional hypersphere of
radius §. The equation of such a 3-surface is given in Cartesian
coordinates x1, X2, x3, and x4 by
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Fig. 3.2 (a) The plane is an open two-dimensional space. From any point O on it
draw the straight line OX in any direction in the plane. The coordinates (7, ¢) in
the illustration show how to specify any point P on the plane. (b) An arbitrary
closed surface 2. (¢) A closed surface S, that is homogeneous and isotropic. It is
a sphere. Take any point O on S, and draw a small arc of a great circle OL lying
on §;. As OL is rotated around O, the point L moves along a small circle on S,
and the arc always stays on S,. This is an example of isotropy: as seen from O,
the surface S, shows no preferential direction.

(x1)? + (x2)? + (x3)* + (x4)* = $2. (3-2)
To use coordinates intrinsic to the surface we define
x4 = Scosy, X1 = sin ycos 8, X, = Ssin xsin 6 cos ¢,
X3 = Ssin xsin @sin ¢. (3.3)

The spatial line element on the surface S; is therefore given by
do? = (dx;)? + (dx;)? + (dx3)? + (dx,)?

3.4
= S2[dy? + sin? x(d6? + sin? 6d¢?)]. (3-4)
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The ranges of 8, ¢, and yx are given by
0<y=<m, 0<6=<m, 0= ¢=2m. (3.5
At this stage it is worth pointing that there are two alternatives open to
us. The first is what we have tacitly taken for granted, that y takes the
entire range 0 <y <, and this gives us what is commonly known as
spherical space. If, however, we identify the antipodal points, the space is
called elliptical space.
Another way to express do? is through coordinates r, 8, ¢, with
r =sin x(0 < r < 1). In elliptical space r runs through this range once: in

spherical space it does so twice:

dr?

do® = Sz[ >

+ r2(d6? + sin? 0d¢2)]. (3.6)

1-7r
The constant S is called the ‘radius’ of the universe. The line element for
the Einstein universe is therefore given by
ds? = c?dr? — do?
= c2de? — S?[dy? + sin? x(d6? + sin? 6d¢?)) (3.7)

=c2de? - sz[ ar?
1—-7r

=+ r?(d6? + sin’ 0d¢2)].

Note that we have derived the line element (3.7) entirely from the
various assumptions of symmetry. The field equations have not yet been
used. We will now see what happens when we use the above line element
to compute the left-hand side of Einstein’s equations.

This is easily done with the machinery developed in Chapter 2. We
write x* = ct, x' = r, x? = 0, x> = ¢, so that

S? )
8w =1, gu = T2 gn = —S%r?, g = —S%r?sin? 6.
—r
1—r2 1 1
00=1, 11 — , 2 — _ , 33 _ _ —
8 & s? & A S2r2sin? 0

Elementary calculus then tells us that the only nonzero components of I';
are the following:
r
1—r?

[h=-r(1—-r?sin?0, T%=—sinfcosh, T3 =coth.
Next, using the formulae given in the last chapter, we find the following
nonzero components of the Einstein tensor:
3

R~ 3R =—7

|
Iy =

1
F%2=F%3=—r—, [ =-r1-r?,

: (3.8)
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1
RI—-iR=R;-iR=R3-} iR = - (3.9)
To complete the field equations, Einstein used the energy tensor for
dust derived in (2.83). For dust at rest in the above frame of reference, u'

has only one component, the time component, nonzero. We therefore get
To po c?
TI=T3= T3 = 0.

Thus the two equations (3.8) and (3.9) lead to two independent equations:

381G 1
T, - = (3.11)
(4

(3.10)

Clearly, no sensible solution is possible from these equations, thus
suggesting that no static homogeneous isotropic and dense model of the
universe is possible under the Einstein equations.

It was his inability to generate such a model that led Einstein to modify
his equations (2.98) to (2.102), thus introducing the now famous (or
infamous) A-term. If we introduce this additional constant into the picture,
our equations in (3.11) are modified to

3 87 G

A—-E-Z—= - c2 pO (3.12)
and
1
A— e = 0. (3.13)
We now do have a sensible solution. We get
1\12 c
S=|=|] =-———. 3.14
' (l) 2(1Gpp)'*? G19

Einstein considered this solution as justifying his conjecture that with
sufficiently high density it should be possible to ‘close’ the universe. In
(3.14) we have the radius S of the universe as given by the matter density
Po, With the result that the larger the value of p,, the smaller
is the value of S. However, if A is a given universal constant like G,
both py and § are determined in terms of A (as well as G and ¢). How
big is A?

In 1917 very little information was available about p,, from which A
could be determined. The value of

S =~ 10% — 10 cm
quoted in those days is therefore only of historical interest. If we take p,
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as ~1073 gecm™3 as the rough estimate of mass density in the form of
galaxies (see Chapter 9), we get S ~ 10 cm and A =~ 10~ cm 2.

The A-term introduces a force of repulsion between two bodies that
increases in proportion to the distance between them. The above value of
A is too small to make any detectable difference from the prediction of
standard general relativity (that is, with A = 0) in any of the Solar System
tests mentioned in Chapter 2. Thus the Einstein universe faced no threat
from the local tests of gravity. The model, however, did not survive much
longer than a decade, for reasons discussed below.

3.3 The expanding universe

In the late nineteenth century the philosopher and scientist Ernst Mach
raised certain conceptual objections to Newton’s laws of motion. Mach
critically examined the role of a background against which motion is to be
measured and argued that unless there is a material background it is not
possible to attach any meaning to the concepts of rest or motion. Einstein
was greatly influenced by Mach’s discussion. The Einstein universe
described above includes matter-filled space and thus a background of
distant matter against which a local observer can measure motion and
formulate laws of mechanics. In fact, as we have just seen, the density of
matter determines the precise geometrical nature of spacetime in the
Einstein model.

Einstein believed this to be a unique feature of general relativity. He
felt that the presence of matter was essential to have a meaningful
spacetime geometry. However, his expectation that general relativity can
yield only such matter-filled spacetimes as solutions of the field equations
was proved wrong shortly after the publication of his paper in 1917. For in
1917 W. de Sitter published another solution of the field equations in
(2.102) with the line element given by

2 2 H’R? 2 dR? 2 2 i02 2
ds® =c*|1 - = d —_—ﬁz——R(de + sin? 6 d¢?),
c2
(3.15)
where H is a constant related to A by
3 2
A= —Ié— (3.16)
c

The remarkable feature of the de Sitter universe is that it is empty.
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Moreover, although the above coordinates give the impression that
the universe is static, it is possible to find a new set of coordinates
(1, r, 6, ¢) in terms of which the line element (3.15) takes the form

ds? = c2ds? — e?Ht[dr? + r?(d6? + sin? 8d¢?)]. (3.17)

It is easy to verify that test particles with constant values of (r, 8, ¢)
follow timelike geodesics in this model. Thus the proper separation
between any two particles measured at a given time f increases with time
as e?*_ That is, these particles are all moving apart from one another.

However, these particles have no material status. They have no masses
and they do not influence the geometry of spacetime. In the dynamic
sense the universe is empty, although in the kinematic sense it is
expanding. As Eddington once put it, the de Sitter universe has motion
without matter, in contrast to the Einstein universe, which has matter
without motion.

The de Sitter universe showed, however, that empty spacetimes could
be obtained as solutions of general relativity. For reasons discussed above,
a universe of this type fails to meet Mach’s criterion that there should be a
background of distant matter against which local motion can be measured.
Although the property of emptiness of the de Sitter universe was
embarrassing, its property of expansion turned out to contain the germ of
the truth. For by the end of the third decade of this century, the
observations of Hubble and Humason indicated that the universe is not
static but is indeed expanding.

Chapter 1 summarized these observations. The phenomenon of nebular
redshift observed by Hubble and Humason in the 1920s has now been
observed in practically all extragalactic objects. As mentioned in section
1.8, a Newtonian interpretation of such redshifts involves the Doppler
effect. How can we express this phenomenon in the language of general
relativity? Can we generate models of the universe that combine de
Sitter’s notion of expansion with Einstein’s notion of nonemptiness? The
Friedmann models to be discussed in Chapter 4 do just that, and were in
fact obtained by Friedmann between 1922 and 1924, five years before
Hubble’s data became well known.

The rest of this chapter outlines the kinematic features of the expanding
models of the universe. We will first describe how to generalize the
arguments that led Einstein to the static line element (3.7). This
generalization will lead us to a nonstatic line element that preserves the
properties of homogeneity and isotropy assumed by Einstein, but is
potentially capable of explaining Hubble’s data.
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3.4 Simplifying assumptions of cosmology

Once we decide to generalize from a static to a non-static model of the
universe, our task becomes more complicated. Figure 3.3(a) shows a
spacetime diagram with a swarm of world lines representing particles
moving in arbitrary ways. There is no order in this picture, and where two
world lines intersect we have colliding particles. It would indeed be very

Time — Space

fe ab cd
(b)
Fig.3.3 (a) An arbitrary bundle of world lines a, b, ¢, . .. describes particles
moving haphazardly. Intersecting world lines denote particle collisions. (b)
Particles move along nonintersecting world lines 4, b, ¢,... which have no

wobbles or irregularities. This is the regularity expressed formally by the Weyl
postulate. Note that this regularity enables us to construct a sequence of spacelike
hypersurfaces orthogonal to the world lines of the bundle. These are hypersur-
faces of constant cosmic time ¢. Thus the cosmologist can talk of cosmic epochs ¢
= tg, t = t;, and so on in an unambiguous fashion.
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difficult to solve the Einstein field equations for such a mess of gravitating
matter. Fortunately, the real universe does not appear to be so messy.

Hubble’s observations indicate that the universe is (or at least seems to
be) an orderly structure in which the galaxies, considered as basic units,
are moving apart from one another. Thus Figure 3.3(b) represents a
typical spacetime section of the universe in which the world lines represent
the histories of galaxies. These world lines, unlike those of Figure 3.3(a),
are nonintersecting and form a funnel-like structure in which the
separation between any two world lines is steadily increasing.

This intuitive picture of regularity is often expressed formally as the
Weyl postulate, after the early work of the mathematician Hermann Weyl.
The postulate states that the world lines of galaxies designated as
fundamental observers form a 3-bundle of nonintersecting geodesics
orthogonal to a series of spacelike hypersurfaces.

To appreciate the full significance of Weyl’s postulate, let us try to
express it in terms of coordinates and metric of spacetime. Accordingly we
use three spacelike coordinates x# (u =1, 2, 3) to label a typical world line
in the 3-bundle of galaxy world lines. Further, let the coordinate x° label a
typical member of the series of spacelike hypersurfaces mentioned above.
Thus

x% = constant

is a typical spacelike hypersurface orthogonal to the typical world line
given by

x# = constant.

Although in practice the galaxies form a discrete set, we can extend the
discrete set (x*) to a continuum by the smooth fluid approximation. This
approximation is none other than the widely used device of going over
from a discrete distribution of particles to a continuum density
distribution. In this case we can treat the quantities x* as forming a
continuum along with x* and use them as the four coordinates x' to
describe space and time.

It is worth emphasizing the importance of the nonintersecting world
lines. If two galaxy world lines did intersect, our coordinate system above
would break down, for we would than have two different values of x*
specifying the same spacetime point (the point of intersection). In the next
chapter we will, however, encounter an exceptional situation in which all
world lines intersect at one singular point!

Let the metric in terms of these coordinates be given by the tensor g;.
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What can we assert about this metric tensor on the basis of the Weyl
postulate? The orthogonality condition tells us that
8ou = 0. (3.18)
Further, the fact that the line x* = constant is a geodesic tells us that the
geodesic equations

d2xf LT dx* dx!

) M s ds (3.19)
are satisfied for x! = constant, i = 1, 2, 3. Therefore

Té, =0, u=1,23. (3.20)
From (3.18) and (3.20) we therefore get

o8w

Sn=0 =123 (3.21)

Thus gy, depends on x° only. We can therefore replace x° by a suitable
function of x° to make gy constant. Hence we take, without loss of
generality,

g = 1. (3.22)
The line element therefore becomes
ds? = (dx%)? + g, dx#dx"
= c2de? + g, dxtdx?, (3.23)

where we have put ¢t = x°. This time coordinate is called the cosmic time.
It is easily seen that the spacelike hypersurfaces in Weyl’s postulate are
the surfaces of simultaneity with respect to the cosmic time. Moreover, ¢ is
the proper time kept by any galaxy.

The second important assumption of cosmology is embodied in the
cosmological principle. This principle states that at any given cosmic time,
the universe is homogeneous and isotropic. That is, the surfaces
t = constant exhibit the properties discussed earlier in connection with the
Einstein universe. There we saw that the three-dimensional surface S5 of a
hypersphere has the requisite properties of homogeneity and isotropy. But
is this the only alternative available?

Einstein, as we saw earlier, selected this alternative because he believed
space to be closed. However, if we do not insist on closed space, two more
alternatives are available to us, which can be seen in the following way.
First let us consider an analogy in lower dimensions.

Figure 3.4 shows three surfaces. Figure 3.4(a) shows a section of the
Euclidean plane, Figure 3.4(b) a spherical surface, Figure 3.4(c) a
saddle-shaped surface. Suppose we try to cover these surfaces with a plain
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(b)
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Fig. 3.4 Examples of surfaces of (a) zero curvature (b) positive curvature, and (c)
negative curvature.

sheet of paper. We will find that our sheet fits exactly and smoothly on the
plane surface. If we try to cover the spherical surface, the sheet of paper
develops wrinkles, indicating that the sheet of paper has area in excess of
that needed to cover the surface. Similarly, in trying to cover the saddle
our paper will be torn, being short of the necessary covering area. These
differences can be expressed in differential geometry by the notion of
curvature. The plain surface has zero curvature, the spherical surface has
positive curvature, and the saddle has negative curvature. Our paper-
covering experiment tells us in general whether a given surface has a zero,
positive, or negative curvature. These ideas can be extended to higher
dimensions as well.

In the Einstein universe the space sections were the 3-surfaces of
hyperspheres, and hence they had a constant positive curvature. The
constancy of curvature is necessary to ensure the properties of
homogeneity and isotropy; for if the curvature of space differs from place
to place, physical measurements could be devised to detect the
differences. We can similarly get other homogeneous and isotropic spaces
by considering them as 3-surfaces of constant negative curvature or of zero
curvature.

In terms of the Cartesian coordinates x{, X,, X3, x; used earlier, a
3-surface of constant negative curvature is given by an equation of the
form

x74+ x5+ x}— xj= -8 (3.24)
where S is a constant. The substitution
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x1 = Ssinh ycos 8, x, = Ssinh ysin 8 cos ¢,
x3 = Ssinh ysin 8sin ¢, x4 = Scoshy (3.25)
gives
dx? + dx} + dx3 — dx} = S?[dy? + sinh? x(d6? + sin? 8d¢?)]. (3.26)
Notice the minus sign in front of dx3. It means that we are embedding our
3-surface not in a Euclidean space but in a pseudo-Euclidean space. (In
Euclidean space the Pythagoras theorem holds with the line-element given
by dx? = dx} + dx3 + dx3 + - - -. If some of the + signs on the right-hand
side are changed to — signs, the result is a pseudo-Euclidean space. Thus
Minkowski space is pseudo-Euclidean.) If we further substitute

r = sinh y, (3.27)
(3.26) becomes
dr? ;
do? = S2|——— + r2(d6? + sin 6 d¢?)|. (3.28)
1+ r ]
Compare this with the expression (3.6) for the space of positive curvature:
' dr? ;
do? = 8| " + r2(d6? + sin? 6 dg?) . (3.29)
L= 7 )

Both the expressions can be combined into a single expression by
introducing a parameter k that takes values *1:

d 2
rk _ + r2(d6? + sin 0.dg?) . (3.30)
5

do? = §?
1

Notice that if we set k = 0 we get the third alternative — the 3-surface of
Zero curvature:

do? = $%[dr? + r?(d6? + sin? 8d¢?)]. (3.31)
The right-hand side of (3.31) is simply the Euclidean line element scaled
by the constant factor §.

The constant S can, however, depend on cosmic time, since we were
considering a typical ¢ = constant hypersurface in the above argument.
Thus the most general line element satisfying the Weyl postulate and the
cosmological principle is given by

dr?

1— kr
where the 3-spaces ¢ =constant are Euclidean for k =0, closed with
positive curvature for k= *1, and open with negative curvature for

k = —1. For reasons that will become clearer later, the scale factor S(¢) is
often called the expansion factor.

ds?= c2ds? — §%(¢) 5t r2(de? + sin®? 8d¢?)|, (3.32)
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The line element (3.32) that we have obtained using partly intuitive and
partly heuristic arguments was rigorously derived in the 1930s by
H. P. Robertson and A. G. Walker (independently). If is often referred to
as the Robertson~Walker line element.

The Robertson—Walker line element is sometimes expressed in a
slightly different form with the help of the following radial coordinate
transformation:

2r
T A - k)R (3.33)
We then get the line element as
§2(1)
ds? = c2dt? — VEEEIN [d7? + 72(d6? + sin? 0d¢?)] (3.34)
(1 + —‘:—)

This line element is manifestly isotropic in 7, 8, ¢. We will, however
continue to use (3.32).

Notice how the simplifying postulates of cosmology have reduced the
number of unknowns in the metric tensor from 10 to the single function
S(t) and the discrete parameter k that characterize the Robertson—
Walker metric. The task of the relativist is now simplified to solving an
ordinary differential equation in the independent variable ¢. We will defer
the solution of this problem to the next chapter.

We end this chapter with a discussion of some of the important
observational features of a typical Robertson—Walker spacetime. These
features show how a non-Euclidean geometry can substantially alter
conclusions based on naive Euclidean concepts.

3.5 The redshift

Let us first try to understand how the nebular redshift found by Hubble
and Humason is accounted for by the Robertson—-Walker model. We
begin by recalling that the basic units of Weyl’s postulate are galaxies with
constant coordinates x”. We can easily identify the x# with the
(r, 6, ¢) of Robertson—-Walker spacetime. Thus each galaxy has a
constant set of coordinates (r, 8, ¢). This coordinate frame is often
referred to as the cosmological rest frame. As observers we are located in
our Galaxy, which also has constant (7, 8, ¢) coordinates. Later on, in
Chapter 9, we will show that this remark is only approximately correct,
because our Galaxy has a small motion relative to this cosmological frame.
Without loss of generality we can take r =0 for our vantage point.
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Although this assumption suggests that we are placing ourselves at the
centre of the universe, this does not confer any special status on us.
Because of the assumption of homogeneity, any galaxy could be chosen to
have r = 0. Our particular choice is simply dictated by convenience.

Consider a galaxy G at (ry, 61, ¢1) emitting light waves towards us. Let
us denote by ¢, the present epoch of observation. At what time should a
light wave leave G in order to arrive at r = 0 at time ¢ = ¢(? To find the
answer to this question we need to know the path of the wave from G, to
us. Since light travels along null geodesics, as described in Chapter 2, we
need to calculate the null geodesic from G to us.

From the symmetry of a spacetime we can guess that a null geodesic
from r = 0 to r = r; will maintain a constant spatial direction. That is, we
expect to have 8= 0, ¢ = ¢; all along the null geodesic. This guess
proves to be correct when we substitute these values into the geodesic
equations. Accordingly we will assume that only r and ¢ change along the
null geodesic. Next we recall that a first integral of the null geodesic
equation is simply ds = 0. For the Robertson-Walker line element this
gives us

Sdr
cdt ==+ 1= k)i (3.35)
Since r decreases as ¢ increases along this null geodesic, we should take
the minus sign in the above relation. Suppose the null geodesic left G, at
time ¢;. Then we get from the above relation

bocde n dr
= : 3.36
fn S(t) fo (1 — kr2)12 (3:36)

Thus if we know S(¢) and k, we know the answer to our question.

However, consider what happens to successive wave crests emitted by
G . Suppose the wave crests were emitted at ¢; and ¢; + A¢; and received
by us at ¢y and t¢ + Atg, respectively. Then, comparably to (3.36), we
have '

tot+ Aty c dt
J

n dr
1Az S(t) - JO m (337)

If S(¢) is a slowly varying function so that it effectively remains unchanged
over the small intervals Aty and At;, we get by subtraction of (3.36) from

(3.37)
CAt() CAl

S St

that is,
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cAty  S(to) _

cAt;  S(t1)
It is not difficult to see that the quantity z defined above is the redshift.
The term c At is the wavelength A; measured by an observer at rest in the
galaxy Gy, while c At is the wavelength Ao measured by an observer at
rest in our Galaxy, since in the Robertson—Walker spacetime the cosmic
time measures the proper time kept by any galaxy. Thus the wavelength of
the light wave increases by a fraction z in the transmission from G; to us,
provided S(#9) > S(#1). In other words, Hubble’s observations of redshift
are explained if we assume S(¢) to be an increasing function of time.

It is worth commenting on the way this redshift has been arrived at. Our
derivation above shows that the effect arises from the passage of light
through a non-Euclidean spacetime. It does not arise from the Doppler
effect, since in our coordinate frame all galaxies have constant (r, 8, ¢)
coordinates. In a non-Euclidean spacetime it is not possible to attach an
unambiguous meaning to the relative velocity of two objects separated by
a great distance. People are often tempted to relate z to Ve1001ty by the
special relativistic relation

(3.38)

v 1/2
14—
C
14+z= (3.39)
v
1—-——
C

Such an interpretation is not valid in our present framework because, as
we saw in Chapter 2, special relativity applies only in a local region of
spacetime.

It is also necessary to contrast (3.38) with the gravitational redshift
described in Chapter 2. The gravitational redshift is characterized by the
fact that if light from object B to object A is redshifted then the light from
A to B is blueshifted. In the present case, if light from galaxy A to galaxy
B is redshifted then that from B to A will also be redshifted provided S(¢)
is increasing during the transmission of light.

We will refer to the present redshift as cosmological redshift.

3.6 Apparent magnitude

The redshift discussed above shows up in the spectrum of a galaxy. The
astronomer measures another quantity associated with the galaxy - its
apparent magnitude. Let us now see how the apparent magnitude is
related to the luminosity of the galaxy and its distance from us in the
expanding universe described by Robertson—~Walker spacetime.
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Let L be the total energy emitted by the galaxy G, in unit time at the
epoch ¢ when light left it in order to reach us at the present epoch #¢. The
redshift z of the galaxy is therefore given by (3.38). It is now necessary to
specify the wavelength range of observation. To fix ideas: suppose the
intensity distribution of G over wavelengths 4 is given by the normalized
function 7(A). Thus

dL = LI(4)dA (3.40)
is the energy emitted by G; per unit time over the bandwidth
(A, A+ dA). If instead of wavelengths we wanted to use frequencies, the
corresponding intensity function J(v) is related to /() by

cJ(v) = A21(4). (3.41)
Both J(v) and I(A) are used by the astronomer, depending on con-
venience.

In the case of isotropic light emission by G, by the time its light reaches
us it is distributed uniformly across a sphere of coordinate radius r,
centred on G, (see Figure 3.5). What is the proper surface area of this
sphere?

In the Robertson-Walker line element, put f=constant and
r = constant to get

ds? = —r2852(d6? + sin? 8d¢?).
This is the line element on the surface of a Euclidean sphere of radius rS.
Hence the answer to the above question is that light from G, is distributed
over a total surface area 47r252(t,) at time t,. We now need to know how
much light is received per unit time by us across unit proper area held
perpendicular to the line of sight to G, and over a bandwidth (A,
Ao + Aly). Denote this quantity by F(4g) AA,.

Sphere

D
o]
Fig. 3.5 The radiation emitted by galaxy G is distributed uniformly across a
sphere of coordinate radius r; with G; as the centre. The observer O (that is,

ourselves) located on this sphere would expect to receive a proportionate quantity
of this radiation across a unit area held normal to the direction G,0.
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Note first that because of redshift the arriving light with wavelengths in
the range (4, 49 + Akg) left G in the wavelength range
A A+ Al
1+72 1+z )

Now the total amount of energy that leaves G| between the epochs ¢, and
t; + At in the above frequency range is

A AM
Ll( i ) O AL

1+ z .1+z

How many photons carry the above quantity of energy? For a small
enough bandwidth, we may assume that a typical photon had, at emission,
the wavelength Ao/(1 + z), a frequency (1 + z)c/A, and hence an energy
equal to (1+ z)ch/Ay, where h is Planck’s constant. Therefore the
required number of photons is

SN = LI Ay Al Aty
T T+ z) 1+ 72 1+ 2)ch/A
Lk 1 Ao
= . . Adg At;.
ch  (1+z2)? (1+z) oAty

At the epoch of reception, these photons are distributed across a surface
area of 47r28%(¢;) and are received over a time interval (ty, to + At).
Thus the number of photons received by us per unit area held normal to
the line of sight and per unit time is given by

L)Lo. 1 I( Ao )A)LO- Aty _ 1 ‘

ch (1+2)? \1+z Aty 4mriS?(ty)

At this epoch, each photon has been degraded in energy by the factor
(1 + z)7L. Thus each photon now has the energy ch/Aq. If we multiply the
above expression by this factor, we get the quantity we were after:

1 Aty I( Ao ) 1 .
(1+2)2 Aty \1+2z] 4rrisS?(¢)
However, we note from (3.38) that Atf;/Aty gives us another factor

(1 + z)~! in the denominator. Thus finally we get

F(A)Aly = L Ag.

F = . 3.42
() (1 + z)*47r182(t0) 3.4
In terms of frequencies the result is quoted as flux density
~ LJ(V() -1+ Z)
F(v) = (3.43)

1+ z)477r%52(t0)'
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Here %(vy) Av, is the amount of radiation perpendicular to unit area in
unit time across a frequency range (vo, vo + Avy).

The optical astronomer uses this result in the form (3.42), while the
radio astronomer uses it in the form (3.43). The X-ray astronomer uses
energies instead of frequencies, so that (3.43) is scaled by &. We will have
occasion to use these expressions frequently, since they occur in the
various observational tests of cosmology. We will end this section by
deriving a few results of interest to optical astronomy.

The expression (3.42) integrated over all wavelengths gives

_ Lbol

 4nriS2(1o)(1 + 2)?
where Ly, (=L) is the absolute bolometric luminosity of G;. %, is
correspondingly the apparent bolometric luminosity of G;. On the

logarithmic scale of magnitudes familiar to the optical astronomer, (3.44)
becomes

Fol (3.44)

¥
Mpol = —2510g( bOl),

Fo
Lo
Muy = —2.5l0g (=22 + 4.75, (3.45)
Lo
Mol — Myoy = Slog Dy =5,
where Fy=2.48 X 10 ergem 2571,
L = solar luminosity = 2 x 103 ergs™, (3.46)
and Dy = r1S(t0)(1 + z) measured in parsecs.

D, is called the luminosity distance of G;. If we are interested in a
magnitude, and so on, we may similarly use (3.42) in the logarithmic form,
with the apparent magnitude defined by

m(Ay) = —2.5log F(Ag) + constant,

the constant depending on the filter used. It is customary to indicate the
filter by a suffix attached to m. Thus m,, stands for photographic
magnitude, m, for visual magnitude, m; for blue magnitude, and so on.

We will use this relation in Chapters 9 and 10. Note, however, that
because of redshift the astronomer has to apply a correction to include the
effect of the term I(A/1 + z). Thus an astronomer using a red filter may
be actually receiving the photons that originated in the blue part of the
spectrum of G, if z=1. This correction, which is crucial to many
cosmological observations, is called the K-correction.
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3.7 Hubble’s law

Hubble’s law was derived for galaxies of low redshifts. The largest redshift
in Hubble’s 1929 paper was z = 0.003. At these small redshifts we can use
the Taylor expansion to derive a simple linear relation between D, and z,
the relation arrived at by Hubble from his early observations for z << 1.

D1 = rlS(tO). (347)
We also get by the Taylor expansion (3.36)

n dr
fo ——————(1 BT =ry, (3.48a)
fo to—t
cdr _ el = 1) (3.48b)
noS(t) S(to)
S
S(ty) = S(to) — (1o — 11) - (?) S(to), (3.48¢)
fo
S(t0)
= =~ S(to)(1 — 2). 3.48d
S(n) = T =~ St)(1 = 2) - (4sd)
From these relations and from (3.47) we get
Dy = r18(t) = c(to — 1)
NER
- [(E—)to] e
which can be expressed in the form
cz = HyDy, (3.49)
with H,, the Hubble constant, given by
S
Hy=|—=] . (3.50)
= (5)..

From a Doppler shift point of view, cz may be identified with the
velocity of recession at small z. In this form (3.49) is sometimes called the
velocity—distance relation. Expressed as part of the velocity—distance
relation, the Hubble constant has the unit of velocity per unit distance, the
most common unit in usage being kilometres per second per megaparsec.
In many calculations of observational and physical cosmology we will use

Hy = ho x 100kms~1 Mpc!. (3.51)
Although Hubble originally obtained ko ~ 5.3, the present estimate of A

lies in the range 0.5 < ho < 1. We will discuss in Chapter 9 how modern
techniques arrive at the above result.
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Another useful way of expressing H is in units of reciprocal time; that
is, by expressing
Ty= H{! (3.52)
in units of time. A good time unit for T is a billion years. The present
estimate of T is in the range of approximately 9 to 18 billion years.

3.8 Angular size

Figure 3.6 illustrates a somewhat unusual effect of the non-Euclidean
geometry of Robertson-Walker spacetime. We consider our galaxy G, to
have a linear extent d, as shown in Figure 3.6. What angle does this length
d subtend at our location?

To decide the answer to this question, consider two neighbouring null
geodesics (representing light rays) from the two points A, B at the two
extremities of G; directed towards our Solar System. Without loss of
generality we can choose our angular coordinates such that A has the
coordinates 6,, ¢;, while B has the coordinates (6, + A8, ¢). (Although
we have used homogeneity to take r = 0 at our location, we can also use
isotropy to choose any particular direction as the polar axis 8 =0, 0 = 7.)

According to the Robertson—Walker line element, the proper distance
between A and B is obtained by putting ¢ = t; = constant,
r = r{ = constant, ¢ = ¢; = constant, and d6 = A6, in (3.32). We then
get

ds? = —riS2%(1,)(A6,)* = —d?,
since in the rest frame of G, the spacelike separation AB = d. Thus
d dl+z)

riS(t)  riS(to)
gives the answer to our question.

A8, (3.53)

Fig. 3.6 The angle subtended by galaxy G at the observer O.
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Notice that as r; increases we are looking at more and more remote
galaxies, which must therefore be seen at earlier and earlier epochs ¢;.
However, in an expanding universe S(¢1) was smaller at earlier epochs ¢,
so it is not obvious that r;S(¢;) should get progressively larger as we look
at more and more remote galaxies. Clearly, we need to know how fast
S(t,) decreases as r; increases. Although (3.53) provides the answer in an
implicit form, we still need to know S(¢) to be able to perform these
integrations. All that we can say at present is that the observed angular
size of galaxies need not be a monotonic decreasing function of their
distance, as it would be in the Euclidean universe.

3.9 Source counts

The distribution of discrete luminous sources to great distances may give
indications that spacetime geometry is non-Euclidean. How does the
number of galaxies up to coordinate distance r; (that is, up to the distance
of galaxy G1) increase with r;? Let us suppose that at any epoch ¢ there
are n(t) galaxies in a unit comoving coordinate volume (using the r, 6, ¢
coordinates). The word ‘comoving’ indicates that although the galaxies
individually retain the same coordinates (r, 8, ¢), the proper separation
between them at any epoch increases with epoch according to the scale
factor S(¢1). Thus the proper volume of any region bounded by such
galaxies increases as S°.

When we observe galaxies at radial coordinates between r and r + dr,
we see them at times in the range ¢, ¢ + d¢, where from (3.36)

Ly dtr r d !
f car _ f r___ (3.54)
t.S(t) 0 (1 — kr'?)12
The number of galaxies seen in this shell is therefore
4r? dr
N=———7—F—:n(1), 3.55
(1— kr?)12 ) (3.53)

where ¢ is related to r through (3.54). Thus the required number of
galaxies out of r = ry is given by

" dnr?n(t)dr
0 (L= k)i’
If no galaxies are created or destroyed between r =0 and r = r,, we may
take n(t) = constant, and the integral can be explicitly evaluated. Clearly,
the answer must depend on the parameter k. The function N(r,)
increases faster than the Euclidean form (o r{’) in closed universes
(k==x1) and slower than this form in open universes of negative

N(ry) = (3.56)
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curvature. In Chapter 10 we will cast this idea in a somewhat different
form to make it suitable for observations of galaxies, radio sources and

quasars.
Having discussed some of the general properties of the Robertson-

Walker universes, it is now appropriate for us to turn to specific models —
the models first considered by Friedmann, which are described in Chapter 4.

Exercises

1 In Newtonian cosmology space is Euclidean and time has the
meaning implicit in Newtonian dynamics. In such a universe let
r = (x{, x3, x3) denote the coordinates (Cartesian, of course!) of a
typical galaxy G, and let v = (vy, v,, v3) denote its velocity relative
to a galaxy Gy located at the origin. An observer in G observes a
velocity—distance relation for galaxies like G of the following
form:

v = f(r).
If it is assumed that the same relation is observed by any other

galaxy G with coordinates r; and velocity vy, then the function f
must satisfy the condition

fr —ry) = f(r) — f(ry).
Deduce that f must be a linear function of r.

2 Show that under the assumption of isotropy at any epoch ¢, the
velocity—distance relation of Exercise 1 must take the form

v= H(t)r.

Show that the above equation of motion has a first integral
r = S(t)l'(),

where r is a constant for the galaxy. Relate S(¢) to H(?).

3 Carrying our Newtonian discussion further, suppose every galaxy
measures the speed of light to be ¢ in its own rest frame. However,
when the galaxy at the origin observes light coming towards it from
another galaxy G, at r;, the speed of light is modified by the
vector addition of the local velocity v= H(f)r at the typical
intermediate point r. Thus for radial propagation of light from G,
to G the propagation equation is

dr
dr
Integrate this equation using the results of Exercise 2 and discuss

=—c+ H(t)r.
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how the phenomenon of redshift can be explained in this fashion.
(Caution: The above velocity addition formula is Newtonian and is
not consistent with special relativity.)

Verify by direct substitution that (3.4) follows from (3.3).

Show that the volume of the Einstein universe is 272S3. Comment
on the statement that this universe is ‘finite but unbounded’. Does
the above volume refer to spherical or to elliptical space?

A ray of light is emitted in a given direction in the Einstein
universe. How long will the ray take to make one circuit about the
universe and return to its starting point?

Using the metric components and the Christoffel symbols given in
the text, verify the relations (3.8) and (3.9).

Taking py=10"3' gem™3, calculate the radius of the Einstein
universe and its total mass in spherical space.

With the density given in Exercise 8, calculate the A-term and
estimate the fraction by which the Sun’s attraction for the Earth is
reduced because of the A-repulsion. Comment on the effect of this
force on the experimental tests of general relativity.

Given that (3.17) is the coordinate transform of (3.15), find the
transformation law between (R, T) and (r, ).

Comment on why we cannot look upon the de Sitter universe as a
static universe in spite of its apparently static line element (3.15).
The de Sitter universe has an event horizon in the following sense.
If test particles with constant r, 6, ¢ emit light signals towards the
origin r =0, then at given time ¢ there is a critical value r, such
that signals from all particles with » = r, emitted at ¢ will never
reach their destination. Calculate r.

Suppose that in the Weyl postulate we drop the condition of
orthogonality of the surfaces = constant with respect to the
geodesics x# = constant, so that (3.18) does not hold. Show that
8o, must be independent of ¢. ‘

By calculating the 3-volume of space within the coordinate region
r = constant in the spaces with the spatial line element

2
do? = §? _dr + r2(d6? + sin? 8d¢?)|, k=0,1, -1,
1 — kr? ‘
develop the three-dimensional analogue of the experiment for
covering the surfaces of zero, positive, and negative curvature
described in the text.
Derive from first principles the coordinate transformation » = f(7)
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that takes the Robertson—Walker line element from the form
(3.32) to the form (3.34).

Determine the affine parameter for the radial null geodesic from
galaxy G to the origin r = 0 in Robertson—-Walker spacetime.

A particle of mass m is fired from a galaxy at ¢ = ¢, with a linear
momentum P,. Show that the momentum of the particle when it
reaches another galaxy at a later epoch ¢ (as measured in the rest
frame of that galaxy) is given by

S(to)
OR

Compare this result with the cosmological redshift for photons.

A galaxy, instead of following a typical Weyl geodesic, has a small
random velocity relative to it. Use the nonrelativistic version of
Exercise 17 to find out how this velocity decreases with time.

In a universe with S(¢) = t*? and k =0, a galaxy is observed to
have a redshift z = 1.25. How long has light taken to travel from
that galaxy to us? Express your answer in units of T'.

How will the forms (3.42) and (3.43) look if the spectrum of the
emitting source is given by J(v) «< v™%, o = constant in the relevant
range of observations?

For § o< exp Hyt and k =0, H, = constant, show that (3.44) takes
the form

L bol

o 22 2‘
W(F)z(1+z)

ferr —
Fpol =

0

Calculate the redshift magnitude relation for bolometric mag-
nitudes in the universe of Exercise 21.

Work out the formula (3.44) for the universe with S « 2 and
k =0, and compare with the result of Exercise 21. How much
brighter is the galaxy in the universe of Exercise 21?

If the Hubble constant is given by Ay in the units of
100 kms~! Mpc !, show that T, = 9.8k ! billion years.

Show that if k =0, § o t??, the apparent angular sizes of distant
objects of the same linear size have a minimum at z = 1.25.

Repeat Exercise 25 for the universe with £ =0, § < exp Hot. At
what redshift does the minimum value of apparent angular size lie?
If in (3.56) k =1 and n(¢) is constant and equal to ng, show that
the number of galaxies in the entire universe is given by
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2m%(c/H()*ng. Clarify whether this answer refers to spherical

space or to elliptical space.
In (3.56), put k= -1, n(t) = ny (constant) and show that:for

S(t) = ct, the number of galaxies with redshifts less than z is given
by
2 [ ¢\ [(z2+22)(z2 +2z+2
N(z) = 28 (S g 22N )
3 \Hy

2+ 2 —In(1 + 2)|.
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The Friedmann models

4.1 The Einstein field equations in cosmology

The work covered in Chapter 3 did not tell us two important items of
information about the universe: (1) the rate at which it expands as given
by the function S(¢), and (2) whether its spatial sections ¢ = constant are
open or closed as indicated by the parameter k. To find answers to these
questions it is necessary to go beyond the Weyl postulate and the
cosmological principle. We need a dynamic theory to proceed any further,
and Einstein’s general relativity is one such theory. In Chapter 8 we will
consider alternative approaches to cosmology but for the present we will
rely on relativity.

Once we decide to use relativity, our procedure is cut and dried. We
already have the line element to start with:

2

1 — kr?
We use it to compute the Einstein tensor, and thereby formulate the
Einstein field equations. To solve them we will require the energy tensor
of the contents of the universe.

Accordingly, we set

ds? = c?ds? — S%(¥) + r2(d8? + sin® 8d¢?)|. (4.1)

x%=ct, xl=r, x2=0, x3=0, (4.2)
so that the nonzero.components of gy and g’ are
SZ
=1, =—— = —82r2, =—-52r2sin2 9,
8w 8u 1= 12 8n 83
1— kr? 1
0 — 1 _ 2 =
gr=1 g ' = @ 8 T g
1
g® = - (4.3)

_ : ,
S2r2sin? @
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$2r2sin 0
(—8)" =———7
(1= kr?)
The nonzero components of T'}; are then as follows:
18
T =ThH=Th="——
01 02 3= g
SS$ SSr? SSr?sin® 6
0 = —-——————- FO = ————, FO = —_—,
' (1= kr?)’ 2 - 3 p
kr 1
Fh = 1“ — krz_’ F%z = F% = -r_’
Th=—r(1— kr?), Tl =—r(1 — kr?)sin? 9,
I3, = —sinfcosf, T3 =cotd. (4.4)

Now we use the expression for the Ricci tensor (see Chapter 2), which
may be put in the following form:
azln(—g)l/z arll'k
= : - + 7T, — T
dxax* ax! ok ,
Straightforward but tedious calculation then gives the following nonzero
components of R%: '

dln(—g)1?
—

ik (4.5)

38
0_ =
RO_CZS’ (4.6)
1 (8 28 + 2kc?
Rl=R}=R}=>-|-+"——"—| 4.7
1 2 3 CZ(S Sz ) ( )
From these we get
6 (8 $? + kc?
R=—[—+——--—7], 4.8
CZ(S 2 ) (4.8)
and hence
1.8 S? 4 ke
1o pl_1p_ _ ~ 42 _ 2 3
Gi=R;i—3R= 62(25+—————S2 )—G—G, 4.9)
3 (82 + kc?
0_ p0_1p_ 292 T KkC"
Go=Ry— 3R = c2( e ) (4.10)

We have gone through the details of the calculation to illustrate how the
techniques of general relativity developed in Chapter 2 can be applied to
the problem of cosmology. The reader may check that putting S = con-
stant = Sy and k = +1 gives us the formulae (3.8) and (3.9) obtained for
the Einstein universe in Chapter 3.

Recalling now the Einstein equations, we get from (4.9) and (4.10) the
only nontrivial equations of the set as
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S S$’+k? 81G_, 8G._, 881G _,
S + kc? 871G _,
= Ty. 4.12
S2 3c2 0 ( )

We next consider the energy tensor.

4.2 Energy tensors of the universe

Before we consider specific forms of T%, it is worth noting that two
properties must be satisfied by any energy tensor in the present framework
of cosmology. The first is obvious from (4.11):

T!=Ti=T3=-p. (4.13)
The fact that these three components of T are equal is hardly surprising
when we recall that we have imposed the condition of isotropy on the
universe. The second property is not quite so obvious, but is derivable
from (4.11) and (4.12). It relates the pressure p to the energy density e.

For this derivation it is convenient to write

TY = e, (4.14)
and to note that if we differentiate (4.12) with respect to ¢ we can express

the resulting answer as a linear combination of (4.11) and (4.12). The
result is in fact equivalent to the following identity:

d . ) .. .
O [S(S? + kc?)] = S [28S8 + S? + kc?),
that is,
d 3 2
<5 (e8%) +3p8? =0, (4.15)

It is not necessary, however, to write down the full field equations (4.11)
and (4.12) in order to arrive at (4.15). The above result is a direct
consequence of the conservation law implicit in the Einstein equations:

%i=0. (4.16)
We now turn our attention to the specific forms of the energy tensor.
Present observations suggest that galaxies are the major constituents of

the universe. If galaxies followed the Weyl postulate strictly, we would
have the typical veldcity vector of a galaxy as

u'=(1,0,0,0). (4.17)
In our smooth fluid approximation a velocity field like (4.17) represents an
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orderly motion with no pressure. Thus we have in this case the system of
galaxies behaving like dust, with

p=0, &=pc?, (4.18)

p being the rest mass density of galaxies.

In practice galaxies do not follow the Weyl postulate strictly, and their
velocity vectors depart from (4.17). Such velocity departures are measur-
able for galaxies in clusters and are of the order < 1000 kms™!. If we take
a typical velocity departure v=1000kms™! then we would have a
nonzero value of p in (4.18) of the order

2
p =~ —U—Z g~ 10"%¢. (4.19)
c
Therefore we would be justified in ignoring the p-term at the present
epoch, in comparison with the e-term as in the idealized situation of
(4.18).

What about the future and past epochs? To assess the importance of the
pressure term we have to investigate how the random motions of galaxies
change in an expanding universe. We may express the 4-velocity of a
galaxy as

u' =[1, u"], ut «< 1.

The <« sign implies that the squares of u* are to be neglected in
comparison with 1. Therefore the requirement wu’ = 1 is satisfied, and we
also have the built-in assumption that the random motions are small. In
the absence of any external forces, therefore, the velocity u' satisfies the
geodesic equation

du’ ,

a‘ + Fﬁdu"u’ =0.
Substitution of the I'%; for the Robertson—Walker line element then gives
the result

u"S? = constant.

However, u* measures the velocity in the comoving (7, 8, ¢) coordinates.
The proper distances are obtained from the coordinate distances by the
multiplication of the scale factor S. Thus proper random velocities v
change with S as S~!. ‘

Hence, so long as S goes on increasing beyond the present epoch the
approximation p << € will continue to apply. If, however, we turn towards
the past epoch, the galaxy motions become more and more turbulent,
since v was larger in the past. Thus if we use S ~1072S, (So being the
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value of § at the present epoch), (4.19) would give p ~ 10 '¢. Clearly the
p-term would no longer be negligible at this epoch and prior to it.

At such epochs we have to abandon our simplified picture of cosmology
and ask whether galaxies existed as single units then. Obviously, galaxies
were formed at some stage in the past and in a proper theory of cosmology
we have to say how and when they were formed. We will return to this
question in Chapter 7. At present we simply state that the present
cosmological framework of galaxies receding from one another breaks
down, as does the dust approximation (4.19) at epochs like these.

If, however, we simply extrapolate v o< S~ to very low values of S then
v becomes comparable to ¢ and our nonrelativistic approximation that led
to v o« S~! breaks down. The correct formula (see Exercise 3.17) then tells
us that the 3-momentum P goes as S™!. In this domain we have to use the
formula (2.85), and we set

p=3E¢. (4.20)

Thus if S continues to increase from very small values, then (4.20)
would hold for the early epochs, just as (4.18) holds in the recent epochs.
The transition between the two epochs is through a rather messy phase
when neither (4.18) nor (4.20) holds.

If (4.18) holds, then from (4.15) we get

QA=

d
5 $) =0, (4.21)

which integrates to
83
P=Po g (4.22)

po and S being the values of p and S at the present epoch.
Similarly, substitution of (4.20) into (4.15) gives

=S (es%) =0, (4.23)

giving
goc S4. (4.24)

We therefore have the following picture. For a distribution of matter
(4.24) holds when S was very small compared with S, and (4.22) holds in
the more recent epochs. If, however, on top of matter we also have
electromagnetic radiation present in the universe, it will also contribute to
T:. For small S, (4.20) holds uniformly for matter (moving relativistically)
and for radiation. However, as S increases we have to be more careful in
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distinguishing between the contributions of matter and radiation to T%.
We will go into these details more fully in Chapter 5.

For the present discussion let us assume that beyond a certain epoch
given by § =S, radiation and matter decouple from each other, each
going its own way. Thus we can write

t}c = ! + Tl}cradiation (425 )

kmatter
and assume that the divergence of each energy tensor separately vanishes.
Thus (4.22) continues to hold up to the present epoch for matter density.
Since for the radiation energy tensor we have (for u = 1, 2, 3), say,

- Tﬁradiation = %Tgradiation = %5’ (426)
we get, for § > S,
S4
0
E= & F (427)

What is §? Why, if at all, should matter decouple from radiation? What
happened prior to S = S? We defer a discussion of these questions to
Chapter 5. '

The present estimate of gy~ 10" ergem™3, and that of pyc?=
107 ergecm ™3 mean that the matter density is more than 103 times the
radiation density. Thus gy << pgc?, and we may ignore the contribution of
radiation (in comparison with the contribution of matter) to the field
equations (4.11) and (4.12) at the present epoch, and for §>S,.
However, for the past epochs with § <S,, we have, from (4.22) and
(4.27),

£ S
= ?0 (4.28)
pc PocC
and we cannot ignore the contribution of radiation for, say, S,/S ~ 103.
Indeed, for small enough S the relative importance of radiation and
matter is inverted: the radiation becomes more significant in deciding how
S should vary with ¢.

From the above discussion we see that at §=~103S, we have a
transition from a radiation-dominated universe to a matter-dominated
one. In the present chapter we will consider the matter-dominated epochs.
The equations (4.11) and (4.12) are therefore to be solved with

T1=0, TY=poc? —. (4.29)

This simplification leads us to the classical models first considered by A.
Friedmann between 1922 and 1924. Basically, these models ignore any
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contributions of electromagnetic radiation to T% and suppose that the
matter in the universe can be approximated by dust.

4.3 The solution of Friedmann’s equations

From the Friedmann models, (4.11) and (4.12) become

S 8?4+ ke?
25+ =0, (4.30)
$?2 + k2 81Gpy S}
e (4.31)

In view of the conservation law given in (4.21), the above two equations
are not independent, and only one of them is sufficient to determine S(¢).
Since it is of lower order, we will choose (4.31) for our solution, and
consider the three cases k =0, 1, —1 separately.

4.3.1 Euclidean sections (k = 0)

This is the simplest case, and is also known as the Einstein—de Sitter
model, since it was given by Einstein and de Sitter in a joint paper in 1932.
Equation (4.31) becomes

87TGp0 58

§? = 35 (4.32)

We now recall from Chapter 3 that the present value of Hubble’s constant
is given by

—:z— . = Ho. (433)
Hence applying (4.32) to the present epoch, we get
3H}
Po= g5 = Pe (4.34)

For reasons that will become clear later, p. is often called the closure
density . With the range of values of H( quoted in Chapter 3, we have

pe=2x10"2h3gcm3. (4.35)
These values are considerably higher than the matter density actually
observed at present, and we will take up this point in detail in Chapters 7
and 9.

Returning to (4.32), we see that it is easy to verify that it has the
solution
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¢ \23
S = SO( ) . (4.36)
to

(An arbitrary constant that arises from the integration of the differential
equation can be set equal to zero by assuming that § =0 at r =0.) We
also get the age of the universe as
2

g = 3H0 (437)
The constant S is not determined. It has the dimensions of length, and it
can be absorbed in the unit of length chosen. Figure 4.1 illustrates this
solution. If we drop the suffix 0, the results (4.33), (4.34), and (4.37) hold

at any arbitrary epoch ¢.

4.3.2 Closed sections (k = 1)
Equations (4.30) and (4.31) now take the form

S S24¢2
25+ *STC— =0, (4.38)
$2 4+ ¢2  8wGpySy '
G T g (4.39)

P_ S(f)
r

Fig. 4.1 A schematic graph of S(¢) as a function of ¢ for the Einstein-de Sitter
model. The present epoch ¢, is denoted by the point B on the t-axis. The ordinate
at B, PB = S, the present value of the scale factor. The present value of the
Hubble constant is given by the ratio 1/BC, where C is the pomt common to the
t-line and the tangent to the S(¢)-curve at P. Thus BC = H;'. As can be verified
from the figure, the age of the universe, represented by OB, is two-thirds of time
intercept BC.
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It is convenient to introduce the quantities g(¢) and H(¢) through the
relations: ) '

S 5 S

<= 4OHOF,  H@O =, (4.40)

with their present values denoted by g and H,. We have already come
across Hg, the Hubble constant. The second parameter, g, is called the
deceleration parameter, and it is useful in expressing py in terms of the

closure density.
With the above definitions, (4.38) and (4.39) take the following forms

when applied at the present epoch:
2

< = (290 - VH}, (4.41)
Sp
3 , ¢¥\ 3Hj
p0=%( 0+S—6)=Rq0. (4.42)
The density p, is sometimes expressed in the following form:
Po = PcL20 (4.43)
so that from (4.42), (4.43) and (4.34) we get the density parameter
Qo = 24q. (4.44)
Since the left-hand side of (4.41) is positive, we must have
qo > 1, Qy>1. (4.45)

Thus our closed model has density exceeding the so-called closure density
p.- This explains the name ‘closure density’. It is the value of the universal
density that must be exceeded if the model is to describe a closed
universe. We mention at this stage the result (to be proved shortly) that
for the open models (k = —1) the inequalities of (4.45) are reversed.

Using (4.41) and (4.42) to eliminate Sy and py from (4.39), we get the
differential equation

§2 = ¢? (3 - 1), (4.46)

with « given by
29 c
= — " —.
(90— D> Ho
The parameter o has the dimensions of length. Thus the model is
characterized by the parameters H, and gq.
Equation (4.46) can be integrated as follows. We get
S12ds

(4.47)
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Make the substitution
S = asinzg)— = la(1 — cos ®). (4.48)
Then the integral becomes
ct = asinzgd(% = la(® — sin©). (4.49)

Again, as in the case k =0 we have taken S=0 at t=0 (0 =0). We
therefore get ¢ = to by requiring that S = Sy. From (4.41) and (4.47) we
see that S = S, at © = ©(, where

c (2q0 — 1)
Lo(1 — cos®g) = — g — 1)V = ———~ q,
2o( cos ©g) Ho( q0 ) 240
that 1s,
1- 2g9 — D2
c0s@ =~ 20 ging, = VT (4.50)
q0 40

We therefore get from (4.49) the age of the universe as

o .
tg = Z (©g — sinBQy)

_ —_ 1\12
=___(2q0‘i)1)3/2 [cos‘l(l ‘IO) (240 1) ] HO. (4.51)

90
For example, for g = 1 we get
to = (g - 1) H;'. (4.52)
Note that S reaches a maximum value at ® = 7, when
S=§. =q=— 240 ¢ (4.53)

(2q0— 1** Ho
Thus for gy = 1, the universe expands to twice its present size.

In closed models, therefore, expansion is followed by contraction and S
decreases to zero. The value S = 0 is reached when © = 27; that is, when
Ta 2mq ) 1

¢ (2q0—1** Ho
The quantity t; may be termed the lifespan of this universe. For gq =1,
ty =2rHy'= 27T, where T is defined by the relation (3.52).

Figure 4.2 illustrates the function S(¢) for the closed models for a
number of parameter values gg. All curves have been adjusted to have the
same value of H, at point P. Notice that the value § =0 is reached
sooner in the past as g is increased from just over 1.

=1y = (4.54)
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c 0.0,0, B 0, 0, 0,

—H — t —

Fig. 4.2 The S(¢) curves for go = 1, 2, 5. All curves have been scaled to touch at
P, the present point, and they all have the common tangent PC. The intercept
BC = H;'. Notice that as g, increases the curves for S(t) intersect the past
section of the ¢-line at points O, O», O3, . .. lying closer to B, implying that the
age of the universe is reduced if g, is increased. The points O}, O%, O3}, . . . in the
future section of the ¢-line show the singularities at which these models end their
existence.

4.3.3 Open sections (k = —1)
Equations (4.30) and (4.31) become in this case

§ 52—

2§+—?zc—= : (4.55)
$2 —¢2  8nwGp,S;

Szc - 3:;’ 0 —o. (4.56)

We again use the definitions of (4.40) and apply them at the present

epoch to get
2

%5 = (1 - 2q0)H3, (4.57)
0
_ 3 (4.58)
Po= G 4o :

Thus instead of (4.45) we now have
And in place of (4.46) we get

5% = cZ(g + 1), (4.60)
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with
p= 20 ¢ (4.61)
(1 —2q0)** Hy
The solution of (4.60) may be parametrized by an angle ¥ with
S=1B(cosh¥ — 1), ¢t =1B(sinhW — ¥). (4.62)
The present value of W is given by
coshWp = — 90 Ginhw, — A =299" (4.63)
90 q0

We have set ¢t =0 at S =0, as in the two preceding cases. The age of the
universe is given by

fo = % (sinh W, — W)

do (1 —2q9)"” 1~ go+ (1 —2go)"? )
—In HO .
(1 — 2g0)*? o 4o

(4.64)

Like the Einstein—de Sitter model, these models continue to expand
forever. The behaviour of S(¢) in these models is illustrated in Figure 4.3.

It is worth pointing out that the model with gq = 0, S(¢) = ct represents
flat spacetime. In fact, by the following coordinate transformation we can
change the line element to a manifestly Minkowski form:

R=ctr, T=1t(1+r?),
ds? = ¢2dT? — dR? — R%(d6? + sin? 0d¢?). (4.65)

(o4

> H°—1

Fig. 4.3 The S(¢) curves for qo = 0, 0.1, and 0.2. As in Figure 4.2, all curves have

the same value of H, at P. The age of the universe is seen to increase as g
decreases, being maximum (= H;') for go = 0.
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This model arose naturally in Milne’s kinematic relativity, which was a
cosmological theory with foundations different from those of general
relativity. For this reason the above model is sometimes referred to as the
Milne model.

4.3.4 Spacetime singularity

Figure 4.4 shows how ¢, the age of the universe, decreases as g, increases
from 0 to o, the maximum value of ¢y being To= Hy!. All the above
Friedmann models have the common feature of having § = 0 at a certain
epoch (which we have chosen to label by ¢t =0). As we approach S =0,
the Hubble constant increases rapidly, being infinite at S =0, except in
the special case of the Milne model k = —1, g¢ = 0. This epoch therefore
indicates violent activity and is given the name big bang.

From a mathematical point of view, §=0 describes a spacetime
singularity. If we compute the components of Ry, and construct
invariants out of these, such as

ik ikl
R, RikR’ ) RiklmR’ m, teey

10
:"t:: Einstein-de Sitter
- Model
o
14
=
3
E os}
4]
[+
< g

g Closed modets
[} 1 L i A
oS 1 2 3 4 S

[}

Fig. 4.4 The variation of the age of a Friedmann model (in units of H') with the
deceleration parameter ¢,. The value go = 1 seperates the closed models from the
open models.



118 The Friedmann models

these invariants diverge as S tends to 0. It is therefore meaningless to talk
of a spacetime geometry at S = 0.

S = 0 also presents an insurmountable barrier to the physicist. If we use
the strong principle of equivalence (see Chapter 2) to enable us to study
how physical processes operate in strong gravitational fields, our pro-
cedure will break down at S = 0. Thus the singularity of the big bang is
more significant (and perhaps more sinister) than the infinities that occur
elsewhere in physics (such as in the radiative corrections of quantum
electrodynamics).

Attempts to remove the singularity by modifying the energy tensor are
not, however, likely to succeed if the modifications are of a conventional
character. For the time being we will accept the existence of singularity as
a fact of life under the regime of general relativity and learn to live with it.

4.4 The luminosity distance

Since the Friedmann models are frequently used to interpret cosmological
observations, we will now derive some of the observable quantities in
these models, starting with the luminosity distance defined in Chapter 3.
Our aim is to express the final answer in terms of the two parameters that
characterize a Friedmann model: H and g,.

4.4.1 The Einstein—de Sitter model

We use (3.36) to relate ry, the radial coordinates of the galaxy Gy, to the
time ¢ and to its redshift z.

ry = toﬁd—tzijtotéﬂt—mdt
! h S(t) SO h

£ sl -
0
3¢ t\"3
=—1t|l1=|—] |
So ° [ (tO)
We now use (3.38) to note that

1+ z2

_ S(tg) _ (to)P
—S(t) “(n) ’

so that with the help of (4.37)
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3ct0 (1-(1+2) 1/2}

ry, =
2

= SoH {1 -1+ )72}, (4.66)

The luminosity distance is therefore given by
Dl = rlSO(l + Z)

_ 12760 [(1+2)— (1 +2)¥2). (4.67)

4.4.2 The closed model

This calculation is more involved. Equation (3.36) becomes

r dr B Jlo cdt
o (1= In 8@y

The left-hand side can be easily integrated. To integrate the right-hand
side we use (4.46) to get

Jto cdt Jso ds
n S(E) I8 [S(e — )V
Now use the parametric form (4.48): S = asin® (©/2). We then get
% ds >
J —_— = dO =0y — 0.
s [S(a— 92 Je
Remembering that the integral on the left-hand side of (3.36) gives

sin”! r;, we have
r = sin (@0 — @1) (468)
We must now relate this answer to z. We have
sin? @
{4+ 7= S(to) _ 2
Sty sinzg,
2
giving
2 o) o) 1/2
sin®,; = (1+Z) - (z+cos 70) ,
+ cos ©
CcoS @1 p— ii__(l
1+z

Also, from (4.50) we have
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©)  (2g0 — 1)\? Q (1)\V
sin—- = 27 . s =)

Putting all these together and performing algebraic simplification, we get

) -1 1/2
"o qué(ET]z_) {goz + (1 — qo)[1 — (1 + 22q9)'*1}.  (4.69)

The luminosity distance is therefore given by
D, = rlSO(l + Z)

- 75) 2 Ganz + (o = DI+ 220002~ 11 @70)
0

4.4.3 The open model

The calculation is similar in this case to that for the closed model, with the
difference that the trigonometric functions are replaced by hyperbolic
ones. We will not go through the intermediate steps, but 51mp1y quote the
final results:

1 - 2g,)"?
ry = (_q(%(T(ii)z_;_ {goz + (1 — qo)[1 — (1 + 22g0)?]}.  (4.71)
D1 = (7eo) % faz + o= DI+ 2200~ 1) @47
0/ 4o

It is interesting to note that the final expressions for D; are the same for
k=%1, |go—3|>0. If we let go— %, it is easy to see that the
Einstein—de Sitter model also has D, given by the same formula.

Figure 4.5 plots Di(qq, z) as a function of z for various parametric
values of go. Note that all curves start off with the linear Hubble law
(3.49) for small z, but then branch out. As a rule we notice that for the
same redshift the luminosity distance is larger for lower values of gq. Thus
for go = 1 we have

c
D, =|--)z, 4.73

' (H 0) ‘ (4.732)

while for g = 0 we get

c -z
D =|— 1+ =] )

1 (HO)Z( 2) (4.73b)
So at z =1, (4.73b) exceeds (4.73a) by as much as 50 per cent. In Chapter

10 we will discuss the feasibility of determining g, from Hubble-type
observations of remote galaxies.
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Fig. 4.5 The luminosity distance D; expressed (in units of ¢/H) as a function of
the redshift z for go =0, 3, 1 and 5. The relationship is linear, as predicted by
Hubble’s law for gq = 1. For g¢ <1, D, increases with z faster than predicted by
Hubble’s linear law; while for g > 1, D, increases more slowly with z. All curves
merge for small z.

4.4.4 The particle horizon

It is pertinent to ask the following question: what is the limit on the proper
distance up to which we can observe? This question is answered as
follows. First calculate the limiting value of r; for z — «, calling it . The
corresponding limiting proper distance is

_ J’L dr
Ro=Soly Gy

It is then easy to vefify that for the Friedmann models

12gq0 —1)1?

[2:(k =0, o= 3)

2 2qo — 1\
——————sin"! (—qB——) (k=1,q0> 1)
240

2 (1= 2q0\Y?
A Z2gp e Sinb 1(—2%—) (k= =1, 40 < ).
- 0

(4.74)
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The existence of a finite value of R; means that the universe has a particle
horizon. Particles with ry; > r| are not visible to us at present, no matter
how good our techniques of observation are.

4.4.5 The event horizon

The particle horizon sets the limit to communications from the past. By
contrast, the event horizon sets the limit on communications to the future.
Let us ask the following question. An observer at r = ry, t =ty sends a
light signal to an observer at r =0. Will the signal ever reach its
destination? Suppose it does and let ¢, be the time of arrival. Then from

(3.36) we get
F cdt Jrl dr
f S(t) b (1 _ kr2)1/2.

This relation determines ¢, for any given r; provided the integral on the
left is large enough to match that on the right. Now it may happen that as
t;— % the integral on the left converges to a finite value which
corresponds to a value of the integral on the right for r; = ry, say. In that
case the above relation is not possible to satisfy for r; > ry. In other
words, the signal from the observer at r; > ry will never reach the
observer at ry. Thus no observer beyond a proper distance
* cdt
RON0)
at t = ty can communicate with another observer.
This limit is called the event horizon. It does not exist for Friedmann
models, but has the value ¢/H | for the de Sitter model.

Ry=S$ (4.75)

4.5 Angular size

We now use the result derived in section 3.8 to study how apparent
angular sizes vary with redshifts in different Friedmann models. We will
assume that sources of a fixed linear size d are observed at different
redshifts. Thus a source at (r{, 61, ¢;) with redshift z will subtend at the
observer at r = 0, the angle ‘

d  d{l+2)?
riS(t1) D,
Since we know D, from (4.72), A6, is determined as a function of z and
qo- The interesting fact emerges that A6, does not steadily decrease as z
increases; but has a minimum at a certain value of z that depends on gq,.

AB, = (4.76)
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It is easy to derive this result for go = 1. From (4.67) we get
dHo (1 + )%

c 1+)V2-1"
Straightforward differentiation gives us the result that the minimum value
of A6y (= Opmin, say) and the redshift z = z,,, at which it occurs are given
by

A6 = (4.77)

dH
0 = 6.75 —
C

and
Im = 1.25. (4.78)

The cases gy =3 are more involved. We illustrate the case go> 1
Instead of using D as given by (4.70), it is more convenient to use the
parameter © introduced in (4.48) and (4.49) and to use the relation (4.68).
We then get

d
riS(t1)
Differentiation with respect to ©; tells us that the minimum occurs when

sin®; sin(®g — ©) — (1 — cosO) cos(Oy — ©;) =0.

. 30,
sin|®q — > =0,

Agl =

- 27‘1 [(1 — cos®;)sin(®y — ©1)] L. (4.79)

That is,

thus giving

0, =2 L7039 4.80
= — gy = . :
cos —
Using (4.47) we get
(20 — 1)** 1 dH
()] in — N . . 4.81
cos —=| sin —
The corresponding result for g < 1 is
1 — 2g,)*? 1 dH
Oy = L 240) 20 482)

pA' ')
do (cosh —30— — 1) sinh TO

at the redshift z,, given by
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coshW, — 1
2%,

h___
COS 3 1

Figure 4.6 plots A6 as a function of z for different Friedmann models.
Notice how the curves all start with the near-Euclidean result A, o< 77!
and then begin to differ from one another at larger z values. In principle
this effect might be used to decide which particular Friedmann universe (if
any!) comes closest to the actual universe.

1+ 2, = (4.83)

4.6 Source counts

We now return to the general formula (3.55) and apply it to Friedmann
models. It is more convenient to use redshift as the distance parameter

2s T T
-
@O
3 4
2
S
c
o
8
-
L '
2=01 ‘z=10 =10
Log z

Fig. 4.6 This graph plots log A6, against log z for the Friedmann models with
q=0,0.1,05,1, 2, and 5. All curves merge at small z into a straight line that
describes the variation of A 8; with distance in a Euclidean universe.
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instead of r or t. As before, we will work with the case kK = +1. From
(4.68) and the relations that follow it we have

r =sin(0y — ©,),

SinZ&
dr 2
—| = |dO¢|, 1+z=
|(1—r2)1/2 46| ‘ .291’
sin® —
2
dz 0, 1+ 2goz\Y2
=cot— [dO| =|—— de,|.
1+ z co 2| 1l (2q0_1 |d©,|

Therefore the number of astronomical sources with redshifts in the
range (z, z + dz) is given by

dN = 4xsin? (@ — ©1) - n(t)- dz.

de,
dz

Let us suppose that n(¢) is specified as a function n(z) of z. Using (4.69)
and some algebraic manipulation, we get

(g0 — 1)¥? {goz + (g0 — D[(1 + 22q¢)"* — 1]} dz

dN =4drn(z
@ q¢ (1 + 2g02)"2(1 + z)?

(4.84)

Suppose n(z) is expressed in a slightly different form. We recall that n
was specified as the number of sources per unit coordinate volume, in
terms of the comoving (r, 6, ¢,) coordinates. What is the relationship
between n and the number of sources per unit proper volume? Denoting
the latter by 7, we have

Asy
n=nsd=—72—, (4.85)
1+ z)?
From (4.41) we get
fi Hg\?

————— = (g0 — D¥"?|—| n. 4.86
1+ 2 (2g0 — 1) (c) (4.86)

Substitution into (4.84) gives

3 + (g0 — D[(1 + 22q0)* — 1]}2A d
AN = 4r (L) {qoz (qo4 )L + 2290) 1}°Adz (4.87)
Hy qo(1 + 2)°(1 + 2402)"?

In this form (4.87) 1s applicable to all Friedmann models, even though our
derivation assumed go > 1 and k = 1.

We will have occasicn to use this result in connection with observations
of galaxy counts and radio source counts.



126 The Friedmann models

4.7 Radiation background from sources

Let us use the above formulae to calculate the flux of radiation from
sources distributed all over the universe. To fix ideas, let us suppose that
there are 7i(z)dz sources per unit proper volume with redshifts in the
range (z, z + dz). Suppose a typical source at redshift z has a normalized
intensity spectrum given by

J(v; 2)
and total luminosity L(z). Thus

o«

fo J(v, 7)dv = 1. (4.88)

Consider now sources located in a thin solid angle dQ in the direction

6 = 6., ¢ = ¢, from the origin of coordinates. Let

f(vo) AvodQ
denote the total flux of radiation received at r = 0 in the frequency range
(vo, vo + Avy) from all the sources located in our solid angle.

Now the number of sources in a typical redshift range (z, z +dz) is
given by multiplying dN by dQ/4m, and the flux of radiation from a source
in this range is given by the application of (3.43). Putting the two results
together, we get

c ) 1 Jf°° A(z)L(z)J(vo-1 + z; z) dz (459)

f(VO) = (ﬁ; ET_ 0 (1 + Z)S(l + quZ)l/Z

The formula will be found useful in estimating the contributions of

sources to the cosmic radiation background. Note that the flux @(VO; 2)

from a typical source in the above calculation is related to the quantity
dN/dz by the relation

dN . ' ¢\ L(@a)J(vw-1+ z;2)
- ° [g(VO, Z)] = (_‘) : 5 1/2
dz H, 1+ 2)°(1 + 2g02)
Now in a Euclidean space with a uniform distribution of sources, the
number of sources up to a Euclidean distance R would be given by

4
N =1 R3n,,
3

(4.90)

fig being the number density of sources, assumed constant.

Further, a typical source at a distance R and with a luminosity L would
produce a flux at the origin given by
L

- 4rR?’

&
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We therefore get

—3% % = AgL = constant. (4.91)
To discover the analogue of this result in a Friedmann universe, we
assume 7(z) = fig(1 + z)*, corresponding to a constant number of sources
in the unit coordinate volume. We also assume L(z) = constant and
integrate (4.90) over all vy. Then using (4.88) we get
dN & _ (L) Ly
dz Ho) (1+ 2)°(1 + 2qe2)V*
Thus the product on the left-hand side steadily decreases with increasing z
in all Friedmann models. The redshift factors in the denominator see to it
that the product of differential number count with flux is less for remote
sources than for nearby ones.

We also see this effect in the contribution to the background in (4.89).
The contribution of remote shells is steadily reduced by the redshift effect.
This was therefore considered one way of resolving a long-standing
paradox known as the Olbers paradox. In 1826 Heinrich Olbers, a
German astronomer, computed the background from a uniform distri-
bution of sources in a Euclidean universe of infinite extent in space and
time. Using (4.91), Olbers concluded that the net flux is infinite! The
Olbers paradox is often phrased as the question, ‘Why is the sky dark at
night?’ By using (4.92) instead of (4.91), we see that attenuation at large
redshifts results in f(vy) being finite. Various aspects of the Olbers
paradox are discussed in Exercises 25 to 29, which demonstrate that the
expanding universe is not the only way of arriving at a finite answer.

(4.92)

4.8 Cosmological models with the A-term

Although our concern in this chapter is with the Friedmann models, we
now discuss briefly another class of models that have a close relationship
with the Friedmann models. These are the models given by the modified
Einstein equations of (2.102) - the equations containing the cosmological
constant A. We have already discussed two special cases of this class of
solutions in the last chapter, the static Einstein model and the empty
de Sitter model. When Hubble’s observations established the expanding
universe picture, Einstein conceded that there was no special need for the
A-term in his equations. He even went so far as to say that introduction of
this term was the ‘biggest blunder’ in his life. The Einstein-de Sitter
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model discussed in this chapter is the outcome of Einstein’s collaboration
with de Sitter after abandoning the A-term.

Nevertheless, in the 1930s distinguished cosmologists like A. S. Edding-
ton and the Abbé Lemaitre felt that the A-term introduced certain
attractive features into cosmology and that models based on it should also
be discussed at length. In modern cosmology the reception given to the
A-term varies from the hostile to the ecstatic. The inputs of particle physics
in the early stages of the universe have provided a new interpretation for
the A-term, which we will discuss in Chapter 6.

Putting A # 0 modifies (4.11) and (4.12) to the following:

.. 2 4 g2
2%+S—Sz—c—xc2 =8’CT—ZG T}, (4.93)
2 + kc? 87G
———'————S 52 - %ACZ = ? T8 (494)

The conservation laws discussed in section 4.2 are not affected by the
A-term. If we restrict ourselves to dust only then (4.94) gives us the
following differential equation in place of (4.31): '

$2+ k2 |, 8uGpy S3
—52— - §A.C = 3 ES— (495)
Similarly, (4.93) becomes
§  §2+ ke?
2— 4+ ———Ac?=0.
S @ c (4.96)

_ Let us first recover the static model of Einstein. By setting S = S,
§ =0, 8 =0in (4.95) and (4.96), we get
kc? _ 81Gpo kc?
s 37 8
From these relations it is not difficult to verify that k = +1, and we
recover the relations obtained in section 3.2:

= Ac2.

1

A=—Elc, 4.7
_ A 4.98

P = 4nG (4.98)

We shall denote by A= A, the critical value of A for which a static
solution is possible. It was pointed out by Eddington that the Einstein
universe is unstable. A slight perturbation destroying the equilibrium
conditions (4.97) and (4.98) leads to either a collapse to singularity
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(§—0) or an expansion to infinity (S — «). Eddington and Lemaitre
proposed instead a model in which A exceeds A by a small amount. In this
case the universe erupts from S = 0 (the big bang) and slows down near
S = S,, staying thereabouts for a long time and then expanding away to
infinity. It was argued that the quasistationary phase of the universe would
be suitable for the formation of galaxies. This model is illustrated in
Figure 4.7, which plots S(t) for a range of values of A for k = +1. Notice
that for A < A the universe contracts (as in the Friedmann case), while for
A > A. it ultimately disperses to infinity, resembling the de Sitter universe.

Figure 4.7 also shows by dotted lines another series of models that
contract from infinity to a minimum value of $ > 0 and then expand back
to § — . These models are sometimes called oscillating models of the
second kind, to distinguish them from the models that shrink back to S =0
and are called oscillating models of the first kind. This terminology is,
however, not quite apt, since there is no repetition of phases in these
models as implied by the word ‘oscillating’.

The models with k£ =0 or kK = —1 do not show these different types of
behaviour for A > 0. We get from (4.95) a relation of the following type:

87GpoSi
3§

wherein each term on the right-hand side is nonnegative. Thus $ does not
change sign, and we get ever-expanding models. For A <0, however, we

S? = —ke? + 1Ac2S? + (4.99)

\ / de Sitter A
sl

Einstein universe

t
0

Fig. 4.7 The A-cosmologies for k = 1. The quasistationary phase is from P to Q.
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can get universes that expand and then recontract as in the k =1 case for
A< A
This concludes our discussion of the general dynamic behaviour of the

A-cosmologies. We end this section by writing (4.95) and (4.96) at the
present epoch in terms of Hy and go. Thus in place of earlier relations we
have

kc?

H% + o %ACZ = H%Q(),
St
2

(1 - 2q0)H3 + —kScT — A2 =0.
0
From these we get
c?
Qo = 2g¢ + 32 75k (4.100)
0
Thus there is no unique relationship between g¢ and Q,: we have an
additional parameter entering the relation. Note also that it is possible to
have negative qq, that is, an accelerating expansion, if A>0. This is
because the A-term introduces a force of cosmic repulsion.

4.9 Concluding remarks

Our discussion of the dynamic and geometric properties of the expanding
universe is now complete. We started with general relativity — the theory
that introduced the unique idea that gravitational effects are intimately
connected with the non-Euclidean geometry of spacetime. Nowhere
except in cosmology do we see examples of the large-scale effects of
non-Euclidean geometry. The redshift, the dimming of light from distant
sources, the peculiar behaviour of angular sizes, the existence of particle
horizons, and the most dramatic of all, the spacetime singularity: these are
all instances of such effects.

However, in the last analysis, cosmology is not an exercise in mathemat-
ical fancies, but a physical theory that must make predictions testable by
observations. Hence we must now turn to physical cosmology and discuss
the physical properties of the expanding universe. Do we have any relics
of the early epochs just after the big bang? How did galaxies, which we
have taken as the basic units of the universe, form in the first place? And
how did matter itself come into existence in its elementary state? The next
three chapters will deal with such issues.
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Exercises

Verify the expressions for the Ricci tensor and the Einstein tensor
for the Robertson—Walker line element.

Show how the assumptions of Weyl postulate and the cosmological
principle reduce the number of independent Einstein
equations from 10 to 2. What more can be deduced about these
equations with the help of the conservation law?

Deduce (4.15) from (4.16).

Using the Einstein~de Sitter model, estimate the epoch at which
the matter and radiation densities in the universe were equal. For
this calculation take py= 10" gem™3 and gy = 10713 ergcm 3,
and express your answer as the fraction of the age of the universe.
What is the significance of the closure density? Show that there is a
unique relationship between the deceleration parameter gq and the
density parameter €2 in a Friedmann universe. How is this relation
modified by the A-term?

A galaxy is observed with redshift 0.69. How long did light take to
travel from the galaxy to us if we assume that we live in the
Einstein—de Sitter universe with Hubble’s constant = 100 kms™!
Mpc~1?

Calculate from first principles the age of a Friedmann universe
with g¢ = 2.

In the Friedmann universe with gy =1, a galaxy is seen with
redshift z = 1. How old was the universe at the time this galaxy
emitted the light received today? (Hy = 100 kms™! Mpc™!.)

A light ray is emitted at the present epoch in the closed Friedmann
universe. Discuss the possibility of this ray making a round of the
universe and coming back to its starting point.

Derive the formulae for r; and D, for the open Friedmann model
with given g and H .

Show that the expressions for D, in the cases gg = % and g =0
can be obtained from (4.72) by suitable limiting processes.

Show that there is a unique value of g for which the linear Hubble
law holds exactly.

Invert the formula (4.72) to express z as a function of D, H/c.
Show by computing Ry, that the Friedmann model with g4 =10
describes a flat spacetime.

Given that the Friedmann model with gy =0 describes a flat
spacetime, find coordinates in which its line element is manifestly
that of Minkowski spacetime.
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What is meant by a particle horizon? How does the size of the
particle horizon depend on the epoch of observation in a given
Friedmann model? '

Show why the Friedmann models do not have event horizons.

In the Einstein—de Sitter model there are n sources in a unit
comoving coordinate volume. Calculate the number of sources in
principle visible to us at the present epoch, for » = constant.

In a Friedmann model the minimum of angular size occurs at
z = 1. Deduce from this the value of g,.

The surface brightness of an astronomical object is defined by the
flux received from the object divided by the angular area
subtended by the object at the observation point. How does the
surface brightness vary with redshift?

Show from first principles that the angular sizes of astronomical
objects of fixed linear size will have a minimum at z = 1.25 in the
Einstein—de Sitter model.

Derive (4.81) by direct differentiation of D;(z) with respect to z.
Derive (4.83) from first principles and use it to show that z,, — «
as qg— 0.

If in a Friedmann universe we have a fixed number of sources in a
unit comoving coordinate volume, and each source emits a line
radiation of fixed total intensity L, at frequency v, show that the
radiation background produced by such sources at the present
epoch will have the frequency spectrum S(v)dv, where S(v) =0
for v > v, while for v < ¥,

A2
® 2g07 + (2g0 — V]2’

c
S(v) = — Ay
v) H, Ry

where ny = proper number density of sources at the present epoch.
Discuss Olbers’s calculation on the darkness of the night sky in the
Euclidean universe.

Show that a finite answer can be obtained in an Olbers-type

calculation if the universe is finite in extent or finite in age.

Show that a finite answer can be obtained in an Olbers-type
calculation by assuming that the sources are finite in size and
therefore that nearby sources tend to block radiation from the
more distant sources.

Show that the Olbers paradox can be resolved by assuming that a
typical source can radiate only for a finite interval of time because
of its finite reservoir of energy.
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Review all the possible means of resolving the Olbers paradox and
state your own preference for any particular resolution.

Derive (4.93) and (4.94) for the A-cosmologies and deduce the
conservation law from them.

Given that objects during the quasistationary phase of the
Eddington—Lemaitre cosmology are now seen with the redshift
z = 2, what can you say about the value of 1?

Deduce that the scale factor in the A-cosmology with k = 1 satisfies
the differential equation

§? = ¢2 (%ASZ —1+ l),

S
where
2q0 + gki
_ 3H; (¢
" 2610—1+&c~2 (HO).
H2

0

Write down an integral that gives the age of a big bang universe for

A # 0. Discuss qualitatively how the A-term may be used to increase

the age of the universe.

In A-cosmology, what is the lower limit on the value of A, given the

value of g¢?

Compute the invariants R, Ry R* and Ry,,,R*™ for the Fried-

mann models and show that they all diverge as S — 0. Is there an

exceptional case?

Repeat Exercise 35 for A-cosmologies and show that the same

conclusions follow for the models with § — 0.

Give a general argument to show that for sufficiently small S, the

A-force is ineffective in preventing the spacetime singularity.

Let us return to Newtonian cosmology. Suppose, continuing in the

vein of Exercises 1 to 3 of Chapter 3, we have a cosmic velocity

field v = H(t)r. Use the continuity equation in fluid dynamics to

show that the density p of cosmic fluid satisfies the conservation

law pS*® = constant.

Use Euler’s equations of motion in Exercise 38 and deduce from

them the differential equation

d7Gp
3

In Exercise 38 assume that the force F per unit mass on the cosmic

§= S.
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fluid satisfies Gauss’s theorem for Newtonian gravitation: div F =
—4nGp.
Integrate the differential equation of Exercise 39 and relate the
constant of integration to the curvature parameter k in the
Friedmann models.
Show that the force per unit mass F that acts on the cosmic fluid in
Exercise 39 may be written as
4nGp

3

Interpret what this expression means and comment on the status of
boundary conditions at infinity in Newtonian cosmology.

Show how the result of Exercise 39 is modified if we introduce the
analogue of the A-term in Newtonian cosmology.

F=-—

r.
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5.1 The early universe

In Chapter 4 we saw that all Friedmann models have an epoch in the past
when the scale factor S was zero. We referred to this epoch as the big
bang epoch. To mathematicians the big bang implies a breakdown of the
concept of spacetime geometry, and they have come to recognize it as an
inevitable feature of Einstein’s general relativity. It is a feature that
prevents the physicist from investigating what happened at S = 0 or prior
to it. To some physicists this abrupt termination of the past signifies an
incompleteness of the theory of relativity. To them a more complete
theory of the future may show a way of avoiding the catastrophic nature of
the § = 0 epoch. A universe that has been expanding forever or that has
been oscillating between maximum and minimum (but finite) values of S
might result from such a theory.

In this chapter we will continue to put our faith in the validity of general
relativity and push our investigations into the past of the universe as close
as possible to the S = 0 epoch. The purpose of such investigations will be
to find out whether we can point to any present-day evidence that the
universe indeed had a past epoch when § was close to zero. In short, we
will be looking for relics of the big bang.

Pioneering work in this field was done by George Gamow in the
mid-1940s. Gamow was concerned with the problem of the origin of
elements. Starting from the (then available) basic building blocks of
neutrons and protons, Gamow attempted to describe the formation of
nuclei of deuterium, helium, and so on. The process envisaged by him
involved nuclear fusion, that is, a process in which nuclei are formed by
bringing together neutrons and protons. Astrophysicists were already sure
by the 1940s that such processes operate inside stars, where the necessary

135
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conditions of high temperature and density were known to exist. Gamow
pointed out that similar conditions must have existed in a typical
Friedmann universe soon after the big bang.

We know from (4.22) that the density p was very high at small values of
S. What about temperature? A simple calculation shows how the
temperature also might have been high. This calculation requires the
assumption that at present we have a radiation density u, that is a relic of
an early hot era. With this assumption, the radiation energy density at a
past epoch S is given by (4.27):

i

U= Uy 34— (51)
We also saw in Chapter 4 that at a critical value of the scale factor the
contribution of radiation energy density equals that of matter energy
density, and that prior to this epoch the former was more dominant.
Gamow therefore assumed that in the early epochs the dynamics of
expansion were determined by radiant energy rather than by matter in the
form of dust. .

If we wish to make a simplified calculation, we can assume that the
radiation was in blackbody form with temperature T, so that

u=aT*, (5.2)
where a is the radiation constant. This means that in the early stages of
the big bang universe

T)=aT*, Ti=T3=T;=1aT" (5.3)
We also anticipate the the space curvature parameter k& will not affect the

dynamics of the early universe significantly, and set it equal to zero. Thus
from (4.12)

§?  8rGa -
82 3¢ G4
Further, from (5.1) and (5.2) we get
A
T= 5 A = constant. (5.5)

Substituting (5.5) into (5.4) gives a differential equation for S that can be
easily solved. Setting t = 0 at § = 0 we get

3c2 \-1/4 1
= 112, .
§=4 (3277Ga) (5-6)

and, more importantly,



Thermodynamics of the early universe 137

3c2 1/4 .
- -1/
T = (3277&1) 12, (5.7)

Notice that all the quantities inside the parentheses on the right-hand
side of the above equation are known physical quantities. Thus we can
express the above result in the following form:

Tyein = 1.52 X 1001530, (5.8)
In other words, about one second after the big bang the radiation
temperature of the universe was 1.52 X 10! K. The universe at this stage
was certainly hot enough to facilitate nucleosynthesis, as Gamow sup-
posed.

The idea of a hot big bang, as the above picture is called, depends
therefore on the assumption that there is relic radiation present today and
the microwave background discovered in 1965 by Arno Penzias and
Robert Wilson is that relic radiation. For the present we will accept this
evidence as confirming Gamow’s notion of the hot big bang and proceed
further.

5.2 Thermodynamics of the early universe

Considerable progress has been made in our understanding of the
properties of particles and their basic interactions since the days when
Gamow and his colleagues R. A. Alpher and R. Herman did their
calculations of primordial nucleosynthesis. In the following pages we will
briefly outline the basic principles on which the modern calculations are
usually based.

First it is necessary to specify the building blocks from which nuclei
were constructed in the early epochs. The physicist would naturally like to
imagine that the universe started with the simplest possible composition
(whatever that may be!) and that more complex structures were built out
of simpler ones by physical interactions. Thus the cosmologist is forced to
take stock of the knowledge of particle physics. While Gamow and his
colleagues took the existence of particles like protons, neutrons, electrons,
and so on for granted, modern particle physicists believe that a more basic
framework accounts for the creation or existence of these particles.

Here we take up the story from the stage when baryons (neutrons and
protons), leptons (electrons, muons, neutrinos, and their antiparticles),
and photons (the particles of light) are already in existence and are in
thermodynamic equilibrium as particles of an ideal gas. In Chapter 6 we
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will consider the more speculative and earlier epochs and discuss how
these particles came into existence.

Before proceeding with calculations we must clarify what is meant by
‘thermodynamic equilibrium’ and ‘ideal gas’. We have already mentioned
that in these early epochs the dominant form of energy was in these
particles moving relativistically. The question arises therefore whether
these particles were interacting with one another or whether they were
mostly moving freely. Such particles would interact and collide, of course,
but these instances are assumed to have occupied very brief time spans,
and their effects on motions may be otherwise neglected. We will shortly
express this idea in a quantitive manner.

The collisions and scatterings of the particles would, however, have
helped to redistribute their energies and momenta. If these redistributions
occurred frequently enough then the system of particles as a whole would
have reached a state of thermodynamic equilibrium. In this case, for each
species of particles there is a definite rule governing the number of
particles in a given range of momentum. For thermodynamic equilibrium
to be reached, the time scales between successive scatterings should be
small compared with the expansion time scale for the universe. Again, we
will express this idea quantitively in a short while.

5.2.1 Distribution functions

Assuming ideal gas approximation and thermodynamic equilibrium, it is
then possible to write down the distribution functions of any given species
of particles. Let us use the symbol A to denote typical species
(A=1,2,...). Thus ny(P)dP denotes the number density of species in
the momentum range (P, P + dP), where

E4(P) — -1
na(P) = 25;h3 P? [exp (A—(le——ué) + 1] . (5.9)
In the above formula, T = the temperature of the distribution, g4 = the
number of spin states of the species, k = the Boltzmann constant, and

‘ E% = c?P? + mict (5.10)
is the energy corresponding to rest mass my of a typical particle. Thus for
the electron g4 =2; for the neutrino g4=1, m,s=0, and so on.
The + sign in (5.9) applies to particles obeying the Fermi—Dirac statistics
(these particles are called fermions), while the — sign applies to particles
obeying the Bose-Einstein statistics (particles known as bosons). For
example, electrons and neutrinos are fermions, and photons are bosons.
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The quantity pu4 is the chemical potential of the species A. For a
detailed discussion of chemical potentials, see any standard text on
thermodynamics and statistical mechanics. We note here that in any
reaction involving these particles the p,4 are conserved (just as electric
charge, energy, spin, and so on are conserved). Because photons can be
absorbed or emitted in any number in a typical reaction, we set u4 = 0 for
photons. Since particles and antiparticles (such as electrons and positrons)
annihilate in pairs and produce photons, their chemical potentials are
equal and opposite.

Apart from the dynamic quantities and the electric charge, several other
quantities are found to be conserved in the interactions of particles. These
are the baryon number, the muon lepton number, and the electron lepton
number. In computing these numbers, a value of +1 is assigned to a
particle and —1 to its antiparticle. The electron lepton number counts
electrons (e~) and their neutrinos (v.), while the muon lepton number
counts muons (u~) and their neutrinos (v,). Under these conservation
rules reactions such as

n—->p+e” + v, p+v,—u* +n
are permitted, while a reaction like the following is not:
n—-p+e + v

(In Chapter 6 we will consider the situation in which the baryon number is
not conserved. However, at the epochs that we are concerned with here
we may safely assume the conservation of the baryon number density to
apply.)

Hence, if we assume that, in any reaction electric charge, the baryon
number, the electron lepton number, and the muon lepton number are
conserved, then we have only four independent chemical potentials —
those corresponding to protons, electron neutrinos, and muon neutrinos.
(In Chapter 6 we will consider the possibility of more species of
leptons/neutrinos being present.) From (5.9) we see that the total number
of particles per unit volume in each of these species is needed to
determine the corresponding p, and that the number densities will be
large for large pa > 0. These number densities are not known with any
degree of accuracy, except that (as we shall see shortly) the ratio

Np  number density of baryons

— —~ 10—8 -1 -10
N, number density of photons 0

is small compared with 1,
The smallness of the baryon number density suggests that the number
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densities of leptons may also be small compared with N, and it is usually
assumed that this hypothesis provides a good justification for taking
u4 =0 for all species. We will assume that u,4 =0 for all species in our
calculations to follow.

We then get the following integrals for the particle number density
(N,), the energy density (£,), pressure (p,4), and entropy density (s,):

£gA jw PzdP

Na=22213 o exp[E4(P)KT] = 1 (5-11)
g4 (® PELP)AP

fA T fo exp[EA(P)/kT] = 1’ (5.12)
_ 8a (" PPYEL(P)'dP

Pa= ertn3 fo exp[E4(P)/kT] + 1’ (5-13)

sa=(pa+ea)T. (5.14)

5.2.2 High- and low-temperature approximations
The above expressions become simplified for particles moving relativisti-
cally. In this case,

muc
T > i =T,. (5.15)

The details are given in Table 5.1 for the different species of interest. The
numbers are expressed in units of the quantities for the photon (g4 = 2;
the symbol for a photon is y):

_2.404 (kT)3 _ n*(kT)* B 4’k (kT)3

i)’ T Tqspaes  CPr

ch)
(5.16)

In this approximation consider the electrical potential energy of any two
electrons separated by distance r. This is given by
2
e
U=—.
r

YT " T s

Now the average interelectron distance is given by N7 ~ ca/kT. Thus

average interaction energy is
2

e
~—kT.
(U) ~ 22

However, kT measures the energy of motion of electrons. Thus the

interaction energy is e?/hc ~ 37 of the energy of motion. Since the

fraction is small, we are justified in treating the electrons as free gas.
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Table 5.1 Thermodynamic quantities for various particle species at T >> T4

Particle species A Symbol T4 (K) 84 Nua/Ny eafe, S4/S,
Electron e 5.93 x 10°¢ 2 3 z z
i 3
Positron et 2 : I z
= 12 3
Muqn u+ 1.22 x 10 2 g % %
Antimuon u 2 3 z z
Muon, electron ' Vi, \_/e 0 1 % 1:_6 z
neutrinos and their v, V. 1 3 z %
antimeutrinos
Pions at 1 1 % %
- 12 1 1 1 1
7r0 1.6 X 10 : % ?
™ 1 2 2 7
3
Proton p 1013 2 3 % %
Neutron n T,—T,~15x10° 2 2 I z

By contrast, at low temperatures T < T, we have for all species with

mA¢0
N, = £ga mAkT 3 TA
AT\ 2 )P\ T/
mANA
Eq = mANA, Pa = NAkT, S4 = T C2. (517)

Notice that with fall in temperature all these quantities drop off rapidly.
We will often refer to this limit as the nonrelativistic approximation. (For
the photon and a zero-rest-mass neutrino T4 = 0, and this approximation
never applies.)

5.2.3 The behaviour of entropy

We now recall the conservation law satisfied by ¢ and p in the early stages
of the expanding universe, the law given by (4.15),

d
35(653) + 3p52 = 0, (518)

and use it in conjuction with the second law of thermodynamics. This law
tells us that the entropy in a given volume S stays constant as the volume
expands adiabatically. From (5.14) we therefore get
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d d[s?

where s = D, 454 is the total entropy of all the particles in the expanding

volume.
Rewriting (5.19) with the help of (5 18), we get

d(s$p) 1 , d(1
= — + 3 J—
0 dt(T) Td(SE) St t(T

£dr
d(S’p 3p52 g3 2
dt T d
that is,
dp
=—{(p + ¢). 5.20
¥Ta (p £) (5.20)

The relation can be directly derlved from (5.12) and (5.13) by a simple
manipulation of the integrals. Then, starting from (5.20) we can derive

(5.19). We will use the constancy of
3

S .
o= (p+9) (5.21)

in our later calculations.

In the high-temperature approximation we get p =g/3 0o §™* from
(5.18). Hence from the constancy of o we recover the relation (5.5):

T < 1/S.

A simple relation like this does not hold if the high-temperature
approximation is not valid.

5.3 Primordial neutrinos

From Table 5.1 we see that for T < 1.5 x 1012 K, the only particles that
can be present with appreciable number densities in thermal equilibrium
are u\i, e*, Ve, Ve, Vy, Vy, and y. The baryons (p and n) and pions
(m*, 7%) will be cooled below their critical temperatures T,, so that for
them the low-temperature approximation holds. The photons, e* and p*,
follow their respective distributions of the type (5.9). The neutrinos,
however, require some attention, since this phase happens to be crucial in
determining the extent of their survival.

The neutrinos are absorbed, emitted, or scattered in reactions such as
the following:
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e_+u+<_>ve+\7u, e++u"(—)‘\_/e+‘vu’ 've+u‘(—)'vu+e"
Ve +ut o v, +et, Ve te~ ©vete, Vet+etov, +et,

These are all examples of weak interactions. For T <T, the cross-
section of a typical reaction is of the order

S = @r4(kT)%c™*, (5.22)

where % = 1.4 x 107% ergem ™ is the weak interaction coupling constant.
From (5.16) and Table 5.1 we see that the number densities of
participating particles e* is of the order

(kT/ch)?,
while for muons we should take account of (5.17) and introduce an
exponential damping factor of
Tu
€xp (— —T—)

Thus typical neutrino reaction rate is

kT\? T, T
=cZ-|— - —| =9*n7c (kTS exp|— —2|. (5.
n=c (ch) exp( T) c °(kT)> exp T (5.23)
We must now take note of the other rate that is relevant to the
maintenance of equilibrium of neutrinos — the rate at which a typical
volume enclosing them expands. From Einstein’s equations we get
$2  8rG  16n°G
2=——= £ =~ kT)*. 5.24
S 3¢ 90%3 > (KT) (5-24)
H, the Hubble constant at the particular epoch, measures the rate of
expansion of the volume in question. Thus the ratio of the reaction rate to
the expansion rate is given by

H

n —1/24,— - T,
L G-2p-112g2 -2 3 _
I, G c~2(kT) exp( T)
T \ 102K
o~ 00K exp|— T (5.25)

1
= T%Oexp (— —)
Ty,
Here we have substituted the values of G, #, %, ¢, k, and T, and arrived
at the above numerical expression. Further, we have written the tem-
perature using the notation Ty, T,, and so on. In general T, indicates
temperature expressed in units of 10" K.
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What does (5.25) tell us? As the temperature drops below 10'2 K, the
exponential decreases rapidly. This means that the reactions involving
neutrinos run at slower rate compared to the expansion rate of the
universe. The neutrinos then cease to interact with the rest of the matter
and therefore drop out of thermal equilibrium as temperatures fall
appreciably below Ty, = 1. How far below?

The original theory of weak interactions suggested that this temperature
may be around T;; = 1.3. In the late 1960s and early 1970s successful
attempts to unify the weak interaction with the electromagnetic interaction
led to additional (neutral current) reactions that keep neutrinos interacting
with other matter at even lower temperatures. The outcome of these
investigations is that the neutrinos can remain in thermal equilibrium
down to temperatures of the order Ty, = 1.

However, even though neutrinos decouple themselves from the rest of
the matter, their distribution function still retains its original form with the
temperature dropping as T o S~1. This is because as the universe expands
the momentum and energy of each neutrino falls as S$~! and the number
density of neutrinos falls as S~3. Since the temperature of the rest of the
mixture also drops as S™! and since the two temperatures were equal
when the neutrinos were coupled with the rest of the matter, they
continue to remain equal even though neutrinos and the rest of the matter
are no longer in interaction with one another. These remarks apply to
neutrinos of all four species ve, Ve, vy, V.

There is, however, another epoch when the neutrino temperature
begins to differ from the temperature of the rest of the matter. First
consider the universe in the temperature range Ty, = 1 to Ty = 1. In this
phase we have the neutrinos, the electron—positron pairs, and the
photons, each with distribution functions of type (5.9) in the high-
temperature approximation (see Table 5.1). Thus

€= €y, + E5 + &y + £y, + £ + Eoy + £y
Counting the various g-factors from Table 5.1, we get
€= 3aT*. (5.26)

Thus in this period the expansion equation is modified from our

simplified formula (5.4) to ‘
§? 127Ga T4

S? c?

(5.27)

and the relation (5.7) is changed to

2 \V4 i
T=(4877Ga) e (5-28)
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which we may rewrite as
Ty = 104512, (5.29)
However, in the next phase the situation becomes complicated, as the
e* pairs are no longer relativistic. Thus the high-temperature approxima-
tion is no longer valid for them and we have to use the full formulae (5.12)
and (5.13) to determine the £ and p and the expansion rate of the
universe. We will not go into details of this phase but instead jump across
to its end, when the pairs have annihilated, leaving only photons:

e” +et sy+y. (5.30)
Thus the energy, originally in e* and photons, has now vested only in

photons, raising their number and temperature. How can we evaluate this
change? It is here that (5.21), telling us of the constancy of ¢, comes to

our help.
In the relativistic phase (T¢ > 5) of e* we have
483
o= ﬁ (Ee_ + €4 + EY) = l—;a(ST)S (531)

When the e* have annihilated and left only photons, we have the
photon temperature T, given by

4 §3
N
Y
We now use the result that the neutrino temperature always changes as
S~1. Let us write it as

o = %a(ST,)*. (5.32)

T, = B/S, B = constant. (5.33)
Then (5.31) gives
uopaf T
= 5 aB . 5.34
0=3a ( Tv) ( )
Similarly, (5.32) gives
T.\3
o= %aBz'(?Y—) : (5.35)

Now in the preannihilation era, T =T,, so that (5.34) tells us
o= YaB>. After annihilation o must have the same value, so we may
equate it to the value given by (5.35). Thus we arrive at the conclusion
that the photon temperature at the end of e* annihilation has risen above

the neutrino temperature by the factor
T 1/3
—=(h =14 (5.36)
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So the present-day neutrino temperature is lower than the photon
temperature by the factor (1.4)~!. If we take the latter ~3 K, the former is
~2K.

5.4 The neutron/proton ratio

We have so far developed a picture of the early universe that is best
expressed in the form of a time—temperature table of events, as shown in
Table 5.2 (see also Figure 5.1).

In our discussion so far we have not paid much attention to baryons —
the protons and neutrons that are also present in the mixture. In our
approximation of setting the chemical potentials to zero we took the
baryon number to be zero. The validity of the approximation depended on
the baryon number density being several orders (8 to 10) of magnitude
smaller than the photon density. Nevertheless, we must now take note of
the existence of baryons, however small their number density; for we need
them in order to consider Gamow’s idea of nucleosynthesis in the hot
universe. '

First notice that the temperatures T, and T, of Table 5.1 are very high,
so that the neutron and proton distribution functions follow the non-
relativistic approximations of (5.17). Thus we get

Table 5.2 A time—temperature table of events preceding nucleosynthesis in the
early universe

Time since big bang Temperature Events
(s) . (K)
<107+ >10*2 Baryons, mesons, leptons, and photons in

thermal equilibrium.

1074-10772 102-10!  u* begin to annihilate and disappear from
the mixture. Neutrinos begin to form rest
of matter.

1072-1 1011-10°  Neutrinos decouple completely. e* pairs

still relativistic.

1-180 10°-10°  The pairs of e* annihilate and disappear,
raising the photon gas temperature to
~ 1.4 times the temperature of neutrinos.
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Fig. 5.1 The time—temperature plot of the early universe. The dotted portion
does not describe the (¢ T) relationship accurately, because the particles
(especially pions and u*) interact and are not really free. A more reliable picture
emerges for +=10"%s. Notice the difference in temperatures of neutrinos and
photons for ¢ = 10s. See the text for details.

N = 2 (mekT 32 T,
T\ 2r ) P TS

(5.37)
_ 2 (m,kT\3? T,
Nn = ;lg 271‘ exp e T .
In this approximation the neutron-to-proton number ratio is given by
N, T, -T, 1.5
A= —_—| = - —\ 5.38
vooelr) el ) e

The ratio therefore drops with temperature, from near 1: 1 at 7 = 102 K
toabout 5:6at T = 1011 K, and to 3.5 at 3 X 1010 K.

For thermodynamic equilibrium to be maintained, the reactions that
convert neutrons to protons and vice versa have to be rapid enough
compared with the rate at which the universe expands. These interactions
are none other than the weak interactions considered earlier when we
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discussed the decoupling of neutrinos from the rest of the primordial brew
(see section 5.3). There is one difference, however. In discussing the
decoupling of neutrinos we were concerned mainly with the reaction of a
neutrino with leptons like e*, p*, and the cross-section Z given by (5.22)
was determined for such interactions. Similarly, the reaction rate 7 given
by (5.23) was obtained by multiplying by the number densities of
participating leptons.
In the present case the cross-section for a typical reaction like

Ve +nee” +p
is larger than that for the pure leptonic reaction like

Vpteeove + .

Also, the lepton densities used in (5.23) were considerably higher than the
nucleon densities we are considering now. So the probability of a given
nucleon interacting with any neutrino is higher than the probability of a
given neutrino interacting with any nucleon. The result is that the effective
temperature at which n and p cease to be in thermodynamic equilibrium is
lower than the effective temperature for neutrino decoupling determined
earlier.

Quantitatively, instead of £ « T? as in (5.22), the cross-section in the
present case goes as « T, and the effective decoupling temperature 7'« at
which the reaction rate is just about equal to H is <10!° K. Note that if
the universe was expanding faster then 7« would be higher and the ratio
N,/N, at decoupling as given by (5.38) would be higher.

Once the thermodynamic equilibrium ceases to be maintained, the
N, /N, ratio is not given by (5.38) but by detailed consideration of specific
reactions involving the nucleons.

As the universe cooled further, this ratio was therefore determined by
the reactions that change protons to neutrons and vice versa. These are
essentially weak interactions of the type

n+ve.epte, nep+e + v

The reaction rates are therefore determined by the cross-sections com-
puted according to the weak interaction theory. Until the electro-weak
gauge theory became established in the late 1970s, the V — A theory of
weak interaction was used for these computations. We will not go into
details of the calculation here, the purpose of which is to come up with a
differential equation for the ratio

Ny

Xo=——"->7—
" Ny,+ N,

(5.39)
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If A(n— p) denotes the rate at which neutrons are converted to protons
and A(p — n) the corresponding rate for protons changing to neutrons then
clearly X, satisfies the equation
dX,
dt

The rates A depend on distribution functions of leptons, which in turn
depend on the temperature, which is related to the scale factor of the
expanding universe. The integration of (5.40) has to be done numerically,
and it is continued until all e* pairs have dropped out of the mixture —
which happens at T = 10° K.

When all e* have disappeared it is still possible for the neutrons to
decay via the reaction

=(1— Xu) AMp—n) - X,-A(n— p). (5.40)

n—-p=e¢ + Ve,
with a characteristic time 7 = 1013 s. So from the time the pairs disappear
to the onset of nucleosynthesis the neutron ratio X, will decrease by the
exponential factor exp (—t/7).

Thus the ratio of neutrons to protons is uniquely determined at the time
nucleosynthesis begins, once we know all the parameters of the weak
interaction process. This is one good aspect of primordial nucleosynthesis
theory, which we will now proceed to discuss.

5.5 The synthesis of helium and other nuclei

A typical nucleus Q is described by two quantities, A = atomic mass and
Z = atomic number, and is written

20.
This nucleus has Z protons and (A — Z) neutrons. If m,, is the mass of
the nucleus, its binding energy is given by
Bo ={Zm, + (A — Z)m, — mg]c*. (5.41)
Let us now consider a unit volume of cosmological medium containing

Ny nucleons, bound or free. Since the masses of protons and neutrons are
nearly equal, we may denote the typical nucleon mass by m. Thus

m, ~ m, = m. If there are N, free neutrons and N, free protons in the
mixture
N N
X, = k > X, = P 5.42
Nu P Ny (5.42)

will denote the fractions by weight of free neutrons and free protons. If a
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typical bound nucleus Q has atomic mass A and there are Ny of them in
our unit volume, we may denote the weight fraction of Q by
NgA
o~ Ny
Now at very high temperatures (7 > 10 K), the nuclei are expected to
be in thermal equilibrium. However, even at these temperatures T < T
and (5.17) holds. Further, since we are now concerned with relative
number densities, we can no longer ignore the chemical potentials. Thus

mokT \3? po — moc?

where we have reinstated the chemical potentials up. Since chemical
potentials are conserved in nuclear reactions,

Ho = Z.up + (A - Z).un’ (545)
assuming that the nuclei were built out of neutrons and protons by nuclear
reactions.

The unknown chemical potentials can be eliminated between (5.44) and
similar relations for N, and N,. The result is expressed in this form:

(5.43)

(5.44)

B
Xp=1g0APXEXA 254 Lexp (ﬁ) (5.46)
where
kT -3/2
S VA ) . 5.47
g 2 N( 27Th2 ( )

For an appreciable buildup of complex nuclei, T must drop to a low
enough value to make exp (By/kT) large enough to compensate for the
smallness of £471. This happens for nucleus Q when 7T has dropped down
to
By

k(A —Dngl

Let us consider what happens when we apply the above formula to the
nucleus of “He. The binding energy of this nucleus is ~ 4.3 x 1075 erg. If
we substitute this value in (5.48) and estimate Ny from the presently
observed value of nucleon density of around 107 cm >, we find that T, is
as low as ~ 3 x 10° K (see Exercise 23). However, at this low temperature
the number densities of participating nucleons are so low that four-body
encounters leading to the formation of ‘He are extremely rare. Thus the
underlying assumption of thermodynamic equilibrium (which requires
frequent collisions) leading to (5.48) becomes invalid. We therefore need

Ty (5.48)
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to proceed in a less ambitious fashion in order to describe the buildup of
complex nuclei.

Hence we try using two-body collisions (which are not so rare) to
describe the buildup of heavier nuclei. Thus deuterium (d), tritium (*H),
and helium (*He, “He) are formed via reactions like

p+tned+y,
d+deo *He + no *H + p, (5.49)
’H + d & “He + n.

since formation of deterium involves only two-body collisions, it quickly
reaches its equilibrium abundance as given by

Xd = —Q,W Xangexp —k—T . (550)

However, the binding energy By of deuterium is low so that unless T
drops to less than 10° K, X is not high enough to start further reactions
leading to *°H, *He, and “He. In fact the reactions given in (5.49), with the
exception of the first one, do not proceed fast enough until the
temperature has dropped to ~ 8 x 108 K.

Although at such temperatures nucleosynthesis does proceed rapidly
enough, it cannot go beyond *He. This is because there are no stable
nuclei with A =5 to 8, and nuclei heavier than *He. So the process
terminates there. Detailed calculations by several authors have now
established this result quite firmly.

So, starting with primordial neutrons and protons, we end up finally
with *He nuclei and free protons. All neutrons have been gobbled up by
helium nuclei. Thus if we consider the fraction by weight of primordial
helium, it is very simply related to the quantity X, — the neutron
concentration before nucleosynthesis began. Denoting this fraction by
weight by the symbol Y, we get

Y = 2X,. (5.51)
In Figure 5.2 the cosmic weight fractions of “He, *He, and ?H and so on
are plotted against a parameter 7 defined by

Po 33
= — . 5.52

T=\27x 10°% gem ™3 )( To) (5:52)
Thus 7 essentially measures the nucleon density in the early universe
through the formula

p=nT3  Ty<3. (5.53)
Note that the *He weight fraction is close to ~  and insensitive to the
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Fig. 5.2 Primordial abundances of light nuclei as functions of the present density
of matter in the universe. The relation between pp and 7 is given by (5.52). (After
R. V. Wagoner, The early universe. In R. Balian, J. Audouze, & D. N.
Schramm, eds, Physical Cosmology, Les Houches Lectures Session XXXII,
p- 395 (Amsterdam: North Holland, 1979).)

parameter 7. This is because, as we saw just now, it depends only on X,
which in turn depends more critically on the epoch when the weak
interaction rate fell below the expansion rate. If we go back to (5.38) we
see that in the very early stages the neutron/proton ratio depends on
temperature T«. A faster expansion rate implies that the ratio becomes
frozen at a higher temperature and so is higher, thus leading to a higher
“He abundance.

To see the effect quantitatively, recall from (5.38) that there was a ‘last
epoch’ of temperature Tx when the neutron/proton ratio was determined
from considerations of thermodynamic equilibrium:

N, . 1.5 )
= €X - .
N, P T %10

The temperature T« was determined by equating the Hubble constant H
to the reaction rate 7 for n <> p conversions. Now

x=
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H o gl2T42 and n o T,
so that
T2 o< gl/z.

Writing Y = 2N,/(N, + N,) for the weight fraction of helium, we can
estimate the change in Y due to a change in g (from increasing the
neutrino flavours) as follows. As g — g + Jg, the above relations imply
x—>x+6x,Y—>Y + 8Y, where

_ xlnx &g
1+x)? g
If there are [ lepton families,
g=13(4+2)+2

Hence an increase from [ =2 to [ =3 gives 8g/g~3. ForY =1, x=1
we get 8Y ~ 0.02.

This result is relevant to the question of how many different types of
neutrinos exist primordially. In the GUT formalism described in Chapter 6
there are three neutrino types, v, v,, v,. Other formalisms may permit
even more types of neutrinos to exist, thereby forcing the value of Y
upwards. When we look at observations we will discover that the present
estimates of helium abundance rule out more than three neutrino types. It
is also interesting that the particle accelerator experiments appear to lead
to the same conclusion.

In contrast to the behaviour of Y, which does not sensitively depend on
1, the abundances of other nuclei do depend on 7. These abundances are
very small compared with Y. Only nuclei heavier than “He eventually
survive; H (tritium) decays to *He. Of nuclei heavier than “He, only "Li
(lithium) appears with any appreciable quantities, although smaller than
3He. The most interesting situation exists for deuterium, whose abund-
ance sharply drops as 7 rises above 107*. For T = 3K, this corresponds
to

po~27%x1073%gem 3, (5.54)
Comparing this with (4.35), we see that for kg =1, Q;=<0.12 and hence
go = 0.06. Therefore, if even a small amount of deuterium believed to be
primordial in origin was found, Friedmann models of the closed variety
would be ruled out. There is, however, a loophole in this argument: we
can still accommodate nonbaryonic matter in the universe.

Figure 5.2 shows that the primordial production of heavy nuclei
(A = 12) is very little, and in no way can it account for their observed
abundances. The main reason for this is that there are no stable nuclei
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with A =5 and 8. Thus any attempt to synthesize heavier nuclei by adding
to “He fails, whether we add a proton or another *He. In fact, to cross this
gap and reach stable heavy nuclei like 2C, O, we need an altogether
different scenario. Deep interiors of stars on their way to becoming red
giants are suitable sites for making such nuclei.

We can sum up by saying that Gamow’s expectation that the early hot
universe would synthesize all types of nuclei has been only partially
fulfilled. The idea works for light nuclei like D, “He, etc. To obtain
complex nuclei heavier than “He (and possibly "Li), astrophysicists have
to look to other sources: the stars.

5.6 The microwave background

Gamow and his colleagues Alpher and Herman made another prediction,
however, that appears to have received confirmation. This is the predic-
tion that the photons of the early hot era would have cooled down to
provide a thermal radiation background in the microwaves at present. As
mentioned earlier, such radiation was first detected in 1965 by Penzias and
Wilson. To see how this background forms we have to follow our history
of the early universe to stages subsequent to nucleosynthesis.

The era of nucleosynthesis took place when the temperature was around
10° K. The universe in subsequent phases cooled as it expanded, with the
radiation temperature dropping as S~!. The presence of nuclei, free
protons, and electrons did not have much effect on the dynamics of the
universe, which was still radiation-dominated. However, these particles,
especially the lightest of them, the electrons, acted as scattering centres
for the ambient radiation and kept it thermalized. The universe was
therefore quite opaque to'start with.

However, as the universe cooled, the electron—proton electrical attrac-
tion began to assert itself. In detailed calculations performed by P. J. E.
Peebles, the mixture of electrons and protons and of hydrogen atoms was
studied at varying temperatures. Because of Coulomb attraction between
the electron and the proton, the hydrogen atom has a certain binding
energy B. The problem of determining the relative number densities of
free electrons, free protons (that is, ions), and neutral H-atoms in thermal
equilibrium is therefore analogous to that we considered earlier in deriving
(5.46) in section 5.5 for the mixture of free and bound nucleons. The only
difference is that the binding to be considered now is electrostatic and not
nuclear. Following the same method, we arrive at the formula relating the
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number densities of electrons (N.), protons (N, = N.), and H-atoms
(Nu) at a given temperature T:

N2 (m.kT\* B
—( ) exp( kT), (5.55)

Ng \ 272

where m,. = electron mass. This equation is a particular case of Saha’s
ionization equation.

Writing N for the total baryon number density, we may express the
fraction of ionization by the ratio

N,
X = .
Np
Then, since Ny = Ng — N, we get from (5.55)
L (m kT 5 5.56
= _— exp|——|. .
1-x Ng\zmz ) P\ %7 (5-56)

For the H-atom, B = 13.59 eV. Substituting for various quantities on the
right-hand side of (5.56), we can solve for x as a function of T'. The results
show that x drops sharply from 1 to near zero in the temperature range of
~5000K to 2500K, depending on the value of Ng, that is, on the
parameter Qqh3 (see Chapter 4). For example, for Qoh3 = 0.1, x = 0.003
at T = 3000 K.

Thus by this time most of the free electrons have been removed from
the cosmological brew, and as a result the main agent responsible for the
scattering of radiation disappears from the scene. The universe now
becomes effectively transparent to radiation. This is called the recombina-
tion epoch.

The transparency of the universe means a light photon can go a long
way (~c/H) without being absorbed or scattered. Therefore this epoch
signifies the beginning of the new phase when matter and radiation
become decoupled. This phase has lasted up to the present epoch. During
this phase, the frequency of each photon is redshifted according to the rule

1

v < E,
while the number density of photons falls as

NYOCTS‘?'

It is easy to see that under these conditions the photon distribution
function preserves the Planckian form, with the temperature dropping as
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Tocl
5

A present background temperature of ~ 3 K therefore means that the
epoch when matter decoupled from radiation corresponds to a redshift of
~ 10%. However, in section 4.2 we also saw that the universe changed over
from being radiation-dominated to being matter-dominated around the
same epoch. Why the transition from opaqueness to transparency and
from radiation domination to matter domination should take place around
the same time is at present unexplained and must be considered a
coincidence.

Another result as yet unexplained by early universe physics is the
observed ratio of photons to baryons:

3
Ny 4.57 x 107(90;15)-1(&) . (5.57)
Ng 3

This ratio has been conserved since the time the universe became
essentially transparent, although both N, and Np can be studied
theoretically at even earlier epochs. Why the above ratio and no other?
Many physicists feel that ideas from particle physics are needed to throw
light on this mystery.

The important signature of the relic radiation is, however, its spectrum.
There may be small perturbations of the radiation background caused by
formation of discrete structures. But these apart, we should find the
background spectrum to be very close to the Planckian form. We will
recall this prediction when taking stock of the observations of the
microwave background.

5.7 Concluding remarks

Our investigations of the early universe in this chapter started at the epoch
when the universe was very hot and barely 10™* s old. They concluded at
epoch of redshift ~ 10°> when the universe became transparent. We now
have two ways to go: backwards from 10~*s or forwards from the 103
redshift epoch. In Chapter 6 we go backwards, and in Chapter 7 forwards.

The opaqueness of the universe prevents us from ‘seeing’ directly the
redshifts of = 10%. Thus any evidence of the big bang or hot universe must
come indirectly. In this sense the abundances of light nuclei and the
detailed observations of the microwave background provide us with the
only means of checking the early history of the univer§e.
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Exercises

Give the arguments that led George Gamow to the concept of the
hot big bang.

Substitute the values of ¢, G, and a in (5.7) and verify the
numerical coefficient in (5.8).

Plot a graph of T against ¢ as given by (5.8) on a log—log scale to
show the variations of temperature with time. Use this graph to
read off the age of the universe when the temperature was equal to
(a) 102 K, (b) 10! K, and (c) 10° K.

From a textbook on statistical mechanics, find the arguments that
lead to the distribution functions (5.9).

From the reactions

e” +ut > ve + 9, e +p—ve+n, W +p—v,+n

deduce that the corresponding chemical potentials satisfy the
relations

He— = Wy, = Up— = Wy, = Hp = Up.
Give arguments to show that there are just four independent
conserved quantum numbers in nuclear reactions of the type
shown in Exercise 5.
Derive the relations (5.11) to (5.14) from the formula (5.9) in the
approximation in which the chemical potentials are neglected.
Obtain (5.16) from (5.11) to (5.14) in the high-temperature
approximation.
Using the Table of Constants at the end of this book, compute T4
for the species given in Table 5.1 and verify the numbers given in
that table.
Deduce (5.17) from (5.11) to (5.14) in the low-temperature
approximation.
Deduce (5.20) directly from (5.13) and (5.12).
Reverse the arguments given in the text to deduce the constancy of
o from energy conservation and the relation (5.20).
Write down all possible reactions involving the electron, the muon,
their respective neutrinos, and the antiparticles of all of them.
Why does the neutrino have the degeneracy factor g, = 1?7
Use the Table of Constants at the end of this book to derive (5.25).
Use (5.23) to deduce that if the universe were to expand faster
then the neutron/proton ratio would be frozen at a higher
temperature.
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Give arguments to show that the neutrino temperature drops as
S~1 after they decouple from the rest of the matter.
Why is the present neutrino temperature expected to be lower than
the photon temperature? Derive the ratio of the two temperatures
from considerations of the early universe.
Using the formulae (5.12) to (5.14), deduce that during the phase
in which the pairs e* and e~ are annihilating and producing
photons the constancy of o tells us that the photon temperature T
changes with S according to the law

" STE(T) = constant,
where
NP Cir y*(3x7 + 4y?) dy
[S@)F = 2t Jo (x2 + y2)2[exp (x2 + yH)V2 + 1]
A primordial mixture of relativistic bosons and fermions in the
early universe of temperature T has the total density given by the
formula

w2 .
€= Somies &x(KD™

Show that g« = g, + %gf, where g, = total spin degeneracy of all
bosons and gy = total spin degeneracy of all fermions.

Discuss, with the help of Exercise 20, how the rate of expansion of
the universe is affected by the number of species of relativistic
particles that are present in it. How is the time—temperature
relation affected?

From relations of the type (5.44), express up, uy, and y, in terms
of the remaining quantities. Then use (5.45) to derive (5.46).

The binding energy of the “He nucleus is B ~4.3 x 1075 erg.
Show that for this nucleus B/k(A — 1) = 10!! K. Next assume that
the present value of radiation temperature is 3 K, and that of the
nucleon density 107% cm 3. Using the result that Ny7T3 = constant,

show that (5.48) givens T, for “He as ~ 3.2 x 10° K.

Give arguments to show why the primordial helium abundance is
insensitive to the number density of baryons in the universe.

The abundances of which nuclei are likely to provide a sensitive
test of the baryonic density of the universe?

Can you think of a loophole that would allow Q) =1 and still
permit deuterium to be formed primordially in a standard hot
universe model?
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If m is the mass of a nucleon and if Q is the density parameter,
show that the present number density of baryons is 3 H§Qo/87Gm.
Use this formula and the present microwave background tem-
perature To=3K to estimate N in (5.56). Solve the Saha
equation for Qg = 0.1, hg = 1 to show that at 3000 K, x = 0.003.
Derive (5.57) using the blackbody spectrum and the Friedmann
cosmology. What is the corresponding ratio N,/Nyg for neutrinos?
Show that the form of the blackbody spectrum is preserved as the
universe expands, with the effective temperature declining as §!.
Why is it not possible to observe the past of the universe beyond
the redshift of ~ 103?

What could be considered possible candidates for relics of the big
bang?

If the spectrum of the microwave background turns out to be
markedly different from the Planckian form, what implication will
it have for the hot big bang?

Show that the space curvature parameter k or the cosmological
constant are unlikely to affect the calculations for the early
universe.

Using the Thomson scattering cross-section for the electrons, show
that the optical depth of the universe at the present epoch would
be given by 0.08QhA, if all the electrons in the universe were free
and equal in number to the baryons.

Assuming that in the past the electron number density increased as
(1 + z)3, use the analysis of Exercise 34 to estimate the smallest
redshift at which the Einstein—de Sitter universe was opaque to
radiation. (Take Ay =1). Comment on the fact that your answer
comes out very much lower than z ~ 1000.
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The very early universe

6.1 Cosmology and particle physics

In Chapter 5 we discussed the properties of the big universe starting from
the epoch in which it was ~ 107 second old, when a mixture of baryons,
mesons, leptons, and photons was in thermodynamic equilibrium with a
temperature of ~ 1012K. We discussed how this hot primordial gas
evolved as the universe expanded and cooled down. We ended our story
with the formation of the helium nucleus, by which time the universe was
~ 3 minutes old.

In the 1960s the above range of epochs would have been considered as
describing the early universe. Today the interest has shifted to the ‘very
early universe’: the era preceding the above phase, when matter was in an
even more elementary form than that considered above. The reason for
this shift lies less in any development in cosmology than in particle
physics. The remarkable developments in particle physics, which signify
progress towards a unification of the basic interactions of physics, have
found their echoes in cosmology.

So far, physicists have relied on the use of powerful accelerators to
study the interaction of particles at high energy. From elementary
quantum theory, it follows that in order to be able to probe smaller and
smaller distances, higher and higher momenta must be achieved. Thus
high-energy accelerators are required in order to probe the structure of
particles like the proton or the pion. The present accelerators achieve
energies of the order of a few tens or hundreds of GeV(1 GeV =10°eV).
The ‘supercollider’ of the next generation may reach energies of the order
of 4 x10*GeV. These values may be compared with the energies
~10% GeV, at which interesting unification phenomena are predicted by
particle physicists. Energy ranging as high as this value is far beyond what
could be achieved by the technology of the foreseeable future.

160 .
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It is against this background that particle physicists have turned to
cosmology in the realization that the very early hot universe is the poor
man’s high-energy accelerator. This is not the first time physicists have
turned to astronomy in order to study the behaviour of physical processes
under conditions unattainable in a terrestrial laboratory. Even before
thermal fusion could be achieved on Earth, physicists were studying the
process inside stars. And to go even further back in history, it was
astronomy of the solar system that provided the real testing ground for the
law of gravitation.

Naturally, the interplay of cosmology and particle physics that we plan
to discuss in this chapter is highly speculative on both fronts. It depends
on the validity of the cosmological model and on the viability of (as yet
fluid) ideas of particle physics. The best that can be claimed is consistency
between the two. The reader should bear this in mind throughout the
various calculations given here.

Let us first consider what particles might exist in the early universe, out
of which the baryons and mesons are formed. This information is supplied
by particle physics and is listed in Table 6.1. Note that the quarks are
listed according to their six ‘flavours’: up, down, strange, charm, truth,
and beauty. Each quark comes in three ‘colours” red, white (sometimes
called green), and blue. These are constituents of baryons and mesons,
three quarks making a baryon and a quark-antiquark pair making a
meson. The quarks interact with each other by exchanging gluons, just as
electrons interact with each other by exchanging photons.

Table 6.1 also lists six leptons, which come in pairs. Two pairs, (e, ve)
and (p, v,), we have already encountered in Chapter 5. A third pair (T, v,)
is now known. The list of bosons includes the graviton, the photon, the
eight gluons, as well as the charged particles W* and the neutral particle
Z°. Do these numbers have any special significance? Why six quarks?
Why six leptons? Why eight gluons? Particle physicists have found it
useful to describe the framework of all these particles in the abstract
language of group theory (see section 6.3).

The masses in Table 6.1 are listed in the unit of MeV(1 MeV = 10° eV).
We have so far not introduced this unit. It is convenient to do so now,
since we shall be using many ideas from particle physics, where this unit is
commonly used. Thus for each mass m expressed in grams, mc? is energy
expressed in ergs. We then use the following conversion scale:

1MeV =1.6021917 x 10~% erg.

Further, since we are going to describe the hot universe, it is also
convenient to express the temperature in the same unit. Thus for T
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Table 6.1 Elementary particles in the early universe

Particle Mass - Spin, A Electric Interaction
MeV)* charge, e
Quarks u ?7+4 2
d 7+ 8 - % G, W
c ? + 1150 3 5 E,C
$ ? 4+ 150 - %
t ? + = 5000 z
b ? + 4500 — %
Leptons V. <6 x107%? 0 G, W
e 0.5110 -1 G,W,E
Vu <0.65 i 0 G, W
- 105.66 -1 G, W, E
Ve <250 0 G, W
T < 1780 -1 G, W, E
Bosons graviton < 107% 2 0 G
Y <7 x 1072 1 0 G,E
gluons (8) =100 1 0 G,C
w# ~ 8 x 104 1 -1 G, W,E
VA ~9 x 104 1 0 G, W

¢ Quark masses are not uniquely determined, since free quarks have not yet been
found. There is some indication that the mass of v. may exceed the value given
here. '

b G: gravitation; W: weak interaction; E: eletromagnetism; C: chromodynamics.
Source: Based on R. V. Wagoner, The early universe. In R. Balian, J. Audouze,
and D. N. Schramm, eds, Physical Cosmology, Les Houches Lectures Session
XXXII, p. 395 (Amsterdam: North Holland, 1979).

expressed in kelvin, kT is energy expresed in ergs, which can be written in
units of MeV or GeV. Therefore we have

1 gram ~ 5.618 x 1028 MeV = 5.618 x 10?5 GeV,
1 kelvin ~ 8.617 x 10711 MeV = 8.617 x 10714 GeV.

Although these conversion factors involve many powers of 10, they
show why these are good units for the early universe. For example, a
temperature of the order of 102K is a few MeV. Similarly, Table 6.1
shows that masses of the listed particles are given by moderate numbers
when expressed in MeV. For higher energies we may use GeV.

We now recall from Chapter 5 the result that relates the temperature of
the universe to its age as given by the Einstein equation
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§2 871G

=3 p- (6.1)
If there are bosons with a total g, of g-factors, and fermions with a total
gs of g-factors, then

pc? = 3gaT*, (6.2)
with
§= 8+ §8r (6-3)
Thus we have for g = constant
S o tV2, (6.4)
with
2 \1/2
. (1637:Ga) 8T, 6.5)
This relation can be expressed as
tsecond = 2.48 V2 T2y =2.4 x 1076g7 12T 2y, (6.6)

6.2 Survival of massive particles

We will begin with a simple extrapolation of the approach adopted in
Chapter 5. We will assume in this section that quarks have combined to
form particles (and antiparticles) and investigate the criteria that deter-
mine the survival of a particular species of particles. In the ideal gas
approximation, we will assume the distribution functions to be those given
by (5.9). In the relativistic (high-temperature) approximation of sec-
tion 5.2, we have the following formula for the number density of particles
of species A:

)’
where N, is the number density of photons and 1 = 1 for bosons and  for
fermions. In the nonrelativistic approximation we get

g4 [makT\32 mc?
= — - . 6.8
Ny e ( > ) exp T (6.8)

The assumption leading to (6.7) or (6.8) is that the species is in
thermodynamic equilibrium with the rest of the particles. For (6.7) to hold
we used T > T4 = myc?/k, while for (6.8) to hold we should have
T < T4. Exactly similar results must hold if the species A has antiparticles
A. To fix ideas (since we are eventually going to use these formulae for

2.4 (kT\?
Na=ngaNy=1g4 ?( ) (6.7)
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baryg)ns-protons and neutrons) we will assume A to be a fermion. Thus
! Insgeneral A and A may annihilate if they are brought together. In a
typical reaction, two photons will be produced:

A+A->y+y. (6.9)
In the reverse reaction pairs (A, A) are produced. The question we wish
to answer is, how does the interchange affect the number density N4 or
Nz?

To start with, suppose N4 = Nz, and consider the particles (and
antiparticles) in a comoving volume V. The corresponding proper volume
is VS3(t). Define

Na = NuVS3(0), Nz = NzVy83(2). (6.10)
Let y(T) denote the production rate per unit volume and B(T) the
annihilation rate coefficient. Both i and g will depend on the temperature
T and

B = (vo), (6.11)
where o is the annihilation cross-section and v the velocity. of particles.
Accelerator experiments on nucleon-antinucleon cross-sections give us
B~ 10"Y cm3s~1, in the energy range 0.4 to 7 GeV. Thus it is convenient
to write

B=10"0 B(cm3s71) (6.12)
and anticipate that 8~ 1. It is also worth noting that if we consider the
Compton wavelength for a particle of mass m and define o = m(#/mc)?,
then for a proton or a neutron with v = ¢, (6.11) gives §~ 4 x 10717, Thus
we may set

=t (6.13)

and expect £ ~ 100 for a proton or neutron.
The rate of change of N 4(N 3) is then given by
dN, dN3z 5 3
=g =D - ADNADWS ). (614

Frequent collisions are necessary to establish equilibrium. The collision
rate is given by

D(T) = No(T)B(T) = T?B(T). (6.15)

In general, B(T) does not decrease as T increases. Hence in the very

early stages ['(T) was so large that it exceeded the expansion rate of the
volume, given by
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3
3H() = 5, < T2 (6.16)

Thus initially
to(T) > 1, (6.17)

guaranteeing frequent collisions. Under such circumstances an equilibrium
is reached with detailed balancing between the creation and annihilation
processes. In equilibrium ¢(T)= B(T)N 2o(T), where N4o(T) denotes
the equilibrium value of N4(T). Thus (6.14) becomes for either A or A,
czi—Jj=[1’(N0+N)(N0—N). (6.18)

If we now refer back to (6.7) we see that in the relativistic approxima-
tion N o« T3 « §73, so that N « NS> = constant. Thus if particles are
relativistic, then N = constant = N is a solution of (6.18). If on top of this
we suppose that the relativistic regime lasted long enough for (I'(T) to
drop below 1, then we encounter the situation in which N is preserved for
subsequent epochs. This is because the rarity of collisions makes it unlikely
that production or annihilations will significantly alter N once ¢I'(T') drops
well below 1. We will now follow the analysis of G. Steigman.

For massless particles the relativistic regime lasts forever. Hence for
these particles the above always holds. Indeed we encountered an example
of this reasoning in the context of massless neutrinos in Chapter 5. The
presentday neutrino distribution could be traced back to the epoch when
they decoupled from the rest of the matter — when the weak interaction
processes become slower than the rate of expansion of the universe.

It may, however, happen that the particles are massive and are in
equilibrium even when they become nonrelativistic. In that case (6.8)
applies and the number N 4 drops rapidly as T decreases. At some stage,
with N4 << N, the collision rate drops (¢I" << 1), so that further changes in
N 4 through creation and annihilation are not possible. Let us denote this
epoch by ¢4 and the corresponding temperature by T'x. The value of N 4 at
this epoch then becomes frozen; that is, unaltered for subsequent epochs.
This number would survive as a relic of the hot universe.

Figure 6.1 shows how N4 depends on the mass of the species A. For
massless particles like the photon (and the neutrino if it has m = 0), N 4 is
unchanged. The neutral leptons become frozen at the next lower value.
The charged leptons can interact longer through the electromagnetic force
and hence they decouple later and at lower values of N4 than do the
neutral leptons. The lowest are the hadrons (mesons, neutrons, protons,
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m=0 Neutrinos

Neutral leptons

Charged leptons

Number density

(Temperature)™'

Fig. 6.1 Schematic description of how the surviving number density of a particle
depends on its mass and on how strongly it interacts. This number is highest for
neutrinos (with zero rest mass and weak interaction) and lowest for baryons
(massive and strongly interacting).

and so on), which have strong interactions to hold them together and the
largest masses.

Let us try to estimate this effect quantitatively. At ¢« we have for
species A in the nonrelativistic regime

8A mAkT* 3/2 mA02
Ny=——7— - . 1
A h3 ( o ) €Xp kT* (6 9)
Applying the condition ¢+I'(Tx) = 1 and using (6.15) and (6.19), we get
ga [makTx\3? myc?
txfp— [ —— - =1 -
3 3 ( o ) exp KT 1 (6.20)
Define
act 6.21
Xy = .
* = T (6.21)

and express masses and temperatures in MeV units. Thus in these units
X% = my/Tx. Then from (6.6) we have

(mAT*)3/2
— e ¥, = 1,

2.4g-12 752884 5
o

hic?

that is,
my

h3c3 (277)3/2

2.4g712 . xPe =1 (6.22)
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We may express this relation in the following form:

xx2ere = AgaZ (6.23)
where -
Z =muPg P (6.24)
Using (6.12), (6.24), and (6.23), we get
2.4 x 1070
L2 -3 16

(Caution: We are using here the units seconds, centimetres, and MeV.
Thus #c must be expressed in these units.)

Let us now apply these results to nucleons: to neutrons and protons
together with their antiparticles. Then g4 =8, and with g, =2 for the
photons (6.3) gives

g=2+7=09. (6.26)
The nucleon mass m,4 =940 MeV, and from (6.12), B~ 1. Thus Z ~ 313,
With g4 = 8 we then have from (6.23) and (6.25)
x#2e*e =5 x 109 (6.27)
and hence x« = 47. Thus
Ty =20MeV, ts =~ 0.002s. (6.28)
We can also use the above calculation to compute the nucleon/photon
ratio at the present epoch. Assuming that the A-A annihilation is the
main source of photons, we get the photon number per unit comoving
volume effectively frozen at the value it acquired at the epoch tx. So the
present value of N4/N, will be the same as it was at ¢ = tx. Using (6.8)
for N4 and (6.7) with n = 1, g4 = 2 for the photons, we get
N m (mac?\3? myc?
A 84 AT exp(- 249, (6.29)
N, 2.40Qm)¥* \ kT kT

With g4 = 8 and x4 defined by (6.21), we get

N4
N =2k (6.30)
Now use (6.27) and xx = 47 to get

N
A 2% 1078, (6.31)
N,
In Chapter 5 (5,57) gave the estimated present value of N4/N,. In our
present notation, this is given by
Na

— =2 x 1078(Qyh3) To)™ (6.32)
NY - 0t 3 . .
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Since T ~ 3, and Qh3 is not expected to be lower than ~ 10~? under the
most extreme case, we have a large discrepancy to account for. There is
one further point of criticism. If we are sure that the universe is made up
predominantly of matter, than N4 >> N 7 and the formula (6.32) applies to
N4(= N4 — Nz = baryon number density). However, our analysis so far
is symmetric between matter and antimatter and so leads to Ny = N 3.
Clearly new inputs are necessary in the discussion given above if we are to
understand why N4 > Nz and why N 4/N y is as high as is indicated by
(6.32).

We note that the ratio N4/N, as given by (6.31) is a small number. In
deriving it we have lost sight of the fundamental constants that went into
it. It is instructive to see what (6.31) looks like in terms of ¢, #, G, and
my. Substituting a = 7?2k*/15¢3h3 and using (6.13), (6.5), (6.20), and
(6.29), we get

Mo e (00" o)

N, 72 ¢\ ch

We have already seen that x«/ ~ 1 and g!? ~ 3, so that the coefficient
in front of the expression in parentheses is of the order unity. So the
smallness of N4/N, is directly related to the ratio of the strengths of the

gravitational interaction and the strong interaction. Denoting this ratio by

Gm?
ag=— 4 6x107%, (6.34)
we have
N4/N, ~ a2, (6.35)

The strength of the electromagnetic interaction is measured by the
fine-structure constant a = e?/hc ~ i1-. Notice how weak the gravitational
interaction is by comparison. Had G been considerably higher than it is,

we could have ended with a larger value of N4/N,.

6.3 Grand unified theories and baryon asymmetry

Our simplified calculations of the previous section having led us into
difficulties, it is evident that something more sophisticated is needed to
understand (1) the present predominance of baryons over antibaryons,
and (2) the baryon/photon ratio in the neighbourhood of 10~°. Since our
calculation assumed thermodynamic equilibrium and particle-antiparticle
symmetry, any new input is expected to question these two assumptions.
In this section we outline one of the ways in which this problem is being
solved.
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The solution is via the so-called grand unified theories (GUTs) -
theories that seek to bring together three of the four basic interactions of
physics into a single framework. The use of the plural shows that as yet
there is no single theory that is universally accepted. In the present section
we will follow the SU(S) framework purely as an illustrative example and
study its implications for the early universe. To understand what is
involved, let us first have a superficial look at the three basic interactions
from the group-theoretic point of view.

6.3.1 Electrodynamics

Let us begin with the simplest and the best understood interaction: the
electromagnetic interaction. This describes how charged leptons (the e*,
uw*, t¥) interact through the exchange of photons. When an electron is
shaken it emits photons. When a photon strikes an electron it accelerates.
The information needed for studying this interaction requires a spinor
wave function y for the lepton and a vector field A; (the electromagnetic
4-potential) for the photon. The two physical effects described above are
given by the following two equations (written in flat Minkowski space-

time):

) . . 4me - .
(Ak,t _ A"k)’k = F"II‘( = T w)/’ q}, (636)
. e mc
iy, — - 4. -~ w=0. 6.37

y; are the 4 X 4 Dirac matrices, and e is the electric charge. V; denotes
differentiation with respect to spacetime coordinates.

It is easy to see that these equations are invariant under the trans-
formation

e®
Ai — Ai + G,i’ w—) lpexp(— —l; Q) (638)
Cc

where Q is the integer 1. The transformation of 1w is a unitary
transformation, and since the exponent is a number (that is, a 1 X1
matrix), these transformations form a unitary group of one dimension,
denoted by U(1).

6.3.2 The weak interaction

This weak interaction concerns both the charged and uncharged leptons in
pairs: (e,v.), (W,Vv,), (T,v,), and so on. In a typical interaction the
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members of the pair are interchanged. This is the law of conservation of
lepton numbers referred to in section 5.2. To describe the pair we
therefore need two wave functions: for example, the combination

(e
v = (w) (6.39)

describes the pair (e, v). From empirical considerations it is argued that
the weak interaction is invariant under transformations of W with 2 X 2
matrices that are unitary and have determinant 1. These transformations
form a group denoted by SU(2). Because of parity violation and the fact
that neutrinos have only one spin state — they are lefr-handed - it is
customary to write a subscript L in SU(2)L. A typical member of the
group is denoted by

U = exp(—iH) (6.40)
where H is a 2 X 2 Hermitian matrix of zero trace. The most general such
matrix is

N A R

Thus instead of a single number Q in (6.38) we need three real numbers a,
b, c; or rather three matrices. (These matrices are proportional to the
well-known Pauli matrices.) The ‘charges’ in this case are three matrices,
two of which are nondiagonal. The nondiagonal matrices permit an
interchange of 1. and v, in (6.39). This means physically that € and v are
interchanged. In this process a charged boson W; is exchanged; for

example,
€ — Wl + V. (642)

Corresponding to the three matrices in (6.41) there are three W-particles,
two with charges e and the third (W3) neutral.

Although the weak interaction does not directly involve the electric
charge, it still seems to demand the charged bosons W; and W,. This
circumstance prompted efforts to link it with the electromagnetic inter-
action. This link has been achieved via the SU(2); x U(1) framework
originally proposed by A. Salam and S. Weinberg and sometimes called
the electro-weak interaction. The link brings the photon (which is a boson)
closer to the three particles Wy, W,, and W3. In this unified picture it is
more convenient to talk of another neutral particle Z° instead of W;. Z°
has zero mass and charge, just like the photon. However, the photon does
not interact with the neutrino, while the Z° does. The exchange of Z°
does not alter the electric charge, and hence such an interaction is called a
neutral current interaction. Thus in the electron neutrino scattering
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e+ ve— €tV

we have e — e and v, — v, in the neutral current interaction while € — v,,
v, — € in the charged current interaction.

The unification program makes use of the so-called gauge theories. The
electromagnetic theory is a gauge theory in the sense that its equations are
invariant under the gauge transformation of its potential. The transforma-
tion of A; given by (6.38) is a gauge transformation, and in the
Weinberg-Salam model similar gauge transformations play a pivotal role
for the SU(2) X U(1) framework.

One reason for using the gauge theory is that it is ‘renormalizable’. This
is a technical term which gained currency in quantum electrodynamics
(QED), which is a renormalizable and gauge theory. In QED the standard
calculations of probability amplitudes, average values, energy levels etc.,
lead to infinities because the relevant integrals diverge at high energies.
Renormalization is a technique of subtracting one infinity from another so
as to arrive at a finite and physically meaningful answer. Although
mathematicians would baulk at such an approach, the theoretical physicist
has come to accept it, its merit being that it is unambiguous to operate. A
discussion of this highly interesting topic will, however, take us too far
from cosmology and into technical details of field theory. We simply
mention that the accelerator experiments have measured the masses of the
W and Z bosons and have found them in conformity with theoretical
expectations.

6.3.3 Quantum chromodynamics

The third basic interaction of physics is the strong interaction described in
the framework of quantum chromodynamics (QCD). This makes use of
transformations under the SU(3) group. The basic fields here are the
quark fields, which are three-component vectors in an abstract space
called the colour space with three ‘dimensions’: red, white, and blue.
Again we have a relation like (6.40) in 3 X 3 matrices. The matrix H now
has eight independent components, and so like (6.41) we have eight
matrix charges, T; ... Tg, of which two (T3 and Tg) are diagonal. Again
the matrix character of (6.40) allows quarks to be exchanged. Correspond-
ing to the three Ws in the SU(2) framework we now have eight bosons G,
... Gg that are call=d the gluons. No colour change takes place when the
gluons G3 and Gg are exchanged.

The gluons generate an interquark force (just as the photon is
responsible for the electromagnetic force between the charged particles).
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This force is believed to be so large that quarks are expected to be in
bound states of two or three. The states with two, a quark and an
antiquark, form mesons (like 7*), while states with three quarks are
baryons. Quarks have fractional charges. The u-quark has charge 2¢/3,
while a d-quark has charge —e/3. Thus a proton is made of two u-quarks
and one d-quark, while a neutron is made of two d-quarks and one
u-quark.

6.3.4 GUT:SU(5)

In a typical unification attempt we expect the participating interactions to
have comparable strengths. In normal laboratory energies the strong
interaction (quantum chromodynamics) is the most powerful, followed by
electrodynamics and then by the weak interaction. However, as the energy
is increased the gap between the three narrows. At around 100 GeV, the
last two are comparable in strength, thus making a unified ‘electroweak’
theory viable. Theoretical considerations suggest that if we extrapolate to
considerably higher energies, the strong interaction reduces in strength,
while the electroweak interaction gains. At around 10" GeV these
interations become comparable and their unification may seem natural.
Figure 6.2 illustrates the changes in strengths of the three interactions with
growing energy. Figure 6.2 also shows another landmark in energy at
~ 10" GeV. This is the Planck energy

cSh 1/2
Ep = ( G ) ~ 1.2 x 10"° GeV. (6.43)
Clearly, with G and # in it this expression would have to do with quantum
gravity. We shall consider it separately later. For the time being we
exclude it from the unification attempts.

If we wished to unify all three interactions in a grand unification
scheme, we could trivially combine the three into a structure

SUQ) x SUQ2)L x U(Q1).

However, it was realized that such a structure can form part of a single
larger structure denoted by SU(5). Again, if we go back to (6.40) and
apply it to 5 X 5 matrices, the matrix H has 24 arbitrary constants. Thus
there are 24 bosons that now mediate between the different basic entities.
Of these we already have 4 from the combined electroweak interaction
and 8 (gluons) from chromodynamics. Thus 12 more bosons are needed to
make up the list of 24. For want of any specific designation, they are
referred to simply as the X-bosons.
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Fig. 6.2 At energies of the order of ~ 10" GeV the strengths of the strong, the
weak and the electromagnetic interactions become comparable, thus suggesting
this as a suitable energy for grand unification.

The X-bosons are expected to link the participants of chromodynamics
(that is, the quarks) with the participants of electroweak interaction (that
is, the leptons). In the SU(S) theory, therefore, it is possible to change
any of the six quarks (u,d,c,s,t,b) into any of the six leptons (e, u, T,
Ve, Vu» V;) OF Vice versa by the exchange of the X-bosons. This is where it
becomes possible to create or destroy baryons. Figure 6.3 outlines the
scenario leading to the decay of a proton.

In Figure 6.3 an X (that is, an anti-X particle) is emitted and absorbed.
Assuming that the mass of this particle is my, the probability amplitude
for the above inteiaction will contain a factor mx?. The proton decay
lifetime 7p will therefore vary as the fourth power of mx. Since we expect
the lifetime to contain the constants %, ¢, and the proton mass mp, from
dimensional considerations we write
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Fig. 6.3 The decay of the proton takes place through the mediation of the
X-bosons, which change quarks into leptons and vice versa. This figure illustrates
how this could come about. Two of the three quarks (q) in the proton (p)
combine to form X, which decays into positron and an antiquark. The latter
combines with the third quark to form a 7-meson.

hm$

mic? (6.44)
~ 2.87 x 107 2[mxc? (GeV)]* yr.

The failure to observe the decays of protons in the laboratory experiments

sets a lower limit to 7p at ~ 102° years. Hence (6.44) suggests that

mxc? = 1015 GeV. - (6.45)

At a value of 7p ~ 10* years we have no hope of observing the decay of
a particular proton. However, from a large population of protons a small
fraction may decay. For example, in 1000 tons of matter about 50 protons
are expected to decay every year if 7p ~ 10% years. Experiments during
the 1980s failed to observe such decays in an unambiguous manner for
7p < 10! years. This led to the abandoning of the above simple SU(5)
theory in favour of more complex frameworks.

Exact dynamic theories are needed to quantify 7p and myx. However,
while the proton decay experiment is barely feasible if 7p < 103 years, the
full testing of the predictions of GUTs is clearly beyond the scope of
present technology. It is worth mentioning one prediction that is com-
monly known as the hypothesis of asymptotic freedom. According to this
hypothesis, at extremely high energies the particle interactions begin to
lose their strength. However, even this hypothesis is still to be tested
experimentally.

The other alternative, of course, is to use the hot universe for testing
theoretical predictions. Even here, for a mass of 101 GeV, the tem-
perature (= mc?/k) will be as high as ~10%8K! A temperature of
10 GeV gives, according to (6.6), the age of the universe as low as
~ 10736 second. We will refer to it as the GUT epoch. M. Yoshimura has
suggested that under GUTs it is possible to produce a slight excess of
baryons over antibaryons because the baryon number is not conserved.

Tp ~
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However, further assumptions are needed to actually produce the result in
accord with observations. The following scenario is that suggested by S.
Weinberg and F. Wilczek.

6.3.5 The production of baryon excess in the early universe

Let us denote the mass of the X-boson (which causes baryon nonconserva-
tion) by my, and its coupling strength by ax. The coupling strength may
be 1072 or 1073, depending on what type of particle X is. Let us denote by
I'. the rate of collisions that do not conserve baryon number; that is,
collisions in which the X-boson is involved. The X-boson itself does not
last very long, its time scale being of the order of #/mxc?. Denote the
characteristic decay rate of the X-boson by I'y. We thus have three time
scales to play with: Tx!, T;!, and H~!. The trick lies in adjusting these
time scales suitably to produce the desired answer. The argument,
qualitatively, goes like this.

At the earliest epochs, with temperature = 10V GeV, gravity was the
strongest force between the various constituents of the universe. Other
interactions (including the strongest of them, QCD) were unimportant
under the hypothesis of asymptotic freedom. As the universe continued to
expand and its temperature dropped there was a phase when gravity
became weaker while the other interactions still remained unimportant.
Thus for T < 10" GeV the particles remained essentially free for some
time.

During this phase it becomes necessary to examine the nature of
distribution functions that are given by the formula (5.9). There we saw
that so long as T > T,, that is, so long as we are in the relativistic
regimes, the distribution function preserves its equilibrium form during
free expansion with T o S~1. However, if T < T, then the distribution
function cannot preserve its form under free expansion. Thus it may get
distorted from its equilibrium form.

Now of the various species in the early universe, the X-bosons are
probably the most massive. Thus, provided they have a high enough value
of Tx, there is a chance that the X-bosons will first drop out of
equilibrium. For this to happen, however, it is also necessary that they
have not all decayed by then. The decay rate of the X-boson is of the
order

I'x = axgmxc?/h, (6.46)

where g is the effective number of degrees of freedom for the various
particle species (g may well lie between 100 and 200).
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The expansion rate, on the other hand, is given by (6.1). The collision
rate I'~ ax<<I'x. A comparison of the three rates shows that
I. <T'x < H soon after gravity became weak. Thus the universe was
expanding at this stage with essentially no interaction between the species.
The X-bosons began to decay when the age of the universe became
comparable to T'x!. Using (6.1), (6.2), and (6.46) we get

(3ga/§(m§(c4)1/4

= 6.47
drGah? (6.47)

By the time the universe had cooled to the above temperature the
X-bosons would have begun to decay. The question is, were they in
equilibrium till then?

As was seen above, this question is decided by a comparison of T with
Tx. Two cases are of interest: (1) T > Tx and (2) T < Tx. These are
illustrated by Figures 6.4 and 6.5, respectively.

In case (1) the decays occured while the X-bosons still had their
distribution functions in the equilibrium form. Under these circumstances
the X-bosons could not have generated any net excess of baryons; for

I

Rates (arbitrary scale)
]

1
kT~ mxc?
Time o< (Temperature)=

Fig. 6.4 The three rates H, I, and I'x for the case mxc? < ax10% GeV. When
kT drops below mxc?, I'x exceeds the expansion rate H and the X-bosons decay
exponentially in number while maintaining the equilibrium distribution. No net
baryon excess is generated in this case. (After D. N. Schramm & M. S. Turner,
The origin of baryon number and related problems. In R. Balian, J. Audouze, &
D. N. Schramm, eds, Physical Cosmology, Les Houches Lectures Sessions
XXXII, p. 501 (Amsterdam: North Holland, 1979).)
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I'x

Rates (arbitrary scale)

Ie

L
kT~ mxc?
Time o< (Temperature)—

Fig. 6.5 Figure 6.4 redrawn for the case mxc? > ax10% GeV. When kT drops
below myxc?, decays and annihilations are not effective, since both I'x and I, are
less than H. Until I'x exceeds H, the X-bosons do not come into equilibrium. At
that stage X, X decay freely and may generate a net baryon excess. The excess
stays since I'. < H. (After D. N. Schramm & M. S. Turner, The origin of baryon
number and related problems. In R. Balian, J. Audouze, & D. N. Schramm, eds,
Physical Cosmology, Les Houches Lectures Session XXXII, p. 501 (Amsterdam:
North Holland, 1979).)

thermal equilibrium implies that any decays (like that in Figure 6.3)
leading to destruction of baryon number would be compensated by inverse
decays. In case (2), however, the distribution function of X-
bosons was distorted from its equilibrium form and hence the detailed
balancing between decays and inverse decays would not happen. The new
input required into the early-universe scenario discussion in section 6.2 is
therefore provided by case (2). By departing from thermodynamics
equilibrium at the right time, the X-boson distribution has a chance of
producing baryon asymmetry.

The condition that Tx exceeds the value of T given by (6.47) may be
expressed as

3gakk?
4rGac*

Empirical considerations of the SU(5) framework suggest that from the
above inequality mxc? should exceed ~ 1016 GeV. This is consistent with

our earlier estimate of the mass of the X-boson from the lower limit on the
lifetime of the proton.

12
my > ( ) = gaxm,. (6.48)
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So far we have introduced the assumption of departure from thermo-
dynamic equilibrium. We now introduce the other assumption of baryon-
antibaryon asymmetry. Suppose an X-boson decays into two states with
baryon numbers B; and B, with fractions r in state 1 and 1 — r in state 2.
In a perfectly symmetrical situation, the X-boson would decay into state 1
with baryon number — B; with fraction r and state 2 with baryon number
— B, with fraction 1 — r. However, if perfect symmetry does not exist,
then the fractions would be 7 and 1 — 7 respectively for the X-decay
(7 # r). The net baryon number generated by these processes is therefore
Since the baryon nonconserving collision that could destroy AB are
running at a smaller rate than H(I'; < H), we expect AB to be preserved.

Thus, to account for the observed excess of baryons over antibaryons
and to argue that the net baryon number density observed today is ~ 10°
times the observed photon density, we have to make sure that the
parameters of the GUT are such as to give appropriate quantitative
expression to AB above. It is claimed that the reasonable values of the
parameters of GUT do lead to a formula in agreement with (6.32).

Whether or not such claims turn out to be justified, the above argument
illustrates how the early universe provides an interesting arena for the
application of GUTs.

6.3.6 The spontaneous breakdown of symmetry

The change of a larger group of symmetries to the subgroup
SU3) x SU(2), x U(1) is spontaneous. The actual mechanism involves a
set of scalar fields called the Higgs fields ¢ that change over from their
initial zero values to a set of finite values when this happens. Why and
how this happens and the role the Higgs fields play in the process is a long
story which would take us into the labyrinths of gauge field theories. The
explanation given below skirts the problem and provides a superficial
description.

We begin with the analogy of ferromagnetism and the crucial role of the
Curie temperature (770 °C for iron). Above this temperature a bar of iron
shows no magnetism in an external field. This is because its elementary
nuclear magnets are randomly aligned with no resultant magnetization.
Energetically, this is the lowest state for the bar and it chooses to remain
in that state as the most stable one. Below the Curie temperature the state
of lowest energy changes to that in which all the nuclei are aligned along
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the bar, which develops polarity at its ends. There are two states of the
same lowest energy possible, depending on which (north or south) of the
two poles falls at a given end. The ultimate choice of one state apparently
breaks the symmetry although theoretically and inherently the symmetry is
always there.

In the early universe something similar happens to the ¢-field. Above a
critical temperature T, the vacuum state, the state of lowest energy, is
none other than ¢ = 0. Below T the state of lowest energy changes. It
now corresponds to a situation when ¢ has nonzero values. We will
encounter explicit examples of this in section 6.5.

For the time being, let us suppose that there exist alternative values ¢;
(i=1,2,...) of the ¢ field, all corresponding to states of the same lowest
energy which now acquire that status of vacuum. There is basic symmetry
with respect to all ¢;, but in practice the system may spontaneously
acquire one of them. This is again an apparent breakdown of symmetry.

The consequences of this for the very early universe are that it is divided
into different domains, each with a different value of ¢;. In this way the
universe acquires discontinuities along the domain walls. These translate
into highly significant discontinuities of matter distribution. The fact that
we do not see such discontinuities in actuality (say in the form of large
sheets of matter) is hard to explain away. This difficulty is known as the
domain wall problem .

The intersection of two domain walls is a linear structure known as
‘cosmic string’. Such filamentary structures have been invoked in
scenarios for galaxy formation (see Chapter 7).

6.4 Some problems of standard cosmology

It may appear from the above that by going over to the very early universe
we have made progress in understanding some of the present features of
the universe. In fact the situation is the exact opposite: we have acquired
more problems than we managed to solve by this device. The domain wall
problem is one of them. Other, more important problems are highlighted
below.

6.4.1 The horizon problem

Let us suppose that the initial conditions for the universe were set fairly
early on, at an epoch ¢ in the radiation-dominated phase. From the
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considerations of Chapter 4 adapted to the scale factor § « t2 we find
that the proper radius of the particle horizon at that epoch was
Ry = 2ct. (6.50)

Whatever physical processes operated at this epoch were limited in
range by Rp. As such we do not expect the homogeneity of physical
quantities to extend beyond the diameter 2R;, unless we make the
somewhat contrived assumption that the universe was created homo-
geneous. In other words, the casual limitations tell us that no region larger
than 2R, in size should be homogeneous.

When the initial conditions were so set, this region grew to much larger
size at the present epoch; the factor n by which it would grow is the ratio
of scale factors

_ S(1)
8
at the present and initial epochs. How do we estimate 7?

The simplest method is to compare the temperatures at ¢ and ¢, since

(from considerations of Chapter 5) S o« T~!. Thus

_T(@)
T T(ty)
T(t) is given by (6.6). It is convenient to express T also in GeV:
T,
T (GeV) = 2.585 x 10~13 3K/ (6.51)

Combining (6.6) and (6.51) and writing the value of ¢ in (6.50) we get the
present limit on a homogeneous region as

Ryom(tg) =2

=5.57 x 107 x Tglyg™1? x (3—15) cm.

Ty
For Tgev =10, g =100, T = 3K we get the surprisingly small value of
55 cm! In other words we have no reason to expect homogeneity on a scale
larger than, say, 1 metre. The fact that the relic microwave background is
homogeneous on the cosmological scale of ~ 10% cm tells us that there is
something seriously wrong with our reasoning above. Yet, the standard
model does not provide any loophole out of this so-called horizon
problem. Notice also that the further we go back in the past (in our
attempts to set the initial conditions) the larger will be Tg.y and the
smaller will be the value of Ryom (fo)- Figure 6.6 illustrates the horizon
problem.
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Prcscnt epoch
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Big bang epoch

Fig. 6.6 At a very early epoch ¢, the observers A and B have non-overlapping
particle horizons. Thus there is no a priori reason why A and B should have the
same initial conditions. Yet the universe as seen at present is homogeneous over
distance far larger than what AB would grow to (shown by dotted segment) at
present.

6.4.2 The flatness problem

When discussing the early and the very early universe we ignored the
kc?/S5? term in the field equations. Thus (6.1) should actually have been
S  ke?  81Gp
— 4+ =—.
§? S? 3
Our justification in ignoring that term was that as § — 0 $§2 — % and, thus,
far exceeds |kc?|. This argument is, however, scale-dependent. Thus, if we
write S = ArY2, then $§2= A?/4t. Whether S? exceeds c? for k = *1
would depend on A. A priori, we do not know A, unless we link it with
the present size of the universe. It is more convenient to look at the
density parameter Q instead.
Wri}ing p=Qp. as in (4.43), we have, at any general epoch when
S oc tl 2’

(6.53)
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kc? $2 Q-1
— =(Q-1)—7= . 6.54
S? ( §? 412 (6-54)
For the present epoch, on the other hand,
k 2
% = (Qo — D H}. (6.55)
0

Dividing (6.54) by (6.55) and using S « T~', we get, for k = *1,
T2
Q-1=(Q—1)-4Hs*  —.
Ty

Except for (¢ — 1), all quantities on the right-hand side are known.

Using (6.6) for ¢ and (6.51) for Ty we get

3K\?
Q- 1)=~35h3g7 1 x 1078 T3 [——| (Q-1). (6.56)
08 T,

For Tgev = 10¥ and g = 100 we get for Ty = 3K
Q —1=3.513 X 10753(Qy — 1). (6.57)

This expression epitomises what has come to be known as the flatness
problem. Suppose that the initial conditions including the density para-
meter Q were set at the GUT epoch when T = 10 GeV. Then the
present value of (Qq — 1) is given by (6.57). Or, to invert the chain of
reasoning, suppose that the present observational uncertainty tells us that
|Qp — 1| < 6(1). Then from (6.57), at the GUT epoch Q was differing
from unity by a fraction of the order of 107, In other words, the
departure from the flat value of Q(= 1) at this stage has to be extremely
small. Any relaxation of this fine tuning would lead to a far wider range of
Q at present than that permitted by observations.

So our neglect of the curvature term kc?/S? is linked with an extremely
fine tuning of the universe to the flat (k = 0) model. If this tuning were
not there, the universe could either have gone into a collapse (k = 1) or an
expansion to infinity (k = —1) in time scales of the order of 10™% s that
were characteristic of the GUT era.

Figure 6.7 illustrates this conundrum. The shaded region denotes the
finely tuned set of Friedman models that end up today within the observed
range Qg — 1| < 6(1). The curves at the top and bottom of the figure with
time scales ~ 10™% s, should normally have operated at the GUT stage.
What made the universe get into the shaded region instead?

This problem was first highlighted in 1979 by R. H. Dicke and P. J. E.
Peebles, who discussed it not at the GUT epoch but at ¢ ~1s when the
neutrinos had decoupled and pair (e*) annihilation was to begin. Thus
T ~10"3GeV, g~10, and we get ~107!® instead of 10~5 as the
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Q<1

Q<1
Q=1 Present epoc

Scale factor

Fine tuning at GUT epoch

)

time

Fig. 6.7 The flatness problem, illustrated with the help of the expansion functions
for the k =0, =1 models ( =, =, < 1). The observable uncertainty extends over
the range of curves in the shaded region, all of which were tightly bunched
together at the GUT epoch, close to the Q@ =1 curve.

coefficient of (6.57). It is clear that the further back in time and closer to
t =0 we go, the finer is the tuning required. (For the Planck epoch, we
get 1079 instead of 10733.)

6.4.3 The entropy problem

This is a restatement of the flatness problem and the horizon problem in a
somewhat different form. The entropy in a given comoving volume stays
constant in an adiabatic expansion (see section 5.2). The present photonic
entropy in the observable universe of size R~ hj'-10% cm (radius) is
given by the very large value

4 o\’
S = 3—2 aT{R? ~ hi® x 6 - 10Y (TO) : (6.58)
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If the entropy was conserved then we would have ST = constant.
However, we found that in the flatness problem this hypothesis led to fine
tuning while for the horizon problem it gave an extremely small size of
homogeneity. It therefore appears that the trouble lies in X = constant: it
could be resolved if the adiabatic assumption were violated at some stage
and = boosted to its present value by an enormously large factor.

6.4.4 The monopole problem

In a grand unified theory, whenever there is a breakdown of symmetry of
a larger fundamental group like the SU(5) to a subgroup like
SU(3) x SU(2), X U(1) which contains the U(1) group, there inevitably
arise particles that have the characteristics of a magnetic monopole. This is
a rigorous mathematical conclusion in gauge field theories. Typically, the
mass of the monopole (in energy units) is given by ~ 10 GeV.
Monopoles are highly stable particles and once created they are not
destructible. And so they would survive as relics to the present epoch.

At the GUT epoch ¢, the horizon size being 2ct, we expect at least one
monopole per horizon-size sphere, i.e. a monopole mass density of

10 GeV/c?

4

Tﬂ’ (2Ct )3
At present this is diluted by the factor (T/T)?. For T, (GeV) given by
(6.51) and T = 10" GeV we get the present monopole density as

To\3
pm=2x10713 (—3?0) gem™3. (6.59)

This is far in excess of the closure density ~ 1072 gcm ™3, thus making it a
very awkward problem for the standard model to solve. Again, as in the
earlier cases, the discrepancy grows if, instead of the GUT epoch, we use
an even earlier epoch.

6.5 The inflationary universe

Thus difficulties of the standard big bang model seem to require a new
input at or around the GUT epoch, an input that would change the
dynamics of the universe, at least for a temporary period. In 1981 Alan
Guth proposed the so-called inflationary phase as the solution to ihese
problems. The word ‘inflation’ is supposed to indicate a rapid expansion.
Thus we envisage the following sequence:
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t <ty scale factor S(z) o t1/2.
t;<t<ty; scale factor S(t) < exp (at), a = constant.
t, <t scale factor S(t) = V2. (6.60)

In short, we have inserted a phase of rapid exponential expansion during
[z1, t2]. What is this time range? How do we set the value of the time
constant a? To answer these questions let us first look at Guth’s method.

6.5.1 Guth’s inflationary model

As we saw earlier, the breakdown of GUT symmetry to SU(3) x
SU(2)L X U(1) leads to a phase transition in which the vacuum state (i.e.,
the state of lowest energy) of the Higgs field ¢ changes. The original
vacuum with ¢ =0 is no longer the true vacuum. The inflationary stage
arises, however, if the true vacuum is not immediately attained.

An analogy will illustrate the scenario. Suppose steam is being cooled
through the phase transition temperature of 100 °C. Normally we expect
the stream to condense to water at this temperature. However, it is
possible to supercool the steam to temperatures below 100 °C, although it
is then in an unstable state. The instability sets in when certain parts of the
steam condense to droplets of water which then coalesce, and eventually
the condensation is complete. In the supercooled state the steam still
remains its latent heat, which is released as the droplets form.

Suppose that similar supercooling takes place past the GUT phase
transition temperature. What happens then is somewhat similar to the
steam-water analogy. Its details depend on the potential energy function
V(¢, T) which we consider next.

Consider the action principle defining the dynamics of the ¢-field by

Alg) = [l — V()] d'x, (6.61)

where ¢; = 3¢/3x’ and V(¢) is given as follows. First, ¢ is a scalar gauge
field, but it has internal degrees of freedom decided by the number of
generators of the gauge group. Let the generating matrices be 74(A =1,
2, ..., N). Then we write

¢=29"74 (6.62)
A

and consider the following quartic form for V:
V=—42Tr¢? + 1a(Tr¢?)? + 3b(Tro*) + sc(Tré’), (6.63)
where u, a, b, ¢ are coupling constants.
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In a typical symmetry breaking of the kind
SU(5) — SU(3) x SUQ2)L x U(1)

we have
(¢p) = ddiag(1,1,1, — 3, — 3) (6.64)
where @ is an ordinary scalar. Alternatively, if
SU(5) - SUM4) x U(1) (6.65)
then
(¢) = odiag(1,1, 1, 1, —4), o a scalar. (6.66)

In each case, Tr ¢ = 0. If the basic GUT symmetry group is different, we
will of course have different representations of ¢. For our cosmological
purpose we need to know how V(¢) will affect the spacetime geometry via
the Einstein equations. For this we need to average over the quantum
fluctuations of the ¢-field, which gives us an ‘effective’ average potential:

Vei(¢9) = a¢® — po* + y¢*In(¢/0?) (6.67)

where «, (3, y, o are parameters from particle physics.

Since this analysis is to be carried out in the hot early umverse there
will be thermal fluctuations also. Their inclusion leads to an addition to
Vesi(¢) of a thermal component to give a total potential

18T [~ 1)
V(. T) = Va(9) + = folen[l‘exl’{ (x +“$2) }]dx'

(6.68)

Here a is a constant. Figure 6.8 plots V(¢, T) as a function of ¢ for a
range of values of ¢.

Notice that for a critical value of T = T, the V(¢, T) curve touches the
¢-axis at two points, ¢ ='0 and ¢ = ¢, both of which points are local
minima for V(¢, T). For T > T, there is only one minimum, at ¢ = 0.
As T is lowered, a second minimum appears at a higher level, while as T
goes below T this minimum sinks to a lower level. In other words, for
T < T. the state of lowest energy of the ¢-field resides not at ¢ = 0 but at
a value of ¢ > 0. This is where we have the supercooled steam situation.

Imagine the universe being cooled through the critical value 7.. As T
drops below T. the state of lowest energy shifts in a discrete fashion,
signalling a phase transion. However, if the universe is supercooled, it
stays in the ‘false’ vacuum at ¢ = 0 until at some stage the ¢-field tunnels
across the V(¢) >0 barrier and falls down the V(¢) slope to its ‘true’
vacuum. Let us denote by g, the difference between the energies of the
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Fig. 6.8 V«(¢, T), the effective potential of the Higgs field at different tem-
peratures. For T < T, the true vacuum, i.e. the state of lowest energy is no
longer at ¢» = 0.

two vacua. Until the tunnelling has taken place the universe has an extra
energy density g at its disposal which must have dynamical effects via the
Einstein equation:
S? + ke* _ 8nG
5 = (g0 + &;). (6.69)
S 3c?
Here £, « 1/S* is the energy density of radiation and relativistic particles.
Since it falls as the universe expands, while g, stays constant, the latter
clearly dominates. Hence we ignore &, and solve (6.69). For k = +1 we
get, for example,

3c4 |12 87Geg\ 2
S = h tl. 6.70
(877G80) COS [( 3c? ) ] (670
For k = —1 we get a similar expression with ‘cosh’ replaced by ‘sinh’. The

main point to note is that for

32 12
t > (877630) , (6.71)
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either solution approaches closely the £ = 0 (flat) solution

87Ge, )1/2
3c? ’

S « exp at, a= ( (6.72)
This exponential expansion is reminiscent of the de Sitter model. Indeed,
the energy tensor of false vacuum simulates the Ag; term of the Eintein
equations.

This rapid expansion in an exponential fashion continues until the
tunnelling takes place and ¢ attains its true vacuum value. The average
time t for the tunnelling to occur can be computed quantum mechanically.
One finds that

atr~67, Z =exp67~10%. (6.73)

In other words, the exponential expansion or inflation lasts long enough
for the scale factor to blow up by a large multiple, Z ~ 10%°. Thus if we
had started with a curvature term (kc?/S?) comparable to the expansion
term (S2/S2) prior to inflation we would have ended up by having the
former reduced by Z?2 ~ 10°® while the latter stayed constant. This large
factor Z not only takes care of the fine tuning in the flatness problem but
also resolves the horizon problem (by blowing up the homogeneous region
by Z in linear dimensions) and the monopole problem (by reducing the
monopole density by Z3). Similarly the domain walls are blown apart so
that the chance of one crossing the observable universe is negligible.

There was one serious drawback, however, which rendered the Guth
model unworkable. This comes from the entropy. The entropy is also
blown up by the factor Z3 =10%, thus apparently explaining why the
present universe has such a large value for . However, how was this
entropy to be dumped in the universe?

The expectation was that as the phase transition is completed in a
bounded region, it switches over to the Friedmann radiation-dominated
expansion phase, since it no longer has the energy &, to draw on. The
inflating region therefore breaks up into Friedmann bubbles which
expand. Most of the excess energy resides on the surfaces of these
bubbles, so that when two bubbles collide the energy is thermalized. This
is how a wider and wider region undergoes phase transition and acquires
thermalized energy and entropy. ‘

The expectation was nullified by the fact that as the universe outside the
bubbles expands exponentially, bubbles nucleated in different parts move
away from one another so fast that they cannot collide. The above
thermalizing mechanism therefore does not work.
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6.5.2 The new inflationary universe

A revised version of the inflationary scenario was not long in coming. A.
D. Linde in the USSR and A. Albrecht and P. J. Steinhardt in the United
States independently proposed what came to be known as the new
inflationary universe. The crucial difference between the new and the
original Guth version was in the choice of Vg (¢, T). In the new model
the Vg (¢, T) was taken from the work of S. Coleman and E. Weinberg:

2
Va#, T) = §al0t In 25+ 4(0* - 9)

18 ”
+ T4 Infl - exp(—{x? + B¢2g/THM)]dx, (674

where «, o, and g are constants. Figure 6.9 plots V. (¢, T) for a
characteristic value of 7.

Vest

False vacuum

B
}

True vacuum

Fig. 6.9 V (¢, T) used in the new inflationary model.
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We have a false vacuum at A (¢ = 0) and the true vacuum at B (¢ = 0).
There is a temperature-dependent bump C beyond A (¢ > 0) followed by
a plateau portion DE which slopes down very gently before dropping
down steeply from E to B. For inflation to take place for a sufficient time
we need the system to remain in the upper part of the figure, i.e. during a
time when it tunnels across the bump C and then rolls slowly over from D
to E. Thereafter the system drops to B, but instead of staying there it
executes damped oscillations during which energy is thermalized and
entropy increased. The decay time scale for the ¢ field is I'~!.

The actual dynamics of the universe, as given by Einstein’s equations,
can be solved numerically. A ‘satisfactory’ solution is obtained by
adjusting the parameters. Thus the following is a satisfactory solution:

¢o=¢; =0 Roll-over down the plateau begins.

t < 190H! Roll-over time, which is also the duration
of inflation with § o« exp Ht.

H =2 x 1019 GeV

Z =~ exp 190 = 10%° Boost in linear size by inflation.

Toe = €xp4.8 X 107* H™! Time of oscillation before settling
down at ¢ = 0 ~ 2 X 10¥° GeV.

Notice that the model overcorrects the shortcomings of the standard
model. For example, the horizon size is boosted by 10°°, so that the
present size of a homogeneous region is greater than the observable
universe by a factor ~ 1023. Notice also that because a single region is
large enough (more than enough!) to encompass the observable universe,
there is no need for different bubbles to collide and coalesce. In the Guth
version the bubbles were small so that their collision and coalescence was
necessary to generate a large enough region — besides the requirement of
reheating.

Since 7, << H !, the oscillations are quickly damped by the decay of ¢
into relativistic particles and radiation. With I' = 10'® GeV, the decay time
I'"! is arranged to be << H™! to allow ‘reheating’ to take place. The
temperature of the universe will rise again to =~ 2 x 10 GeV.

The drawback of the new inflationary model is that it requires a fine
tuning of ¢;/o, where ¢; is the initial value from where the slow roll-over
starts. We need ¢;/o0<107° and the Higgs boson mass m < 107%c. If
m = 10° GeV then the model does not work. Since the whole concept of
inflation was brought in to avoid fine tuning, this requirement is like
breaking the ground rules.
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6.5.3 Chaotic inflation

The original Guth model invoked a strongly first-order phase transition,
while the second model may be considered as requiring a weakly
first-order or even a second-order phase transition. Can we construct an
inflationary model which has no phase transition involved?

Yes! Such a model was proposed by Linde under the title ‘chaotic
inflation’. The V (¢) function here has a simple form

V(¢) = Ap*. (6.75)

Inflation results because of a rather slow motion of ¢ from some initial ¢,
towards the minimum. This initial value is believed to be due to chaotic
initial conditions. While one can produce sufficient inflation this way, it is
necessary to ensure that the initial kinetic energy of the ¢-field is small
compared with the potential energy. Detailed calculations show that this
requires the field to be uniform over sizes bigger than the Hubble radius!
Also, the value of A has to be fine-tuned near 4 X 107! to get the correct
density perturbations.

6.5.4 Inflation: drawbacks and epicycles

The role of inflation in growing density perturbations is an important
subject, which we will discuss in the next chapter. It is probably the main
issue on which the concept of inflation will survive or perish!

Nevertheless, the fluid state which the very-high-energy particle
physics finds itself in today has its echoes in this branch of cosmology.
Thus several epicycles of inflation have appeared, some stillborn, others
with a half-life of 6 months to 1 year, while some still survive. It is not
possible to review them all, especially since they have not yet produced a
result that a cosmologist would be interested in.

A major unexplained point relates to the A-term. Although the point (to
be described below) would have arisen regardless of inflation, it was
highlighted more by that scenario. The mystery is the smallness of Aq as
used by Einstein (cf. Chapter 4) when expressed as the dimensionless ratio

~ 107126, (6.76)

The suffix zero on A indicates that we are interested in its present value,
which is of the order of H %/cz. We saw, however, that during inflation the
energy momentum tensor of the false vacuum is that corresponding to a
Aterm with A = Agyr, where
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Ao

Agur
Thus, to start with, A may be as high as G#/c3, later changing to Agyr and
finally to A;. (In between there is another phase transition at the
breakdown of the electroweak symmetry, wherein Ay/Agw = 107%".) The
question is, how does A manage to change from such a large initial
magnitude to ~ 107126 of its initial value? What kind of fine tuning is this?
This is known as the graceful exit problem for the cosmological constant.
With all its epicycles, the inflationary model makes one clearcut
prediction about the present state of the universe, viz., Q= 1. This is
because the closeness of Q to unity is such as to lead to €y =1 or very
close to 1 (for k = +1). This prediction automatically implies that there is
dark matter present, since, from Chapter 5, Qgh3 < 0.12.

~ 107108, (6.77)

6.6 Primordial black holes

We now depart from the discussion of particle interactions and GUTs to
study a peculiar consequence of gravity. The study relates to-black holes,
briefly described in Chapter 2.

As the name ‘black hole’ implies, we do not expect any radiation to
come out of such an object. For a spherical object of mass M, the black
hole condition is reached when its surface area equals 47R2, where R,, the
Schwarzschild radius, is given by

2GM

R, ="

(6.78)
C

No material particle or a light signal emitted from R < R, can go into the
region R > R — at least, this is what classical general relativity tells us.
Nevertheless, in 1974 Stephen Hawking made the remarkable sugges-
tion that a black hole can radiate. Hawking’s calculation went beyond
classical physics: it considered what happens when any field (for example,
the electromagnetic field) is quantized in the spacetime exterior to a black
hole. The quantum mechanical description of a vacuum is much more
involved than the classical description, which simply states that a vacuum
is empty. According to quantum field theory, the vacuum is seething with
virtual particles and antiparticles whose presence cannot be detected
directly. Their interference with physical processes in spacetime can,
however, lead to detectable results. Hawking found that one such result
when considered in the spacetime outside a black hole is that an observer
at infinity sees a flux of particles coming out from the vicinity of a black
hole. We will not go through the calculations leading to this result; we will
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simply study the consequences of such a process in the early universe.
Figure 6.10 provides a qualitative description of how the Hawking process
operates. Not all aspects of the Hawking process have been worked out
yet. An important issue still unresolved, for example, is that of back
reaction: how the emission of particles by the black hole affects and alters
the geometry of spacetime outside, and what effect this change has on the
process of radiation by the black hole.
The idea we will use here is that a spherical black hole of mass M ejects
particles in a thermal spectrum of temperature T given by
hc?
8rGM
where M, = M expressed in grams. The emission of particles by the black
hole leads to a mass loss rate given by
dM,
dr

kT = ~10% M, (6.79)

~—10% M *s71. (6.80)

Time
Boundary of
| the black hole
Space / \ Escaped
mo;nbof

[}
I
I
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Trapped /
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\| /
c A
D B

Fig. 6.10 The thick lines indicate the boundary of a black hole. The two arrows
emerging from points A, B, C, ... indicate pair creation in vacuum fluctuations.
Had there been no black hole, pairs would simply annihilate and disappear as at
A’, B’. The black hole may selectively attract only one member of a pair as at C
and let the other member escape. A remote observer seeing this particle would
conclude that the black hole has created this particle. Since virtual particles
created may have negative energies, by absorbing a negative energy member of
the pair the black hole loses part of its mass. The escaped particle carrying
positive energy therefore describes energy emission by the black hole. This is the
essence of the Hawking process.
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The ~ implies that a numerical constant of the order 1 appears on the
right-hand side to take account of the number of particle species emitted.
If we integrate (6.80), we find that the entire mass of the black hole is
radiated away in a time 7 given by

T~3.10"7 M}s. (6.81)
Thus a black hole created soon after the big bang with a mass ~ 5 x 1014 g
would last until the present day.

The process described above is slow to start with, when a black hole is
massive and cold. However, as M decreases 7 rises and the mass loss rate
increases until finally it reaches a catastrophic level. This final stage is
often called evaporation or explosion of a black hole. As seen above, a
stellar mass black hole (M, = 10%) is hardly likely to explode in the
lifetime of the universe! And since black holes considered in various
astrophysical scenarios are at least as massive as 2M, the Hawking
process is only of academic interest with respect to them.

There are, however, scenarios in the very early universe that could lead
to primordial black holes (PBH) of much lower masses than M. B. J.
Carr in 1975 was the first to consider these at length. Carr investigated
PBH formation and evaporation in order to see whether the presently
observed nucleon density as well as the microwave background can be
explained in terms of the emission of baryons, leptons, photons, and so on
by low-mass black holes. Since these concepts are highly speculative, we
will give only a brief survey of what PBHs could do.

It is argued that provided the equation of state is hard (that is,
pressure/density of matter ~ 1), the size of a PBH at any given time is
limited by the size of the particle horizon. This gives a simple relation

M, ~ 10%¢ (6.82)
for a PBH of mass M, formed at the epoch t,. Thus to form a PBH of
M, <10™ we have to go as far back as 1072*s. If we go as far back in
time as f, = 10~* s, when quantum gravity applies (see section 6.7), then
M, ~1073.

If the early universe contained density perturbations, then their growth
could decide whether black holes would be formed and with what type of
mass spectrum. Suppose the mass contrast at some initial time in a given

where M = mass of the matter contained in the horizon at the initial
instant f. Carr found that only for n = % is PBH formation over extended
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regions favoured. For n > %, PBH is not formed, except perhaps for
M = M. If n <%, PBH formation is favoured only when M is so large
that it might split up into different universes casually disconnected from
one another.

If n = %, and if we assume that the density excess in a region of mass M
has a normal distribution with zero mean and standard deviation = Jx,
then the present number density of PBHs in the mass range M, M + dM
is given by N(M)dM, where

M \-20+2H/1+ )
e

i sen | (M
N(M) ~ pF(M)~* gexp [252 7
This formula ignores the degradation in mass of a PBH by evaporation.
p=mean density of the universe at #, f= p/p at the time of PBH
formation, F = ratio of the number density now to what it would have
been at 7. F goes as (Sy/S) 3.

In determining how these black holes radiate, we have two alternative
pictures. In the elementary particle picture the PBHs emit the so-called
basic particles discussed earlier, such as quarks and gluons. Later these
form particles such as baryons, mesons, and leptons. In the other
composite particle picture, these latter particles are emitted directly. The
PBH emission process does not take note of whether particles or
antiparticles are being emitted. Thus it is not necessary that the process
should conserve the baryon number and this possibility may therefore be
used to account for the observed baryons-to-photons ratio.

The interesting aspect of this approach is that PBHs act as sources of
various particles that have somehow got to be created in the universe. The
suggestion that PBHs evaporating today might account for the observed
y-ray bursts, however, does not seem to be correct, since the spectrum of
y-rays emitted in such a process is not like the spectrum observed in burst
events.

6.7 Quantum cosmology

In this chapter we finally push back our investigations into the past history
of the universe down to the era t ~ 10~* s. Is it justified to put our faith in
the standard big bang model when the universe was so young? One way to
answer this question is to look for the limit where classical theory breaks
down and quantum mechanics takes over. Beyond this limit we cannot
trust the classical theory of gravity - that is, the general theory of
relativity.
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A look at the action principle (2.101) shows that the limit sought above
can be obtained by equating the gravitational action

c3 :
fQVR(—g)‘/2 d*x (6.85)

%~ T6nG
to Planck’s constant. For S; >> A we can trust our classical description of
spacetime geometry, while for S, << # a quantum description of cosmology
is indispensable. But to evaluate S, we need V', the 4-volume of the
spacetime manifold.

In the big bang model we take V" as the spatial volume enclosed by the
particle horizon and bounded by the time span of the universe. Thus at
any epoch ¢ for k =0, S « ¢/2, the particle horizon is defined by

rS = 2ct.

For S o« 2, R =0 and so S, = 0. However, this happens because the
trace of T is zero in the early universe. As an order-of-magnitude
estimate we may take R{ instead of R in the computation of S,; R{ gives
us an idea of how the geometical part of the action changes with time. For
S oc 112 R} = 2¢2¢2. Thus, up to the epoch ¢,

3 3 4g 5 c’
—— dt, = —t2.
J'o 4c2t% 3 (2cty)’ dty e

c
¢~ 16nG
Equating S, to #, we get

Gh
5

t=2tp=2(
C

1/2
) ~ 1079,
This time span is called the Planck time. No classical discussion of
standard big bang cosmology can be pushed to epochs t < tp. We already
encountered this epoch in section 6.3, when the temperature was
E ~ 10" GeV. This energy, as seen from (6.43), is simply #/tp.

Thus the present discussions of GUTs and cosmology already take us
right up to the Planck epoch. Whether the universe did indeed have a
spacetime singularity at =0 should be determined not by classical
general relativity but by an appropriate theory of quantum gravity. At the
present time the goal of having a working theory of quantum gravity
seems far away. The different approaches that have been tried to quantize
gravity do not agree on the answer to the question: did the universe have a
singular epoch? ‘

This concludes our discussion of the early universe, a discussion in
which we have pushed back our incomplete knowledge as far as we
possibly could. Figure 6.11 provides a schematic view of the events in the
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early universe that is built out of the present speculations. Our next
investigation will relate to the formation of discrete structures in the
universe, to the problem of evolving a successful theory that starts with
‘seeds’ of local fluctuations implanted in the very early universe and grows
them to galaxies, clusters, superclusters, etc.

Big bang”?
Quantum cosmology
1022 10~
GUT
1019 107%7
Generation of baryon asymmetry
1017 10°%
Qcbh
+
Baryon asymmetry
Primordial
black holes
108 10~
Intermediate bosons
SU(2) » U(1) symmelry broken
5% 103 ~1078
Hadron era
(ptons disappear)
102 T 1074
p* pu~ annihilation
10 102
] Neutrino decoupling ]
e* ¢ annihilation
1071 ~{ 100
Nucleosynthesis v
Temperature (MeV) Time (seconds)

Fig. 6.11 The time axis going back to —o on a logarithmic scale. The interactions
and events that govern the state of the universe are shown in the relevant
temperature sections. We have to remember that rising temperatures correspond
to decreasing time by the formula (6.6). According to present speculations some
brand of inflation took place around the GUT era.
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The very early universe

Exercises

Explain what is meant by the remark: ‘the early universe is the
poor man’s high-energy accelerator’.

Look up the mass and surface temperature of the Sun in an
astronomy textbook and express both in MeV units.

Explain why MeV is a good unit to describe the masses and
temperatures in the early universe.

Look up the values of the various fundamental constants appearing
in (6.5) and verify the numerical coefficient in (6.6).

Assuming that the universe contains only those particles (as well as
antiparticles of quarks and leptons) listed in Table 6.1, estimate the
g-factor from (6.3).

Give qualitative arguments based on thermodynamic equilibrium
and the survival of different particle species under various inter-
actions to indicate why we expect hadrons to be the least abundant
species in the universe.

Apply the arguments given in Exercise 6 to estimate quantitatively
the ratio of baryons to photons at the present epoch. Comment on
the smallness of this ratio.

Relate the smallness of the ratio of Exercise 7 to the relative
strengths of the gravitational and the strong interactions. How
much larger has the gravitational constant got to be in order that
the calculated value of N4/N, comes out as high as the observed
value?

Show that in a theory having the symmetries of SU(n) the number
of ‘charges’ will be equal in n>—1. What is the corresponding
number of bosons in such a theory?

Ilustrate the general result of Exercise 9 by specific examples of
physical theories with n =2, 3, and 5.

Distinguish between the natural current and the charge current
components of the electroweak interaction. Give examples of
each.

‘Show how baryons may be created or destroyed by suitable

transformations in the SU(5) version of GUTs. Show how a proton
can decay, and indicate what the decay products could be in such
an event.

Describe a laboratory experiment that might prove the existence of
the X-bosons. Why can’t these bosons be detected directly in a
high-energy accelerator?
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Explain how the hot universe can be a testing ground for the
predictions of GUTs.
Show by a qualitative argument how a baryon excess can be

For the X-bosons estimate the time scale
h

mxcC 2
Explain why the horizon and flatness problems get more severe as
we seek to set the initial conditions at earlier and earlier epochs.
Give astrophysical reasons why we do not expect free magnetic
monopoles in significant quantities today.
In the Guth model of inflation let A(¢o) denote the rate at which
bubbles form in a given proper volume and suppose that p(r)
denotes the probability that there are no bubbles engulfing a given
point in space. Show that

p(1) = exp [— [ v, rodn]

‘E~

where

47 J't cdit, 3
v “)‘T[ WSy

If the nucleation rate may be approximated by a constant Ay in
Exercise 19, show that

t
p(t) = constant X exp (_ _),
T

where 7 = 3a®/4n k.
Show that in the Coleman—Weinberg case the evolution of ¢
during the slow roll-over is given approximately by

¢ +3ap+ V' (¢)=0,
where ¢ may be ignored and a = 257a®>Go*/24c>.
Show that even if we are able to explain why the variation in Q,
AQ = O(1) at this epoch, the future epoch will again have larger
and larger AQ.
Calculate the temperature in kelvins of a spherical black hole of
mass equal to the mass of (a) a proton, (b) one ton, (c) the Earth,
(d) the Sun, and (e) a star of mass 10 M.
Substitute the values of #, ¢, G, and k to verify the results (6.79)
and (6.80).
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Express in terms of the fundamental constants the time 7 for which
a black hole of mass M survives under its own radiation.
Taking k=0, S o tV2 in the early universe, calculate the size of
the particle horizon. By equating this to the Schwarzschild radius
of a black hole, calculate the mass M of the black hole. Show that
this mass is given by

3

M=
G

Discuss how the primordial black holes might act as sources of
particles and radiation that are now found in the universe.
Compute S,(¢) for the closed Friedmann model with given values
of gy and hg, taking the time interval as (0, ¢) and the spatial
extent covering the whole (spherical) space. Estimate the epoch at
which S, = #. Why do you get an answer different from ¢p?

Relate the Planck length associated with gravity to the Compton
wavelength of the proton and to the strength factor «g defined in
(6.34). Show also that at the Planck epoch the Schwarzschild
radius of a primordial black hole filling the particle horizon is of
the same order as the Compton wavelength of the black hole.
Comment on the limit to which classical general relativity may be
pushed in discussions of the early universe.
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The formation of structures in the universe

7.1 A key problem in cosmology

Chapter 5 narrated the success story of the hot big-bang model, of how the
particles combined to form light nuclei at temperatures of 108-10'° K, and
how the relic of that hot era is today seen as the radiation background in
microwaves. Encouraged by these achievements, the big bang cosmolo-
gists pushed their investigations further back in time, to epochs of
very-high-energy particles. These investigations, outlined in Chapter 6,
brought cosmologists in contact with the very-high-energy particle theor-
ists, leading to a variety of new inputs to classical cosmology such as
inflation, baryon nonconservation, etc.

Exciting though these investigations are, we must not lose sight of the
fact that cosmology is a branch of physics, and as such requires hard facts
to support these speculations. One important fact is the existence of
discrete structures in the universe, ranging from galaxies to superclusters.
How did these structures come about? Why are they distributed in an
inhomogeneous fashion, when their radiation counterpart is so smooth?
This key problem of cosmology must surely have a solution buried in the
early history of the universe.

In this chapter we review some attempts to come to grips with this
problem. If the big bang scenario is correct then the solution should
incorporate some or all of the following epochs:

The Planck epoch.

The GUTs/inflation epoch.

The epoch when radiation decoupled from matter.

The epoch when the universe switched over from being radiation-dominated
to being matter-dominated.

5. The epoch of redshift ~ 5, when galaxies and QSOs may have begun to form.

bl A
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This last epoch is fixed by the observation that the numbers of these discrete
objects seem to taper off as we approach redshifts of this order.

The strategy is to consider small fluctuations of density in the very early
epochs (1) or (2) and work out their growth through the successive later
epochs. Since the physics of the universe changes drastically, the tech-
niques of working out the solution also change. We will consider first the
epochs from (3) and (4) onward, which, historically, were the first to be
tackled and which involve the less speculative parts of cosmology.

7.2 The Jeans mass in the expanding universe

As early as 1902, Sir James Jeans considered the problem of formation of
galaxies in the universe as a process involving the interplay of gravitational
attraction and the pressure force acting on a mass of nonrelativistic fluid.
Jeans’s treatment used Newtonian physics and assumed a static universe.
However, his ideas can be adapted to suit our problem, at any rate part of
it. '

7.2.1 The basic equations

Consider the universe as filled with fluid of density p, pressure p, velocity
field v, and the gravitational force field F. We will assume Newtonian
physics to hold for gravity as well as for fluid dynamics. Thus the
continuity equation

9p

_ + V . = 0 7.1
Y (pv) (7.1)
and the Euler equation
ov 1
—+(v-V)v=—-Vp +F 7.2
StV (7.2)
hold for fluid motion, while the Poisson equation holds for F:
‘ VXF =0, V-F = —-47Gp. (7.3)

In the unperturbed situation of homogeneity and isotropy we get the
following simple solution of the above equations (see Exercise 2 at the end
of Chapter 3, and Exercises 38 and 41 at the end of Chapter 4):

1 S(t) 4nGp
=0, oc , V=T F=- . (74
p P S0 30 7 - 04
The scale factor S(¢) satisfies the differential equation
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S __4nGp (7.5)

S 3
We now consider perturbations of this simple solution. Our aim in doing
so is to see whether any initial clumpiness can grow in size by gravitational
instability. Thus we consider small changes in p, v, F, and p in the above
solution, denoting them by py, vy, Fy, and p; respectively. To begin with,
these perturbations are supposed to be small, so that the equations can be

linearized. The linearized equations become

S S
pl+§-(r-V)p1+3§~p1+pV-v1=0, (7.6)
S S 1
Vl+?(r-V)v1+§V1+;VP1—F1=0, (7.7)
V x F, = 0, V’Fl = —47TGp1. (78)
We also have for adiabatic fluctuations
P1 = cips, (7.9)

where ¢, is the speed of sound (=(dp,/dp;)'?).
It is not difficult to see that plane—wave solutions of the following form
exist for (7.6)—(7.8):

pl(l', t) = pl(t)eix, Vl(l', t) = Vl(t)eix, (710)
with
r-k
=—— 7.11
=50 (7.11)
and
p1+—p1 + =0 7.12
Prt+—5 P s P=0 (7.12)
.S ic?
Vl + *‘Vl + kpl - F1 = 0, (713)
S Sp
k X F_l = 0, ik 'Fl = _‘47TGplS (714)

It is now convenient to split ¥; into two parts: along and perpendicular
to the wave vector k. Thus we write
k-v, kX (v; Xk
LA )
k? k?
= VH + A\

Vlz

Taking the vector product of (7.13) with k we get

= S
(V1+?V1)Xk=0,
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from which our definition of v, leads us to
v, S = constant. (7.15)

Thus the transverse (or rotational) model tends to decrease in the
expanding universe. What about the mode parallel to k? Taking the scalar
product of (7.13) with k gives the following relation:

$ i [cik? pr
o+ — o)+ = —4rGS|—=0. :
o) + 5ol k(S m )p (7.16)
We now define the density contrast parameter
s="2 (7.17)
P
Then, since p < S3, we get from (7.12)
. ik
6= —%v“. (7.18)
Eliminating v|| between (7.16) and (7.18), we get
. 28 . [c2k?
(5+T(5+(S2 —4rGplé = 0. . (7.19)

This is the equation that tells us how or whether gravitational instability
leads to the growth of condensations in the expanding universe.

We first consider (7.19) in the quasistatic approximation, wherein the
expansion of the universe is neglected. Thus we set S = constant and
$/S = 0. This brings us back to the original Jeans calculation of the static
universe. We define K = k/S as the effective wave number for the
solution (7.10) and (7.11) and call

4nGp 2
KJ=( ”czp) (7.20)

the Jeans wave number. The equation (7.19) now looks like

8+ cA(K? - KH6=0. (7.21)

In this approximation it is easy to see that (7.21) has sinusoidal (that is,

oscillating) solutions for K > Ky and exponential (growing as well as
damped) solutions for K < K. If we write

S o« el (7.22)

Then :

w? = c(K? - K?. (7.23)

Notice first that for K < K; the growth rate |w| is maximum when

K =0 and is given by
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|0 max = €5 K- (7.24)

However, the expansion rate of the universe, which we have neglected so
far, is also of this order. For, from Einstein’s equations we get (for the
k = 0 cosmology)

$? 81Gp
s2 3
that is,
S [\
i (5) Kic,. (7.25)

Thus we cannot legitimately neglect the expansion of the universe in the
present problem.

Nevertheless, we can salvage something useful out of this analysis. If we
set K > Kjin (7.23) then we get sinusoidal disturbances that do not grow
but simply propagate like sound waves. What does this mean? To
understand the meaning of K >> K, define a mass

drnmy (273
M= H (—”) . (7.26)

3 K

M is the mass of a sphere of radius 27/K containing a number density n of
hydrogen atoms, each of mass my. As the universe expands, n decreases
as §73 and K decreases as S”!. Thus M remains invariant. Taking
p= nmy for the present, we see that the gravitational energy of this
sphere is

GM? 16m*Gp? (277)5
%G == ‘N\—1 .

T2k~ 9 K

The thermal energy of this sphere, on the other hand, is
47 (27 \?

=g P"‘g(?) |

Comparing the two expressions above, we see that

K> K; =%y > €. (7.27)
Further, K > Kj also gives us
S
|| > 5 (7.28)

Thus in the sound wave approximation the gravitational forces and the
expansion of the universe may be neglected.
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It is convenient to express the condition K >> Kj in the form

drnmy (27 \3
MK ———|—]| = M,, 7.29
3 (K,) ! (7.29)
where M is called the Jeans mass. The above result therefore means that
the only disturbances that have any prospects of growth are those whose

mass exceeds the Jeans mass Mj.

7.2.2 The evolution of the Jeans mass

Let us try to follow the variation of M; as the universe goes through
different phases, starting with the era when e and e~ annihilated (see
Chapter 5). It is a good approximation to assume that until the electrons
combined with protons to form hydrogen atoms, the universe is made
largely of nonrelativistic ionized hydrogen in thermal equilibrium with the
blackbody radiation at temperature 7. In this era we may neglect the
pressure and entropy of matter in comparison with that of radiation.
Hence we have the density, pressure, and entropy density as given below:

T4
p = nmyg + ac—z' (7.30)
p = }aT?, (7.31)
s = 3aT>. (7.32)

In adiabatic changes entropy of a comoving volume is constant, so
s/n = constant. Hence to evaluate ¢2 we must calculate dp/dp at constant
s/n. A simple calculation gives

T:
c2=1. (—s)c2. (7.33)
ctnmy + Ts
In evaluating the Jeans mass from (7.29) we will replace p in (7.20) by
p + p/c?, without seriously altering any conclusions (which are order-of-
magnitude anyway!). Thus a simple calculation gives

251252 ( Ts \?
M;= 1+—- . 7.34
! 9a' 22 m} G312 anCZ) (7.34)

It is more convenient to use specific entropy
N

o=—
kn’

k = Boltzmann’s constant. (7.35)

Then
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_ 20%20%k? ) okT\73
942G mi 2)

As the temperature drops to ~3000 K the recombination of electrons
with ionized hydrogen is almost complete. This is the recombination
epoch. If the present-day background temperature is taken as 3K, the
recombination era broadly corresponds to redshifts in the range z ~ 1000
to 1500. In making any numerical estimates we will take zg = 1000 as the
redshift at recombination.

After the recombination era, radiation pressure becomes unimportant
and the gas (of H-atoms) behaves as a monoatomic gas is expected to
behave: with y =  and

] (7.36)

myc

5 nkT

p = nmyg + 27 5 (737)

c
p = nkT, (7.38)

5 kT
2
=—— 7.
Cs 3 e (7.39)
The Jeans mass then becomes

5/2 5kT 3/2

M, = 4(%) (T) n2m, (7.40)

Just after recombination, the temperature T of matter is the same as the
radiation temperature. So we can express our answer above in terms of o
by using (7.32):

2775/253/2 k2 01/2
1= 9a1/2G3/2m%1 :

How does the matter temperature drop subsequently? In Chapter 4 we
saw that random motions drop as S~!, so that in this nonrelativistic era the
temperature will fall as §72. Thus, starting from (7.41) at the recombina-
tion, M will drop according to (7.40), that is,

Mj o< T32p 712 oc §73/2, (7.42)

(7.41)

Figure 7.1 shows how M varies with the radiation temperature 7., on
the assumption that the present radiation temperature is ~3 K and is equal
to that of the cosmic microwave background. The quantity that enters the
expression (7.36) besides the temperature is o, the specific entropy. In
Chapter 5 we saw that o, which is proportional to the photon/baryon
ratio, is in the range 10® to 10'°. In Figure 7.1 we have taken o = 1010, It
is convenient to express M in units of the solar mass M.
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Fig. 7.1 An approximate graph of the Jeans mass M; as a function of the
radiation temperature in the universe for the entropy density o = 10°.

We see that at T, ~ 10° K, M; was in the range 10* Mg to 10°M . For
T > myc*/ok, Mj increases as T>. The increase continues until T
drops to a temperature of 10* to 10° K (myc?/ok = 10* for our chosen o).
The highest value reached by M is in the range of 10" to 10 M. This is
just before the recombination era, when Mj drops to the value of a few
times 10°M . This drop is a sharp one. But thereafter M; drops further
as S732 that is, as T?/z. This behaviour of M; helps us understand the
difficulties of forming galaxies in the expanding universe.

Suppose we are interested in forming a galaxy of typical mass
~10" M. In terms of (7.36), M; will be less than this value, until the
temperature has dropped to ~107 K (see also Figure 7.1). From our crude
theory of Jeans mass, we see that a fluctuation of mass ~101!' M, will
have a chance to grow under its self-gravitation until the temperature
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drops to this value. The actual mode of growth must be calculated using
the perturbation theory with the full general relativistic equations. This
complicated problem was solved by E. Lifshitz in 1946. We will not go
through the details here, but simply quote the result: in the fastest growing
normal models 8p/p increases as t.

In the next phase, when M; > 1011 M, our fluctuation cannot grow. It
oscillates as a sound wave until the postrecombination era, when Mj has
again dropped below 10" M, (see Figure 7.1). After the temperature has
dropped to ~3000K, growth is possible and we can use our simple
Newtonian equations. We will proceed to solve this problem in the
following section. It is clear, however, that so far, within the Jeans mass
theory, the number 10'M does not seem to emerge as having any
particular significance. The typical mass at recombination is of the order
of the mass of a globular cluster: it is much smaller than 10! M ;. This was
pointed out by R. H. Dicke and P. J. E. Peebles in 1968, and has been the
main difficulty in trying to understand why typical discrete units of
10" M are found in the universe.

7.3 Growth in the postrecombination era

We now try to solve (7.19) in the framework of Friedmann models. Our
purpose in doing so is to try to relate any present fluctuations in
temperature or number density to those at the recombination epoch, with
the hope that such a calculation may give us clues as to how galaxies may
have formed in that era. We will consider the problem separately for the
three types k =0, k =1, k = —1 of the Friedmann model. We will make
one simplifichon in our calculation. We will neglect the term c?k%/S? in
comparison with 47Gp. Physically, this means that we are neglecting
random motions relative to the expanding substratum; that is, this
approximation corresponds to neglecting M; in comparison with the
galactic mass. This neglect is valid, since in the postrecombination era M;
is as low as 10° M, (=107° X galactic mass).

7.3.1. The Einstein—de Sitter model
In this model (see Chapter 4)

£ \2/3
S(t>=(t—0), to=2HF, p
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Therefore (7.19) becomes

. 4 . 2
b+—6——=6=0. 7.44
This equation has the general solution
5= At*? + Bt (7.45)

Thus the growing mode is « t* and the damped mode o ¢t~!. If both
modes are present in comparable form to start with, only the growing
mode will be important eventually. Thus we will set B = 0.

At the recombination epoch let tg and zy denote the cosmic time and
the redshift. Taking the temperature of the epoch as ~3000 K, we have

1+ zg ~ 103, (7.46)

since the radiation temperature increased in proportion to (1 + z) in the
past. Thus the density contrast 6 should have grown by the factor

Do) [t
* = S (

2/3
) = (1+ zg) ~ 10°. (7.47)
IR

7.3.2 The closed model (k = 1)
We use the relations (4.46)—(4.50) to write
ct =31a(® —sin®), S =1a(l - cos®),
_3H§ qo(1—cos®y)®  3H{(2q0 — 1)°

= = , 7.48
P= 4G (1 — cos ®)3 4nGqi(1l — cos®)3 (7.48)
ST
@=——"7|—}|
(2g0 — 1)¥* \H,
Changing the independent variable from ¢ to © in (7.19) we get
d*s dé
(1 — COS @) @ + sin ©® 36 -36=0. (749)
This equation has the general solution
6=A(5+COS® __30sin® N sin © (.50
l1—cos® (1- cos®)? (1 — cos ®)2

Again, the growing mode is that multiplying the constant A. Concentra-
ting on this mode, we first note that for the recombination epoch zg given
by (7.46) O is small. Hence

1 - cos®

2
14 zp= 270 L 2 (1 - cos®y),
‘R 1 cosOg @ﬁ( c0s Qo)
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that is,
2(1 — cos Og)\ 12
=|———— 7.51
§ ( (1+ zr) ) (7:31)
Thus the growth factor is given by
s 5(1 + zr)[(5 + c0sOg)(1 — cos Op) — 30 sin O]
B (1 — cos ©g)°
51+ z 3 , 2go — 1)V2
_ XL+ 2Ry R)qz" (4g0 + 1) = ———sin™! G- D7 ] (7.52)
(290 — 1) (290 — 1) 9o

where we have used (4.50) to express cos O in terms of g,.

7.3.3 The open model (k = —1)

Again using the relations (4.60)—(4.63), we write in terms of the
parameter W:

ct =31B(sinh¥ — W),  §=1B(coshW — 1)
_ 3H{(1-2q0)°
p= 47Ggd(cosh W — 1)%’

e
(1 - 290 \Ho/
Proceeding exactly as for the closed model, we finally arrive at the growth
factor

_ 5(1 + zr)qo
(1- 2‘10)2

(7.53)

390 @ —2g)"?
{(“4"")_(1—240)1/2 [ 20 ]}

(7.54)

Figure 7.2 plots Z as a function of g, in the range 0 < gy < 5. Notice
that = increases up to ~6 X 103. We have already seen that for go = 3,
= =1+ zgr ~ 10°. Ybat does = mean in terms of galaxy formation?

We have to admit that &= dp/p, representing the density contrast
between galaxies and the surrounding medium, is considerably higher than
1, since density in a galaxy is higher than density of matter in a cluster of
galaxies by at least a factor of 10. Moreover, the intracluster density is
~10"2 gecm ™3, which is higher by another order of magnitude than the
closure density of the universe (~10~% gecm™3). Thus, to apply our theory
to galaxy formation we need 8p/p>> 1, and in this region linearization of
the basic equations is not valid. So we cannct use our calculations in any
exact sense.
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Fig. 7.2 The growth function = plotted against g, for 0 < g¢ < 5, for zg = 1000.

However, we can use the above analysis to demand that in order to
form galaxies the density contrast must at least be unity at present. Thus if
we set 8p/p ~ 1 at present we may ask for Spg/pg to be at least -1 at the
time of recombination. Only the full nonlinear theory can really tell us
what Spr/pgr should have been in order to generate large density contrasts
at present. However, even the lower limit =~! is of the magnitude that
could in principle be detected by accurate measurements of the microwave
background, as we shall now see.

7.4 Observational constraints

The ‘growth of fluctuations’ idea outlined above encounters a problem
when confronted with observations. We will not only briefly review this
problem first but will also discuss certain other constraints that a successful
theory of structure formation must satisfy. Although these constraints
have posed severe difficulties for the standard big bang model, we should
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view them in a more positive way. For, they represent the remarkable
progress that extragalactic observational astronomy has made in the 1980s,
thanks to increasingly sophisticated observing techniques. To match these
developments on the observational front, the cosmological theories have
to be correspondingly more mature and less speculative.

We begin with the possible impact of the density fluctuations leading to
galaxy formation on the microwave background.

7.4.1 Small-angle anisotropy

Let us estimate the effect of these fluctuations of &p/p, the density
contrast at the recombination epoch on the radiation background.
Assuming that the fluctuations are adiabatic, the particle number density
will vary as the cube of the radiation temperature. Therefore

ST\ _1fop
( T )R 3( p )R, (7:55)

where the subscript R denotes the recombination epoch.

Since the universe is optically thin after this epoch, these fluctuations
will be imprinted on the radiation background, and would be observed to
this day. That is, if we sweep across the sky we should see ups and downs
in the background temperature. What should be the order of magnitude of
this fluctuation in temperature at the present epoch? Over what character-
istic angular size should we observe these fluctuations?

Our calculations above have placed the value of (8p/p)g in the region of
=~1, For the different cosmological models (see Figure 7.2), =7! lies in
the range of ~107% to 3 x 107*. Hence from (7.55) we should have
present-day fluctuations of AT/T in the range ~3 X 107*. This is of
course true on the assumption of optical thinness mentioned earlier.

To fix the angular size of fluctuations we note that (7.26) relates the
mass M of a typMgl fluctuation to the characteristic wavelength 2n/K.
What will be the angle subtended by a length 27/K at the redshift of zg?
For this we need the formulae for angular size derived in Chapter 4. We
recall the relevant formulae (4.72) and (4.76), and apply them in the limit
of large redshift (1 + zg = 1000). Thus we get the angular size as

2m (1 + zg)?

AG = T
K D

where
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Hence from (7.26)

27 H
AG =" 0% 1y 2y
K c
Hoqo 3M V3
= + zg) " :
(1+zr) (417an)

Since ngr = no(1+ zg)?, where ng=present number density, we get
finally

A6

H 1/3
- "q"( 3M ) . (7.56)

c 4rngmy

Using the result that ngmy =3Hjqo/4rG, we can express the above
result in the following form:

(A) ~ 23( )(hoqg) 13 arc second. (7.57)

101 Mg

Thus galaxy formation should leave a characteristic patchiness of the
angular size ~20 arc second. However, observations (to be described in
detail in Chapter 9) do not show any patchiness in spite of sensitivity that
could detect AT/T as low as 2 X 107>, This may be called the ‘smoothness
problem’.

7.4.2 The horizon problem

The second difficulty is of a technical nature. Let us assume that at any
epoch, t, p(t) denotes the smooth averaged-out density in the universe
while p(r, ¢) denotes the actual density at any space-point with coordinate
r. To fix ideas, as well as to simplify matters, let us illustrate the problem
for the k = 0 model. Define the ‘density contrast’ i(r, t) by

6(1’, t) — p(l’, t_) — p(t) — fék(t)eik.r ﬂ

p(1) (2m)?
If S(r) is the scale factor then the proper length corresponding to r is
S(¢)|r|. Hence the physical wave number for k is k/S.

The inhomogeneity denoted by &(r, ¢) is thus seen as a superposition of
components of different wave numbers. A typical size (2m/k)S(t) is
stretched in an expanding universe. Besides. the amplitude for a given k
will grow due to gravitational instability. So an inhomogeneity of
characteristic size Ay today would correspond to a proper length

S
M) = o

(7.58)

: (7.59)
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With S(f) = ", say (viz. n =3} for the radiation-dominated phase and
n = % for the matter-dominated one), we find that A(¢) o ¢*. However, the
particle horizon size, as we saw earlier, is proportional to ¢ (cf. equations
(4.74) and (6.50)). Thus with n <1, for sufficiently small ¢, A(¢) would
exceed the horizon size.

Since physical processes operate under the causality principle, it follows
that any astrophysically relevant scale today demands seed fluctuations
with scales not exceeding the horizon size at any earlier epoch. Thus there
is manifestly a contradiction here. (For explicit numerical values of typical
length scales see Exercises 20-21.)

7.4.3 The scale-invariant spectrum

First we consider the two-point correlation function £(r) for galaxies
defined by the probability 6p of finding a galaxy in a given volume &8V
within a distance r from a given galaxy:

op=n{l+ &(r)}dV. (7.60)
Here 7 = mean number density of galaxies. Detailed studies of galaxy
counting indicate that £(r) has the form

r\7Y
&(r) = (r—o) : (7.61)

where ro = Shy!Mpc and y = 1.8.

Now &(r) is scale-invariant and is typical of fractals. Moreover, the
galaxy, the cluster and the supercluster correlation functions have,
surprisingly, the same functional form with the same y. Thus, if we did not
know what population was being described in a catalogue we would not be
able to determine the answer from their correlation analysis. Figure 7.3
illustrates this commonality. In mathematical terms these correlation
functions are adequately described by

—-1.8
Er(r) = 0-3(%) : (7.62)

where L = (77)~'/. This scale-invariant spectrum has to be explained by a
theory of galaxy formation.

7.4.4 Hierarchy of structures

The discrete structures range from galaxies on the scales of masses
~10" M and sizes ~10kpc to superclusters on the scales of masses
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Fig. 7.3 The correlation function for clusters and galaxies as well as for
superclusters is seen to be the same from this observed distribution of &(r),
although their characteristic scales are different. (After N. A. Bahcall, Ann. Rev.
Astron. Astrophys., 26, 631, Fig. 10 (1988).)
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~10'-10" M, and sizes ~50-100 Mpc. We also have to understand their
large-scale filamentary structure interspersed with giant voids
~100-200 Mpc in size. Two relatively nearby large-scale inhomogeneities
are the so-called Great Wall and the Great Attractor.

A theory of structure formation may belong to one of two types:
‘top-down’ and ‘bottom-up’. In the top-down scenario, the larger-scale
structures form first and later fragment into smaller ones. The reverse is
true in the bottom-up case, with smaller scale structures forming first and
accreting together in groups to form the bigger ones.
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7.4.5 Age distribution

Did all galaxies form more or less at the same epoch, or is the formation
process a continuous and ongoing one? When did it begin? Was it related
in its evolutionary sequence to the formation of QSOs?

Clues and possible checks can come from the redshift distributions of
discrete objects, from the age estimates of galaxies and from their
chemical evolution. Redshifts of QSOs indicate a tapering-off of their
numbers beyond z = 5. Galaxies do seem to indicate a variety of ages,
judging by the evolutionary stages of stars therein and by the abundances
of heavy elements. These clues pose important constraints on structure
formation theories.

7.5 Inputs from the inflationary phase

One of the attractive features of the inflationary models is that they hold
out the possibility of generating seed fluctuations that can grow to form
the large-scale structures with a scale-invariant spectrum. To illustrate this
we first discuss a scenario that produces the observed structures from seed
perturbations and decide what form of such perturbations is needed, then
compute explicitly the nature of perturbations produced by inflation. We
will then see to what extent the latter compare with the former.

7.5.1 Causal connections within the initial fluctuations

In the preceding section we saw how the physical wavelengths (of the
present large-scale inhomogeneities) were larger than the horizon radius
sufficiently early on in a Friedmann model, and thus could not be linked
by causal interactions. This conclusion is altered if an inflationary phase is
present. Let us see how this comes about, with an illustrative example.

Consider a wavelength A, associated with a galactic mass M at the
present epoch. WitR the mean density given by

__3H3
Po = 871G 0
we have
dr _ 4
M = —= boko,
i.e.,
2GM \?
Ay = ( HZQO) . (7.63)
0
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We now trace this length scale back to the epoch ¢; when inflation had
just ended. Since the scale factor varies as the reciprocal of the radiation
temperature, the length scale at ¢; was

S(t) ( 2GM \'? T,
S(2o) H%QO) T:
Since during the inflationary phase f; < f < ¢; the scale factor increased
exponentially, the scale as ¢; was
)'i = lfexpa(ti — tf) = le‘l, (765)

Z being the factor by which the universe inflated (see equation (6.73)).
How does it compare now with the horizon size?

Assuming that the universe was in the de Sitter expansion mode during
t; <t < t;, the nature of horizon changes. The de Sitter spacetime over its
full timespan —o < ¢t < « does not have a particle horizon. It does have
an event horizon c/a in radius if the expansion factor is exp at. However,
here we are dealing with a finite interval of the de Sitter expansion, and so
the issue is somewhat vague. For causal connections which have developed
through the past light cone one should, strictly, talk of the particle
horizon. In the absence of a clearcut particle horizon, we may take c/a,
the so-called ‘Hubble radius’, as a length scale up to which causal
connections might get established.

Because of the largeness of the factor Z we expect that for most
astrophysically relevant scales

A= Ate) = Ao

(7.64)

A < c/a. (7.66)
In other words, the Hubble radius exceeds the length scale. Thus the
original causality problem of standard cosmology is circumvented.

Figure 7.4 illustrates the revised situation. It shows the Hubble radius
over the inflationary epoch, followed by the particle horizon radius in the
Friedmann radiation-dominated expansion phase. The Hubble radius is
constant at c/a for t; < t < t;. For t > t; the particle horizon grows at ¢.
Compared with these scales, the typical length scale for a primordial
fluctuation corresponding to the wave number k grows always in
proportion to the scale factor of the universe, i.e., it grows during ¢; < ¢t < ¢;
as (2m/k)exp at. Thus it exceeds and crosses out of the Hubble radius at
some time ?.y; given by

2
k
FOr tex <t < fener, the scale in question exceeds both c/a during the
inflationary stage and the horizon size during the subsequent Friedmann

C
exXp (atexit) = ; (767)
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Fig. 7.4 The scale size of a fluctuation grows as S(¢). It exits from the Hubble
radius of the inflationary model and later re-enters the particle horizon in the
Friedmann phase.

stage. The instant ¢, is given by the epoch when the proper length of
the fluctuation (which grows during the Friedmann regime in proportion
to t2) becomes equal to the horizon size (which grows as t). The suffix
‘enter’ indicates that, for ¢ > t.,., the length of the fluctuation will be less
than the horizon size. Inflation therefore allows one to start with seed
fluctuations at a very early epoch which then grow to present observed
scales. It is during the interval fey <t < fon that causal connections are
lost and the correlations developed prior to f.; are maintained intact.
Notice also that both t.; and ¢, depend on k and that this circumstance
plays a key role in determining the spectrum of fluctuations.

7.5.2 The scale-invariant spectrum .

Going by the above argument, we need to krnow the amplitude of a typical
density perturbation at the time fen (k) When it enters the horizon. For
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t > tener(k) We can then study its growth, first by linearization techniques
until its magnitude |8(k, £)|* becomes comparable to unity and then later
by other methods. (The fact that AT /T in the microwave background
radiation is <1077, implies that |6(k, ¢)|*> was <1 in the radiation-domin-
ated phase of expansion, and so linearization is justified.) Thus we need to
know the function

F(k) = |6k, 0)] Z,,.00- (7.68)

Harrison in 1970 and Zeldovich in 1972 had argued independently, from
theoretical considerations that at the time of entering the horizon, the
perturbations should have the form F(k) o« k3. For it can be shown that
the root-mean-square fluctuation of mass M as a fraction of average mass
contained in a region of size R is proportional to k3|§|> at k= R~L.
Therefore, for the above F(k), ((6M/M)? ) will be independent of the
scale R at t = fener(K), thus giving equal power at all scales at the time
they enter the horizon. As we saw in the proceding section, a scale-in-
variant spectrum is indicated by the distribution of discrete large-scale
structures. .

The inflationary model seems capable of producing this kind of
spectrum, through fluctuations in the scalar field ¢(r, ¢) (see Chapter 6).
We write the fluctuations as f(r, #) over a smoothed average value ¢y(¢).
Thus

¢(r’ t) = ¢0(t) + f(l‘, t)' (769)

These fluctuations result in fluctuations of energy density.
Since the energy density of a scalar field is pc? = ;¢?, we get

dp(r, 1) =~ o(D)f (x, 1)/c? (7.70)
for | f| < |¢p|. Writing

| o dk
e 0 = Jounert £, (7.71)
we have
dp(k, t)c? = do(1) Oul(0). (7.72)

The average energy density during inflation being dominated by the
constant term V| (say) of the Coleman—Weinberg potential, we have the
density contrast A
dpc  $oQx(0)
Bu(t) = == -
Vo Vo
For ¢y we use the mean evolution of ¢ in the slow roll-over phase: but
what is f? Now in actuality the fluctuations in ¢ are of quantum origin but

(7.73)
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here, in a classical approximation, we are using f(r, ) to mimic them
classically. In quantum field theory the field would be an operator é(r, f)
whose Fourier coefficients §y(¢) are also operators. In a quantum state
specified by the wavefunction yy, the fluctuations of gy are given by the
dispersion relation

o) = (¥lai(dlw), (7.74)
the mean value (in k # 0 mode) of vy being zero. This is because ¢, the
average of ¢, is homogeneous. Since 04(t) appears to be a good measure
of quantum fluctuations, we may identify Qx(t) with oy(f) and write

5k()—¢0()

Thus we have taken a semiclassical approximation to estimate the
fluctuations in the energy density of the ¢-field which act as the seed
fluctuations of density during the inflationary phase t; <t <t¢;. For a
comparison with observations we need the value of §x(t) at = tep,,.
Several workers in inflation theory have found a way of relating
Ok (Zenter) tO Ok (fexir) through an approximate conservation law,

6k( temer) _ 61(( texit)
1+ W(temer) 1+ W(texit),
where W(¢) is the ratio of pressure p(t) to density p(t) of the average
background field.
During the inﬂationary phase, with ¢3 << Vg,

ow(1). (7.75)

(7.76)

i

p()=3¢3— Vo, p(t)=1i¢3+ Ve, 1+ W(1)= v 07
0
In the radiation-dominated phase 1 + W = 4. Therefore,
« 61(( emer) 3 ¢0 6k(tex1t) (778)
_4 %
3 4)0 ’=’exit.

For the Coleman-Weinberg potential, detailed calculations give oy(¢) and
¢o(t). The final result is

Sx(tenter) = 10262, (7.79)
In other words, the condition
k3| x(tenter)|? = constant (7.80)

required for a scale-invariant spectrum is satisfied. While this is
undoubtedly a success for the inflationary model, the outcome is hardly
satisfactory. For, after putting in numbers we find we have too high an
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amplitude for fluctuations! Instead of yielding values of the order < 1074,
the equation (7.79) leads to an amplitude of ~ 102. Some unrealistic fine
tuning of the parameters of the theory is needed to bring the amplitude
down to the required level.

7.6 The role of dark matter

The presence of dark matter also plays a significant role in the formation
of structures. We have seen how the smoothness of the microwave
background limits the extent of dp/p at the recombination epoch. The
argument that was used in equating the dp/p for matter and radiation
depends on the matter being baryonic. Baryonic matter does interact with
radiation, and so we cannot have large fluctuations 6p/p of such matter
coexisting with much smaller fluctuations in the radiation background.

The argument, however, breaks down if the bulk of the matter is
nonbaryonic and hence (possibly) does not interact with radiation. This
would allow a large 8p/p of nonbaryonic matter at the recombination
epoch. We may then arrange for the baryonic fluctuations (which were
small at that epoch) to catch up with the larger fluctuations of the
nonbaryonic matter at later epochs. For, the two kinds of matter interact
gravitationally. Because nonbaryonic matter does not interact with radi-
ation it is ‘dark’ for all astronomical purposes.

7.6.1 Types of nonbaryonic dark matter

Nonbaryonic matter can be broadly of two kinds, ‘hot’ or ‘cold’. These
adjectives indicate how fast a dark matter particle was moving when it
decoupled from the rest of the (baryonic) matter in the universe. In
Chapter 5 we saw that neutrinos decoupled from the rest of the matter at
temperatures ~ 101 K. At temperature of this order an electron (with a
rest mass of ~0.5MeV/c?) would move relativistically. So, even if a
neutrino has a rest mass of around 20-40 eV/c?, it would more relativis-
tically at decoupling.

Neutrinos are therefore an example of ‘hot dark matter’ (HDM)
particles. At the time of decoupling they were moving with relativistic
speeds. On the contrary, particles whose velocities had dropped to values
<c¢ when they decoupled, are called ‘cold dark matter’ (CDM) particles.

Table 7.1 gives a list of candidates for dark matter, baryonic as well as
nonbaryonic. In the latter class the only familiar species are neutrinos
which are HDM. All other particles are conjectured by the grand unified
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Table 7.1. Some dark-matter candidates
Candidate/particle Approximate  Predicted by Astrophysical
mass effects

Axion, majoron, goldstone 105 eV QCD; symmetry Cold DM

boson breaking

Ordinary neutrino 10-100 eV GUTs Hot DM

Light higgsino, photino, 10-100eV SUSY/SUGR* Hot DM

gravitino, axino, sneutrino

Para-photon 20-400 eV Modified QED Hot/warm DM

Right-handed neutrino 500eV Superweak Warm DM

interaction

Gravitino, etc. 500eV SUSY/SUGR  Warm DM

Photino, gravitino, axino, keV SUSY/SUGR  Warm/cold DM

mirror particle, Simpson

neutrino

Photino, sneutrino, higgsino, MeV SUSY/SUGR  Cold DM

gluino, heavy neutrino

Shadow matter MeV SUSY/SUGR  Hot-cold (like
baryons)

Preon 20-200TeV ~ Composite Cold DM

models

Monopoles 106 GeV GUTs Cold DM

Pyrgon, maximon, perry pole, 10 GeV Higher-dimen- Cold DM

newtorities, Schwarschild sion theories

Supersymmetric strings 10 GeV SUSY/SUGR  Cold DM

Quark nuggets, nuclearities 105 g QCD, GUTs Cold DM

¢ SUGR = Supergravity.

or supersymmetric (SUSY) particle theories. None have been detected in
accelerator experiments. We therefore begin with a discussion of massive
neutrinos. Of all those listed above, the only tangible particle so far is the
neutrino. Although it is still uncertain as to whether the neutrino has a
rest mass, it is worth while examining a few consequences of such a

possibility.

7.6.2 Massive neutrinos

Experiments by F. Reines, H. W. Sobel, and E. Pasierb, as well as by V.
A. Lyubimov et al. in 1980, suggested that neutrinos may indeed have a
small rest mass. Subsequent experiments by different groups have been
rather equivocal on this issue. However, :his possibility opened up a
number of interesting astrophysical consequences. As early as 1972, R.
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Cowsik and J. McClelland had conjectured that the ‘missing mass’ in the
universe (that is, the dark matter) may be accounted for by relic
neutrinos. What can we say today about such a possibility?

Let us do the calculations, taking g, = 1 even for massive neutrinos. If
the rest mass of the neutrino is larger than ~2 x 107* eV then they will
have small random velocities today. Since experiments suggest m of the
order of a few electronvolts, we will write

m, = M, (eV).

From Table 5.1 we know that the number density of neutrinos is
three-eighths of the number density of photons of the same temperature.
We also know that the number density of photons goes as the cube of
photon temperature. Since in the post-e* — e~ annihilation phase

() =
T, ’

we get the present number density of neutrinos as
N,
= 3. 7.81
( Ny)() 22 . ( )
Putting everything together, the mass density of neutrinos at present may
be expressed as

Py = ZQ,pc, (7.82)
where X denotes the sum over all types of neutrinos and
M, (To\’ _,
Q, = 150 (T) hg“. (7.83)

A similar contribution to density will come from antineutrinos. If we
consider all species of neutrinos (and their antineutrinos) together then we
discover that their contribution to density becomes comparable to that of
baryonic matter provided

> m,=15eV. (7.84)
all species
If neutrinos collapsed with the nucleons to form clusters, then we get a
lower bound on the ratio of nonluminous to luminous (nucleonic) matter.
This lower bound is

sQ, ‘
=25 M, (7.85)
Qn

From cluster emission of X-rays it is estimated that the mass of hot gas
is related to the total mass of the cluster by the formula
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MHG = 0'1(2h0)—3/2MT0tal' (786)
We may take Mrota/Myg as an upper limit in (7.85). This gives
SM, < 40h3>. (7.87)

Thus for hg in the range ; to 1, the upper limit on Zm, lies in the range
~15to40eV.

In 1979 S. Tremaine and J. Gunn pointed out another handle on
neutrino masses. A massive neutrino will have this distribution function in
the momentum space.

V€ !
dn, = (th)3 [exp(ZTV) + 1] d3p, (7.88)
at the time decoupling. As they cool down p, o« T, and the neutrinos
eventually become nonrelativistic. Slow-moving neutrinos would be sus-
ceptible to being trapped by the gravitational potential wells of massive
systems that eventually form clusters or single galaxies. Trapping and
collapse of neutrinos changes their distribution function from (7.88) to a
Maxwellian distribution of an isothermal gas. This final distribution is
given by

Py 1 02
dn, = ——exp|— —=|. 7.89
mé 2no?)3? p( 202 ) (7.89)

In order that (7.89) represents a gas trapped by the gravitational field of a
mass M at a distance R, we need

GM
2\ = 3 2
() =30 = I
that is,
IM 902
P) = R~ amGRE (7.90)

Expressing M in terms of M, R in megaparsecs, and o in units of
100 kms™! = 0y, we get from above

2
M 7 X 1020100 Rppe, () = 10‘28(01—00) gem™.  (7.91)
M@ RMpc

Now one feature of a collapse accompanied by rapid energy changes is
that the maximum of phase space density decreases. (This happens
because as the gas particles move, a mixing of states occurs in which the
maximum of the original distribution function gets mixed up with
lower-density parts of the distribution function.) Comparing the maxima
of (7.88) and (7.89), we therefore get
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& Py
Qnh)® ~ méQmo?)¥?’

that is,

(2 3243 11/4
mv>[p—(—L—] : (7.92)

gv0o°
Expressing this inequality in terms of (7.91), we get for g, = 1
M, = 4504 R (7.93)

Relic neutrinos that are sufficiently heavy may therefore collapse and
dominate the mass on the various scales given by (7.93). Tremaine and
Gunn pointed out a curious aspect of this result. (Somewhat similar
arguments were used by Cowsik and McClelland in 1973 to place lower
limits on neutrino masses.) The larger the value of M, the larger the ratio
in (7.85), that is, the unseen mass is larger compared to the luminous
mass. Yet the ratio is known to be largest in clusters of galaxies and lowest
in single galaxies. Thus it would appear that relic neutrinos don’t seem to
solve the missing mass problem. To resolve this contradiction, Schramm
and Steigman have suggested that m, may lie in the range 4 to 20eV.
Thus these neutrinos would not be massive enough to dominate gravita-
tional clumping on the scale of a single galaxy, but may well be effective
on the scale of clusters.

Very massive neutrinos will prove embarassing for big bang cosmology.
If all neutrinos have on average a mass of ~ 25 eV, then ZQ, is close to 1.
Larger mass than this value and/or an increase in the number of relic
neutrino species would increase ZQ, and the overall Q beyond the closure
value Q = 1. As seen in Chapter 4, closed universes have shorter ages, and
an overall age < ~ 6 X10° years may be embarassingly small. It has been
suggested that under such circumstances A-cosmologies might have to be
invoked.

These calculations illustrate how astrophysics may provide valuable
constraints on properties of elementary particles.

7.6.3 Dark matter and structure size

An interesting relation emerges between the mass of a nonbaryonic HDM
particle and the mass of the large scale structure associated with it. The
ideas is as follows. Suppose my is the mass of a particle X which moves in
a collisionless fashion (i.e., it is noninteracting) with relativistic speed.
Such a motion is called ‘free streaming’. A population of such particles
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tends to wipe out any inhomogeneity. The limit on the size of the

inhomogeneity is then placed by the size of the particle horizon. We
estimate the effect as follows.
The particle will be relativistic until the ambient temperature drops to

) mxc2
TX =

. 7.

; (7.94)
The time-temperature relationship in the early universe will give the
epoch as, cf. (6.5),

32 1/2 .
= - /2T'_2.
X (1617Ga) 8 X

(7.95)
At this epoch the horizon size is
Ry = 2ctx. (7.96)
The energy density is given by
2 (kTx)* g

e 2 (7.97)
Therefore the total mass contained within the horizon sphere is given by

putting together (7.94)-(7.97). After some manipulation we get its

magnitude as

47
M= T R%{(E/Cz)
N 31/2773/2g~1/2 k6

. m —2.
60G32a32  h3c3a3? X
Writing the radiation constant and Planck mass as

7 k¢

ch 1/2
TR T (F) ’
the above expression becomes

(7.98)

3 3
3% 51/2 mpy mp

=Wm—%(=a"m—§(. (799)
The constant « is of order unity. (We may take g between 10 and 100.)

Expressing neutrino mass in units of electronvolts and M in units of
solar mass M, the above relation is

2
M~ 150 % 1015(308‘/) Mo.
m

Thus, with massive electron neutrinos as HDM, we get the character-
istic scale of supercluster-like inhomogeneit‘es. Therefore, if we assume
this type of HDM then we have the top-down scenario to think about.

(7.100)
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For CDM, on the other hand, the particles hardly move after they have
decoupled, and their masses are large. The resulting structures are
therefore much smaller than for HDM and we are confronted with the
bottom-up scenario.

Table 7.1 also lists intermediate mass particles like the gravitino which
have mass ~ 1 keV and may be considered ‘warm’.

7.7 The nonlinear regime

The sequence of events leading to galaxy formation may be summarized as
follows:

Stage 1: Quantum fluctuations in the primordial era were created, say, during
the inflationary phase.

Stage 2: Fluctuations enter the horizon of the radiation-dominated universe and
grow linearly until the recombination epoch.

Stage 3: In the post-recombination era the growth is strongly affected by the
presence and nature of dark matter.

Stage 4: The fluctuations grow large enough, so that nonlinear processes
become important. The end result of this stage is the large-scale
structure we should be able to observe with telescopes.

We have discussed Stages 1-3 and will now consider the final stage.

7.7.1 The Zeldovich approximation

In 1970 Zeldovich gave a simplified picture of how the growing modes of
density fluctuations would lead to a nonlinear regime. We briefly describe
this approach.
Consider the cosmic material as made of fluid elements with trajectories
given by
r=S5(0){q — b()V (@)} (7.101)
Here S(¢) is the expansion factor, q the comoving coordinate of the fluid

element, b(¢) describes the growth of fluctuation and v is the perturbation
potential.

If py is the density in comoving coordinates and p(r, t) the proper
density then a simple mass-conservation relation gives
p(r,t) = L

ar |~}
s? 5‘

The determinant is the Jacobian of transformation, the matrix of which

(7.102)
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will have eigenvalues A;, A,, A; that are continuous random functions of
coordinates q. Thus the density becomes

p(r, 1) = % (1 = bA)~'1 = bA)"Y(1 — bAz)"L.  (7.103)

Without loss of generality we assume A; = A, = A3. Then as b(t) grows the
density becomes infinite as bA; — 1. The original volume element had a
cubical shape that now flattens to a two-dimensional surface which
Zeldovich called ‘pancake’.

So far no gravity has been included. To make the picture self-consistent
we need to satisfy the Poisson equation:

V-t = —-4nGp. (7.104)
To solve the equation write the three invariants of the transformation
matrix
In=MA+ A + A5, I, = MAy + AAs + A3Aq,

7.105
13 = /11/12/13. ( )
Then the Poisson equation becomes
S Po 2 " S .. S
(3§+47TG —S?) —[1, —2bI, + 3b 13]{1) +2§b + 3§b}
S
+3 5 {26315 — b%21,} = 0. (7.106)

The first term is zero by the cosmological expansion law. The second
term is zero if

Zh+32b=0. 107
b+2 $b=0 (7.107)

This is the growth equation for linear fluctuations. The last term can be
related to a fractional error in density given by
3 2
Ao 2L bh (7.108)
P 1 — bl + b%I, — b3,

For a planar collapse A; = A; = 0 and hence Ap = 0. This means that the
Zeldovich approximation is exact. If A; > 0 then the collapse occurs when
b = A7'. For bi; << 1 we are in the linear regime and (7.10) approximates
to

p(x, 1) ~ —g% [+ b(A + A + A3)],

i.e., the linearized over-density is
o(r, t) = bl, (7.109)
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We thus have a simple picture of how transition occurs from the linear to
the nonlinear regime. The approximation serves as a starting point for the
more exact N-body simulations on a computer.

7.7.2 N-body simulations

A general scheme for numerical simulations may be as follows. We have

N particles of (generally equal) masses m;(i =1, ..., N). The force on
particle i located at r; is calculated as a modified inverse square law:
mi(r; — r;
F; = Gm; >, i — ri) (7.110)

A e -2 + e
The small number ¢ is used to avoid very large forces at close encounters.
This force determines the acceleration of the ith particle. Given its
position and velocity at one instant, they can then be calculated at a
slightly later instant.

This method is direct but very time-consuming for large values of N.
Faster approximate methods are therefore devised to make progress.
However, the computer speeds fall far short of giving a realistic simulation
of the actual problem. Statistical techniques are, however, useful as
indicators of what is going on.

In a typical project N = 10° and the calculations begin at dp/p~0.2.
The Zeldovich approximation is used to work out the initial position and
velocities in the growing mode perturbation. The free parameters of the
calculation are H, and Qg as well as the initial amplitude of the
fluctuations, given in the shape of the spectrum. The spectrum is evolved
by solving the linear fluctuation growth equations for each k.

The end product for a typical HDM scenario is illustrated in Figure 7.5.
Similar pictures are obtained for CDM also. The idea is to compare these
diagrams with the actual redshift surveys that give a 3-D mapping of the
universe. The large-scale motions are also compared with data.

It is fair to say that although such exercises have given us considerable
insight into how nonlinear growth processes operate and how the different
types of dark matter influence them differently, no successful simulation
of the actual universe has yet been possible. An important question is: Do
galaxies trace the mass distribution? The CDM scenario works if the
galaxies do not trace the mass but form in some ‘biased’ regions. The
biasing is introduced as follows. Consider a Gaussian distribution of
fluctuations 8p of CDM, around an average p. If there were no biasing
light would trace mass, i.e., galaxies would mimic 8p/p. However, if
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-y

Fig. 7.5 Typical results of structures obtained by N-body simulations. In (a) we
see an early stage with cellular structure and pancakes. In (b) the scale factor has
increased by the factor 16, but the cellular structure is still apparent. (Source: A.
L. Melott & S. F. Shandarin, Ap. J., 343, 26 (1989).)
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galaxies form preferentially at high values of dp then there is biasing. The
biasing parameter b is unity if there is no biasing and b > 1 for biasing. By
restricting to b > 1.5, say, one is truncating the Gaussian to the tail where
dp is suitably high. The practical advantage of biasing is that it reduces
AT/T. For example, J. Silk and N. Vittorio have shown that at 4'.5 and
1'.5 angular scale
AT 6x10°°

T  Qohob
Thus for Qy =1, hg=1, b =1.5 we expect AT/T to be about 4 X 106,
The present limits on AT/T permit b > 0.4.

Although the cold dark matter models survive on this count there are
problems in explaining the very-large-scale streaming motions and the
large structures like the Great Wall and the Great Attractor. The HDM
models can explain large-scale structures but find it difficult to explain
galaxy-size structures and the low values of AT/T.

There are other scenarios besides the above CDM, HDM theories. In
the cosmic strings hypothesis the linear discontinuities at the GUT phase
transition (see Chapter 6) act as seeds for growth of fluctuations. The
strings untangle as the universe expands, leaving a few long stretches and
closed loops within the present Hubble radius. In the explosions model
nongravitational processes like shock waves generated by the supernova
explosions are called upon to trigger the process of structure formation.
Neither approach can claim success with observations. Perhaps more
daring ideas are needed! And so we leave this chapter with the problem of
section 7.1 unsolved.

(7.111)

Exercises

1 Explain what is meant by the transverse or rotational modes of the
velocity field in the first-order perturbation analysis in the expand-
ing universe. Show that these modes decrease as the universe
expands.

2 Derive (7.19) satisfied by the density contrast in the expanding
universe.

3 Relate the longitudinal modes of the velocity field to the density
contrast. Comment on the fact that the density contrast does not
depend on the transverse modes. :

4 What is the physical significance of the Jeans wave number? How
is it related to the Jeans mass?
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11

12

13

14
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Show why we cannot neglect the expansion of the universe in a
Jeans-type calculation.

Estimate the gravitational energy and the thermal energy of a
typical spherical perturbation in the expanding universe. Relate
the ratio of these energies to the ratio of the mass of the
perturbation to the Jeans mass.

Explain the significance of the Jeans mass in relation to the
perturbations that can or cannot grow in the expanding universe.
Using data on the Earth’s atmosphere, estimate (a) the Jeans
length and (b) the Jeans mass for air at normal temperature and

pressure.
Show that with p and p given by
aT* _—
p=nmy+—-, p = 3zaT",
c
the speed of sound is given by
2\ -1
myc
2=1c21 +
€ =3¢ ( okT) ’

where ko is the entropy per particle.

Show that after the recombination era the Jeans mass is given by
dn (5wkT\¥?

3 ( 3G ) "

MJ=

where T is the matter temperature.

Assuming that in Exercise 10 the matter temperature equalled the
radiation temperature at the recombination epoch, show that M;
at that epoch was given by

. 4m [SmkTo\32 _ .
J=_3_( 3G ) ng mit

where T is the present temperature of the microwave back-
ground.

Evaluate M; of Exercise 11 in a Friedmann universe of given
(hg, Qo) with T, = 3K . Show that

M; =2.54 X 10%°(Qh3)~2g
~1.27 x 108(Quhd) "2 M.
Show that (7.41) gives at the recombination epoch
M; = 100M 0"
Follow the evolution of the Jeans mass in the expanding universe
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and discuss qualitatively how a galaxy-size fluctuation is likely to
behave in the pre- and post-recombination eras.
Show that in discussing the growth of a mass very much in excess
of the Jeans mass in the postrecombination era the effect of
pressure may be neglected. Is this a good assumption for studying
the behavior of galaxy-size perturbations?
Discuss quantitatively the growth of fluctuations in the Friedmann
models in the post-recombination era.
Solve from first principles the differential equation

d?é dé

(1—cos®)d—®2+sin®£—36=0

and relate its solutions to the behaviour of fluctuations in the
postrecombination era of the closed Friedmann universe.

Verify by a suitable limiting process that as go— 3 both (7.52) and
(7.54) tend to (7.47). Plot £ as a function of g, for 1 + zg = 103,
Review some of the attempts to understand the formation of
galaxies.

Show that the mass associated with wavelength A measured in Mpc
is

M%) = 1.5 x 10MQuh3A3 M.
In the previous exercise a mass of the order 10'> M corresponds

to A=~ 1.88 Mpc. Show that this wavelength was bigger than the
horizon at all redshifts exceeding

z = 1.41 x 105(Qyh2)A.
Discuss in what way the inflationary phase helps in carrying
forward the growth of primordial fluctuations.
Show that if the universe were dominated by three types of relic
massive neutrinos at the present epoch, the average neutrino mass
needed to close the universe would be

T -3
25(70) hleV.

Suppose that the universe has enough nucleons to make Qy =1,
and that it has in addition three species of neutrinos of average
mass 25 eV. For T, = 3, hy = 1, calculate the age of the universe.
Discuss how the observation of neutrino mass affects the age of the
universe. With the example given in Exercise 24, if the age of the
universe comes out very low, can you think of a way out of the
difficulty by using the A-cosmologies of Chapter 4?
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A primordial neutrino has rest mass 1eV. Estimate its random
velocity relative to the cosmological rest frame at the present
epoch. v

Describe how massive neutrinos might influence the condensation
of matter into galaxies or larger structures. Is it possible to think of
a consistent mass range of m, that may account for the missing
mass in galaxies and clusters of galaxies?

In equation (7.95) replace G by Planck mass and arrive at m.
Discuss why CDM scenarios lead to smaller structures than their
HDM counterparts.

Outline the observational constraints that must be satisfied by
theories of galaxy formation.
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Alternative cosmologies

8.1 Alternatives to Friedmann cosmologies

In 1922-4, when Friedmann produced the expanding-universe solutions of
Einstein’s equations, his work went largely unnoticed. Subsequent to
Hubble’s discovery of nebular redshift, cosmologists came to regard these
models as the simplest starting point for discussing their subject. However,
the physicists considered these attempts as naive and speculative, and so
they did not pay as much attention to George Gamow’s very seminal work
on the early universe. Eventually, the turning point for cosmology came in
1965 with the discovery of the microwave background radiation. The
MBR seemed to confirm the early universe scenario, and, taken together
with the extended validity of Hubble’s law obtained by bigger and better
telescopes, laid a solid foundation for cosmology as a branch of physics.
By the mid-1970s a considerable body of physicists began to take the
Friedmann cosmology seriously.

Chapters 6 and 7 have given a glimpse of how this cosmology has
progressed with the inputs from particle physics. The question we will
properly address in the last chapter is to what extent Friedmann
cosmology is a correct theory of the origin and the large-scale structure of
the universe. While the majority of today’s cosmologists would put their
money on the Friedmann models, there have been a few ‘agnostics’ who
were not satisfied with them. And out of their efforts have emerged
alternative theories to be compared with the standard big bang model.

These theories have not been worked through to the depth that
Friedmann cosmology can boast of. This is hardly surprising, considering
the much smaller brainpower that has worked on them. Nevertheless, they
contain different peispectives and may offer a resolution of some of the
outstanding problems that the Friedmann ccsmology has been unable to
solve. In this chapter we describe a few such theories.
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8.2 The steady state theory

In 1948, around the same time that George Gamow was initiating detailed
studies of the physical properties of the universe close to the big bang
epoch, three astronomers proposed an entirely new approach to cosmo-
logy. This model, now famous (or notorious!) as the steady state model,
does not have a singular big bang type epoch; indeed, it does not have
either a beginning or an end on the cosmic time axis. The cosmological
scene was considerably enlivened for two decades after the inception of
the steady state model by the observers’ attempts to shoot this rival model
down. What was the motivation that led Hermann Bondi, Thomas Gold,
and Fred Hoyle to propose the steady state cosmology?

First of all, in 1948 the measured value of T,= H;' was only
~ 1.8 x 10° years. Consequently the age of a standard Friedmann model
could not exceed T, — a value lower than even the geological age of the
Earth! Thus a prima facie case existed for doubting the conclusion that the
universe began ~ 1 to 1.8 billion years ago.

Secondly, if a model (like the Friedmann models) proposes that the
universe began at ¢ =0, it should provide a physical discussion of the
beginning. At least it should leave the question tractable for a future,
more sophisticated physical theory. The spacetime singularity at the t =0
epoch precludes any such discussion. For example, the question as to how
the matter and radiation we see around us came into existence in the first
place remains unanswered. Moreover, one may pose another philoso-
phical question.

Have we any guarantee that the physical laws that we use here and now
have always remained the same? We could have assumed this to be the
case had the universe itself not changed considerably in the course of time.
This, however, was not the case for the Friedmann universes. A typical
standard model changes considerably in its physical content and properties
from soon after + =0 to the present day (see Chapters 5-7). So the
assumption that the laws of physics have remained unchanged throughout
the history of the standard models is more an article of faith than a
verifiable fact.

Today, as we will see in Chapter 9, the age problem is still with us,
although not in such a severe form as the low value of T in 1948 implied.
The questions of singularity and matter creation still remain with the
standard models: the work discussed in Chapter 6 does not tell us what
happened at ¢ =0. Hoyle’s approach to the steady state theory was
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designed to attack the problem of primary creation of matter. However,
his colleagues Bondi and Gold considered the assumption of constancy of
physical laws as of paramount importance.

8.2.1 The perfect cosmological principle

Bondi and Gold argued that the cosmological principle (see Chapter 3)
goes some way towards ensuring that the locally discovered laws of physics
have universal validity; but it does not go far enough. This principle tells
us that at any given cosmic time ¢, all fundamental observers see the same
large-scale features of the universe. Thus we are justified in assuming no
spatial variation in the basic physical laws at any given cosmic time. But
there is no justification from the cosmological principle to assume that the
laws remain unchanged with time.

To provide such a justification Bondi and Gold strengthened the
cosmological principle to what they called the perfect cosmological
principle (PCP). The PCP states that in addition to the symmetries implicit
in the cosmological principle, the universe in the large is unchanging with
time. Thus the geometrical and physical properties of the hypersurfaces
t = constant do not change with ¢.

It is important to emphasize the qualification ‘in the large’. On a small
enough scale the observed part of the universe will change. For example,
stars in a galaxy will grow older, a small cluster of galaxies will evolve with
time in shape and composition, and so on. However, according to the PCP
the statistical properties of large-scale populations do not change.

For example, Hubble’s constant should remain the same whether it is
measured now or at any time past or present, since its accurate
measurement involves the rate of expansion of the universe. This being a
property of the large-scale structure of the universe, the constancy of H
tells us immediately that

S
H = 5= constant = H, i.e., S = exp(Ht). (8.1)

Further, the curvature of a ¢ = constant hypersurface is given by k/S2.
This could in principle be measured at different times and found to be
changing unless k = 0. (See Exercise 4 for another argument leading to
k = 0.) Thus the PCP leads us to the unique line element

ds? = c2ds? — e2Hot[dr? + r2(d6? + sin? 8 d¢?)). (8.2)
Notice that we have arrived at the lin~ element of the steady state
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universe without having to solve any field equations, as we had to do to
determine S(¢) and k in standard cosmology. Bondi and Gold cited this
result as an example of the deductive power of the PCP. Two other
examples of deductions from this principle are given.

Expansion of the universe

The line element (8.2) is completely characterized by H. It is possible to
have Hy =0, Hy <0, or Hy >0, all consistent with the PCP. If, however,
we take account of the local thermodynamic conditions, we are able to
deduce that Hy > 0. For, our observations show that the universe in our
local neighbourhood is far from being in a state of thermodynamic
equilibrium. Stars radiate; regions of high and low temperatures exist
within the Galaxy and outside it. If Hy < 0 then we would have a static,
infinitely old Euclidean universe. Such a universe should have reached a
thermodynamic equilibrium by now, as implied by the Olbers paradox
(see Chapter 4). If Hy <0 then we would have a contracting universe in
which radiation from distant objects would be blueshifted. Such radiation
would lead to an infinite radiation background even worse than that
indicated by the calculations of Olbers. Thus our local observations
preclude H, =<0, leaving the case H,> 0, which is consistent with the
finite and low night sky background (see Exercise 7). Hence the universe
must expand: a conclusion arrived at without looking at any nearby
galaxies!

Creation of matter

It is easily seen that a proper 3-volume V bounded by fixed (r, 0, ¢)
coordinates increases with time as

V xexp3Hgt,
V—BH 8.3
- =3H,. (83)

By the steady state hypothesis the density of the universe must remain
constant at p = py. Then the amount of matter within ¥V must increase in
mass M = Vp, as
M = 3HOVp0.
In other words,
0 =3Hopy (8.4)

denotes the rate of creation of matter per unit volume. If we use c.g.s.
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units we get

Q=2x 10‘46(—@-)h8gcm“3 s71, (8.95)

C
where p. and hg have been defined in Chapters 3 and 4.
The small value of Q shows that there is a very slow but continuous
creation of matter going on, in contrast to the explosive creation at ¢t =0
of the standard models.

8.2.2 A field theory for creation

The creation field

Attractive though the above deductive approach is, it has its limitations.
For example, we do not have a quantitative relation connecting H, to,
say, the mean density p, as we have Friedmann cosmologies. Nor do we
have any physical theory for such an important phenomenon as the
continuous creation of matter. Is the sacrosanct law of conservation of
matter and energy being violated in the process of matter creation? Bondi
and Gold appreciated the fact that questions like these could be answered
through a dynamical theory rather than from their deductive approach.
However, they felt that, together, the PCP and local observations fix the
large-scale properties of the universe in a form that can be tested by
observations (see section 8.3). Therefore they attached a greater import-
ance to testing the PCP by observations than to formulating a dynamic
theory that might determine H|, py, and so on quantitatively.

Fred Hoyle, on the other hand, took the opposite view. He looked for a
process — that is, a field theory — that could account for the phenomenon
of primary creation of matter. After several attempts he finally adopted
the formulation suggested by M. H. L. Pryce. This formulation, known as
the C-field theory, was used extensively by Hoyle and the author in the
early 1960s. The highlights of the C-field theory are given below.

The action principle

The C-field theory involves adding more terms to the standard Einstein—
Hilbert action (see sections 2.8 and 2.9) to represent the phenomenon of
the creation of matter. Using Occam’s razor, the additional field to be
introduced is a scalar field with zero mass and zero charge. We denote this
field by C and its derivative with respect to tle spacetime coordinate x’ by
C;. The action is then given by
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3
¢ o2 gy —
T e IR( g)V+d*x gmacfdsa

— %ffC,-C"(—g)l/2 déx + EJC,- dat. (8.6)

Instead of the electromagnetic terms (which might be present if we had
charged particles), we have in (8.6) the C-field terms. To appreciate the
difference between the two interactions, note that the last term of (8.6) is
path-independent. If we consider the world line of particle a between the
end points A; and A,, we have

Ay
P C,-dai = C(Az) - C(Al)

Normally, such path-independent terms do not contribute to any physics
derivable from the action principle. So why include such a term? The
answer to this question lies in the notion of ‘broken’ world lines. A theory
that discusses creation (or annihilation) of matter per se must have world
lines with finite beginnings or ends (or both). The C-field interaction term
picks out precisely these end points of particle world lines. If we vary the
world line of a and consider the change in the action & in a volume
containing the point A; where the world line begins (see Figure 8.1) then
we get A; (which is now varied)

i

myc d—sa 8k — Cr=0. (8.7)
This relation tells us that overall energy and momentum are conserved at
the creation point. The 4-momentum of the created particle is compen-
sated by the 4-momentum of the C-field. Clearly, to achieve this balance
the C-field must have negative energy. We will return to this point later.
We also note that since the interaction term is path-independent, the
equation of motion of a is still that of a geodesic:

d%al ; da* dd B

a kl -
ds? ds, ds,

m 0. (8.8)
The constant f in the action (8.6) is a coupling constant. The variation
of C gives the source equation in the form

Ck=cf ‘A, - (8.9)
where 7 = number of net creation events per unit proper 4-volume. In

calculating 77 we attach a + sign to the points like A; where a world line
begins and a - sign to the points like A, where a world line ends. Again,
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Fig. 8.1 The world line of a begins at A; and ends at A,. If we consider variations
in the shaded region, the point A, shifts by da’. This shift produces a change in
the C-field interaction term by an amount —6C = C;da’. The change in the
inertial part of the action similarly makes a contribution at A; of p{*éa’, where
p! is the 4-momentum of the particle a. The result (9.7) follows by equating the
net contribution of é#4 at A, to zero.

we see in (8.9) the relationship between the C-field and the creation/
annihilation events.
Finally, the variation ofg;, leads to the modified Einstein field equations

. . 8 G : .
Rk — lotkp — —— — le+T’k’ 8.10
28 ¢t (<m> (© ) &1
where (T)”‘ is the matter tensor as in the earlier chapters while
m
(g')ik = —f(CiC* — L1gikC!C)). (8.11)

Again we note that (Z)OO <0 for f>0. Thus the C-field has negative

energy density that produces a repulsive gravitational effect. It is this
repulsive force that drives the expansion of the universe. The above effect
may resolve one difficulty usually associated with the quantum theory of
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negative energy fields. Because such fields have no lowest energy state,
they normally do not form stable systems. A cascading into lower and
lower energy states would inevitably occur if we perturb the field in a
given state of negative energy. However, this conclusion is altered if we
include the feedback of (8.11) on spacetime geometry. This feedback
results in the expansion of space and in the lowering of the magnitude of
field energy. Both these effects tend to work in opposite directions and
help to stabilize the system.

Cosmological equations

Using the Robertson-Walker line element and the assumption that a
typical particle created by the C-field has mass m, we get the following
equations out of (8.7)—(8.11):

C = mc?; (8.12)
.S Y,

me+3—C p+?pc; (8.13)
S 82+ ke*  4nGf s

25+ =T, (8.14a)
S? + kc? f o

It is easy to verify that the steady state solution (8.2) follows from these

equations for
3H}

= = HOt = =———0= 2 5
k=0, S =e"t, pP=p == fm=. (8.15)

Notice that both H, and pgy-are given in terms of the elementary creation
process; that is, in terms of the coupling constant f and the mass of the
particle created. Thus the Hoyle approach gives the quantitative informa-
tion lacking in the deductive approach of the PCP.

A first-order perturbation of the above equations and of the solution
(8.15) also tells us that the solution is stable (see Exercise 20). Indeed, a
stability analysis brings out the key role played by (8.7). This tells us that
the created particles have their world lines along the normals to the
surfaces C = constant. Hoyle has argued that such a result gives a physical
justification for the Weyl postulate: it tells us why the world lines of the
fundamental observers are orthogonal to a special family of spacelike
hypersurfaces. In the C-field cosmology these hypersurfaces are not just
abstract notions but have been chosen on a physical basis.
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Explosive creation

Although the C-field was introduced primarily to account for the
continuous creation of matter, the author showed in 1973 that is also
describes explosive matter creation such as is required in the big bang
cosmology. We illustrate below how this is achieved for the case k& = 0.

In equations (8.12) to (8.14), we make use of the idea that all matter is
created in an explosive process at ¢t = 0. Then the right-hand side of (8.13)
is like a delta function &(¢), leading to the solution

C = %, A = constant.
Notice that this solution is inconsistent with (8.12), except at one epoch
t =0. This is hardly surprising, since we have assumed no creation of
matter subsequent to ¢ =0. Thus the creation condition (8.9) is not
satisfied at ¢ > 0.
Substituting for C in (8.14a), we can integrate for S and obtain a
solution

S(t) «

1+ (t—+—“l2—]1/3, (8.16)

5
where ty and ¢ are constants related to the initial conditions at ¢t = 0 (see
Exercise 22).

The scale factor given by (8.16) behaves like that for the standard
Einstein—de Sitter model for ¢ >> ¢, t;. In the C-field model not only is
the spacetime singularity at ¢+ =0 averted, but we also see the present
matter as arising from a primordial explosion that conserves energy and
momentum.

This conservation of energy and momentum must follow as a general
deduction for any C-field model, since the governing equations are
derived from an action principle. Hence criticism based on the unex-
plained origin of new matter, which could be validly applied to the
explosive creation of the standard cosmology or to the continuous creation
in the Bondi-Gold version of the steady state model, does not apply to
the C-field cosmology.

In physical terms, the creation is explained by a process of interchange
of energy and momentum between the negative energy C-field and the
matter. The divergence of (8.10) gives the mathematical formula for
energy conservation

(T)"";k = fCiCk. (8.17)
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It is easy to verify that the idea would not work for a positive energy field
(see Exercise 23).

8.3 Observable parameters of the steady state theory

Leaving aside the dynamics of the model, we now come to some of the
observable features of the steady state theory. Here we deal essentially
with the line element (8.2) and the geometrical properties deducible from
it. Indeed, as Bondi and Gold emphasized in their original paper, the
steady state model makes precise predictions and is therefore vulnerable
to observational disproof, in contrast to the big bang models, which can
always be fed with arbitrary parameters. (This comment will become
clearer in Chapters 9 and 10, when we discuss observational cosmology.)

Since we have gone through calculations of these observable features at
great length in Chapters 3 and 4, we will be brief here and simply state the
results.

8.3.1 The redshift
The redshift of a galaxy G, at (r{, 61, ¢;) emitting light at ¢; that is
received by the observer O at r = 0 at the present epoch ¢ is given by

H
7y = eHolmt) — 1 = p =L eHt, (8.18)
C

8.3.2 The luminosity distance

This is given for the above galaxy by
c
Dy=—2z:(1+ z9). 8.19
1 H, z1( 1) ( )
Equation (8.19) is the Hubble law for steady state cosmology. From (8.1)

we also see that the deceleration parameter g, for this cosmology has the
value —1.

8.3.3 Angular size

The angle A6 (<«<1) subtended at O by an astronomical source of
projected linear size d and redshift z is given by
Hy 1+ Z)

AQ = d(
c Z

(8.20)

Thus the angular size tends to a finite minimum as z — oo,
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8.3.4 Flux density

The formula (3.44) becomes in this case

Ly
Foot = 712 o (8.21)
dn{—| 2°(1 + 2)?
W(HO) 2°(1 + 2)
For (3.43), we get
~ L](Vo’ 1+ Z)
F(vy) = - . (8.22)
4 < 22(1 + 2)
H,

8.3.5 Number count
In the notation of section 3.9, the number of sources with redshift less
than z is given by

3 2
N(z) = 47rn(HLO) [ln 1+2z2)- 32+ 2

8.3.6 The age distribution of galaxies

New galaxies are always being formed in the steady state universe. Since
the universe expands, the galaxies, once formed, move away from each
other. Thus the older a population of galaxies, the more sparse its
distribution will be. Since the volume bounded by galaxies increases with
time as exp (3Hyt), we have the following simple result for the age-—
density relation of galaxies:

QO(1) o< e73Ho7, (8.24)
where Q(7)dr is the proper number density of galaxies with ages in the
range 7, T + dt. The average age is therefore (3H ) !. However, caution

is necessary in the observational interpretation of (8.24), as we shall see in
the following section.

8.4 Physical and astrophysical considerations

This section briefly outlines some of the ideas proposed from time to time
in the context of the steady state theory to discuss such problems as the
nature of created particles, the formation of galaxies, the origin of the
microwave background radiation, and so on. Some of these concepts
might still be relevant even if the steady sta.e cosmological picture does
not survive.
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8.4.1 The hot universe

In 1958 Gold and Hoyle proposed the hypothesis that the created matter
was in the form of neutrons. The creation of neutrons does not violate any
standard conservation laws of particle physics, except the constancy of the
baryon number. Although this was considered an objection in 1958, today
the baryon number is no longer regarded as invariant. Indeed, in Chapter
6 we saw how scenarios based on baryon nonconservation are being
proposed in the context of the early universe to account for the observed
baryon number in the universe.

In the Gold-Hoyle picture the created neutron undergoes a S-decay:

n—->p+e +V. (8.25)
The conservation of energy and momentum results in the electron taking
up most of the kinetic energy and thereby acquiring a high kinetic
temperature of ~ 10° K (see Exercise 29). Gold and Hoyle argued that
such a high temperature produced inhomogeneously would lead to the
working of heat engines between the hot and cold regions, which provide
pressure gradients that result in the formation of condensations of the size
of = 50 Mpc (see Exercise 30). As we have already seen in Chapter 7,
pure gravitational forces are not able to provide a satisfactory picture of
galaxy formation. The temperature gradients set up in the hot universe of
Gold and Hoyle help in this process.

However, the resulting system is not a single galaxy, but a supercluster
of galaxies containing ~ 103 to 10* members. Such large-scale inhomoge-
neities in the distribution of galaxies were referred to in Chapter 1.
Inhomogeneities on such a large scale = 50Mpc caution us against
applying the cosmological principle too rigorously. For example, the
formula (8.24) for the age distribution of galaxies will hold over a region
considerably larger than 50 Mpc in such a model. If we are in a particular
supercluster, we expect to see a preponderance of galaxies of age similar
to that of ours in our neighbourhood out to, say, 20 or 30 Mpc. Thus it will
not be surprising if our local sample yields an average age much larger
than the universal average (3H)~! ~3 x 10°h;! years.

Although newly created electrons have a kinetic temperature of
~10°K, the temperature tends to drop .because of expansion. The
average temperature is three-fifths of this value, that is, around 6 x 103 K.
It was suggested by Hoyle in 1963 that such a hot intergalactic medium
would generate the observed X-ray background. However, quantitative
estimates by R. J. Gould soon showed that the expected X-ray back-
ground in the hot universe would be considerably higher than what is
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actually observed, thus making the hot universe untenable. Although the
present background measurements do not rule out such a hot universe for
ho = 0.5, astrophysicists are inclined to look for other explanations for the
origin of the X-ray background.

Although now discredited, the hot universe model was the first exercise
in linking particle physics (neutron decay) to the formation of large-scale
structures in the universe.

8.4.2 The bubble universe

In 1966 Hoyle and the author discussed the effect of raising the coupling
constant f by ~ 10%°. As the formulae (8.15) show, we would then have a
steady state universe of very large density (py =102 gem™3) and very
short time scale (Hg!=1 year!). If in such a dense universe creation is
switched off in a local region, that is, if we locally have a phase transition
from the creative to the noncreative mode,

C';=0, (8.26)
then this local region will expand according to (8.16). Being less dense
than the surroundings, such a region will simulate an air bubble in water.
The reader may look back to Chapter 6 and discover the similarity
between this model and the inflationary model that came into fashion
fifteen years later.

According to this model, this bubble is all that we see with our surveys
of galaxies, quasars, and so on. Hence our observations tell us more about
this unsteady perturbation than about the ambient steady state universe.
There are, however, observable effects that give indications of the high
value of f. For example, these authors showed that particle creation is
enhanced near already existing massive objects and that the resulting
energy spectrum of the particles would simulate that of high-energy cosmic
rays. The actual energy density of cosmic rays requires the high value of f
chosen here.

8.4.3 The oﬁgin of elements and the microwave background

One of the beneficial influences of the steady state cosmology on
astrophysics was that it prompted work on stellar nucleosynthesis. Since
the model does not have a high-temperature epoch, it cannot draw on the
calculations given in Chapter 5 to explain how nuclei are made from
protons and neutrons.
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Since the centres of stars provide sites for high temperature and density,
astrophysicists looked for nucleosynthesis in such places. The pioneering
work of E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle in
1957 demonstrated in a comprehensive manner how the whole observed
range of nuclei can be produced in stellar processes as stars evolve. Thus it
became established that the bulk of the nuclei are produced in stars rather
than in the early hot universe, as Gamow had envisaged.

In 1964 and 1965 the steady state model received two near-fatal blows.
The realization that the observed helium abundance in several parts of the
Galaxy is considerably higher than that generated in the stars led
astronomers back to Gamow’s ideas once again (see Exercise 34). The
case for the hot big bang became even stronger with the discovery of the
microwave background in 1965. The steady state model never quite
recovered from these two blows. Indeed, if today it is to come back as an
alternative to the big bang then it must produce an astrophysical
interpretation for both the above observations, as well as for the observed
abundances of other light nuclei besides helium, like deuterium, Li, Be,
and so on. :

Energetically, it is realized that increased stellar activity is required to
account for the observed helium, and the resulting additional starlight has
to be thermalized to produce the microwave background (see Exercise
34). In the final chapter of this book we will describe a possible scenario in
which dust grains in the intergalactic space act as thermalizers. In working
such scenarios into the steady state model a further constraint has to be
placed on any calculations. This is the constraint demanded by the PCP,
that is, that the universe in the past was no different from the way it is
now.

The main difficulties of such attempts are as follows. Although
increased stellar activity can generate sufficient helium, the production of
deuterium in stars (or supermassive objects) has not proved so easy to
demonstrate, since the deuterium produced is quickly destroyed. Also, the
extreme homogeneity of the microwave background (see Chapter 9)
places severe limits on any theory that attempts to generate it from
discrete sources.

8.5 Mach’s principle

There are two ways of measuring the Earth’s spin about its polar axis. By
observing the rising and setting of stars the astronomer can determine the
period of one revolution of the Earth around its axis: the period of
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23#56™4%.1. The second method employs a Foucault pendulum whose
plane gradually rotates around a vertical axis as the pendulum swings.
Knowing the latitude of the place of the pendulum makes it possible to
calculate the Earth’s spin period. The two methods give the same answer.

At first sight this does not seem surprising. Closer examination,
however, reveals why the result is nontrivial. The first method measures
the Earth’s spin period against a background of distant stars, while the
second employs the standard Newtonian mechanics in a spinning frame of
reference. In the latter case, we take note of how Newton’s laws of motion
get modified when their consequences are measured in a frame of
reference spinning relative to the ‘absolute space’ in which these laws were
first stated by Newton.

Thus, implicit in the assumption that equates the two methods is the
coincidence of absolute space with the background of distant stars. It was
Ernst Mach in the last century who pointed out that this coincidence is
nontrivial. He read something deeper in it, arguing that the postulate of
absolute space that allows one to write down the laws of motion and arrive
at the concept of inertia is somehow intimately related to the background
of distant parts of the universe. This argument is known as ‘Mach’s
principle’ and we will analyse it further.

When expressed in the framework of the absolute space, Newton’s
second law of motion takes the familiar form

P = mf. (8.27)

This law states that a body of mass m subjected to an external force P
experiences an acceleration f. Let us denote by § the coordinate system in
which P and f are measured.

Newton was well aware that his second law has the simple form (8.27)
only with respect to S and those frames that are in uniform motion relative
to S. If we choose another frame S’ that has an acceleration a relative to
S, the law of motion measured in S’ becomes

P'=P — ma=mf". (8.28)

Although (8.28) outwardly looks the same as (8.27), with f' the
acceleration of the body in §’, something new has entered into the force
term. This is the term ma, which has nothing to do with the external force
but depends solely on the mass m of the body and the acceleration a of
the reference frame relative to the absolute space. Realizing this aspect of
the additional force in (8.28), Newton termed it ‘inertial force’. As this
name implies, the additional force is proportional to the inertial mass of
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the body. Newton discusses this force at length in his Principia, citing the
example of a rotating water-filled bucket (see Figure (8.2)).

According to Mach, the Newtonian discussion was incomplete in the
sense that the existence of the absolute space was postulated arbitrarily
and in an abstract manner. Why does S have a status in that it does not
require the inertial force? How can one physically identify S without
recourse to the second law of motion, which is based on it?

To Mach the answers to these questions were contained in the
observation of the distant parts of the universe. It is the universe that
provides a background reference frame that can be identified with
Newton’s frame S. Instead of saying that it is an accident that Earth’s
rotation velocity relative to S agrees with that relative to the distant parts
of the universe, Mach took it as proof that the distant parts of the universe
somehow enter into the formulation of local laws of mechanics.

One way this could happen is by a direct connection between the
property of inertia and the existence of the universal background. To see

(a) (b)

Fig. 8.2 (a) A bucket full of water hanging by a rope tied to the ceiling. (b) The
same bucket turning round and round as a result of the rope unwinding itself from
a previously given twist. The water surface in (a) is flat and horizontal, while that
in (b) is curved inwards. This curvature of the water surface is due to the
centrifugal force that acts on the rotating water mass. This example was discussed
by Newton in his Principia. Newton argued that in (a) the bucket is at rest
relative to the absolute space, while in (b) it is rotating relative to the absolute
space and hence an extra force or forces must be postulated to explain the
curvature of the water surface. The centrifugal force is the extra force in this
example. -
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this point of view, imagine a single body in an otherwise empty universe.
In the absence of any forces (8.27) becomes

mf =0.

What does this equation imply? Following Newton, we would conclude
that f = 0, that is, the body moves with uniform velocity. But we now no
longer have a background against which to measure velocities. Thus f = 0
has no operational significance. Rather, f should be completely indeter-
minate. And it is not difficult to see that such a conclusion follows
naturally, provided we argue that

m=0. (8.29)

In other words, the measure of inertia depends on the existence of the
background in such a way that in the absence of the background the
measure vanishes! This aspect introduces a new feature into mechanics not
considered by Newton. The Newtonian view that inertia is the property of
matter has to be augmented to the statement that inertia is the property of
matter as well as of the background provided by the rest of the universe.

Such a Machian viewpoint not only modifies local mechanics, but it also
introduces new elements into cosmology. For, except in the universe
following the perfect cosmological principle, there is no basis now for
assuming that particle masses would necessarily stay fixed in an evolving
universe. This is the reason for considering cosmological models anew
from the Machian viewpoint. Presented here are some instances of how
different physicists have given quantitative expression to Mach’s principle
and arrived at new cosmological models.

8.6 The Brans—Dicke theory of gravity

In 1961 C. Brans and R. H. Dicke provided an interesting alternative to
general relativity based on Mach’s principle. To understand the reasons
leading to their field equations, we first note that the concept of a variable
inertial mass arrived at in section 8.5 itself leads to a problem of
interpretation. For, how do we compare masses at two different points in
spacetime? Masses are measured in certain units, such as masses of
elementary particles, which are themselves subject to change! We need an
independent unit of mass against which an increase or decrease of a
particle mass can be measured. Such a unit is provided by gravity, the
so-called Planck mass encountered earlier:
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12
(%) ~2.16 X 105 g. (8.30)
Thus the dimensionless quantity
G 1/2
X= m( hc) (8.31)

measured at different spacetime points can tell us whether masses are
changing. Or alternatively, if we insist on using mass units that are the
same everywhere, a change of y would tell us that G is changing. (We
could of course assume that # and c also change. However, by keeping #
and ¢ constant we follow the principle of least modification of existing
theories. Thus special relativity and quantum theory are unaffected if we
keep # and c fixed.) This is the conclusion Brans and Dicke arrived at in
their approach to Mach’s principle. They looked for a framework in which
the gravitational constant G arises from the structure of the universe, so
that a changing G could be looked upon as the Machian consequence of a
changing universe.

In 1953 D. W. Sciama had given general arguments leading to a
relationship between G and the large-scale structure of the universe. We
have already come across one example of such a relation in the Friedmann
cosmologies:
si1}
anG 1

If we write Ry =c/H, as a characteristic length of the universe and
My= 477p0R(3,/3 as the characteristic mass of the universe, then the above
relation becomes

Po=

1 M,
- = 0 ~2 — 8.32
G Ry 95" Roc 2 ( )

Given a dynamic coupling between the inertia and gravity, a relation of
the above type is expected to hold. Brans and Dicke took this relation as
one that determines G~! from a linear superposition of inertial contribu-
tion m/rc? being from a mass m at a distance » from the point where G is
measured. Since m/r is a solution of a scalar wave equation with a point
source of strength m, Brans and Dicke postulated that G behaves as the
reciprocal of a scalar field ¢:

G~ ¢, (8.23)
where ¢ is expected to satisfy a scalar wave equation whose source is all
the matter in the universe.
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8.6.1 The action principle

The intuitive concepts are contained in the Brans-Dicke action principle,
which may be written in the form
3
A=~ [ (R + 067 ¢F P (-0) 2 dx + A (834)
Notice first that the coefficient of R is c*¢/16m, instead of ¢3/167G as in
the Einstein—Hilbert action. The reason for this lies in the anticipated
behaviour of G as given in (8.33). The second term, with ¢, = d¢/3x*,
ensures that ¢ will satisfy a wave equation, while the third term includes,
through a Lagrangian density L, all the matter and energy present in the
spacetime region V. The energy momentum tensor T is related to A
through the relation (2.95). w is a coupling constant.
The variation of & for small changes of g leads to the field equations
8m W
Ry — j8uR = — —— T — —5 (1 — 385 1)
i ctp ¢

1
— — ($sik — guD9).
¢
Similarly, the variation of ¢ leads to the following equation for ¢:

R
200¢ — ¢rp* = - ¢’ (8.36)

This latter equation can be simplified by substituting for R from the
contracted form of (8.35). We finally get
0 = 8m
Qw + 3)c*
where T is the trace of T%. Thus (8.37) leads to the anticipated scalar
wave equation for ¢ with sources in matter, O being the wave operator.
Because it contains a scalar field ¢ in addition to the metric tensor gy,
the Brans—Dicke theory is often referred to as the scalar—-tensor theory of
gravitation.

(8.35)

T, (8.37)

8.6.2 Solar system measurements of

It is clear from these field equations that as w— « the Brans—Dicke
theory tends to general relativity (see Exercise 43). For w=0(1) the
theory makes significantly different predictions from general relativity in a
number of solar system tests. These tests were briefly reviewed in section
2.10 in the context of general relativity.
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The computation of perihelion precession of the planet Mercury gives
the prediction of this theory as (3w + 4)/(3w + 6) times the value given by
general relativity. Dicke and his colleagues suggested during the 1970s that
if the Sun is oblate, with a quadrupole moment parameter of
~ 2.5 x 1072, then the resulting change in its gravitational field would lead
to a perihelion precession of about 7 per cent of the observed (un-
explained) value of ~43arcsecond per century (see Exercise 44). Had
this been the case then the relativistic value of ~ 43 arc second would have
been too high, while a Brans-Dicke value for @ = 6 would have correctly
accounted for the residual of ~ 40arcsecond per century. However,
external studies for the Sun’s surface do not conform with oblateness even
of this order. Hence this test does not give any evidence for w as small as
6.

The bending angle of a light ray grazing a massive spherical object in the
Brans-Dickie theory is (2w + 3)/(2w + 4) of the relativistic value. Since
the accuracy of the radio and microwave measurements of the bending
angle is better than ~ 5 per cent and the angle agrees with the relativistic
value within this error, the parameter o has to be. as high
as ~ 10.

The lunar lasar ranging experiments, however, lead to the conclusion
that w = 29. Here again, the general relativistic value of the Earth—-Moon
distance is in excellent agreement with observations, and any departures
from it, if they are to be tolerated by the observations, have to be small
enough to demand a large value of w. Radar ranging to probe landers on
Mars places an even more severe limit on w by requiring that w = 500.

It therefore follows that at the Solar System level the Brans-Dicke
theory has to have a large value of w in order to survive, thus making it
practically indistinguishable from general relativity. However, even for a
large w this theory can produce interesting departures from general
relativity at the cosmological level. The following section outlines these
differences.

8.7 Cosmological solutions in the Brans—Dicke theory

We will consider only the homogeneous and isotropic cosmological models
in the Brans-Dicke theory. Accordingly, we start with the Robertson—
Walker line element and the energy tensor for a perfect fluid, as we did in
Chapter 4. The scalar-field ¢ is now a function of the cosmic time only.
Thus the field equations become
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28 8% + ke? 8 208 wd® ¢
25 + kc __ %P _ ¢ w¢2 _ i, (8.38)
s 52 o2 ¢S 20* &
82 + kc? 8me S w?
= + —. 8.39
S? 3pc? ¢S 6¢? 839)

Compare these equations with the corresponding ones (4.11) and (4.12) of
the Friedmann cosmologies. The conservation equation corresponding to
(4.15) is the same:

d
— (e83) + 3pS? = 0. )
s (e5°) +3p (8.40)
In addition, we have the field equation for ¢:
§3) = ——— (¢ - 3p). 8.41
1 65 - Gt W (8.41)

We anticipate that big bang solutions will emerge from these equations
and set the big bang epoch at t = 0. Then the integral of (8.41) is

hS3 =

¢ (2a) + 3) 2
where C is a constant. Two types of solutions are obtained, depending on
whether C =0or C #0.

f(e _3p)sidr + C, (8.42)

8.7.1 C=0

We will consider a simple example of this type, with k=0, p =0,
¢ = pc?. This solution is therefore analogous to the Einstein-de Sitter
model of general relativity. Write

t\4 t\8
fo fo
so that p o< ¢34 and the field equations give
2w+ 2 2
= = 8.44
3w+ 47 B 3w+ 4 (8.44)
and
(260 + 3)B¢0
= 8.45
Po 87Tt% ( )

The temporal behaviour of S and G (< ¢!) is illustrated in Figure 8.3.
It can be verified that as w-» « this solution tends to the Einstein—de
Sitter model.

An analogue of the radiation model can be obtained in this theory (see
Exercise 47). H. Narizai obtained solutions for p = ne, with n in the range
Osn=< %
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872 C+0

In this case the ¢-terms dominate the dyhamics of the universe in the early
stages. Thus for small enough t we have
—_— - 3p)§3dr « |C], (8.46)
(2a) + 3)c f (€= 3p
for the cases both of dust and of radiation. For our power law solutions for
the case p = 0, we have at small enough ¢

S3¢oB
3A+B=1, to= 0(20 . (8.47)

In the case of a radiation-dominated universe, p = & and we can again try
a solution of the form (8.43) to get, as t — 0,
wB?

A?=—-AB + —6— (8.48)

Taking into account (8.47), we can solve (8.48) to get
0+ 1% [Qw/3)+1]¥2 g 1%3 [Rw/3) +.1]12
B 30 + 4 ’ N 30 + 4
The upper sign holds when C >0 and the lower sign when C <0. For
C>0, $—>0 when §— 0, while for C <0, ¢ > = for §—0. These
conclusions hold irrespective of the values of k£ or of the equation of state,

since at small values of § the dynamics of the universe are controlled by
the ¢-term.

. (8.49)

8.7.3 Production of light nuclei

Dicke and G. S. Greenstein independently investigated the nucleosynthe-
sis problem in the early Brans-Dicke universe. Greenstein followed the
same physical approach as was outlined in Chapter 5, for the case C =0.
The results obtained by him for k¢ = 1 are given in Table 8.1.

For each of three values of the present density of matter p,, Table 8.1
gives three sets of values for the deuterium and helium abundance,
corresponding to w =5, w = 10, and w = . The last case is of course that
of general relativity. The differences between. the Brans—Dicke theory and
general relativity are noticeable for w = S at high values of p, when more
’H and *“He are formed in the former theory. For o= 30, the present
observed abundances set an upper limit of py< 5x 1073 gecm™3 in the
Brans-Dicke cosmology.

In the ¢-dominated models, the constant C can be adjusted to produce
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Table 8.1 Mass fractions of 2H and *He in Brans—Dicke cosmology for matter-
dominated models*

Po
(gem™)
@ 10—31 10—30 10—29
5 7.6 x 1074 2.6 X 1073 3.4 x 10-8
0.26 0.33 0.40
10 7.6 x 10~ 2.1 x 1073 ~10-°
0.26 0.30 0.35
© 6.6 x 1074 1.3 x 1073 ~10-1
0.25 0.27 0.29

¢ The deuterium fraction is given above the helium fraction.

any desirable abundances, high or low. For cosmic abundances lower than
the above value one has to choose a suitably low value of |C].

However, there is another observational handle on C, which is
described briefly below.

8.7.4 The variation of G

Since G « ¢!, a time-dependent ¢ will mean a time-dependent gravita-
tional constant. As seen from (8.43), we have for C =0

G 2 1 H

G 3w+4t o+l (8.50)
Thus |G| is of the order of Hubble’s constant unless o is large and its sign
indicates that the gravitational constant should decrease with time (see
Figure 8.3).

However, for a large enough |C|, the ¢-dominated solutions differ
significantly from the matter-dominated ones, even at the present
epochs. In this case, for C large and negative we can have G increasing
with time even at relatively recent epochs.

We will review the evidence for or against G-variation in Chapter 10.

8.8 The Hoyle—Narlikar cosmologies

We next consider another gravitation theory that may claim to have given
the most direct quantitative expression to Mach’s principle. This theory
was first proposed in 1964 by Fred Hoyle and the author, and we will refer
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Fig. 8.3 The temporal behaviour of S and G. Both are plotted on a log log plot
for w = 6. The scales are arbitrary.

to it here as the HN theory and to the cosmological models based on it as
HN cosmologies. Throughout this discussion we will set ¢ = 1.

Like general relativity and the Brans—Dicke theory, the HN theory is
formulated in the Riemannian spacetime. However, there is one impor-
tant difference between this theory and every other cosmological theory
we have discussed so far. The difference lies in the fact that general
relativity, the Brans-Dicke theory, and so on are pure field theories,
whereas the HN theory is based on the concept of direct interparticle
action. The difference between the two types of theories is best seen in the
description of electromagnetism, to which we will frequently refer in this
section and the next for comparison. Until the advent of Maxwell’s field
theory, it was customary to describe electrical and magnetic interactions as
instances of direct action at a distance between particles. The success of
Maxwell’s theory established the field concept in physics at the expense of
the concept of action at a distance (see Figure 8.4).

Since Mach’s principle (implying as it does a connection between the
local and the distant) suggests action at a distance, even an early convert
to it like Einstein later became sceptical as to its validity. However, by the
early 1960s it became clear that action at a distance can successfully
describe electrodynamics and that it has interesting cosmological implica-
tions. Since Hoyle and the author had played an active role in these
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Action at
8  adistance
P d
. P d
~
P d
A
a
(a)
Field
theory
a b

(b)

Fig. 8.4 (a) In the action-at-a-distance picture the influence from the point A on
the world line of particle a is transmitted directly across spacetime (along the
dotted track) to the point B on the world line of particle b. (b) In field theory the
field in the neighbourhood of A (shown by the shaded region) is disturbed; the
disturbance propagates across spacetime as a wave in the ambient field and
reaches the neighbourhood of B. The disturbance then exerts a force on b at B.
This is how the mfluence propagates from a to b.

developments, they naturally adopted an action-at-a-distance approach to
Mach’s principle.

Accordingly, we use here the somewhat unfamiliar notation of action at
a distance. Let us denote by a, b, . . . the particles in the universe, m,, e,
being the mass and charge of the ath particle. As implied by Mach (see
section 8.5), the mass m,, is not entirely an intrinsic property of particle a;
it also owes its origin to the background provided by the rest of the
universe. To express this idea quantitatively, write

my(A) = A, >, m®(A). (8.51)
b*a

The above expression means the following. At a typical world point A on
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the world line of particle a, the mass acquired by g is the net sum of
contributions from all other particles b(# a) in the universe. The
contribution from b at A is given by the scalar function m® (A). The
coupling constant A, is intrinsic to the particle a. However, notice that if a
was the only particle in the universe then m, would be equal to zero and
we would have the conclusion arrived at in (8.29).

8.8.1 A digression into electromagnetic theory

What are these functions m®)(X)? That they communicate the property
of inertia from particles b to any particle placed at the spacetime point X
is clear from the context. To arrive at a suitable form for them we take
hints from action-at-a-distance electromagnetism, in which it is usual to
introduce electromagnetic disturbances that arise specifically from sources,
that is, from moving electrical charges. Accordingly, we introduce the
4-potential A{P)(X) as denoting the electromagnetic effect at X from the
electric charge b. The A{?)(X) satisfies the wave equation

DAY + RFAY = 4aJ?), (8.52)

where J Sb) is the 4-current generated by the charge b. The solution of
(8.52) may be written in the integral form

SAP(X) = 47 [ e,Gu(X, B)dbt, (8.53)

where G (X, B) is a Green’s function of the wave operator (g¥0 + RF).
The well-known Coulomb potential is a special case of (8.53).

The Green’s function is not uniquely fixed from the form of the wave
operator alone. Boundary conditions must also be specified. The custom-
ary boundary condition is that imposed by causality; that is, the influence
from B to X must vanish if X lies outside the future light cone of B. The
Green’s function satisfying this condition is called the retarded Green’s
function. We will denote such a Green’s function with a superscript R.
Similarly a Green’s function confined to the past light cone of B is called
the advanced Green’s function and is denoted with a superscript A (see
Figure 8.5).

These Green’s functions have played a key role in action-at-a-distance
theories. It was originally believed that action at a distance must be
instantaneous and hence inconsistent with the framework of special
relativity. However, K. Schwarschild, H. Tetrode, and A. D Fokker
demonstrated during the first three decades of this century that a
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Fig. 8.5 The retarded Green’s function of B is nonvanishing only in the future
light cone of B, while the advanced Green’s function is nonvanishing only in the
past light cone.

relativistically consistent action-at-a-distance theory can indeed be form-
ulated. If we consider two spacetime points A and B, with s%5 as the
invariant square of the relativistic distance between them, then 8(s%5),
where & is the Dirac delta function, is a convenient function for
transmitting physical influences between A and B. For, this function acts
only when A and B are connectible by a light ray (that is, when s%5 = 0).
This delta function therefore necessarily occurs as the main component in
any Green’s function in the action-at-a-distance theory. The action
principle, which is the basis of the electromagnetic theory in Reimannian
spacetime, is described below. We start with the action

= ~SSdnes, | [ Gudal abr, (5.54)

a <b
where G is the symmetric Green’s function given by
Gu(A, B) = }[G}(A, B) + Gii(A, B)]. (8.55)
Thus Gy (A, B) = Gy(B, A) and each term in the action is completely
symmetric between each pair of particles. The action (8.54), together with

suitable cosmological boundary conditions, reproduces all the electro-
magnetic effects of the standard Maxwell field theory.
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That cosmological boundary conditions are necessary in the action-at-a-
distance framework is seen from the following simple illustration. Any
retarded signal emitted by particle @ will get an advanced reaction back
from b, as shown in Figure 8.6. Thus the theory admits advanced signals
and appears to violate causality. Moreover, in Figure 8.4 the signal from b
arrives at a at the same time as the original signal left a, no matter how far
away b is! Thus electromagnetism ceases to be a local theory: any
so-called local effect must take account of the response of the universe,
which consists of reactions from all such parties b other than a. A ‘correct’
response can cancel all the acausal effects. This was pointed out first by J.
A. Wheeler and R. P. Feynman in 1945. Later, between 1962 and 1963, J.
E. Hogarth, F. Hoyle, and the author showed that this response depends
on the model of the universe. In essence, to produce the correct response
the universe must be a perfect absorber in the future, i.e., it should be
able to absorb all electromagnetic signals directed to the future.

What is the response of the universe? It was shown by Dirac that when
an electric charge a accelerates, it suffers a force of radiative damping,
and that this force can be calculated by evaluating half the difference of
the retarded and the advanced fields of the charge on its worldline:

Q(a) = 3[FR(a) — FA(a)]. (8.56)
In the Maxwell field theory Dirac’s result had remained just a curiosity,
without a proper reasoning as to why the radiative reaction must be

D
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a b ] d
Fig. 8.6 A related signal (shown by dotted line) leaving point A on the world line
of a hits particles b, ¢, d, ... on points B, C, D, .. .. Their advanced response

returns to A along the same dotted track, no matter how far these particles are
from a. Thus even the remote parts of the universe generate instantaneous
responses to the retarded disturbance leaving A.
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determined by the above formula. In the Wheeler—Feynman theory the
‘correct’ response from the universe to the motion of a is precisely this!

Moreover, if we add (8.56) to the basic time-symmetric direct particle
field of a, viz.

F(a) = [FR(a) + FA(a)] (8.57)
we get the total effect in the neighbourhood of a to be a pure retarded
one. A correct response therefore eliminates all advanced effects except
those present in the radiation reaction. It is interesting (and significant)
that the steady state model discussed in this chapter generates the correct
response, while all Friedmann models fail to do so. Because of the crucial
requirement of perfect absorption, this theory is sometimes called the
‘absorber theory of radiation’.

8.8.2 Inertia and gravity

Our purpose in the above digression into electromagnetism was to show
that a similar approach to inertia leads us to a Machian theory of gravity.
In the case of inertia we note that the functions m(®)(X) are scalars and so
we have to deal with scalar Green’s functions. Thus we write

m®(X) = [1,G(X, B)ds, (8.58)
and the inertial action as
a=-33 [[1.45(a, B)ds,ds,. (8.59)
a <b

What is G(A, B)? Again we proceed by analogy with electromagnetism.

From symmetry consideration we need G(A, B) = G(A, B). Further,
we require G to be a Green’s function of a scalar wave equation. To fix G
completely we use another hitherto undiscussed property of Maxwell’s
electromagnetic theory known as conformal invariance.

8.8.3 Conformal invariance

Let us consider the transformation

g = Qgu (8.60)
where Q is a twice-differentiable function of coordinates x’ and lies in the
range 0 < Q < . Such a transformation is called conformal transforma-
tion. Given a spacetime manifold A with coordinates (x') and metric (gi),
we have through (8.60) generated another spacetime manifold A with the
same coordinate system (x!) but with a different metric (Q2g;). M and M
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are said to be conformal to each other. If M is flat M is said to be
conformally flat.

If we identify the corresponding points (with the same x‘) in At and M,
we will find that, in general, distances between the two points are
stretched or compressed when we go from M to M. However, the
null-cones in both the manifolds are unchanged. This invariance of null
cones is distinct from the invariance under coordinate transformations.
The coordinate transformations preserve the null directions locally, and
they are important in field theories that describe physical interactions
locally. The action-at-a-distance theories describe interactions globally and
must take account of the global structure of null cones. Hence such
theories are expected to preserve their form under conformal transforma-
tions as well.

It is easy to verify that the scalar curvature changes under the conformal
transformation to

— oQ
R= 9—2(R +6 E) (8.61)

where O is evaluated with respect to the metric (g;). There are, however,
certain quantities that do remain the same under a conformal transforma-
tion. These are known as conformally invariant quantities. It is easy to
see, for example, that the action describing Maxwell’s field theory is
conformally invariant. Consider the changes

A;=A;+vy,;  (y= ascalar function),
Fy = Fy, J=Q™J.
These changes leave the form of Maxwell’s equations intact.
We now fix the form of G(A, B) by demanding that our inertial action

(8.59) is conformally invariant. Since under the transformation (8.60)

ds, = Q(A)ds,, ds, = Q(B)ds,, (8.62)
we must have
G(A, B) = Q(A)'Q(B)"'G(A, B). (8.63)
The only scalar wave operator that permits (8.63) is then
\ o+ LR (8.64)
In other words, G(X, B) satisfies the wave equation
[ox + LR(X)IG(X, B) = [~g(X)]26,(X, B).  (8.65)

04(X, B) is the four-dimensional Dirac delta function, which vanishes
unless X = B. Thus we have ensured that the action-at-a-distance theory
given by (8.59) does not change under conformal transformations.
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8.9 The gravitational equations of HN theory

The action of HN theory is given by (8.59), and with the help of
definitions (8.51) and (8.58) we may write as

A= —Efma ds,. (8.66)

Written in this form, this action appears to have only the inertial term of
Chapter 2 (see (2.78)). How can such an action yield any gravitational
equations?

The answer to this question lies in the fact that the m;s in (8.66) are not
constants but depend on spacetime coordinates as well as on spacetime
geometry . For they are defined with the help of Green’s functions, which
in turn are defined in terms of spacetime geometry. Thus if we make a
small variation

8ik — Gk + Oik,
the wave equation (8.65) will change and so will its solution. Thus we will
have

G(A, B) - (A, B) + 6G(A, B),
and hence o — A + 6. We therefore have a nontrivial problem whose
solution may be expresed in the following way. To simplify matters we will

take all A, to be equal to unity. (Later we will relax this assumption.)
Define the following functions:

m(X) = 2m@(X) = j[mR(X) + m*(X)], (8.67)
H(X) = mR(X)mA(X), mp=my,... (8.68)
N(X) = 384X, A)[-g(X)] " ds,. (8.69)

As in the electromagnetic case, we have chosen the symmetric (half R +
half A) Green’s function. The gravitational equations then become

Ry — 384R = — 607" [Ty — §(g8x0¢ — ) (8.70)
—3(m{mg + m{mf — gugrimymy\,

together with the ‘source’ equation for m(X)
Om+ 1Rm = N. (8.71)
The derivation leading to the final set of equations of the theory may
appear somewhat long-winded to anybody uniamiliar with the techniques
of direct interparticle action. We have followed here the method used by
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Hoyle and the author, who arrived at this theory via their earlier work on
electromagnetism. As in the electromagnetic case, the universe responds
to a local event. To ensure causality and to eliminate advanced effects, the
correct response should be given by

Sm@A(X) = D m@R(X) = m(X). (8.72)

a a

Under these conditions the equations (8.70) further simplify to
6
Ry — 38uR = — ) [Tu + $(guDm? — m%) + (mamy — 38am'my)].

(8.73)

Had we adopted the standard field theoretical approach and introduced
a scalar inertia field m(X), we could have arrived at (8.71) and (8.73)
from the action given by

A= f(ﬁRm2 + mim)(—g) 2 d*x — Efmdsa. (8.74)

The action-at-a-distance approach, although unfamiliar to a typical
theoretical physicist, is useful in that it gives direct expression to Mach’s
principle. The physical interpretation of the field theoretical term (8.74) is
not so easy to see. For this reason, we have discussed the former approach
at some length. :

Notice that in the former approach our action (8.66) contained only the
last term of (8.74), but there m was made up of nonlocal two-point
functions. Here m is a straightforward field, with sources in matter whose
dynamical properties are defined through the first term in the above
action.

Since the property of conformal invariance was used in the formulation
of the theory, we expect the final equations (8.71) and (8.73) to exhibit
conformal invariance. This expectation is borne out. If (gy, m) are a
solution of these equations, then so are

G = Qgu, m=Q7 'm. (8.75)
Thus apart from coordinate invariance of general relativity, this theory
also shows conformal invariance.

We saw in Exercise 33 of Chapter 2 that the coordinate invariance of
the action leads to a conservation law for the energy momentum tensor. In
this case the conformal invariance of the action leads to a vanishing of

trace of the field equations. It may easily be verified that the trace of
(8.73) vanishes in view of (8.71). The vanishing of trace represents the fact
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that the problem is underdetermined. Just as the vanishing of T% in
general relativity shows that more solutions can be generated from any
given solution by coordinate transformations, so we can generate more
solutions through (8.75). All these solutions are physically equivalent,
provided we stick to the rule that Q does not vanish or become infinite.

Suppose we are allowed to choose an €2 in the above range that ensures
that

m = Q~1'm = constant = my. (8.76)

This choice of Q is possible provided m does not vanish or become infinite.
This conformal frame is called the Einstein frame; from (8.76) we get a
simplified form for (8.73):

Ry — 38aR = — Ty, (8.77)

with the constant k given by

K=—. (8.78)
my

Thus we have arrived at Einstein’s equations! At first sight we don’t
seemed to have gained anything. We have no new theory and hence no
new predictions, as in the Brans—Dicke theory. Closer examination,
however, reveals several ways in which this theory goes beyond relativity.

1. Our starting point was based on Mach’s principle. It is only in the
many-particle approximation, when the response condition (8.72) is
satisfied, that we arrive at the final Einsteinlike field equations. An empty
universe in relativity is given by

Rik = 0’
which can have well-defined spacetimes as solutions. Test particles in such
spacetimes will have well-defined trajectories. Such trajectories would not
make any sense according to Mach, since we no longer have a material
background against which to measure the motion of these particles. These

solutions in fact correspond to the f = 0 solutions of Newtonian theory. In
the HN theory an empty universe corresponds to

m=0, indeterminate g,

in accord with the Machian m = 0 solution of (8.29).

2. The sign of « is fixed arbitrarily in general relativity. Neither in the
heuristic derivation of Einstein nor in the Hilbert action principle is k
required to be positive. It is only when k is determined by reference to
Newtonian gravity in the weak field approxiriation (see section 2.9) that
we conclude that x<0. In the HN theory (8.78) shows that x must
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necessarily be positive. (This conclusion does not depend on our assump-
tion of A, = 1; the result follows whatever sign the A, are given.)

3. In the direct interparticle approach it is not possible to accommodate
the A-term of cosmic repulsion. Thus Occam’s razor automatically comes
into play. In relativity the A-term is still possible.

4. The transition from (8.73) to (8.77) is possible provided 0 < Q < .
What happens if we break this rule? Suppose in the solution of (8.73) we
had a hypersurface on which m = 0. If we insist on the transformation
(8.76) in a region that contains such a hypersurface, we have to pay the
price of Q — 0, which in turn produces spacetime singularities. The work
of A. K. Kembhavi in 1979 showed that the well-known cases of spacetime
singularities of relativity arise because of the occurrence of zero-mass
hypersurfaces in the solution of the equations (8.73). For a simple
example of this conclusion let us look at the standard big bang singularity
of relativity.

Consider the Minkowski line element (with ¢ = 1),

ds? = dr? — dx? — dy? — dz?, _ (8.79)

as a solution of (8.73). It is easily verified that the mass function satisfying
both (8.71) and (8.73) for a uniform number density N of particles is

m o« 12. (8.80)
This is the simplest possible cosmological solution in this theory.

If we now insist on going over to a frame with constant mass /1, then

from (8.75) we see that the appropriate Q must be given by
Q o 72, (8.81)

However, 2 vanishes on the hypersurface m = 0. The transformation to
the Einstein conformal frame is therefore ‘illegal’. The price paid for
insisting that /m = constant is that the resulting model has a geometrical
singularity at 7= 0. In fact it is easily verified that the new model is none
other than the singular Einstein—-de Sitter model. (Make the time
transformation 7 o ¢t/ to demonstrate this result explicitly.)

5. It is instructive to see how the phenomenon of Hubble redshift is
explained in the flat spacetime model of (8.79) and (8.80). Clearly, a light
photon travelling in Minkowski spacetime does not undergo redshift.
Consider, however, what happens to a light photon arriving at the
observer at the present epoch 7, from a galaxy at a distance r. This photon
originated in an atomic (or molecular) transition at time 7, — r.

From atomic physics, the wavelength of a photon so transmitted varies
inversely as the mass of the electron (making the atomic transition). From
(8.80) we see that if A is the wavelength of this photon and A, the
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wavelength of a photon emitted in a similar transition at 71, at the
observer, then

A m(7o) 75

l+7=—= = .

Ao m(to—r) (1o — r)z

Thus the redshift in the above HN cosmology arises from the variation of
particle masses.

6. A variable gravitational constant arises in the HN cosmologies if we
relax the assumption that A, are constants. If A, change with time then it is
possible to generate cosmological models in which G changes with time.
We will not discuss such models in detail. The result may be stated in the

form

(8.82)

—=—aH, (8.83)

where H is the Hubble constant of the epoch of measurement and « is a
constant of order unity.

It was shown by Hoyle and the author in 1972 that A, increasing with
time may be interpreted as creation of new particles in the universe. They
did not give a dynamic theory of matter creation (like the C-field theory of
section 8.2), but instead fixed the time dependence of A, by
an appeal to the Large Numbers Hypothesis. We next describe this
hypothesis and its implications for cosmology.

8.10 The Large Numbers Hypothesis

Physics is riddled with units of various kinds and with experimentally
determined quantities of various magnitudes. From this vast collection
certain constants emerge as having special significance in the framing of
basic physical laws; for example, the constant of gravitation G, the charge
of the electron e, and so on. The numbers expressing the magnitudes of
G, e, and so on depend on the units used. For example

e = 4.80325 x 10710 electrostatic units
‘= 1.60207 x 10~% electromagnetic units.
Clearly these numbers by themselves cannot have absolute significance.

However, certain combinations of these physical constants have no units
at all. For example, the combination 4, ¢, and e,

hc

w2 137.036 02, (8.84)

does not depend on the units used. It must therefore express some
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physical fact of absolute significance. Indeed, its reciprocal, e?/fic, known
commonly as the fine-structure constant, expresses the strength of the
electromagnetic interaction, which we believe to be an intrinsic property
of nature. A future more complete theory may well give a reason why this
constant has this particular value.

Given e, G, and the masses of proton and electron m, and m., we can
construct another dimensionless constant (that is, a constant with no
units):

eZ

———— =2.3x10% ~ 10, (8.85)
Gmym.

This constant measures the relative strength of the electrical and the
gravitational forces between the electron and the proton. Like (8.84), this
constant reflects an intrinsic property of nature. However, unlike (8.84),
the constant in (8.85) is enormously large! Why such a large number?

Perhaps the appearance of a large dimensionless constant might be
dismissed as some quirk on the part of nature. The mystery deepens,
however, if we consider another dimensionless number. This is the ratio of
the length scale associated with the universe, ¢/H,, and the length
associated with the electron, e?/m.c?. This ratio is

mec?

62 H()
Not only do we have another large dimensionless number in (8.86), but it
is of the same order as in (8.85).

We can generate another large number of special significance out of
particle physics and cosmology. Assuming the closure density p,., let us
calculate the number of particles in a Euclidean sphere of radius ¢/H, the
mass of each particle being m,. The answer is

4rr (c)3 3H§ c?

=3.7 x 109k ~ 10%. (8.86)

- 3my, ?0 8rG 2m,GH,
=4 x 107h5?
~ 10%, (8.87)

Thus, taking N as a standard we see that the large dimensionless numbers
of (8.85) and (8.86) are both of the order of N'2.

Reactions among physicists have varied as to the significance of all these
numbers. Some dismiss it as a coincidence with the rejoinder: ‘so what?’
Others have read deep significance in these relationships. The latter class
includes such distinguished physicists as A. S. Eddington and P. A. M.
Dirac.
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Dirac pointed out in 1937 that the relationships (8.86) and (8.87)
contain the Hubble constant H, and therefore the magnitudes computed
in these formulae vary with the epoch in the standard Friedmann model. If
so, the near equality of (8.85) and (8.86) has to be a coincidence of the
present epoch in the universe, unless the constant (8.85) also varies in
such a way as to maintain the state of near equality with (8.86) at all
epochs. With this proviso, the equality of (8.85) and (8.86) is not
coincidental, but is characteristic of the universe at all epochs. The proviso
also implies that at least one of the so-called constants involved in (8.85),
e, my, M., and G must vary with the epoch.

This proviso has been generalized by Dirac to what he calls the Large
Numbers Hypothesis (LNH). To understand this hypothesis we rewrite
the ratio (8.86) as that between the time scale associated with the
universe, Tg= H!, and the time taken by light to travel a distance in
order of the classical electron radius, ¢, = e?/m.c>. The LNH then states
that any large number that at the present epoch is expressible in the form

Tok
t. ]’

where k is of order unity, varies with the epoch ¢ as (¢/t,)* with a constant
of proportionality of order unity.

Applied to (8.85), therefore, the LNH implies that the ratio e?/
Gm,m. must vary as (¢/t) . Dirac made the distinction between e, m.,
m,, on one side and G on the other in the sense that the former are atomic
(microscopic quantities) while G has macroscopic significance. In the
Machian cosmologies, G was in fact related to the large-scale structure of
the universe. Dirac therefore assumed that if we use ‘atomic units’ that
always maintain fixed values for atomic quantities, then ¢, will be constant
and G « t71. That is, in terms of atomic time units the gravitational
constant must vary with the epoch ¢, with |G/ G|~ H.

We will now explore the implications of LNH for cosmology.

8.11 The two metrics

Clearly the variation of G predicted by the LNH goes against Einstein’s
theory of gravitation, which demands a constant G. As in the Brans—
Dicke theory, we are forced to modify the relativistic framework to
accommodate a varying G. Dirac approached this problem in the
following way.
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First he took note of the many solar system tests that are in favour of
general relativity (see Chapter 2) and argued that the theory should not be
abandoned altogether. Instead, Dirac proposed two scales of measure-
ment, one holding in atomic physics and the other in gravitation physics. If
we choose the atomic system, we will be able to describe atomic physics in
the usual way, that is, with constant values for the atomic constants like e,
h, me, m,, and so on. However, in this system G will be variable, since
Dirac considered it a constant belonging to gravitation physics. If on the
other hand we use gravitational units, then according to Dirac G will be
constant and atomic quantities will be found variable. And in these latter
units the gravitational phenomena can be described by the Einstein
equations (2.98).

These two units can be specified in Dirac’s framework by having two
different spacetime metrics. We will denote these by dsi and ds%
respectively for the atomic and gravitational systems (the subscript E in
the latter case committing us to Einstein’s equations of gravity.) We will
use these subscripts in general on any physical quantity to indicate what
system of measurement is being used. Thus, according to Dirac,

Gg, (me)a, (mp)A

are constants, while
GA’ (me)E’ (mp)E

are variable.

Returning to the astronomical tests of general relativity, we note that
the mass of the gravitating body (for example, the Sun) occurs in the
Schwarzschild solution. Clearly this mass, which is the gravitational mass,
must be a constant in the gravitational units. We denote this mass by Mg.
Any measurements made on the Earth however, use atomic systems (such
as spectrometers and atomic clocks), and before we interpret any
experimental result we must make sure that all observable quantities are
transformed to atomic units.

This argument tells us how necessary it is to know the ratio

- L (8.88)
dsy
and how the transformation is to be made of any physical quantity from
one system of units to another. Here we need a quantitative theory to
guide us, a theory that goes further than the above qualitative arguments
have so far taken us.
We also note another outcome of our solar system example. If we
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assume that our astronomical body has Ng nucleons, each of mass mg,
then we may write

Mg = mgNg = mgN, (8.89)

where we have dropped the suffix E on N because it is a pure number.
Whatever metric we use, we will count the same number of particles in the
gravitating body. In (8.89) we have Mg = constant, mg # constant, since
the latter is an atomic quantity. Thus N # constant. In other words, we
are forced to conclude that the number of nucleons in the body must
change with time. Again we need a quantitive theory to tell us how N
changes; but creation (or destruction) of nucleons in a macroscopic object
is demanded by Dirac’s argument.

So far we have not used the LNH, which started us on the two-metric
theory. Let us now see that it helps us in deciding how the nonconser-
vation of nucleon number in the body is regulated.

8.11.1 The creation of particles

If we go back to (8.87) and apply the LNH to N, we easily find that & = 2,
that is,

2
N(t) ~ (i) < £2, (8.90)
fe
In other words, the number of particles in the universe in the sense
defined in section 8.10 increases with ¢. Dirac has taken this result to
imply that particles are being continually created in the universe.

The creation can occur, according to Dirac, in two possible ways. In
additive creation the particles are created uniformly throughout space,
while in multiplicative creation the new particles occur preferentially
where matter already exists. Thus in the former mode creation occurs
mostly in intergalatic space, while in the latter mode creation occurs
mostly in the vicinity of existing astronomical objects.

Using these ideas we return to (8.89). In additive creation the
astronomical body will not acquire any significant number of new particles
and thus N = constant, giving

mg = constant (additive creation). (8.91)
In multiplicative creation N must increase as t* and hence

mg «< t~2 (multiplicative creation) (8.92)
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8.11.2 The determination of f

The connection between ds, and dsg can be fixed by considering the
motion of a planet (such as the Earth) around a star (the Sun). The
dynamic equation in the Newtonian approximation is

GM = v?r, (8.93)

where M = mass of the star, v = speed of the planet, and r = radius of the
orbit. The above relation is expected to hold in either of the two systems
of units, since GM/v?r is a dimensionless quantity. Also, with ¢ =1 the
speed v is dimensionless. Thus v = constant in either units. Next, in
gravitational units Mg = constant, Gg = constant, hence rg = constant.

If (8.85) is used with atomic units, we have

GA -~ t~1. (894)
Also, in multiplicative creation M, o t2 while for additive creation
M , = constant. Hence in these respective units

ra~t (multiplicative creation), (8.95)
ra~t1 (additive creation), ' (8.96)
thus we have
,
Ay (multiplicative creation), (8.97)
re .
and
ra .- .
— ~ ¢! (additive creation). (8.98)
T

In other words, measured in atomic units, the distance of the planet from
the star increases with ¢ if the universe has multiplicative creation of
matter, and the distance decreases with ¢ (as t~1) for additive creation.

From (8.97) and (8.98) we get the behaviour of § defined in (8.88). This
ratio of dsg to ds, behaves as ¢! or ¢, depending on whether we have
multiplicative creation or additive creation in the universe.

8.12 Cosmological models based on the LNH

Using the LNH, Dirac constructed cosmological models in both the
circumstances discussed above, namely for multiplicative and additive
creation. As in the case of standard cosmologies, the assumptions of
homogeneity and isotropy lead to the Robertson—Walker line element in
atomic units:
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dr?
1— kr?
How does the LNH determine k& and S(¢)? We reproduce below the
argument given by Dirac.

First we note that the metric proper distance at time ¢ between a galaxy
G at r = 0 and a galaxy at r = r is given by

ds} = c2dr? — 52(0[ + r2(d6” + sin? 6d¢?)|.  (8.99)

n dr
0 (1— kr2)12
According to the LNH, for large ¢ (that is, for ¢ >> t,) the expression for

S(t) should be ~ (¢/t.)* or ~In(t/t.). The (metric) recession velocity
corresponding to (8.100) will therefore be given by

d~ nt"f(r)™t or  d~t7f(ry). (8.101)

The constants multiplying (¢/t.)" or In(t/t.) in S(¢) must be on the
order of unity, and hence the constants implied in the (~) relation above
are also on the order of unity. It is then easy to verify that except for
n = 1, there exists an epoch either in the past (for n <1 or for S ~In¢) or
in the future (for n>1) when d = ¢ for any galaxy with r; >0. For
example, for n = } we find that for a galaxy that at present has d ~ 10 3¢,
the condition d = ¢ occurred in the past epoch given by

d=S(r) = S§()f(r1). (8.100)

Ty
tp = ( )-10_6te ~ 10%¢,.
L

That is, tp/ t. is a large number. However, by the LNH, ¢, is a constant
epoch when a significant event took place for galaxy Gi: its recession
speed became equal to ¢. Hence such a constant epoch should not

generate a large number. Therefore only the case
S(t) ~ (t/te) (8.102)
is permitted by the LNH.

The arguments given above could be criticized on the following
grounds. The epoch when d = c is not unique to the model as a whole; it
depends on f(r;) and hence on the galaxy chosen. So it is not necessary
that LNH should apply to this epoch. Nor is it clear why d = ¢ should be
considered significant. Nothing special happens to the galaxy in question
when its metric velocity of recession becomes equal to ¢ for the observer
at r = 0. No global property like the event horizon or the particle horizon
enters the argument.

Nevertheless, if we follow the argument frrther then we can write the
cosmological line element as
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2
ds‘z(,x = c2ds? — (At)2 %{—5 + r2(d62 + sin? 9d¢2) R (8.103)
— kr

where A is a constant. We next consider multiplicative creation. Since in
this case, from section 8.11,

dsg = t ldsy, (8.104)
it is easy to see that a transformation
dt
dtg = " (8.105)

gives us
dr? )
dsi = c2dtg — A? T + r2(d6? + sin? 0de¢?)|. (8.106)

Now we recall that the above line element must be a solution of
Einstein’s equations. In Chapter 3 we did obtain such a static solution for
homogeneous and isotropic dust with the use of the A-term (see section
3.2), namely, the Einstein universe with k = +1. With a suitable scaling of
the r-coordinate we can express (8.106) in the form (3.7). Notice,
however, that unlike the Einstein universe this Dirac universe does show
the phenomenon of redshift of galaxies. For, redshift measurements
involve comparisons of the rates at which atomic clocks run at the emitting
and receiving galaxies; and for such comparisons the line element (8.103)
instead of (8.106) must be used.

For additive creation the situation is more complicated. In the multipli-
cative creation case the gravitational mass of an astronomical object was
held constant in the gravitational units in spite of creation of new particles,
by letting the particle masses decrease with time. In the additive creation
case the particle masses remain constant even though their number
increases (see (8.91)). Dirac was therefore faced with apparent nonconser-
vation of energy. To conserve energy Dirac proposed that along with
positive mass particles an equal number of negative mass particles is also
created. The negative mass distribution is homogeneous and remains
undetectable by standard astronomical observations. In a completely
homogeneous situation, the positive and negative mass distributions
compensate gravitationally to produce flat Minkowski spacetime. The
formation of stars and galaxies by the accumulation of positive mass
particles in the actual universe is a result of small departures from this
completely homogeneous situation.

It is worth pointing out that when Dirac first proposed a cosmological
model based on the LNH between 1937 and 1938 he assumed no matter
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creation. In this model the number of particles per unit coordinate volume
is constant, as in standard cosmologies. Hence the number of particles per
unit proper volume goes as §$~3, and since the proper volume of the
universe goes as (¢/H)3, the number of particles in the universe denoted
earlier by N goes as

S—3(L)3 o (S)—3
H
However, by the LNH we know that

N o« t2. (8.107)
Therefore we have

1283 = constant,

that is,

S o 1153, (8.108)
Thus for no particle creation § increases much more slowly with ¢. (Of

course, this solution is ruled out if we apply the LNH to the function §, as
we did in the beginning of this section.)

8.12.1 HN cosmology revisited

Some of the ideas of Dirac are found in a version of HN cosmology
proposed by its authors between 1971 and 1972. In the HN cosmology we
considered the cases where A, A, ..., the constants that denote the
strength of the inertial interaction are true constants. However, if these
constants vary with time then new cosmological models emerge. In these
models the following properties hold: (1) there is particle creation at all
epochs in such a way that the LNH is satisfied, (2) in atomic units G
varies, while (3) in the gravitational units G is constant and particle
masses vary. Thus, the model is like the multiplicative creation model
later proposed by Dirac, although its motivation and quantitative details
were different. We briefly illustrate how this model works.
Consider a homogeneous and isotropic Minkowski universe given by
ds? = dr? — dr? — r? (d6? + sin? 8dg?), (8.109)
where we have ¢ =1 for convenience. Let n(r) be the particle number
density and A(7) the time-varying inertial coupling constant of (8.58). The
functions n(r) and A(7) vary in such a way as to compensate each other’s
effect; that is, to maintain

An = constant. (8.110)
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Thus the mass function m(t) is the same as if we had a universe of
uniform particle number density n = constant and fixed 4. As in (8.80) we
then get

m(t) o« 12, (8.111)
Since Gm? = constant, we get the gravitational constant in the Minkowski
framework as

Gy < 14 (8.112)
However, the mass of a typical particle is not m(r) but Am(r). To
determine it we need to know A(7). Hoyle and the author determined A(7)
from a requirement that the universe is opaque to electromagnetic
radiation along the future light cone. This requirement comes from the
absorber theory of radiation discussed in section 8.8. We omit the details
and quote the result.

This requirement fixes A(t) o 7! and n(r) < 7. It is then verified that

the LNH is incorporated by the fact that the dimensionless number

A2(r>n)V2 = constant = 0(1). . (8.113)
A conformal transformation,
dSE = QEdSM, QE o ‘L'z, (8114)

then takes us to the gravitational framework in which Gg = constant.
Also, the gravitational mass of an astronomical body remains constant.
Thus, as in Dirac’s multiplicative creation theory, the local solar system
tests give the same answer as in relativity.

To transform to atomic framework we need another conformal transfor-
mation:

dsp = Q4 dswu, Qy <1, (8.115)
By writing ¢ o 72 the line element now becomes
dsi = dt? — 2Hyt[dr? + r2(d6? + sin? 8d¢?)]. (8.116)
In this framework the gravitational constant varies as
Gy oct™l. (8.117)

There is therefore considerable similarity between this theory and the
model proposed by Dirac a few years later.

8.13 Conclusion

This brings us to the end of our brief excursion through some of the
better-known parts of alternative cosmologies. Our survey is by no means
exhaustive. We have not discussed such important models as
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the matter—antimatter symmetric cosmology of Alfven and Klein, the
Einstein—Cartan cosmologies, or Milne’s kinematic relativity; nor have we
discussed such unusual ideas as Segal’s chronometric cosmology or
McCrea’s notion of cosmological uncertainty.

Our purpose here was to summarize a few nonstandard cosmologies, in
order to show that ‘respectable’ cosmology has not been confined to the
standard Friedmann models, to the ideas outlined in the earlier chapters.
To what extent do the theoretical ideas (standard or nonstandard)
presented so far in this book stand up to observations available today? We
consider this question next.

Exercises
1 Discuss the considerations that led to the formulation of the steady
state cosmology. Are any of these considerations valid today?
2 What is the perfect cosmological principle? What shortcoming of
the ordinary cosmological principle is it designed to remove?
3 By considering various astronomical objects, arrive at a length

scale over which you would expect the PCP to apply. What are the
corresponding time scales over which you would expect the
universe to obey this principle?

4 Compute the scalar curvature R for the Robertson—Walker model.
Use the PCP to demand that R is constant and show that this leads
to § as specific functions of ¢ for k =0, 1. Use the constancy of
Hubble’s constant to deduce that k = 0.

5 Show that the deceleration parameter for the steady state universe
is equal to —1 at all epochs.
6 Deduce from the PCP and the local observation of a departure

from thermodynamic equilibrium that the steady state universe
must expand.

7 Show that if the steady state universe has a proper number density
n of sources each radiating with luminosity L, then the total
intensity in a solid angle dQ of the sky is given by F dQ, where

1 c
F=——1Ln|—}
167 " (Ho)
Estimate F by substituting characteristic values of L, n for galaxies

and deduce that the night sky is quite dark.
8 Discuss the validity of the following statement: ‘Of the various
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ways of resolving Olbers’s paradox, the only way open to the
steady state model is that of the expansion of the universe.’

Show that according to the C-field cosmology the rate of creation
of matter needed to sustain the steady state model is given by

Q=4x10"%plgcm3s71,

Using the result of Exercise 9, express the creation rate in terms of
solar masses per year per cubic megaparsec.
Discuss the merits and limitations of the C-field cosmology.
It is claimed that the steady state theory is readily testable and
therefore more prone to an observational disproof than the
standard big bang cosmology. Give examples to justify this claim.
Compare and contrast the C-field and the electromagnetic field.
Show with the example of the C-field that path-independent terms
in the action can lead to nontrivial results.
Show that in the absence of any other forces, a created particle in
the C-field cosmology follows a geodesic.
Show that in the C-field theory overall energy and momentum are
conserved when a particle is created.
Derive the form of energy momentum tensor of the C-field by the
variation of g; and setting the first-order variations of the action
equal to zero. Show that

ik _ ik
(g);k f & C;k'
Evaluate this relation near the spacetime point where a particle is
created and deduce the law of conservation of the 4-momentum.
Discuss the physical implications of the negativity of the C-field
energy.
Obtain the cosmological equations (8.12) through (8.14). Derive
the general solution of these equations for the case k = 0.
Consider a perturbation of the steady state line element of the

following form:

ds? = ggdxidx*, x0=ct,
8o = (1 + h00)7 gou = 0, Buwv = —(6yv + hyv)CZHot,
where h;, are general functions of spacetime coordinates. Further,
take the density and the flow vector as

p=—+ p1, u'=(1,0,0,0) + ul.
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Treating p;, ui, h,, as small quantities of the first order, show that
they decay with time as

p1 = Ae 3Hot 4 BeSHot ui = ale>Ho,
hoo =0, By = &y + B 2Hot 4y, o730t 4 ¢ e=5Hor,
The functions A, B, @', a,, ..., £, depend on x*. Prove that

even the inhomogeneity corresponding to «,, becomes less and
less important as the universe expands.
Deduce that the flow vector of created matter has zero spin. What
implication does this result have for Mach’s principle?
Deduce the solution (8.16) for the explosive creation process.
Relate the parameters of your solution to the amount of matter
created in the universe. In particular, show that

t1 = to,
and that the maximum density occurs at ¢ = 0 and is given by fm?.
Consider a reservoir of energy & in a volume V that expands. Show
that if £> 0, expansion as well as conversion of energy to matter
will reduce & to zero in a finite time. Show further that if & < 0 this
conclusion is drastically altered.
Show that in steady state cosmology the redshift of a galaxy is
proportional to its radial proper distance from us.
Show that a steady state cosmology does not have a particle
horizon, but that it does have an event horizon of proper radius
¢/Hy. That is, show that a galaxy whose radial proper distance
from us exceeds c/H , cannot ever communicate with us.
Estimate the difference in apparent bolometric magnitudes of a
galaxy of redshift z =1 computed according to the steady state
model and the Friedmann model with g, = 1.
A family of radio sources with the same luminosity and with
energy spectrum given by ~ v~! as a function of frequency v are
being counted in the steady state universe. Show that the flux
density S varies with the source redshift z as

S o z72(1 + z)_z.
Calculate the slope dlog N/dlog S as a function of z where N is
given by (8.23). Tabulate this function for z = 107", n =4, 3,2, 1,
0. What do you conclude from this table?
In a universe with the line element

ds? = c2d¢? — §2(1)[dr? + r2(d6? + sin? 8de¢?)],
Q(¢, ) dr denotes the proper number density of galaxies at epoch
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t with ages between T and 7 + dr. Suppose that 7(¢) denotes the
rate (per unit proper volume) at which new galaxies are being
injected into the universe. Show that Q(¢, 7) satisfies the differen-
tial equation

oQ 3Q S

y + - +3 3 Q = n(t)(7).
Deduce from this equation the age distribution of galaxies in the
steady state universe.
Look up the rest mass energies of the neutron and the proton in
the Table of Constants at the end of this book. Assuming that ~20
per cent of this energy difference is acquired by the electron in the
pB-decay of the neutron, estimate the velocity and the kinetic
temperature of the electron.
For a density of hydrogen atoms of 2 X 10~ ¢cm~3 and a kinetic
temperature of 10° K, estimate the velocity of sound. Equate this
to the expansion velocity HyD according to Hubble’s law and
estimate the distance D of the irregularity that would develop in
the Gold-Hoyle hot universe where thermal pressures are pitted
against the force of universal expansion.
Compare the bubble universe with the inflationary models.
Discuss the bubble universe. Do you see any similarity between
the way the hot universe generates spatial inhomogeneities and the
way the bubble universe generates temporal unsteadiness? What
happens to the PCP in these models?
An expanding bubble may be considered as a cloud of gas moving
radially outwards. In a uniform spherical bubble with mass M(r)
within radius r the expansion is given by

_2GM(r)
===

-3

’:2

Suppose next that a supermassive object of mass u appears at the
origin when r=r,. Show that the cloud now expands to a
maximum radius given by

M
Fmax — (1 + '_—)ro.
u

In the bubble universe theory this idea serves as a basis for forming
an elliptical galaxy as a cloud of gas out to rp,, which is
gravitationally controlled by a supermassive object at the galactic
nucleus.
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Assuming that our Galaxy has been radiating at the rate of
4 x 10® erg/s for a time 3 X 10'7 s and that this energy is derived
from a conversion of hydrogen to helium, estimate how much
helium is formed in this way. (Energy of 6 x 108 ergg™! is
released when hydrogen is converted to helium.) Comment on this
answer in relation to the primordial mass fraction of helium
obtained in Chapter 5.

Describe the observations that still need to be explained if the
steady state cosmology is to stage a comeback as a viable
cosmological model.

Discuss how inertial forces arise in Newtonian dynamics. A stone
tied to a string is whirled around in a circle. How can the motion of
the stone be understood in terms of inertial forces?

What observation led Mach to formulate his famous principle?
Why is it unsatisfactory to conclude from mf = 0 for a particle in
an otherwise empty universe that f=0? Interpret any other
conclusion that could be drawn from the above equation.

Set up the problem corresponding to that described in Exercise 38
in general relativity. Does this theory provide a satisfactory
solution to the problem?

Construct a mass unit from the fundamental constants c, #, and G
that could be used as a standard to decide whether particle masses
change with epoch. Under what circumstances can we assert that
G is changing with epoch?

Give the qualitative argument of Brans and Dicke leading to the
conclusion that G ™! satisfies a scalar wave equation with sources in
matter.

Derive the field equations of Brans—Dicke theory from an action
principle. Why is the theory called a scalar—tensor theory?

Show that in the approximation w >> 1, the wave equation satisfied
by ¢ gives a solution

1
¢ = constant + O (—)
w

Interpreting the constant as proportional to G~!, show that the
Brans—Dicke field equations take the form

8nG 1
T T + 0(—).
ct w
In Newtonian gravity an oblate Sun “vill generate a gravitational
potential

Ry — %gikR = -
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GM,

¢ = 1-— J(—R;Q)ZPZ(COS 6)],

where J is the quadrupole moment parameter and P, is the second
Legendre polynomial. Show that the orbit of a planet precesses
because of the above gravitational effect at the rate
3mR%J/1?, while [ is the semi latus rectum of the orbit. Estimate
the precession rate for Mercury for J = 2.5 X 107>, What signific-
ance does this calculation have for the Brans—Dicke theory?
Discuss the Solar System tests of the Brans—Dicke theory.
Calculate the age of a Brans—Dicke universe for the simplest case
C=0, p=0, k=0. Does this model have a greater or a smaller
age than the corresponding relativistic model?

Show that for a radiation universe in Brans—Dicke cosmology with
C =0, we have S o t12 and ¢ = constant. Comment on why this
case gives exactly the same answer as relativistic cosmology.

Show that the inequality (8.46) is satisfied for a dust universe as
well as for radiation universe in Brans—Dicke cosmology with
C+#0. '

Derive the behaviour of § and ¢ as functions of ¢ in the early
¢-dominated Brans—Dicke universe.

Discuss primordial nucleosynthesis in the Brans—Dicke cosmology.
The Brans-Dicke theory can be re-expressed as a theory in which
G = constant but the particle masses change with epoch. Show that
this is achieved by a conformal transformation

8ik = g 8ik> ¢ = constant.

The field equations then become (in the new metric)
Ry — 384R = —«Ty,
where k is constant. Although these look like Einsteins’s

equations, the T contain ¢ and its derivatives. Show from the
new field equations that

871G _
—T
Qw + 3)c*
with G = constant. The form of the theory was obtained by Dicke
in 1962. The particle masses in this version vary as

m = m(¢/¢)"?,  m = constant.

Show that in a ¢-dominated Brans—Dicke cosmology it is possible
to have an increasing gravitational constant at an epoch ¢, provided

Olng¢ =
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2w+3)c

t
— 3dt < ~c?
[ e -3p)s c ( -
Illustrate qualitatively the difference between a field theory
and an action-at-a-distance theory by an example from electro-
dynamics.
Verify that in Minkowski spacetime the electromagnetic Green’s

function has the simple form
1
Gy = 4 8(s?) ik
T

where s? is the invariant square of the distance between the two
world points at which Gy is defined.

Use the Green’s function of Exercise 54 to drive the potential for a
static electric charge.

Show how the definition of mass in the HN theory satisfies Mach’s
principle.

Show by a time transformation that Robertson—Walker spacetime
with k = 0 is conformal to flat (Minkowski) spacetime.

Show with the help of the following series of transformations that
the £ = +1 Robertson—-Walker spacetime is conformally flat:

r =sin R, T = f S(u) c=1,
§=%(T+R), 17=§(T—R),
7=1(tan + tann), p= I(tan§ — tann).

What are the corresponding series of transformations to show that

the kK = —1 Robertson—Walker models are also conformally flat?
Show that the following tensor is conformally invariant:
Cl]k Rz}]lk + z(g — ghRy; + gikR]}'l - ginﬁ)

+ tR(gkg; — & ,-g,-k)-
This tensor is known as the Weyl conformal curvature tensor.
Show that a null geodesic is invariant under conformal transforma-
tions. .
Explain why conformal invariance should play an important role in
action-at-a-distance theories.
Show that Maxwell’s equations remain unchanged under a con-
formal transformation provided the potential and the field trans-
form as

A;=A;+v;, wpasuitablescalar, Fj = Fy.
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Alternative cosmologies

Verify by direct substitution that G(A, B) defined by (8.63) does
satisfy the conformal transform of (8.65).
Use the conformal flatness of the Einstein—de Sitter model to
calculate the explicit form of G(A, B) in that universe.
Suppose a symmetric Green’s function G(A, B) satisfies the wave
equation

OxG(X, B) = [-g(X)]"264(X, B).
Show that a small variation of the metric tensor in a region V'
produces a small variation of G(A, B) given by

5G(A, B) = | 8(~g"g)GR(A, X),GA(X, B). déx.

(Note that A and B need not lie in V')
Show that the action (8.74) leads to the field equation (8.73).
Compare the degree of underdeterminacy of the gravitational
equations of the HN theory with that of general relativity.
Show that any conformally invariant action leads to an energy
tensor of vanishing trace.
Discuss the aspects in which the HN theory of gravity differs from
general relativity.
Construct dimensionless constants from

(@) e,h,c; (b) G,my, h,c; (c) G, mp, c, Hy.
Which of the dimensionless constants of Exercise 70 are very large
or very small?
Compute N exactly for the closed Friedmann model with kg =1,
qo = 1. Show that N is constant at all epochs. Can this result be
reconciled with LNH?
Find the relation: connecting the three large numbers in (8.85),
(8.86), and (8.87).
Deduce from the LNH that the gravitational constant must
decrease with epoch at a rate (of fractional decrease) of the order
of Hubble’s constant.

- Give the arguments that led Dirac to postulate particle creation in

the universe.

Show that in gravitational units multiplicative creation demands
the particle masses decrease with time ¢ as 2.

In what way does the difference between additive and multipli-
cative creation show up in the long-term evolution of planetary
orbits? How are the orbital angular speeds of the planets affected
by the variation of G?
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Give the arguments based on LNH that lead to the conclusion that
the scale factor of the expanding universe can be proportional only
to cosmic time. Comment on the plausibility of these arguments
and compare them with Bondi and Gold’s derivation of the steady
state line element based on the perfect cosmological principle.
Derive the formula for redshift in the Dirac universe with
multiplicative creation. Explain how this redshift arises even
though the gravitational metric is static.
Plot the atomic time ¢, against the gravitational time tg for the
Dirac universe with multiplicative creation. Show that although the
Einsteinlike universe in the gravitational metric has tg¢ going to
— oo, the atomic time goes only as far back as 1, = 0.
Compare and contrast Dirac’s cosmological ideas on creation of
negative as well as positive mass with (a) Dirac’s ideas about
vacuum as a sea of undetectable negative-energy electrons and (b)
the cosmological reservoir of negative energy C-field in the steady
state cosmology.
Show that in Dirac’s cosmology with no particle creation the
gravitational constant decreases as

G

— = -3H.
G

Estimate this rate in terms of the present estimate of the Hubble
constant. How is this rate modified in the Dirac models with
particle creation?
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Local observations of cosmological significance

9.1 Introduction

In this chapter we will review those astronomical observations that
attempt to determine the large-scale structure of the universe from
relatively local surveys. These tests do not tell us about the geometrical
structure of the universe, since they do not extend far enough. Neverthe-
less, we shall see how even local measurements place restrictions on what
can be said about the distant parts of the universe. This may sound
paradoxical, but it is a consequence of the symmetry assumptions made by
most models of the universe, in particular the cosmological principle.
These models provide the background against which to assess the
observed data. Should an inconsistency develop in a particular model then
either the model is wrong or the data are imperfect (or both!). We will
encounter examples of both kinds of difficulties in the tests to be discussed
here.
Briefly these tests are as follows:

. The measurement of Hubble’s constant.

. The anisotropy of large-scale velocity field in our local neighbourhood.
. The distribution and density of matter in our local neighbourhood.

. The age of the universe and of the various objects in it.

. The abundance of light nuclei.

. The evidence for antimatter in the universe.

. The microwave radiation background in our local neighbourhood.

NN N R W

Since our main purpose is to compare theoretical predictions with
observations, we will refer to earlier chapters in the following discussion.
We will refer not only to standard cosmology but also to the various
nonstandard cosmologies discussed in Chapter 8.

A survey of observational cosmology today reveals a number of issues
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on which there are disagreements among different observers and theoreti-
cians. Sometimes the more important points of physical significance get
buried under heaps of numerical data. In some cases new data have
replaced old data, so that fresh interpretation becomes necessary. The
approach adopted in this text emphasizes the significant issues that the
observations are supposed to reveal rather than the many controversial
numerical details. While every attempt is made to present ‘up to date’
data, newer observations than those discussed here are bound to arise in
the course of time.

9.2 The measurement of Hubble’s constant

Modern cosmology began with Hubble’s observations, which were re-
ferred to in Chapter 1. Hubble obtained a value of hg~ 5.3 from his
original observations, whereas present-day observations suggest that A,
lies in the range 0.5 < hy < 1. The reader may wonder not only at such a
drastic change in A over the last six decades, but also at the fact that even
today considerable uncertainty exists about the true value of this impor-
tant parameter of modern cosmology. This section attempts to clarify the
situation.

To begin with, let us recall that the Hubble constant H relates the
redshift z of a nearby galaxy to its distance D from us:

cz = HyD. 9.1)
Therefore if we measure z and D for a number of galaxies (as Hubble
did), we should be able to estimate H,. The observations measure z fairly
accurately. The difficulties arise in estimating D. The large value obtained
by Hubble was due to the fact that he grossly underestimated the distance
of the galaxies in his survey.

Figure 9.1 shows, for example the original relation of Hubble alongside
the plot of the same extragalactic objects with modern revised distance
estimates. Readers may draw their own conclusions as to whether Hubble
would have got a linear relation with the revised data.

How does an astronomer measure distances of galaxies? We will outline
below the methods available to him, all of which follow the philosophy
outline by van den Bergh in 1975: ‘All determinations of the extragalactic
distance scale are ultimately based on the assumption that recognizable
types of distant objects are similar to nearby objects of the same type.” We
will see how this philosophy operates in practice.

Before we begin it is useful to introduce the concept of a distance
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Fig. 9.1 The Hubble plot by Hubble side by side with the modern plot with
revised distances of the same objects. (By courtesy of A. Hewitt).

modulus, which is familiar to the stellar astronomer. Recall that for an
object of luminosity L at a distance D from us, the apparent and absolute
magnitudes are defined by the formulae

m = —2.5log + constant, 9.2)

47 D?

M = —2.5log L + constant. 9.3)

The constant in (9.2) is fixed by assigning a given magnitude m = 0 to an
object with L/47D? =2.52 x 107% ergcm ~2s~!. The constant in (9.3) is
fixed by defining M as the apparent magnitude of an object if it was
viewed from a distance of 10 pc. Hence if D is measured in parsecs, (9.2)
and (9.3) give
m— M = 5log D, —5. .4
The stellar astronomer usually measures distances in parsecs. Hence the
above relationship is convenient to him. The cosmologist, on the other

hand, measures distances in megaparsecs. For him the convenient form of
(9.4) is therefore
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m— M = 5108 Dmpc + 25 = p. 9.5)
u is called the distance modulus.

If we substitute the Hubble relation (9.1) in (9.5) with Hy=
100 hokms™'Mpc~! and also subsitute the value of c¢=
2.997929 X 10° kms™!, we arrive at the following relation for the Hubble
law:

5log hg = 42.38 + (M — m) + Slogz
=4238+ u+ 5Slogz. (9.6)
It is therefore necessary to determine p and z for a galaxy in order to
estimate h.

9.2.1 Galatic extinction

The above definitions do not take into account an important correction
arising from the fact that we are looking at any other galaxy through our
own. Thus the flux of light from outside our Galaxy is liable to be partially
reduced by absorption and scattering within our Galaxy. The extinction
suffered by this light will depend on the column density; that is, on the
distance travelled by the light through our Galaxy and the density of
absorbing and scattering agents on the way. How much allowance should
be made for this effect? Clearly, the true luminosity of the observed
galaxy must be higher and its true absolute magnitude lower than the
corresponding values estimated without taking this correction into ac-
count. Accordingly, if we wish to use the above formulae then the
estimate of M must be reduced by an extinction function A.

Alternatively, if we know the true value of M for a distant galaxy, then
before calculating its distance modulus we must reduce its measured
apparent magnitude by A.

Observers are not unanimous on the value of A. A. Sandage and G.
Tammann use the following extinction law for blue magnitudes:

‘A =0for |b| >50°,

A = 0.13(|cosec b| — 1) for |b| < 40°, 9.7)
while G. de Vaucouleurs uses a uniform cosecant law
a = 0.20(|cosec b| — 1) (9.8)

for all galactic latitudes b. Figure 9.2 illustrates the galactic models
underlying these formulae. Already, it is clzar that different corrections
for extinction are liable to lead to different answers for k.
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Sandage-Tammann

_

(a)

de Vaucouleurs

(b)
Fig. 9.2 The Galaxy models assumed by (a) Sandage and Tammann and (b) de
Vaucouleurs to compute the extinction of visual light from outside our Galaxy. In
the former the absence of a shaded region at high latitude describes the
assumption that there is no extinction for |b| > 50°.

9.2.2 Measurements of extragalactic distance

The distances of planets and satellites within the Solar System are
accurately measured with the help of trigonometry and Kepler’s laws. The
distances of stars up to ~ 25t0 50 pc can be measured with the help of
trigonometric parallax. Going still further, a more reliable method is that
based on the Hyades main sequence. A comparison of the main sequence
of the Hyades cluster with the main sequences of more remote clusters in
our Galaxy enables us to measure distances of stars in these clusters.
These methods, however, do not work beyond our Galaxy. New tech-
niques are needed for measurements of extragalactic distances. We discuss
some more of them below.

Cepheid variables

Cepheid variables are a group of stars whose luminosity varies by about 10
per cent, but with a great deal of regularity. One can associate a period P
for one cycle of variation of each Cepheid variable. Though the first of
these variable stars, the star known as 6 Cephei, was discovered as early
as 1784 by John Goodricke, the crucial property that made the Cepheids
so useful for extragalactic distance measurement was discovered in 1912 by
Henrietta Leavitt. This property is a unique relationship between P and
the luminosity L of the star. Figure 9.3 illustrates this relationship.
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Absolute visual magnitude M

Period (days)

Fig. 9.3 Luminosity plotted on a logarithmic scale against period for a number of
Cepheid variables. The straight line illustrates the fact that their luminosity
increases with period, which enables us to calculate the luminosity of a distant
Cepheid by measuring its period. Thus in the above figure a Cepheid with period
of 10 days will have absolute magnitude M = —4. (Based on H. Arp, Southern
hemisphere photometry VIII: Cepheids in the small Magellanic Cloud, A. J., 65,
404.)

Because Cepheids are bright and variable, they can be detected in
nearby galaxies with relative ease. Thus if we detect a Cepheid in a galaxy
and measure its period, we can accurately estimate its luminosity L and
hence its absolute magnitude M. Then (9.5) gives its distance modulus and
hence the distance modulus of the galaxy in which it is located.

It was with the help of Cepheids that Hubble established the fact that
galaxies exist outside our own. His early work leading to the discovery of
the expansion of the universe was also based on Cepheids.

This method takes us to distances ~10 Mpc; that is, to galaxies in our
local neighbourhood.

Brightest star

This method of measuring distant galaxies makes use of the assumption
that in similar spiral Sc galaxies of comparable luminosities, the brightest
stars also have comparable luminosities. Since, as Hubble found in
galaxies M31 and M33, the brightest stars are significantly brighter than
the brightest Cepheids, this method takes us as far as the Virgo cluster of
galaxies; that is, to distances of ~ 10 to 15 Mpc.
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H I regions

H II regions are large domains of ionized hydrogen. These are found not
only in our Galaxy but also in others. The linear diameter of the largest
HII region, or better still the mean linear size of the three largest HII
regions, shows a strong variation with the luminosity and the luminosity
class (see section 1.3) of the parent galaxy. For dwarf galaxies this mean
size is as low as 75 pc, while for supergiant galaxies the size goes up to
460 pc. By comparing the angular sizes of such HII regions in remote and
nearby galaxies of similar type, we can estimate the ratio of their
distances. Then, if the distance of the nearby galaxy is known, the distance
of the remote galaxy can be estimated. Note that this method, unlike the
others so far mentioned, relies on the size rather than the luminosity of
the distance indicator.

Supernovae

A new technique based on supernovae has recently shown promise of
reliablility and does not require many arbitrary assumptions. Basically,
this method involves determining the actual flux of light at different
frequencies leaving the photosphere of the exploding star, and it does not
depend on other step-by-step methods of distance determination. The
method consists of measurements of the rate of expansion of the
photosphere of the supernova, and it makes use of a variant of a method
used by W. Baade in 1926 for variable stars.

If we approximate the photosphere (see Figure 9.4) by a blackbody of
temperature T and radius R, and suppose that its distance from us is D,
then its angular size 8 and the flux density f(v) at frequency v are given by

R
0=—, .
5 9:9)

R? 2whyv?

'ﬂwzfﬁ'ZiﬁﬁFiﬁ' (9.10)

(Here the redshift has been ignored.)
Thus we get from (9.9) and (9.10)
3 f(V)CZ(ehv/kT — 1) 1/2

06
2rhv?

(9.11)

Hence if we measure f(v) and T we can get 6. Further, if we measure R,
we get D from (9.9). Spectral scans of the continuum spectrum of the
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Fig. 9.4 The shaded region is the expanding envelope of scattering particles
around the photosphere. The surfaces of constant velocity V of the particles in
the envelope relative to the observer are shown (in idealized condition) as planes.
In the plane on the left V| is less than the photospheric velocity v,while in the
plane on the right V> v. The switch over from V< v to V> v can be related
to the extent of scattering produced by the particles in the envelope and is seen in
the line profiles of the supernova in the form of varying depletion. A study of the
line profiles enables the astronomer to fix the value of v.

supernova give a good estimate of 7. To measure R, R. P. Kirshner and
J. Kwan suggested the following method.

In this method we approximate the rate of expansion of the photosphere
by a constant value v, so that if the expansion started at ¢ = ¢ty when the
radius was R = R, then the radius at subsequent times is given by

R = U(t — to) + RO (912)
(constancy of v is justified by the fact that pressure in the interstellar
medium is negligible and the expansion is nearly free). The photosphere is
surrounded by a tenous atmosphere whose atoms scatter the photospheric
radiation. As explained in Figure 9.4, observation of the line profiles
enable us to measure v, the photospheric expansion velocity. This is
because in the expanding atmosphere some scattering atoms are moving
faster towards the observer and some slower than the rate at which the
photosphere is moving towards him. Thus there is a small Doppler effect
in the scattering process, and this affects the absorption line profiles.
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The photospheric velocity v corresponds to that velocity at which the
depletion of the continuum is maximum, if it is sharp and well defined. If
it is not sharp but has a flat trough, then the red edge of the depletion
trough represents the photospheric velocity.

This process is claimed to be relatively unambiguous and free from the
uncertainties surounding other methods that broadly require ‘similar
looking’ objects to have ‘equal’ physical parameters such as luminosity and
size. However, the method requires a good series of supernova observa-
tions, which may not be readily available in the galaxy whose distance we
want to measure.

H 1 line profiles of spirals

R. B. Tully and J. R. Fisher found a good correlation between the
luminosity of a spiral galaxy and its 21-cm line width, a correlation that
does not depend on galaxy type. Thus in principle, if we determine the
21-cm line profile of a remote spiral we can estimate its luminosity.
However, the line width is best determined for spirals viewed edge-on, but
for these the internal absorption in the galaxy is large. Thus the observer
is forced to use those spirals that are viewed at an inclined angle and yet
give a reasonably reliable line width. The distances of the M81 and M101
groups have been estimated this way after using data on the nearer
galaxies M31 and M33 for calibration.

Brightest galaxy

If we consider the thousand-odd galaxies in the Virgo Cluster, one galaxy,
MB87, stands out as being significantly brighter, more massive, larger than
the rest. It is an elliptical galaxy. A. Sandage noted that other, more
distant clusters of galaxies also contain similar dominating elliptical
galaxies. On the assumption (supported by observations of nearby
clusters) that such ellipticals have comparable luminosity, we can estimate
M and hence the distance modulus of clusters as remote as 1000 Mpc.

9.2.3 The Hubble constant

The above methods are some of the many used in obtaining extragalatic
distance estimates. These and some others have been visually summarized
in an ‘Eiffel Tower’ constructed by de Vaucouleurs, shown in Figure 9.5.
Notice that the distances are determined in progression from one stage to
the next. At each stage there is scope for errors of calibration. For
example, even a revision of the stellar distance scale, such as that of the
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Fig. 9.5 The Eiffel Tower shown here describes how cosmological distances are
measured in stages. The different levels used for calibration are shown starting
from the nearest at the first level and leading to the furthest at the top. ZAMS
stands for ‘zero age main sequence’, which refers to the method of measuring
distances using the Hyades main sequence mentioned in the text. (Based in C.
Balkowski & B. E. Westerlund, eds, Proceedings of the IAU~-CNRS Colloquium,
held in Paris, 6-9 September, 1976 (Paris: CNRS, 1977).)
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Hyades main sequence in our Galaxy, will lead to revision of all
subsequent scales. Such systematic errors were present in Hubble’s
original method, and when pooled together they gave a value of hy=5.
For example, the Cepheid period—luminosity relation available to Hubble
was incorrect. He also used too faint an absolute magnitude for the
brightest star in other galaxies. From (9.6) we see that a value of M will
lead to a high value of h.

Another major source of uncertainty comes in distinguishing the ‘true’
Hubble flow from the peculiar motions caused by other relatively local
inhomogeneities. In the following section we highlight this problem.

For these reasons, it would be wise on the part of the cosmologist to be
cautious about the exact value of Hubble’s constant. Sandage and
Tammann prefer a value of ho~ 0.5, while de Vaucouleurs prefers
ho~1.0. In view of the prevailing uncertainties of various distance
indicators, it is customary nowadays to say that s lies between these two
limits. Unless a dramatic breakthrough in extragalactic obsevations (such
as that promised by the Hubble Space Telescope) occurs, we have to live
with the conclusion that the best guess of A is in the range

0.5< hy=<1.0. (9.13)

9.3 The anisotropy of local large-scale velocity fields

The simple picture of a homogeneous and isotropic universe based on the
Robertson-Walker line element is now beginning to look oversimplified,
especially with the discovery of large-scale velocities that appear super-
imposed on the Hubble flow. Since by definition the Hubble flow is small
in our ‘local’ neighbourhood, it tends to get swamped by these other
velocities. It is an immensely complicated problem to untangle the two
and to pinpoint the causes of the non-Hubble velocities. Here we will give
the bare outline of the situation on theoretical and observational fronts,
beginning with the latter.

It was in the mid-seventies that work by V. C. Rubin, W. K. Ford, and
others gave a glimpse of the problem. The so called Rubin-Ford effect
showed that the Hubble constant is not isotropic when measuring the
radical velocities of 184 ScI and ScII galaxies (I and II are the van den
Burgh luminosity classes for spiral Sc galaxies, with ScI being the
brightest class of galaxies.) The anisotropy was of the dipole type and
could be accounted for by the assumption that our Galaxy is moving with
a substantial speed against the background of the galaxies. The speed was



The anisotropy of local large-scale velocity fields 301

(454 = 125) km s~ ! towards / = 163° + 15°, b = —11° + 14°
relative to the distant part of the sample and
(474 = 164 km s~! towards [ = 167° = 20°, b = 5° + 20°
relative to the nearer part.

This was the first indication that the Galaxy is not in the cosmological
rest frame.

9.3.1 The local distribution

The Nearby Galaxies Atlas published by Tully and Fischer contains
detailed maps of the distributions and speeds of galaxies in the relatively
local region. These maps are helpful in constructing the topography of the
nearby region. Figure 9.6 gives a schematic plot of the distribution over a
cubical region around our Galaxy, with each side of the cube measuring
approximately a speed differential of 10000 kms™!. (That is, if H is the
Hubble constant, the linear size is approximately H ™! times this value.
We may find it convenient to use speeds as distances in this way.)

The shaded region of the cube is the galactic zone of avoidance which is
perpendicular to the supergalactic plane (see Chapter 1). One may
consider the motions of these objects as made up of several components:

1. The flow towards the Great Attractor located at a distance of ~ 4200 kms™!
from the local group. The GA is located approximately at /= 309° and
b = +18° (galactic coordinates). The two Centaurus clusters are, for example,
falling into the GA with speeds ~ 1000 kms™~! (away from us).

2. The infall of matter towards the Virgo cluster.

3. The ‘Local Anomaly’ which appears to require a bulk velocity correction of
360 kms™! for a region extending from the Local Group out to distances of
700 kms™1.

4. The Hubble flow.

This multicomponent model had several parameters which can be
determined by the least-square technique, by using the Tully-Fisher
relation for spirals to measure their distances (see section 9.2) and the
redshifts for radial velocities. The model determines velocities which are
compared with the observed values and the differences are minimized by
the least-square method. This technique was first used in 1988 by the
‘Seven Samurai’, the authors D. Lynden—Bell, S. M. Faber, D. Burnstein,
R. L. Davies, A. Dressler, R. Terlevich, and G. Wegner. The broad
conclusions are as follows.
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Fig. 9.6 A cubical volume containing some significant large-scale structures in our
neighbourhood. Shown in the cube are GA: Great Attractor; V: Virgo Cluster;
CSC: Coma-Sculptor Cloud containing the Local Group; UM: Ursa Major
Cluster; Cen: Centaurus; FE: Fornax-Eridanus; Cam: Camelopardalis; PP:
Perseus~Pisces; PIT: Pavo-Induiis—Telescopium. (After S. M. Faber and David
Burstein, Motions of galaxies in the neighbourhood of the Local Group. In V. C.
Rubin & G. V. Coyne, SJ, eds, Proceedings of the Vatican Study Week on
‘Large-Scale Motions in the Universe’, Princeton, 1988, p. 118.)

The GA is a large mass attracting matter towards it, causing large-scale
streaming motion in its direction. On a smaller and nearer scale, the Virgo
Cluster has neighbouring galaxies falling towards its centre, including the
Local Group. However, the Local Group has a further anomalous motion
relative to the Virgocentric flow. It is perhaps too early to take all the
numerical estimates of speeds and direction as very accurate. More
observations in the future will certainly help in making these estimates
more reliable.
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There is, however, considerable discussion (at the time of writing this
book) as to whether the GA exists at all. For example D. A. Mathewson,
V. L. Ford and M. Buchhorn have measured the peculiar velocities of
1355 spiral galaxies in the southern sky and used the Tully—Fischer
relation to estimate their distances. They find no backside infall into the
GA region, rather they find a bulk flow of about 400 km s™! on scales of
100k, ! Mpc. Thus there is considerably doubt about the existence of an
attracting mass there.

An independant piece of information that we will consider in section 9.8
is the motion of our Galaxy with respect to the rest frame of the cosmic
microwave background.

9.3.2 The Hubble constant revisited.

We return to the question as to why the controversy over the value of H|
(i.e., whether hg=1 or ko= 0.5) persists. R. B. Tully has argued that the
local velocity anomaly is the culprit confusing the issue. The argument
may be illustrated by a simplified example.

Imagine a local mass concentration M superimposed on a Hubble flow.
At a distance R from the mass, the radially outward velocity V may be
given by

V= + HR = HR. (9.14)

(2GM)1/2
The first term is an inward velocity corresponding to a zero value at
infinity, while the second term is the Hubble flow with the Hubble
constant H. We may look upon (9.14) as a Hubble flow only, with an
‘effective’ Hubble constant

(9.15)

2GM\V?
Heff = H - ( ) .

R3

Thus the effective Hubble constant is smaller than the ‘true’ Hubble
constant, closer to the mass concentration. As we go away from M, the
effective Hubble constant approaches the true value.

Hence the possible presence of a mass concentration in the Coma-—
Sculptor Cloud that causes a local velocity anomaly couped with the
Virgocentric flow manages to reduce the value of Hubble’s constant for
relatively nearby galaxies and makes h closer to 0.5. However, more
remote samples of galaxies terid to give hp=1 which therefore cor-
responds to the true value of the Hubble constant.
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Tully estimates that the local anomaly may be caused by a mass of the
order 10'* M, as compared with the ~ 101> M in the Virgo Cluster. By
contrast, the Great Attractor mass may be as high as 5 x 101 M. These
values illustrate how important it is to chalk out the topography of the
universe both in mass and in velocities before drawing firm conclusions
about the values of the cosmological parameters.

We next consider the attempts to determine the mean density of matter
in the universe, a parameter that has far-reaching consequences for the
cosmological theories we have considered so far.

9.4 The distribution and density of matter in our neighbourhood

In Chapter 4 we introduced the density parameter Q, through the relation
3H}

s Qo = pS2, (9-16)

where p. is the present closure density in Friedmann cosmology. In

numerical terms, (9.16) implies
p=2x10"P(h3Q;) gem3. (9.17)

Thus a direct measurement of p, is of interest, since it places limits on the
parameters hg and €.

The present approach to the problem involves setting limits on the
density of matter in the form of galaxies, clusters of galaxies, and so on;
that is, matter in the standard luminous form. This is done as follows.
Suppose we know the average mass/light ratio for galaxies, which is
conventionally expressed in solar units:

M M
<—G> =n—-2, (9.18)
Lg Lo
Next we determine the mean luminosity density /g of galaxies. The best
value of /5 comes from the Revised Shapley Ames Catalogue and is given
by
Igs = 4.4 x 107 Lo hg Mpc™3  for spiral galaxies,
Ige = 17.4 x 107 Lgyhg Mpc™3  for E/SO galaxies.
The total luminosity density is therefore of the order
lG ~ 2.2 X 108L®h0 MpC—3. (919)

From (9.18) and (9.19) we then get the mean cosmological density in
the form of galaxies in our neighbourhood as



The distribution and density of matter in our neighbourhood 305

PG =2.2 X 1087]M®h0 MpC_3
~ 1.5 x 10732 nhggem3 (9.20)

What is the estimate for n? The main difficulty in estimating 7 lies in the
measurement of the galactic masses. By comparison, the measurement of
Juminosities is easy, the only uncertainty in the process arising from the
lack of precision in H,. We will briefly review the methods employed in
the measurement of 7 for various types of objects before summarizing the
results in Table 9.1.

9.4.1 Mass/light ratios

Methods of measuring 7 for individual galaxies and for clusters of galaxies
are summarized below.

Spiral galaxies
The best handle on the mass contained in a typical spiral is given by its
rotation curve. Figure 9.7 illustrates the principle by means of a flat,
disc-shaped object representing a circular distribution of stars moving
round a common centre C. The rotation velocity v of a star S at a distance

Fig. 9.7 Galactic disc approximated as a system of stars S moving in circular
orbits round a commcn centre C. The velocity v of S is governed by Newton’s
laws of gravitation and motion.
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r from C is related (in an equilibrium distribution) to the gravitational
force F, acting on S towards the centre:

02

m—-= F, (9.21)
Therefore if we have v as a function of r, we get F, as a function of r.
Then, by Newton’s law of gravitation (which is applicable here because
the gravitational fields are weak), we can determine the mass distribution.
For example, if most of the mass was concentrated in the nuclear region
around C then we would have F,or~2 and v o r~2, The light
distribution across a spiral galaxy does suggest the above to be a good
approximation. However, in actual fact the rotation curve — the function
v(r) — is flat for most galaxies. That is, after rising sharply outside the
nuclear region, v remains constant = v, (say). Moreover, this relation
extends well beyond the visible disc.

The implications of this result are either that there is more mass in the
outer parts of the galaxy than is indicated by its luminosity distribution, or
that Newton’s law of motion and the inverse square law of gravity might
not be valid over the galactic distance range (~ few kpc.) Taking the
former (and less radical) view, astronomers have estimated the masses of
spirals. S. M. Faber and J. S. Gallagher have listed the rotation velocities
and masses contained within the Holmberg radius (where the surface
brightness drops to ~ 26.5 m,, (arcsecond)™?) for 39 spirals. Since the
luminosities are also known, we can estimate the mean value of 7 for this
sample. The result is

n=~(9 = h,.

Elliptical galaxies
These galaxies show hardly any rotation, hence the rotation curve
technique employed for spirals fails here. Instead, the mass estimates are
based on the variation of the velocity dispersion ¢ across the galaxy.
In the spherical mass approximation the star distribution function in
statistical equilibrium attains the form

focexp— [@] (9.22)

where ¢(r) is the gravitational potential and (v?) = 302. Assuming that
the number density of stars varies as r~¢, the above relation and the
Poisson equation give the mass interior to radius r as
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ealr

G

If the luminosity density j(r) varies as the number density, the mass/
luminosity ratio varies as r¢2. It is not yet possible to make precise
statements based on observations about the value of €. Near the centre of
the elliptical galaxy, however, the observations of o are more precise.
I. King proposed a model of a galaxy in which

-3
j(r) =< (1 + ;—z) . (9.24)

M(<r) = (9.23)

This model works well in most cases. A notable exception is the giant
galaxy M87, for which it was argued by two sets of observers in 1978 that
the rapid increase of j(r), as well as a rapid increase of ¢ towards the
centre, indicates a concentration of mass in the centre over and above that
given by the King model.

The mean mass/light ratio in the central region of large ellipticals is
found to lie in the range

n= (10 + 2)h,.

Statistics of groups of galaxies

A catalogue of galaxies lists them by their coordinates on the celestrial
sphere, two galaxies with nearly the same coordinates being seen near
each other. However, can we be certain that groups of apparently nearby
galaxies are indeed close to one another and part of one physical system?
The answer is being sought along two different lines, both statistical in
nature and both leading to estimates of 7.

S. J. Aarseth, J. R. Gott, and E. L. Turner adopted the approach of
N-body simulations in which galaxies move under each other’s gravita-
tional pulls and tend to cluster together in small or large groups. A
comparison of such distributions with real galaxy catalogues helps in
identifying groups of galaxies and hence in estimating 7.

The other approach, pioneered by E.L. Scott and J. Neyman and used
extensively by P. J. E. Peebles and others, involves galaxy-galaxy
correlation functions. We referred to it earlier in Chapter 7. In this
approach the probability of finding a galaxy in a small volume SV at a
distance r from a typical galaxy is defined as

SP = n 8V[1 + E(r)] (9.25)

where n is the number density of galaxies on the average. In a uniform
distribution &(r) =0. A positive £(r) indicates enhancement of galaxy
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density near the typical galaxy, hence &(r) is called the two-point
correlation function.

In actual measurements the position vector r from the typical galaxy has
two components with respect to the observer. The radial component 7 can
be measured from the observed difference in the redshifts of the two
galaxies using Hubble’s law. The transverse component o is measured by
noting the angular separation of the two galaxies and multiplying it by
their mean Hubble distance. However, apart from the universal velocity,
the galaxies also have peculiar (random) velocities relative to their local
cosmological rest frames. Such velocities tend to distort the radial
component, with the result that if a plot is made of the two components of
r on a Cartesian coordinate system, then the distribution of points tends to
cluster round the axis corresponding to the radial component.

Using such plots for NGC and IC galaxies, Peebles concluded that a
reasonably good estimate of §(r) is given by

ro\?
E(r) = (—0) . y=1.77, ro = 4.2h5! Mpc. (9.26)
r

Aarseth and his colleagues arrived at similar results from their computer
simulations. The peculiar velocities of galaxies can be estimated from the
above-mentioned concentration effect, and the velocity dispersion comes
out as

(v?) 2= (600 *+ 250) kms . (9.27)

From this result we can estimate 7 as follows. The mean number of
neighbours within the characteristic distance ro~ R = 5hy! Mpc is given
by

R
N=n [ [+ &)

=42 (9.28)

for n =0.03h3 Mpc™ (estimated for bright galaxies). The peculiar velo-
city v; of ith galaxy having N; neighbours of mass M at distance R is
expected to be of the order

The result follows from the so-called virial theorem, which essentially
states that in the equilibrium N-body distribution an equipartition exists
between the kinetic and potential energy. From these results and from
estimates of ( N2) we get
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R(v}) (N:)
G(N?)
A detailed calculation using the data on luminosities then gives 7 in the
following range:

~5 X 102h5'M (9.29)

7 ~ (500 £ 200)A,.

Clusters of galaxies

Similar correlation-function analysis has been applied to Abell clusters up
to redshifts z < 0.2. The value of 1 comes out close to that for nearby
groups of galaxies:

1 ~ (500 % 100),.

As early as 1933 F. Zwicky pointed out what has now become well
known as the missing mass problem in clusters. The problem can be
briefly stated as follows. If we estimate the mass of galaxies moving in one
another’s gravitational field in a cluster, then the virial theorem gives the
mass of the cluster in terms of the velocity dispersion and the effective
mean radius:

M= (uz)g. (9.30)

From observations of the velocity dispersion {(v2)'? we can therefore
estimate the total mass M in the cluster. This value comes out consider-
ably higher than that estimated on the basis of mass/light ratios ng of
individual galaxies. That is, if we see n galaxies in the cluster and if the
total luminosity in the cluster is L, then the mass in the cluster is Lg.
Zwicky was the first to point out that

Lng <K M. (9.31)
For the Coma Cluster, for example, M|Lng ~ 30 (see Exercise 20).

We will return to the speculations about the implications of the above
inequality towards the end of this section.

The local supercluster

It was pointed out by G. de Vaucouleurs that we are situated in a region
that seems to be on the outskirts of a galaxy concentration centred on the
Virgo Cluster of galaxies located at a distance

D = 11k Mpc.
Estimates of the average mass/light ratio per galaxy in the supercluster are
still tentative, but are believed to be in the range
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Table 9.1. Average mass/light ratio per galaxy

Object nhy!
Our Galaxy (inner part) 62
Our Galaxy (outer part) 40 = 30
Spiral galaxies 9x1
Elliptical galaxies 10+ 2
Galaxy pairs 80 + 20
Local Group 160 = 80
Statistics of clustering 500 + 200
Abell clusters 500 + 200
Local superclusters 80 + 30

n ~ (80 £ 30)hy.
Table 9.1 summarizes the above results, as well as some others not
discussed here.

9.4.2 Dark matter

Returning to (9.20), we now see that the density parameter can be
determined, at least within broad limits, from the values given in Table
9.1. Since the estimate is based on galaxy data we will denote the estimate
of QO by QG'

According to Table 9.1, 7k, ranges between values of 4 and 700. This
gives the value of Qg in the extreme range

0.003 < Qg < 0.53. (9.32)

Note that this range does not depend on hy.

In the inflationary cosmology we require £, = 1. Clearly Qg falls short
of this value. Can we therefore conclude that the universe is open? Is
inflation ruled out? The answers are not so simple, however.

It is already noticeable that a considerable part of the matter in the
universe might be nonluminous. We have seen that if we stick to the
Newtonian inverse-square law of gravitation, the flat rotation curves of
spiral galaxies imply more mass in the outer regions in these galaxies than
is observed in the form of stars. In clusters of galaxies, the virial theorem
(which again is based on the Newtonian law of gravitation) demands
higher mass than observed.

In Chapter 5 we found that there are stringent limits on the baryonic
density of the universe, limits imposed by the observations of primordial
deuterium. We will review the deuterium evidence in section 9.6, but will



The distribution and density of matter in our neighbourhood 311

now take note of its implications for €. The large M/L ratios in Table
9.1 imply that even within the above limits there is a lot of baryonic
nonluminous matter. This could be in the following forms.

1. Low-luminosity stars and stellar remnants. One possibility is of ‘brown
dwarfs’, that is, stars with masses too low (< 0.08M ) for them to be able to
shine through nuclear hydrogen fusion. Such stars may form during the star
formation process but are very difficult to detect unless they are part of
binaries. At the other end of stellar evolution, high-mass stars may have
reached their final states of white dwarfs/neutron stars/black holes. But, as
calculated by B. Carr and others, the density in such remnants cannot
account for more then Q= 0.03; otherwise their integrated light intensity
would be unacceptably high.

2. Small solid bodies like comets, asteroids, dust grains, etc. But there is a limit
to how much these can contribute to €2,, because they are mostly made of
heavy elements whose abundances together do not exceed ~ 0.01 of the
hydrogen abundance.

3. Neutral and ionized gas in the form of hydrogen. This, however, is too small
in amount to account for dark matter. For example, the X-ray halo of M87
shows a gas content of only 3 per cent of the total mass of the galaxy.

There are also stringent limits on the intergalactic neutral hydrogen. In the
spectrum of a high red-shift (z >2) quasar, the blue side of the Lyman
a (A= 1215 A) line should show a significant dip in the continuum as a result
of en-route absorption by neutral hydrogen. In 1965 J. Gunn and B. A.
Peterson looked for this effect in the quasar 3C-9 and placed an upper limit
(on the basis of no detectable effect within the limits of sensitivity of
observations) of Q<4 x 10~-7hy'. Molecular hydrogen can also be ruled
out as a possible contender for dark matter on similar tests. The Lyman «
absorption line systems found in the quasars may be due to discrete clouds of
neutral hydrogen. However, most of the hydrogen in these intergalactic
clouds may have been photoionized by the quasar radiation, and hence these
data can be used to put an estimate of Quy =~ 1073, Further, the condition
that the clouds have not been overheated by conduction sets a limit on the
density of jonized intergalactic medium of Qyy; < 0.02k5°.

4. Massive black holes. These, with masses exceeding a few hundred solar
masses, might also be candidates for dark matter. Such black holes form from
the collapse of massive stars which do not explode as supernovae and so do
not eject heavy elements into the surrounding medium. (Smaller-mass black
holes cannot number too many, since they are formed by supernova
explosions and hence pollute the interstellar medium with the heavy ele-
ments.) Based on the maximum such effects seen, B. Carr and others have
argued that the coatribution to Q, from su~h black holes is not more than
~10-*. For the massive ones, however, another restriction applies.
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C. Canizares has argued that too many such massive black holes would
exaggerate the gravitational lensing effect on quasars. The absence of any
significant lensing distortion makes such massive black holes also negligible.

And so we are led to nonbaryonic alternatives, which are certainly
required if the inflationary cosmology with Qg =1 is to be believed. We
have considered various forms of the nonbaryonic dark matter in Chapter
7. At present none seem satisfactory for any scenario of structure
formation. None have been confirmed as ‘existing’ in laboratory experi-
ments. The nearest to experimental credibility are massive neutrinos, for
which there are conflicting claims of nonzero rest mass.

Can ‘inflation’ survive as an idea if astronomers see no direct evidence
for Q= 1? It can — by resurrecting the A term (see Exercise 22)! This, of
course, leaves the problem of the fine tuning of the A-term unsolved (see
Chapter 6).

9.4.3 q, and the deceleration of nearby galaxies

In Chapter 10 we will describe the attempts to estimate g, from the
Hubble diagrams of distant objects in the universe. As an illustration we
briefly mention an attempt initiated by A. Sandage, G. Tammann, and
A.Yahil in 1976 that made use of velocity measurements of nearby
galaxies.

From an examination of the nearby galaxies in the Revised Shapley
Ames Catalogue, these authors noted that our local group of galaxies has
a Hubble radial velocity of ~ 1000 kms™! relative to the Virgo cluster of
galaxies and that the Virgo cluster is surrounded by galaxies in all
directions in an extended spherical region that they called the Virgo
complex. Our local group is near the periphery of this complex. The mean
density excess in this complex is found to be

o)
()-
Po

Now- this density excess will produce a deceleration of galaxies in the
complex. The amount of deceleration depends not only on the excess but
also on the overall mean density p,. Working only within the Friedmann
framework of cosmology, these authors related pg to g, through (4.42) or
(4.58).

From the actual observation of the peculiar velocity field, it was then
possible to derive py (or gg) with the requirement that the decelerations
produced were compatible with the density excess of {Sp/py) = 3. If, for
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example, go were as high as 0.5, the expected peculiar velocity of the
Local Group towards the Virgo Cluster would have been 27000 km s™1
which is too high. Clearly gy <« 0.5, and the range of g, was claimed by
these authors to be =~ 0.06 + 0.015.

This method needs to be reviewed periodically as the data on the large
scale structure gets updated.

9.5 The age of the universe

The formulae (4.37), (4.51) and (4.64) give the age of the universe
according to the various Friedmann models. Since these formulae depend
on two parameters, Hg and g, (or £;), both of which have been discussed
above, we are now in a position to take a look at the problem of whether
the Friedmann age estimates are consistent with the various astrophysical
estimates of the age of the universe. Table 9.2 gives a few characteristic
values of the estimates of the Friedmann models for purposes of
comparison.

At present there are two different ways of estimating the ages of
galaxies, both of which have been applied to our Galaxy. A primary
requirement of consistency is of course that the age of a Friedmann model
(as given for example in the last column of Table 9.2) must exceed the age
of any object in it.

9.5.1 Stellar evolution

This method, applied to globular clusters in our Galaxy, is based on the
principle that stars become redder and brighter when they leave the main
sequence to become red giants. Since the red giant phase in the star’s life
lasts a comparatively short time, say up to about 10 per cent of the time
the star spends on the main sequence, the turning point from the main
sequence to the giant branch provides the cluster age with 10 per cent
uncertainty.

Let the cluster age, the time when the stars turn off from the main
sequence, be denoted by ¢, X 10° years, and let Y and Z be the helium
and metal abundances in the star at this stage. The calculations of stellar
evolution then show that

log . = 1.035 +2.085 (0.3 — ¥) — 0.03(log Z + 3).  (9.33)

Thus the age depends critically on the helium abundance Y. Y can be
estimated from a comparison of the lifetime a star spends on the
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Table 9.2. Ages of a few characteristic Friedmann models

Model ho Qo = 290 Age in 10° yr
Open (k = —1) 3 0 19.6
Open (k = 1) 1 0 9.8
Einstein—de Sitter (k = 0) : 1 13.0
Einstein—de Sitter (k = 0) 1 1 6.5
Closed (k = +1) : 2 11.2
Closed (k = +1) 1 2 5.6

horizontal branch to the time it spends on the red giant branch. If this
ratio is R, then calculations show that

Y =03-— 0.3910g£ (9.34)

where f =2 if the stellar model takes account of semiconvection and
certain other effects, while f =1 if these effects are not taken into
account. R can be estimated from the observed ratio of horizontal branch
stars and red giant stars in the cluster.

Cluster ages deduced by this method fall in the range from 13 x 10° to
18 x 10 years.

9.5.2 Nuclear cosmochronology

In 1960 F. Hoyle and W. A. Fowler first demonstrated how the relative
abundances of radioactive nuclei of long lifetimes can lead to estimates of
the age of our Galaxy. The method was already used for estimating the
age of the Solar System. For example, current observations of the ratios of
87Sr/8Sr plotted against ’Rb/%6Sr in different solar system materials (such
as meteorites) give the age accurately as tg=4.54 X 10° years. (See
Exercise 24.)

As illustrated in Figure 9.8, the method of nuclear cosmochronology
attempts to estimate the time elapsed before the Solar System was formed.
According to this method, we start our nuclear clock at ¢ = 0 with the
birth of the Galaxy. The stars evolve and the more massive ones become
supernovae, which manufacture long-lived radioactive nuclei in the
so-called r-process (the rapid absorption of neutrons by heavy nuclei). The
rate at which this process goes on is denoted by a function p(t), which
declines to negligible value at + = T. Between the epoch and the
formation of the Solar System there occurs a short time gap A, known as
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Fig. 9.8 Time chart showing how the age of the Galaxy is estimated. The details
are explained in the text. (Based on J. Audouze, Ages of the universe. In R,
Balian, J. Audouze, & D. N. Schramm, eds, Physical Cosmology, Les Houches
Lectures Session XXXII, p. 195 (Amsterdam: North Holland, 1979).)

the isolation time, during which we may ignore nucleosynthesis, in
particular the r-process. Thus the total nuclear age of the Galaxy is
g = T+A+t5. (935)

In brief, T and A can be estimated as follows. The formalism, a variation
on the earlier work of Hoyle and Fowler, is due to D. N. Schramm and G.
J. Wasserburg. We consider a series of nuclei i (i = 1,2, . ..) with decay
constants A; and production rates P;p(t). We also assume that the
abundance N; of nucleus i is reduced exponentially at the rate w owing to
dilution of stellar matter with external gas and the cycling of matter back
into stars. Thus N; satisfies the following differential equation:

dN;

dt
It is assumed that the relative production rate P;/P; of two nuclei i and j is
constant.

Equation (9.36)‘can be integrated from 0 to T to give
T

NAT) = Pe=t:+07T [ p(r)et+or dr. (9.37)

Between T and T + A we may ignore the @ and the P;p terms of (9.36)
and deduce

N{T + A) = N(T)e ™. (9.38)



316 Local observations of cosmological significance

For long-lived nuclei 4,7 > 1 and certain approximations can be made.
Define

_ PIN(T + A)
77 PNA(T + A) ©-3)
T
fo tp(t)dt
(0) =—F— (9.40)
[, pyar

It is easy to see that for p(t) = constant, (7) = T/2, while for p(t) < &(¢),
(7) =0. The value of (7) will in general lie between these two extreme
limits.

Simple algebra and calculus then gives, from (9.37) and (9.38),

T={(1)+ Ay — A (9.41)
where |
In R;;
Ay =—2L. 9.42
=y 9.4

Radioactive isotopes of thorium (??Th) and uranium (*®U) and more
recently the osmium ('8Os)-rhenium ('®’Re) pair have been used to
estimate A; and hence T and f;. The decay constants 4; and 4; and the
quantity R; are required. The ratio N(T + A)/N,(T + A) in R; is that
prevailing at the time of formation of the Solar System, and it can be
estimated from the present ratio in meteorites and so on and from the
knowledge of ¢5. The ratio P,-/P]- is taken from theories of nucleosynthesis.

Short-lived isotopes (4;T << 1) are used to estimate A. We have from
(9.37) and (9.38) '

N(T + A) = ; p(T) exp (—AA). (9.43)

Hence

1 A
A=———In(R; "] (9.44)

7

From the short-lived isotopes of iodine (!*I) and plutonium (***Pu) one
finds that A lies in the range between 1 and 2 X 108 years.

The nuclear age so estimated lies in the range between 6 and 20 billion
years, the width of this range indicating the span of uncertainties in the
various quantities used for determining the time intervals A; and (7).

Nevertheless, it is clear when these age estimates and the estimates from
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globular clusters are compared with those of Table 9.2, that models with
ho=1 and Q¢ =1 will find it very difficult to accommodate the above
astrophysical estimates of the age of our Galaxy. In particular, the
inflationary model is ruled out because it predicts Q = 1 unequivocally.

To make the problem easier for the conventional point of view,
attempts are being made to see whether the stellar and radioactive ages
can be brought down significantly. For example, if significant mass loss
occurs during the main sequence stage of stellar evolution then the time
spent by the star on the main sequence is reduced. (For it started with
higher mass and evolved faster.) Arguing in this way, L. A. Willson,
G. H. Bowen and C. Struck-Marcell claim that it may be possible to
reduce the ages of globular clusters to values as low as 7-10 X 10° years.
Likewise, W. A. Fowler and C. C. Meisl have recalculated the nuclear age
of the Galaxy using a time—dependent model for nucleosynthesis in which
an early ‘spike’ is followed by a uniform synthesis. They claim that the age
then comes down to 11 = 1.6 (10) billion years. Even these exercises,
however, do not help the inflationary model if sy ~ 1.

It is worth pointing out that the steady state model discussed in Chapter
8 predicts the average age of a galaxy as § H;!. For hy = 1, this average
will be ~ 3 billion years — very much lower than the above astrophysical
age estimates. It is nevertheless possible to accommodate older-than-aver-
age objects in the steady state model. For example, condensation in the
hot universe, which requires galaxies to form in groups at a time, can
explain why our Galaxy and its neighbours are older than the average age.
The age problem is therefore not so acute as in the steady model as it is in
the big bang models.

9.6 The abundance of light nuclei

It is generally recognized that nuclei with atomic weights A =12 are
synthesized in stars through various processes discussed in theories of
stellar evolution. The nuclei °Li, °Be, °B, and possibly 'B could be
produced in galactic cosmic rays by the breakup of heavy nuclei as they
travel through the interstellar gas. It is the lighter nuclei, in particular 2H,
*He, “He, and "Li, that appear to pose difficulties of production in stars in
the amounts observed. Further, their abundances are such that they could
have been produced in the big bang nucleosynthesis. We will therefore
discuss what constraints their observations place on standard cosmology,
as well as on other cosmologies discussed in Chapter 8.
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9.6.1 ‘He

The observed helium abundances (always denoted by mass fraction Y) in
the universe are quoted as lying in the broad range

0.13< Y <0.34. (9.45)

The scatter is wide because of the uncertainties of various observational
estimates. Further, the estimate of primordial helium in the Sun at the
time the Solar System formed ~ 4.54 X 10° years ago depends on the
model and hence cannot be uniquely fixed. M. Peimbert, S. Torres
Peimbert, and J. F. Rayo have suggested that the breakup of Y at any
location is as follows:

Y = YO + AY,
Yo=0.23 +0.02, (9.46)
AY =~ (2.5+0.5)Z,

where Y, = primordial helium abundance, AY = stellar helium abund-
ance, and Z = abundance of heavy elements made by stars. Since
Z < 0.02, it follows that AY < 0.06. Table 9.3 gives some indication of
the spread in Y and Z in various galaxies.

By way of comparison, the Orion Nebula in our Galaxy has Y = 0.280
and Z = 0.016. Further, F. Caputo, V. Castellani, and A. Martini have
reported that on the basis of the observed ratio of horizontal branch stars
to red giants in several globular clusters in the Galaxy (see (9.34)), the
Y -fraction is as low as 0.10.

More recently, E. Terlevich, R. Terlevich, E. Skillman, J. Stepanian,
and V. Lipovetskii have looked for helium content in extremely metal-
poor galaxies, since it would be closer to the primordial value. In the first
sample of such galaxies they find that the galaxy SBS5 0335-052 has
y =0.215 £ 0.01.

Clearly the survival of the theory of big bang nucleosynthesis depends
on such low values of Y becoming exceptions rather than the rule. Since
“He once produced and ejected in interstellar medium is difficult to get rid
of, low-Y objects have to be explained as arising from inhomogeneities in
the primordial setup. What is the tolerable range for the standard big bang
nucleosynthesis? ‘

It is helpful to go back to Chapter 5 and recall Figure 5.2, reprcduced
here as Figure 9.9. We note that in the primordial picture Y is relatively
insensitive to Ay and Q. However, the introduction of new leptons would
push up the neutron/proton ratio, and hence the value of Y,. The
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Table 9.3. Some determinations of Y and Z

Galaxy Y Z(A =12)
1Zw 18 0.233 0.0004
II Zw 70 0.250 0.0039
IC101 0.244 0.0039
I1 Zw 40 0.227 0.0041
NGC 6822V 0.243 0.0058
NGC 6822 X 0.250 0.0069
IC102 0.236 0.0075
NGC 4449 0.251 0.0091

Source: J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano, and S. Torres-Peim-
bert, 1979, ‘Chemical composition and evolution of irregular and blue compact
galaxies’, Astronomy and Astrophysics, 80, 155.
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Fig. 9.9 Primordial abundances of light nuclei as functions of the present density
of matter in the universe. The relation between py and 7 is given by (5.52). (After
R. V. Wagoner, The early universe. In R. Balian, J. Audouze, & D. N.
Schramm, eds, Physical Cosmology, Les Houches Lectures Session XXXII,
p- 395 (Amsterdam: North Holland, 1979).)
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following formula, due to R. V. Wagoner, summarizes this result for the
fraction 7 defined in (5.52) exceeding ~ 10~>:

Y, = 0.333 + 0.0195log 5 + 0.380log &. (9.47)

Here the fraction £=1 if no new particles except those considered in
Chapter 5 are assumed to be present in the early universe. In terms of our
notation of Chapter 6, this implies g =9. If there are more particles,
g— g+ Ag where Ag = Ag, + %Agf, and

=1+ % (9.48)

For Y,=0.25 and Q4 =0.01, only one new lepton is allowed, the
so-called 7-lepton with its 7-neutrino. It is interesting that the accelerator
experiments in high—energy particle interactions independantly corrobor-
ate this conclusion. If, however, Y, were as high as 0.28, then up to four
new leptons would be permitted by (9.48), whereas a value as low as 0.21
would land the standard model in real trouble. We state these limits
without comment, since at present it is hard to say what the ‘true’ value of
YO is. ‘

We have already commented on the implications for Y, in the
Brans-Dicke cosmologies (Chapter 8). These models were consistent
within the present range of uncertainties for an acceptable range of
parameters.

The cosmology that is truly in trouble is of course the steady state
cosmology. To produce the observed values of Y, this model must invoke
either increased stellar activity in earlier epochs (thus departing from the
strict application of the PCP) or the existence of supermassive stars of
mass = 108 M  in whose interior big-bang-like conditions can prevail for
sufficient time to generate the observed Y. Such a recourse might still be
needed even in the big bang cosmology if it turns out from the scatter in
the values of observed Y that there is no true Y.

Brans-Dicke cosmology is the only G-varying cosmology to work out
Yy in detail. Similar calculations will have to be done in other G-varying
cosmologies, since the fraction Y, depends sensitively on the rate of
expansion of the early universe (see Chapter 5), which in these cosmolo-
gies differs from the canonical big bang value considerably.

9.6.2 ’H

The deuterium abundance, which we will denote here by X(*H), was
measured mainly from the Lyman series absorption lines in the ultraviolet
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spectra of the bright stars observed with the Copernicus satellite. It is
found that
9% 10°< X(®*H)<3.5x%x1073.

Although a mean interstellar value of X(* H) =2 X 1073 is often quoted,
there is considerable variation in its value from cloud to cloud. It is not
clear whether these variations are due to partial destruction of the
primordial deuterium through various processes. It has to be destruction,
since so far no satisfactory stellar scenario for production of deuterium is
known. Thus the primordial value would correspond to the upper end of
the range of observations. At least we expect it to exceed ~2 X 1075,
(Contrast this situation with that for “He, for which there is no destruction
mechanism but for which processes of production exist in stars.)

Referring back to Figure 9.9, we see that by primordial abundance
X(?H) =2 x 107> implies that the baryonic density at present cannot
exceed 7 X 107! gecm ™3, which in turn sets an upper limit on the present
baryon density parameter (25 )o:

h3(Qp), < 0.0375. (9.49)

Thus, if matter in the universe is predominantly in baryons, the universe
must be open. Notice that since black holes are expected to be made of
baryons, the hypothesis that most of the deficit between Qpz and 1 is made
of unseen matter in the form of black holes is not tenable. The missing
mass or the unseen mass could be nonbaryonic, as discussed earlier.

9.6.3 "Li and *He

The "Li-abundance curve has a plateau with a dip, touching a minimum
value of Li/H of 10710 for = 3.2 X 10~1°, The observed data rule out the
plateau value of ~107°. Even the minimum value is only marginally
consistent with the minimum. The upper limit on Li/H by number was
placed at 0.8 x 1071° by K. C. Sahu, M. Sahu and S. R. Pottasch by
observing interstellar absorption in the direction of the Large Magellanic
Clouds. ‘

The standard hot big bang nucleosynthesis predictions have the merit of
being well defined. If there are discrepancies, what does one do? One way
tried is to consider an earlier epoch when the nucleons had not formed:
when the matter existed in the form of quark gluon plasma. The
introduction of inhomogeneity at this stage can lead to some parts of the
universe being ‘prcton-rich’, while some parts become ‘neutron rich’
compared with the standard neutron/proton ratio. It is then possible to
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have an additional parameter to get a better agreement between the
observed and predicted abundances of light nuclei. This method works
partially successfully, but cannot explain away the above 7Li problem.

The 3He nucleus does not provide a powerful check on cosmological
models because it could be produced in the observed amounts in stars.
Thus, by and large, only 2H and *He give us the most stringent limits on
the parameters of the early universe.

9.7 The evidence for antimatter

In Chapter 6 we discussed recent attempts to account for the predomin-
ance of matter over antimatter in the universe, attempts that make use of
the Grand Unified Theories (GUTs). How firm is the evidence that the
universe is indeed made up only of matter? During the late 1950s and
1960s, H. Alfven and O. Klein produced cosmological models that start
off with perfect symmetry between matter and antimatter. In their model,
which we will not discuss here in detail, the symmetric components of the
plasma that make up the universe are subsequently separated into
matter-dominated and antimatter-dominated regions by a hydromagnetic
process. Baryon-symmetric big bang models were also discussed by R.
Omnes, F. W. Stecker, and others in the late 1960s and 1970s.

In Chapter 6 we found that unless specific symmetry-breaking tech-
niques such as those proposed by the GUTs are employed, the standard
big bang universe would end up with a net baryon number zero. GUTs
attempt to explain not only why there is a net baryon number in the whole
universe but also why the photon/baryon number ratio is of the magnitude
implied by (5.57). By contrast, in the baryon symmetric cosmology there is
separation between regions of matter and antimatter, while the overall
baryon number is zero for the universe.

Theoretical speculations apart, what is the direct evidence for anti-
matter in the universe?

Space probes in the Solar System appear to rule out the existence of
antimatter there. Interaction with the solar wind would have produced
strong y-rays had any of the planets been made of antimatter. Since
observations beyond the Solar System are based largely on electro-
magnetic radiation, which treats matter and antimatter alike, it is hard to
obtain a firm answer to the above question for a star or a galaxy. Cosmic
rays do bring nuclei from the distant parts of the Galaxy (and even from
beyond the Galaxy). However, intensive searches have failed to detect
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significant antimatter nuclei in cosmic rays. A few antiprotons (1 part in
~ 10%) are found, but these could be produced by the interaction of
cosmic rays with interstellar matter. Nevertheless, heavy antinuclei cannot
be produced in this way and hence their detection in cosmic rays would
confirm the existence of antimatter in the universe. The present evidence
is somewhat tentative, though it cannot rule out a substantial antimatter
component in extragalactic cosmic rays.

Faraday rotation is one form of indirect evidence. This is the rotation of
the plane of polarization of light passing through a medium containing
charged particles and a magnetic field. Because they are light, electrons
(rather than protons) contribute more to the Faraday rotation. If positrons
were also present they would also produce Faraday rotation but in the
opposite sense. Since net Faraday rotation is observed in radiation from
sources inside and outside the Galaxy, G. Steigman has interpreted this
result by showing an imbalance in the abundance of electrons and
positrons. However, this conclusion is based on the magnetic field
retaining the same sign throughout. If the field changes sign as radiation
enters an antimatter region, the Faraday rotation produced by positrons
will be of the same sign as that produced by electrons.

Other indirect evidence could come from observations of the y-ray
background. Such a background can arise from various astrophysical
causes — such as primordial black holes, blackbody radiation, and the
inverse Compton process — in addition to the annihilation of nucleons and
antinucleons. Each process, however, carries its own signature and its own
limits on the magnitudes of the physical quantities involved. From an
analysis of the y-ray spectrum over the energy range of ~1-
102 MeV, F. W. Stecker has concluded that the interpretation involving
matter—antimatter annihilation is the one that fits the data best. Such
regions of matter and antimatter would have to be separated from each
other. However, Steigman has criticized this claim on the grounds that the
fit is based on a number of parameters that could be adjusted to fit any
spectrum of y-rays.

The symmetry between matter and antimatter was also considered by
G. R. Burbridge and F. Hoyle in the 1950s in the context of the steady
state universe. If newly created particles were also accompanied by
newly-created antiparticles, the symmetry in the universe would be
preserved. However, it turned out that the y-ray background resulting
from the annihilation of particles and antiparticles would be very
strong — far above that observed today.
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9.8 The microwave background

We now come to an observation that in its importance to standard
cosmology ranks next only to Hubble’s discovery of nebular redshifts. This
important discovery was first made in an unexpected fashion in 1965 by A.
A. Penzias and R. W. Wilson, scientists at the Bell Telephone Laborat-
ory. While looking for radio wave intensities in the plane of the Milky
Way with the help of an antenna having a 20-foot horn reflector of low
noise, Penzias and Wilson decided to use the wavelength 7.35 cm because
at this wavelength the noise from the Galaxy was negligible. After making
measurements in various directions and allowing for numerous unknown
causes of radiation, they discovered that an unaccounted isotropic noise
remained. Was this radiation background genuine? And if so what was its
cause? Not knowing the answers to these questions, they hesitated before
announcing their discovery.

Penzias and Wilson would not have waited to publish this result had
they been aware of the prediction Gamow and his colleagues Alpher and
Herman made some fifteen years earlier. This was the prediction that if
the universe had a hot phase soon after the big bang, it should now possess
a cooled-down relic radiation background. Alpher and Herman had
estimated the present background temperature of around 5K, whereas
Gamow had made a guess of ~ 7 K. Penzias and Wilson had assigned a
temperature of ~ 3.5 K to the background radiation they observed.

While Penzias and Wilson were puzzling over their discovery, news of it
reached Princeton, where P. J. E. Peebles, himself a leading worker in the
early universe calculations, grasped its significance. Indeed, the Princeton
group including Peebles and R. H. Dicke, P. G. Roll, and
D. T. Wilkinson, had already set up an experiment to measure this relic
radiation. Although their own measurement of 3.2 cm came in late 19635, it
was anticipated by the announcement of the discovery of Penzias and
Wilson on 13 May 1965.

9.8.1 Spectrum

The background temperature has since been measured at several
wavelengths by ground-based radiometers at frequencies upwards from
0.015cm~! and by balloon-, rocket-, or satellite-borne instruments at
higher frequencies. The results are summarized in Table 9.4, which does
not claim to be exhaustive. It is convenient to express the frequencies in
units per centimetre by dividing the frequency expressed in Hertz by c.
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Thus 3cm™! = 9 x 1019 Hz. The observed flux is expressed in the form of
a temperature of the blackbody radiation with the corresponding flux in
the given frequency range.

The entries against the CN molecule experiment in Table 9.4 were
obtained as follows. The ground state of the CN molecule has rotational
levels J =0,1,2,3,.... The transition from J =0 to J =1 is effected by
incident radiation of frequency 3.79 cm™!, while that from J=1to J =2
is caused by incident radiation at a frequency of 7.58 cm~!. Observations
of CN molecules in interstellar space show that upper levels are partially
populated, thus indicating the presence of a radiation field. The ambient
radiation temperature can be determined from the degree of excitation of
these levels (see Exercise 33). Such observations (first made as long ago as
1941) tell us that the microwave background extends beyond our local
neighbourhood. However, it is desirable to ascertain its existence beyond
our local neighbourhood by using detectors on spacecraft.

To check the true blackbody character of the radiation it is necessary to
have detectors above the Earth’s atmosphere. There were several early
attempts using balloons and rockets. However, many of these reported
departures from the Planckian spectrum that later turned out to be false
alarms. Perhaps the most accurate and exhaustive study at the time of
writing is that reported at the end of Table 9.4.

The Cosmic Background Explorer satellite (COBE) was lauched in 1989
and gave a beautiful spectrum shown in Figure 9.10. The COBE
measurements give a very precise Planckian spectrum with a blackbody
temperature of

Ty =2.735 £ 0.06 K. (9.50)

The overall senstivity and accuracy of the experiment made it clear that
some of the earlier claims of significant departures from the Planckian
spectrum at high frequencies (e.g. by Woody and Richards, Matsumoto et
al. in Table 9.4) were erroneous.

9.8.2 Anisotropy

If the microwave background is indeed of primordial origin, its anisotro-
pies can tell us a lot about the present and the past history of the universe.
The early developments in the post-recombination era imprint their
signature on the radiation background, imprints that are expected to
survive to this day. Observations of anisotropies are discussed below,
taking the small-angle measurements first.
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Cosmic Background Spectrum at the North Galactic Pole
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Fig. 9.10 The COBE measurements of the microwave background radiation at
different frequencies. The continuous curve represents the best-fit Planckian
curve to the data points. (See Table 9.4 for source.)

To look for small-angle anisotropies of angle 6, a large antenna with
beam width B =~ 6 is pointed at a fixed angle relative to the Earth and
swept across the sky by the rotation of the Earth. The antenna
temperature T 5 records a small fluctuation AT 4 composed of the intrinsic
fluctuation of the background as well as receiver noise. Thus AT 4 sets an
upper bound on the intrinsic fluctuation. If B >> 6 then we may look upon
the beam as covering ~ (B/6)® patches of angular size 6. Detailed
calculations then show that the intrinsic fluctuation is less than

B2\12
(1+2) s, o5

Table 9.5 gives the data on small-scale fluctuations. These are all upper
limits with no positive detection on any angular scale larger than a few arc
minutes.

The 1992 measurements from COBE do, however, reveal small-scale
fluctuations of AT/T =6 x 107¢. The COBE radiometer should ulti-
mately be capable of detecting AT/T as low as 2 x 1076.

Such a high degree of isotropy also poses difficulties for a theory that
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attempts to explain the microwave background as arising from superposi-
tions of radiation from discrete sources. As discusssed in Exercise 34, the
sources would have to be more numerous and more closely spaced than
galaxies.

The fact that AT/T is less than ~ 10~° on the scale of a few arc minutes
poses severe difficulties for theories of galaxy formation. For, according to
our discussion of Chapter 7, temperature fluctuations larger than this
should have been observed in the relic background today.

So far as the cold dark matter hypothesis is concerned, the COBE data
(at the time of writing) seem to rule out moderate values of the biasing
parameter b. As the limits of the sensitivity improve it will be possible to
make the CDM scenario more and more constrained. Indeed, most
theories of galaxy formation known to date find it difficult to explain this
extraordinary smoothness of the microwave background. The present
limits imply that the universe was far too homogenous in the past to have
initiated galaxy formation.

We next consider the possibility that the microwave background in
clusters of galaxies interacts with high-energy electrons in the clusters and
is partially scattered into X-rays. This interaction, known as the Zeldo-
vich—-Sunyaev effect, is another indication of the existance of a microwave
background in remote clusters of galaxies. Although this effect leads to a
dip in temperature of the order of AT/T ~10~* across the cluster, its
detection so far has been only marginal.

Large-angle anisotropies in the microwave background can arise from
two sources. One cause is the limitations of the particle horizon discussed
in Chapter 6. The particle horizon at decoupling subtends on angle 6y at
the observer today. It can be shown that measurements of radiation in
different directions separated by angles large compared with

12
Oy =~ 2 (%) " 5°(qo)'?, (9.52)
ZRr
should show differences reflecting the early inhomogeneities on the scale
of the particle horizon at z = zg. The second cause of anisotropy is the
motion of the Earth relative to the cosmological rest frame.

Measurements over large angles show no evidence for anisotropy on the
scale of (9.52); but they do show evidence for the second effect. In early
experiments E. S. Cheng, P. R. Saulson, D. T. Wilkinson, and B. E.
Corey observed the anisotropy described by a temperature variation with
direction of the following kind:

T = TO + T1 COS 9, (953)
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with Ty ~3 X 1073 K. Such a variation can be explained by the assump-
tion that the centre of the Galaxy has a velocity of ~ 540 kms™! in the
direction ! = 280°, b = 30°. Another set of measurements by G. F. Smoot,
M. V. Gorenstein, and R. A. Muller indicates a similar effect, but the
corresponding Galaxy velocity is ~ 630 kms~! in the direction ! = 261°,
b = 33°. The first group used balloons for measurement, while the second
group used a U-2 aircraft. The COBE measurements also tend to agree
with this conclusion. These result in a velocity of the Galaxy of
547+17kms~! towards ! =260°, b =29° +2°. Note that this motion is
different from the large-scale streaming motions discussed in section 9.3.

9.8.3 Interaction with cosmic rays

An interesting effect of the microwave background is to deplete cosmic
rays of very-high-energy protons. At low energies in the centre-of-mass
frame of the proton and the photon, the cross-section is of a second order
in the fine-structure constant «. At higher energies, however, pions are
produced and the cross-section becomes of first order in «. Thus, for a
nucleon (that is, a neutron or a proton) N colliding with a microwave
background photon y the result is the reaction

y+ N—>7+ N,
with the scattered nucleon having smaller energy than the incident

nucleon. Let us estimate the energetics of the problem.
Let the 4-momentum of the microwave photon be given by

(¢9,0,0, q),

as measured by an observer at rest in the universal rest frame (see Figure
9.11). Let a nucleon of rest mass m and of momentum p strike it at angle
6 in the XY -plane. The 4-momentum of the nucleon is then

(pcos®, psin6, 0, (p? + m2c2)l/2),
What is the minimum proton energy E, required to produce a pion and a
nucleon? To calculate E, it is convenient to work in the centre-of-mass
frame of the system. For the total energy in the centre-of-mass frame is
simply given by E,, where

E 2
(—CE) =[g + (p? + m2c)'2)2 — (¢ + pcosB)? — p?sin? 6

= m?2c? + 2q [(p? + m2c?)V?2 — pcos f]. (9.54)
The energy E( must exceed (m, + m)c? where m, is the mass of the pion.
Since m, < m, we get finally
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Pion

Proton !
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Ql#&\ Proton

Fig. 9.11 A high-energy cosmic ray proton that collides with a microwave photon
can produce a pion and a proton of less energy. (A charged pion and a neutron
can also be produced.)

mm,
(p? + m2c)V2 — pcos 6 = o
that is,
mm,
Ey= 7 (9.55)

For gc = kT,,T,~3K, we get
Ep=3x100eV. (9.56)

In other words, the pion production at energies exceeding E, will lead
to a sharp cutoff in the number of cosmic ray protons with energies
exceeding E;,. A confirmation of this effect would establish the existence
of the microwave background at distances beyond our Galaxy, since
cosmic rays of such high energies are believed to be of extragalactic origin.

The cosmic ray spectrum in the range 10% to 10%!' eV, however, does
not steepen as required by the above effect. Instead it flattens, thus
indicating a relative increase in the number of high-energy nucleons.
Supporters of the standard relic interpretation of the microwave back-
ground argue that it is still possible to prevent depletion of high-energy
nucleons from the cosmic ray spectrum, provided they do not travel
distances in excess of ~10% cm. That is, they should not come from
beyond the local supercluster (see Exercise 36).

This concludes our discussion of local tests of cosmological importance.
We will postpone a survey of the overall observational situation until we
have looked at the surveys and tests relating to the large-scale structure of
the universe in the following chapter.
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Exercises

A galaxy has an apparent magnitude of 18 and an absolute
magnitude of — 17. Show that its distance from us is 100 Mpc.
Define the distance modulus suitable for cosmological distances.
Show that an uncertainty of 1.5 magnitudes in the distance
modulus can lead to an uncertainty of factor 2 in the estimate of
the Hubble constant.

Comment on the way galactic extinction affects the measurement
of extragalactic distances. If the effect is ignored, will the estimate
of Hubble’s constant be higher or lower than the true value?
Discuss the galactic extinction models currently in force. Show that
de Vaucouleurs’s model always leads to a higher value for the
extinction parameter A than the Sandage-Tamman model. Esti-
mate this difference for galactic latitudes b = 30° and b = 60°.

The distance of a nearby galaxy at b = 30° is being estimated by
observing Cepheids in it and using the period-luminosity relation.
Show that its estimated distance using de Vaucouleurs’s extinction
model will be smaller than that wusing the Sandage-
Tamman model, after correcting for galactic extinction. What will
be the corresponding ratio of the Hubble constants measured in
the two models?

The period P (days) and the absolute visual magnitude M of
galactic Cepheids are related by

M =—1.18 —2.90log P (3 < P < 50).

A Cepheid in a nearby galaxy has a period of 10 days and an
apparent magnitude (corrected for galactic extinction) of 20.
Estimate the distance of the galaxy from these data.

In the supernova expansion method of determining distance the
estimates of v, the photospheric velocity, are v; and v, at times ¢,
and t,. If the angular radii at ¢, and ¢, are 8, and 8,, show that an
estimate of the supernova distance D is given by

v(ty — t1) + Ro(1 — va/vy)

62 — 61(v2/v1)
where the radius follows the law R = v(t — t() + Ry.
A supernova in NGC 1058 had photospheric velocity of 8.6 X
108 cms~! on Julian Date (JD) 2400568, while on JD 2440589 its
photospheric velcity was 6 x 108 cms™. The angular radii of the
supernova on these dates were 0.039 and 0.15 (x10' cm Mpc™1),
respectively. Show with the help of Exercise 7, and ignoring R,

b
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that the distance of the supernova is about 12Mpc and that its
outward expansion started on JD 2440 558. (Julian Date is counted
from 1 January 4713 Bc.)

Outline the observational difficulties that stand in the way of a
precise determination of Hubble’s constant.

In the Newtonian framework applicable to our local neighbour-
hood, the isotropic Hubble law may be expressed as the velocity
distance relation

V(r) = Hyr,

r being the position vector of a galaxy relative to the origin. If the
observer at the origin has a peculiar velocity w, he observes an
anisotropic velocity distance relation given by
Vi(r)=V(@)—w=Hor —w.
Show that effective Hubble constant H(6) in a direction making
an angle 6 with the direction of the observer’s peculiar velocity is
given by

6
H(O) = Hy — W COS

Thus H(6) is maximum at antapex (6 = 7) and minimum at apex
(6=0).

Imagine that the GA exists at a distance ry. This will pull galaxies
in its local neighbourhood towards itself. Show that the velocity
distance curve as observed from our Galaxy would have an ‘S’
shape as a result of this perturbation.

Comment on the fact that although the redshift of a nearby
extragalactic source is measurable very accurately, its interpreta-
tion as the velocity to be used in Hubble’s velocity—distance
relation is likely to contain errors.

Using the information of section 9.2 on extragalactic distance
scales, deduce that the luminosity density of galaxies scales as hg.
Show also that Qg determined from the mass/light ratio of
luminous objects is independent of 4.

Let o(r) denote the surface mass density at a point P located at
distance r from the centre of a thin disc-shaped galaxy. Show that
the gravitational force F, at P is directed towards the centre of the
galaxy and is given by

® 27
_ (1 ~ x cos 6)d6
= Gfo o(ro)x dxfo (1 —2xcosf + x2)¥2’
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Show that the integral in Exercise 14 can be evaluated for
o(r) o< r~! and that it gives flat rotation curves

v? = 20Gro(r) = constant.

Discuss the implications of the flat rotation curves of elliptical
galaxies. If there is no unseen mass involved, but Newton’s laws
are modified, how is the gravitational force expected to behave
with distance?

In a spherical mass distribution in an SO galaxy, the star
distribution function is given by (9.22). Assuming that all stars
have equal mass and that their number density varies as r~¢
(e <0), show that the mass contained in a sphere of radius r
concentric with the galaxy is given by (9.23).
Discuss qualitatively how peculiar velocities of galaxies in a cluster
distort the distribution of points on a two-dimensional plot for
galaxies in a group, a plot that gives the radial separation of
galaxies from a typical member against their transverse separation.
Let o and 7 denote the components of the separation vector of a
typical galaxy G from a fixed galaxy Gy, as seen by a remote
observer perpendicular and parallel to his line of sight. The
redshift difference between G and G, wHy/c, is made of the
cosmological component and the Doppler component due to a
peculiar velocity w. If w has a distribution function f(w), then
show that the two-point correlation function &(o, m) is related to
the spatial correlation function &(r) by the relation

) w \211/2
o° + (77 I )] dw.

o«

&o.m = | fome

-0

0

In the Coma cluster of galaxies the observed velocity dispersion is
~861kms~!, while the radius of the cluster is ~ 4.6hy" Mpc.
Show that the cluster mass given by the virial theorem is
~2.3%x10¥hi'M . The total luminosity of the cluster is esti-
mated at ~75X 102h5%L,. Show that the mass/light ratio
parameter 7 for the cluster is ~ 300A,.
Discuss the missing mass problem in clusters and galaxies.
Show that if Qy<1 then a closed universe requires a A-term
exceeding the value
2
a-a.

In a globular cluster the metal content Z ~ 10~3 and the ratio of
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horizontal branch stars to red giants is 0.9. Show that in the f =1
model the age of the globular cluster is around 11.9 x 10° years,
while in the f = 2 model it is increased to around 2.0 X 10 years.
The nucleus ¥ Rb decays to 8’Sr with a half-life of T=4.7 x 1010
years. Let X(¢) and Y (¢) denote the numbers of these nuclei in a
meteorite at any time f, so that the quantity X(z) + Y(¢) is
conserved. Let ¢(, denote the epoch when the Solar System was
formed. Show that a plot of relative abundances X(t)/Z against
Y(t)/Z, where Z = number of %Sr nuclei (which are unchanged)
leads to a straight line whose slope is given by

exp (Ato) —1,
where A= 17!In2.
Deduce (9.41) from (9.36)-(9.40).
Comment on the statement that very low values of “He abundance
(for example, Y =< 0.15) are embarrassing to the standard picture
of the big bang nucleosynthesis. Contrast this situation with that of
the abundance of deuterium. .
Discuss how many leptons are permitted in the primordial era by
the observed abundance of *He.
What limits does the present deuterium abundance place on the
baryon density of the universe? Suppose we are given that the
universe is closed. What modifications can you suggest in the
standard big bang picture to reconcile the two results?
Determine from (9.49) the minimum value of A necessary to
reconcile the present deuterium abundance with a closed universe.
Discuss with the help of Figure 9.9 whether the limits on the
density of baryons needed for producing deuterium and lithium in
the observed amount are consistent with each other.
Using the theory describing the passage of a plane-polarized
electromagnetic wave of frequency v travelling through a medium
containing n charged particles of mass m and charge e and a
magnetic field, show that if H| is the component of the magnetic
field along the direction of propagation of the wave then the plane

of polarization turns through an angle
3

A = I‘I”Alv_2

2mm?c?
as the wave traverses a distance Al. Comment on how this result
(known as Faraday rotation) has been used to argue about the
possible existence of antimatter in the universe.
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Discuss the evidence for or against the presence of antimatter in
the universe.
The ratio of occupied levels for J =1 and J = 0 states for the CN
molecule in the star ¢ Ophiuchi is 0.55 + 0.05 and in the star {
Persei it is 0.48 + 0.15. The energy difference between the two
levels is equal to kT, T =5.47K and occupation weights are
g1/go = 3. Deduce that the temperatures of the incident radiation
lie in the respective ranges 3.22 + 0.15 K and 3.00 + 0.6 K.
Let n be the number density of sources generating a cosmic
radiation background. Construct a cone of angle 28 at the observer
with the requirement that if such a cone is extended to cosmolo-
gical distances it contains typically one source. Then 6 denotes the
typical angle over which the generated background would show
patchiness. Show that 6 ~ (H/c)*?n~"2. Apply this result to the
small-angle anisotropy of the microwave background.
Using the formulae of the Lorentz transformation of flux density
from one inertial frame to another, show that if the observer is
moving with a uniform velocity V relative to the cosmological rest
frame, then in the approximation |V{< ¢ he will measure a
temperature deviation in the direction of the unit vector k of
magnitude

AT V-k

—_— R

T c

It is given that a high-energy proton loses 13 per cent of its energy
in a single collision with a microwave photon that produces a pion.
In the microwave background there are ~ 550 photons percm?® and
the mean cross-section of the above interaction is ~ 2 X 10% cm?.
Show that the proton loses most of its energy over a distance of
~ 4 x 10% cm. Discuss the implications of this result for high-
energy cosmic rays of extragalactic origin.
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Observations of distant parts of the universe

10.1 The past light cone

Technically speaking, all our observations of the universe are confined to
the past light cone. Nevertheless it is possible to make a distinction
between the observational tests of cosmology described in Chapter 9 and
those to be described here. This distinction is illustrated with the help of
Figure 10.1. This diagram describes schematically the past light cone of a
present observer in terms of the cosmological redshift. The observations
described in Chapter 9 fall in the topmost region I with z <0.1. In this
region it is usually possible to go over to the locally inertial frame and use
Newtonian physics and special relativity (see section 2.4). Although most
cosmological models sink their geometrical differences close to the
observer, it is still possible to test their physical differences in this region.
For example, we can attempt to measure go and ), from observations of
galaxies (see section 9.4).

Region II, 0.1 < z < 1.0, has been a hotbed of cosmological controver-
sies. In this region, observations of galaxies and radio sources have been
used to determine the geometrical nature of the universe. We will examine
this region more closely in sections 10.2-10.4.

Region III, 1<z <5.0, consists almost entirely of observations of
quasars. Whatever geometrical differences exist between the various
cosmological models in region II are magnified in region III. For this
region quasars were expected to be useful probes of cosmology. There
are, however, reservations still held by a few astronomers regarding the
cosmological origin of quasar redshifts. We will discuss these reservations
in the final chapter, while taking the more conventional view in this one.

Region 1V, which extends from z = 5.0 to z =~ 1000, has so far proved
inaccessible to cosmological observations, while region V, which takes us
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Present epoch
z=0
1
Local
Data
z=0.1
I
Galaxies
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?
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R__ Big bang~_A

Fig. 10.1 A schematic description of the status of cosmological observations along
the past light cone (shown by thick lines). Regions I to V, described in the text,
are marked out by the epochs of redshifts z = 0, 0.1, 1.0, 5.0, 1000, .

right back to the big bang (z = ), is in principle unobservable, since it is
supposed to be optically thick (see Chapters 5-7).

Of course, the classification shown in Figure 10.1 has been guided
largely by the standard hot big bang picture. In some alternative models
regions IV and V do not have any theoretical significance; and if quasars
turn out to be local objects, even region III is eliminated from cosmo-
logical observations.

With this background we will first describe four important tests for
region II:

1. The redshift-magnitude relation.
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2. The number counts of extragalactic objects.
3. The variation of angular size with distance.
4. The variation of surface brightness with redshift.

10.2 The redshift—magnitude relation

Basically, this is an extension of Hubble’s relation to region II. In Chapter
9 we saw that in the nearby region the relation is described by (9.6), which
is reproduced below:

m— M = 4238 — Sloghy + Slog z. (10.1)
What is the form of this relation in general, when the redshifts are not
small?

The answer to this question is provided by the relation (3.44) between
the flux density and luminosity for the Robertson-~Walker models. The
useful quantity in these relations is the luminosity distance D, which for
Friedmann models is a function of H, g, and z. From (3.45) of Chapter
3 and (4.70) of Chapter 4, we get the following relation:

m— M=5logD —5
c

= 510g( 2) — 5 + 5log{goz + (g0 — D[(1 + 2go2)"? — 1]}.
Hoqp ‘

(10.2)

For any Friedmann model we can express m as a function of z. If we are
interested in regions of small redshifts where a first-order Taylor expan-
sion is valid, we can reduce (10.2) to the form

m— M =4238 — 5loghy + Slogz + 1.086(1 — go)z + O(z?). (10.3)

This form helps in understanding how the different g, curves behave as
z increases. Starting from the same Hubble relation (10.1), the curves
gradually fan out, with the curves for high g, to the left and low g, to the
right, as shown in Figure 10.2. This figure also shows the curve for the
steady state model, which has the formal value of gy, = —1. Thus it
appears that if we make measurements in region II of Figure 10.1, we
should be able to tell which go model is best represented by the data.

A. R. Sandage and his colleagues spent a number of years on this
cosmological test with the hope that the correct geometry of the universe
would be revealed. Although in the 1960s Sandage often quoted a value of
go =~ 1, it gradually became clear that a number of uncertainties combine
to make this test ineffective, at least at present. The various issues that
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Fig. 10.2 A set of theoretical (m, z) curves for M = —23.88, hy, =1, drawn
according to the approximate relation (10.3) for the cases qo =0, 0.5, 1.5. The
dotted curve represents the steady state model with gy = —1.

arise in practical applications of this test are discussed below. Some of the
issues have been understood and partially resolved; other continue to be
difficult to settle.

10.2.1 Observational uncertainties

Local motions

Small corrections are necessary for the fact that our observational frame is
not the cosmological rest frame. Thus the Sun moves in the Galaxy and, as
we saw in section 9.3, the Galaxy has a peculiar velocity. Fortunately,
however, these corrections matter less and less for observations of more
and more remote galaxies (see for example Exercise 10 at the end of
Chapter 9).



342 Observations of distant parts of the universe

The uncertainty of hg

The relations (10.2) and (10.3) show that for relative comparison to two
model curves with different gy, the uncertainty in A is eliminated.

The aperture correction

The importance of this effect was only gradually realized. It arises from
the fact that galaxies are not objects with sharp boundaries; they tend to
fade gradually into the background light of the sky. Therefore the amount
of light received from the galaxy in relation to the background depends on
the aperture of the telescope.

J. E. Gunn and J. B. Oke have suggested the following recipe for
aperture correction.

Suppose we are measuring magnitudes in a wavelength band centred in
Ao. Then (3.42) gives the flux density at Ay as

OJ(AQ): y LI(/‘{O/I';Z) ,
77(1 + Z)D (qO’ Z)

where D(qy, z) is the luminosity distance in the appropriate Friedmann
model. Suppose the luminosity L is distributed across the galaxy according
to a power law with respect to the projected radius p from the centre of
the galaxy:

(10.4)

L(=p)= Lo(ﬁ) , p = constant, (10.5)
Po

where « is a number of order unity; o = 0.7 is a good approximation.
Now if we lived in the Einstein—de Sitter universe, the projected radius
po would subtend an angle at our location that is given by (see (4.76))

2
y = HoPo(l1 + 2) . (10.6)
cD(3, 2)
In a general Friedmann model, the same angle will be subtended at the
observer by a radius p given by
2
y = M. (10.7)
cD(qo, 2)

A comparison of (10.6) and (10.7) shows that if the astronomer decides
to measure the apparent magnitude of the galaxy within a given angular
radius y, he collects light from within different radii (o and p) of the
galaxy, depending on which Friedmann model is being used. If we
standardize with respect to the Einstein—de Sitter model, we must correct
for the luminosity according to (10.5). Thus instead of a fixed L, we must
have
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_ D(CIO, Z) *
L= LO[—*—_D(%, 2) ] ) (10.8)
so that (10.4) is changed to

GJ(A,O) _ Lol(/‘{o/l + 2) (109)

47(1 + 2)D(qo, 2)¥*D(3, 2)*
To fix ideas Gunn and Oke used py = 16 kpc for hy = 0.6.

The formula (10.9) corrects for the fact that by fixing y we make
allowance for light coming from a smaller (g, > %) or larger (py < %)
region of the galaxy than that with p = p, for go = 1.

The K-correction

This effect was briefly hinted at towards the end of section 3.6 through the
relation (3.42). It arises from the fact that when an astronomer measures
the magnitude of a galaxy of large redshift z at a wavelength A, he is
receiving light from the galaxy at the emission wavelength of Ao(1 + z)~1.
Hence, for a comparison of m(4,) of two galaxies of different redshifts we
must allow for the fact that their absolute magnitudes are being observed
at different redshifts.
Taking the logarithm of (10.4) and converting to magnitudes, we get

m(Ag) — Myq = —2.5log I(A¢/1 + z) + 2.5log(1 + z) + Slog D — 5.
(10.10)
If we apply the standard bolometric correction appropriate for wavelength
Ao we get
Myot = m(ko) + Am(Ao).
However, from (10.10) we see that if we wish to use (10.2) we must make
a further correction and write instead
Mpo = m(Ag) + Am(dg) — K(Ao), (10.11)
where
K(A) = 2.5log(1 + z) — 2.5log I(A¢/1 + z). (10.12)
Thus it is necessary to know the intensity distribution function /(4) in the
source galaxy. Oke and Sandage estimated this effect in 1968 in a
quantative way. More recently, ultraviolet (UV) astronomy is giving more
information about /(1) for galaxies at UV wavelengths. For large z, these
wavelengths get redshifted to the observed optical wavelengths (see
Exercise 6).

Oke and Sandage also pointed out that the correct estimate of the
K-term eliminates the so-called Stebbins—Whitford effect observed in the



344 Observations of distant parts of the universe

1950s. This effect was based on the observation that galaxies appear to be
redder and redder as their redshift increases. If it was genuine, such an
effect implied that the more distant galaxies — that is, those of an earlier
epoch — were systematically redder than the galaxies of the present epoch,
and hence the universe must be evolving. This was therefore an argument
against the steady state universe, an argument that has now been shown to
be void.

The Malmquist bias

If we use some average galaxy luminosity in a distant cluster as a standard
candle, this bias creeps in. For, as we examine more and more remote
clusters of galaxies, we would tend to miss out larger and larger fractions
of the intrinsically faint ones. So, in a magnitude-limited sample the
luminosity distribution gets truncated at the lower end, the effect
becoming more and more severe in more and more remote clusters.

The standard candle

Sandage found that as far as remote clusters were concerned, a good
standard candle was provided by the brightest and most massive elliptical
in the cluster. The luminosity variation of such elliptical galaxies from
cluster to cluster is found to be remarkably small in nearby clusters. This is
important, since we might notice spurious effects simply by a systematic
variation of the standard candle.

The Scott effect

First pointed out by E. Scott, this effect is of the type against which
caution was expressed above. Since the brightness distribution of galaxies
in clusters has no sharp upper limit, we would tend to pick out more and
more intrinsically bright galaxies as we look farther and farther away. This
effect leads to an overestimate of q,.

Intergalactic absorption

In 1976 S. M. Chitre and the author estimated the effect of absorption by
intergalactic dust on the measurements of gq. Since dust overestimates
magnitudes, this effect leads to an underestimate of qo. The effect may be
considerable for even a miniscule proportion of intergalactic dust (see
Exercise 8).
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Luminosity evolution

One of the most serious difficulties in the redshift magnitude test arises
from the uncertain corrections to the observed luminosities of galaxies to
take account of luminosity evolution. If galaxies all formed at an epoch ¢
(< tg), and as they grew older their luminosity L(¢) changed as a function
of t— tg, then the present luminosity L(tzp) may not give a reliable
estimate of L(¢). As we know, for any redshift z the epoch of emission is
given by
S(to)

1+z= S() (10.13)

The interval ¢y — ¢ is called the look-back time of the galaxy. For very
small z (< 1), t = tgand L(t) = L(t,). However, for z in region II, L(¢))
may differ substantially from L(#;) and hence our extrapolations based on
nearby clusters (which give L(fy) may not be good for remote clusters of
galaxies. B. Tinsley was the first to appreciate the importance of this effect
and to work it out quantitatively. Basically, the evolution of L(¢) comes
from the evolution of stars in the galaxy. We will not go into the details of
Tinsley’s arguments here but simply state the empirical rule that seems to
emerge from them.

The stellar population in giant ellipticals of the type used by Sandage is
predominantly very old and metal-rich like the Population II stars in the
disc of our Galaxy. To estimate their integrated luminosity it is necessary
to know the ‘initial mass function’ (IMF). The IMF essentially specifies
the relative number distribution of stars (in a cluster) within different mass
ranges at the time of formation. Since the rate of evolution of a star
depends on its mass, the IMF is important in determining the future
composition of the cluster. In the visual region the integrated luminosity
of such a population satisfies the law

L(t) oc t—1.3+0.3x, (10.14)

where x is the slope of the IMF for stars in the mass range
0.8Mgy< M <12Mg. (Since t; < t for region II, (10.14) shows L as a
function of ¢ rather than ¢ —¢;.) The Salpeter IMF in the solar
neighbourhood has x = 1.35. Thus the ¢-dependence of L(t) is close to
t~1in (10.14).

10.2.2 The Hubble diagram

All these effects taken together pose a formidable array of problems from
which it is very difficult (and currently impossible!) to extract the ‘true’
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value of go. For example, taking the aperture effect and the luminosity
evolution effect together, the first order m—z relation becomes, instead of
(10.3), the following;:

m— M =42.38 —5loghy + 5logz

+ 1.086z(2 — “) o — —%#(d—L)
2 2—a HyLy\ dt 0
+ 0(z?). (10.15)
Here we have made a Taylor expansion to first order to estimate L(t).

From (10.15) it easy to see that for a luminosity evolution given by
(10.14), a first-order correction of g is

Aqo= (2 — 0.5x)(Hgytg) L. (10.16)
The product Ht, depends on g (and A if A-cosmology is used). It is
clear, however, that the ‘true’ go is less than the observed g, by an
amount Agy.

Figure 10.3 illustrates what a Hubble diagram looks like for galaxies in
region II after making corrections for various effects (with the exception
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Fig. 10.3 The redshift magnitude relation for the brightest cluster members. A

number of theoretical curves (o =5, 1, 0.5, 0, —1) are superposed on the data.

SS stands for the steady state model. (Based on J. Kristian, A. Sandage, &

gigAg) ;?Vestphal, The extension of the Hubble diagram-III. Ap. J., 221, 383
78).
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of luminosity evolution). For comparison, a number of theoretical curves
of Figure 10.2 are superposed on the galaxy data. Although the Hubble
diagram has reasonably small scatter, it is not tight enough to rule out
(with a great deal of confidence) any of the theoretical curves. Further,
since negative qq is also permitted, the accelerating universes of A-
cosmologies cannot be ruled out.

We conclude this section by briefly mentioning two nonstandard
cosmologies. In the 1960s Sandage’s claims of gy~ 1 went against the
steady state prediction of go = —1. Now, however, the uncertainties of the
m—z relation are such that the go = —1 curve is only 10 away from the
best value of gy (which is close to go = 0). The steady state model cannot
as a rule invoke luminosity evolution of galaxies unless the observations
refer to a large group of galaxies formed simultaneously.

J. M. Barnothy and Tinsley argued from an early assessment of the data
that the G-varying cosmology of Hoyle and the author (see Chapter 8) is
disproved by the m-—z relation. However, V. Canuto and the author
showed that correct computation of stellar evolution rates in the frame-
work of varying G makes this cosmology consistent with the present range
of the m—z relation (see section 10.7.)

10.3 Number counts of extragalactic objects

So far, considerable work has been done on number counts of three types
of extragalactic objects: (1) galaxies, (2) radio sources, and (3) quasars. Of
these we will defer the discussion of quasars to section 10.6 and consider
only galaxies and radio sources, although the latter contain quasars in
some cases.

The basic idea behind these tests is to find out whether the number
counts reveal the non-Euclidean nature of the spacetime geometry of the
universe predicted by most models. Suppose we have a class of objects
that (1) are uniformly distributed in space and (2) have the same
luminosity L. If we further assume that (3) the universe is of Minkowski
type, that is, with Euclidean spatial geometry, the number of sources up to
a given distance R will go as

N o R3, (10.17)
while the flux from the faintest of the sources up to distance R goes as
F o« R72. (10.18)

Eliminating R between these relations, we get
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DlogN
dlog¥F
Thus (10.19) tells us how N and & are related under our three
assumptions, (1), (2), and (3). Under these assumptions N measures the
volume and %~12 the radius of a spherical region centred on the observer,
and (10.19) is simply the volume radius relation in Euclidean geometry.

In sections 3.9 and 4.6 we saw how the volume-radius relation differs
from the cube law of Euclidean geometry when we consider Robertson—
Walker models. We also saw in these sections how to work out the
corresponding relations in non-Euclidean geometries. It is therefore
possible, in principle, to test whether the observed relation agrees with
one of the various cosmological models. Unfortunately, as with the m—z
test, various uncertainties prevent us from drawing a clearcut conclusion,
as we shall see with the counts of galaxies and radio sources below.

N2?%3 = constant,  that is, -1.5.  (10.19)

10.3.1 Galaxies

In 1936 Hubble attempted number counts of galaxies in order to
distinguish between model universes. However, he had to abandon the
test because the number of galaxies to be counted is very large, and unless
one goes fairly deep in space one cannot detect any significant departures
from Euclidean geometry. Since the optical astronomer measures fluxes in
magnitudes, the relation (10.19) may be re-expressed as a number
magnitude relation:

=0.6. (10.20)

Hubble’s programme has been revived in recent years by a number of
workers who now have at their disposal many electronic and solid state
devices to facilitate galaxy counts to very faint magnitudes (m ~ 24). For
example, in 1979 J. A. Tyson and J. F. Jarvis used techniques of
automated detection and classification of galaxies on plates. The main
problem at faint magnitudes is to be able to distinguish stars from galaxies.
R. G. Kron uses a colour criterion to pick out the high-redshift galaxies.
In the USSR, I. D. Karachentsev and A. I. Kopylov have done the
exercise of counts down to 26™. B. A. Peterson and others at the
Anglo-Australian Telescope have also counted galaxies brighter than 24™.
We may add to this list the more recent work of R. Ciardullo and of
H. K. D. Ye and R. F. Green and the CCD number counts by Tyson.
Although problems still exist in normalizing these different surveys so that
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they agree on the number of galaxies per square degree at a given
magnitude, there seems to be broad agreement that the slope of the
log N—m curve is considerably flatter than the 0.6 of (10.20). The slope is
actually close to 0.4 over the range 20™ to 24™.

What does this result imply? If we use the formulae of sections 3.9 and
4.6 we will find the slope of the log N—m curve starts off with 0.6 in the
nearby region and gradually flattens as we observe more and more distant
regions. Thus the slope of ~ 0.4 may represent some kind of average. In
the explicit calculation G. R. Burbidge and the author showed in 1981 that
such a slope can be simulated by an empty Friedmann (g, = 0) model,
provided we drop assumption (2) and assume instead that the galaxies
have a luminosity function of the following form:

*\ 5/4
f(L) = (LT) exp (—i) (10.21)

That is, galaxies do not have a fixed L, but a distribution of L. The
constant L* corresponds to an absolute magnitude of —20.6. Luminosity
functions of this type are suggested by P. Schechter and others in surveys
of galaxies in our local region.

It is necessary to take account of the K-correction mentioned in section
10.2 before a fit is made with a theoretical model. The observed
magnitudes are J-magnitudes, and we need to know the intensity
distribution /(A) for galaxies in the ultraviolet. The K -corrections are still
uncertain, and it is therefore necessary to do the counts in different wave
bands and also to look at the redshift distributions of faint galaxies.

On the basis of the data there have been claims of mild evolution over
the look-back times. The evolution claimed is only statistical, and as
Sandage has emphasized in a 1988 review, ‘no check on the direct
predictions of the standard model is available from this test ... unless
a priori assumptions are made concerning the evolution.” It also seems
that the notorious A-term is likely to make a comeback. For example,
M. Fukugita, F. Takehara, K. Yamashita, and Y. Yoshil have claimed
that the counts demand a nonzero A-term and can be best fitted for
Qo =0.1and Ac?/3H}=0.9.

10.3.2 Radio sources: methods

By comparison with galaxy counts, counts of radio sources have the
advantage that radio sources are not as numerous as galaxies. For this
reason, after Hubble’s galaxy-count programme came to nothing and radio
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astronomy became established during the 1950s, it was felt that time was
ripe to have a go at the source-count test. M. Ryle at Cambridge, B. Mills
at Sydney, and J. Bolton at Caltech did pioneering work on the
source-count programme. Since the radio astronomer measures ¥ over a
specified bandwidth, he tends to plot log N against log S, where S is the
flux density, the flux % received over a frequency band divided by the
bandwidth. The usual unit for S is the jansky (Jy), which equals
10" Wm2Hz™'. (Named after K. G. Jansky, who did pioneering work
on radio astronomy in the 1930s.) Similarly, the power of the radio source
is defined as luminosity over a unit frequency band per unit solid angle
and is expressed in units of watts per hertz per steradian (W Hz ™! Sr™1).
There are several ways of plotting the radio source-count data. Since the
astronomical literature contains references to all of them, they are only
briefly outlined below.
Log N-log S

This is the form discussed earlier. The Euclidean geometry makes the
prediction that

dlogN

dlogs
The Friedmann models and the steady model show a flattening tendency,
as shown in Figure 10.4(a).

~1.5. | (10.22)

Log N/Ny—log S

Instead of plotting N against S, it is often convenient to plot N as a
fraction of the number N, expected in Euclidean geometry against S.
Figure 10.4(b) shows how such plots are expected to look in standard
cosmology and the steady state theory. In this figure we have plotted not
the ratio N/N, but the ratio AN/AN, of differential counts. That is, we
denote by AN, the number of sources expected in Euclidean geometry in
a given flux density range (S, S + AS), while AN denotes the actual
numbers of sources found (or expected to be found in a given model).
Thus AN, < S™>2AS, and we expect AN/AN, to decrease steadily from
1 as § decreases.

Luminosity—volume

Instead of plotting N against S, it is often more interesting to approach
the source-count problem in the following way. Suppose S, denotes the
minimum flux density that can be picked up in a given survey. Let a source
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Fig. 10.4 Schematic plots of (a) log N against log S and (b) log (AN /AN ) against
log S. The curves shown for a Friedmann model are representative of a number of
curves that lie between the steady state and the Euclidean curves for various
values of gg.

with S > § be found, and suppose we know its distance d (from its
redshift, say). We then know its luminosity. We can then ask how much
further the source could be moved for it to be barely detected in our
survey.

Thus we have two volumes, V and V. The volume V is the volume of
the spherical region centred on our location and with radius d at whose
boundary the source actually exists. The volume V  is that of the limiting
sphere on whose boundary the source would be barely detectable in the
survey. If the source were randomly distributed within the limiting sphere
then the average value of the ratio V/V, would be % Thus in any
cosmology with assumption (1) of uniform distribution the average value

of the ratio V/V . is expected to be 1.
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In practice, if we know the redshifts of the radio sources we can do a
luminosity volume test and compute the average value

f= <%> (10.23)

This computation will of course depend on the cosmological model
chosen. If f=1 then our assumption of a uniform distribution is
confirmed. If f> 1, the survey implies that we are finding more distant
than nearby sources. Since distant sources are seen at earlier epochs, this
result implies a density evolution with more sources in the past than now.
Similarly, f <31 indicates a density evolution of the opposite kind. M.
Schmidt was the first to suggest this test in 1968 and to apply it to radio
sources.

The maximum likelihood method

This method of analysing N-S data was suggested by D. F. Crawford, D.
L. Jauncey, and H. S. Murdoch in 1970, and it can be described in brief as
follows.
Suppose the N-S relation is of the form

N(S) = kS7¢, S=S,,. (10.24)
Write 0 = S/S,, so that o = 1, and let 0¢ denote the maximum value of o.
Let dp(o) denote the probability that a source is found in the range
(0, 0 + do). Then from (10.24) we have

ao~ (@D do
dp=———7—. 10.25
p [ Zom® (10.25)

If we make ranges of o small enough so that each range contains at most
one source, we may have M such ranges, say. Denoting them by the label
i(i=1,2,..., M) and the corresponding probabilities by p;, we write the
likelihood function L as

£ =2 np;. (10.26)

The method consists of maximizing £ with respect to a. Using (10.25) for
Di> a simple calculation (see Exercise 15) gives

M

Zlna,-.

In the usual log N-log S plot, the number N is built out of additions of
numbers from successive flux intervals, and in this process errors tend to

o (10.27)
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add up. Thus the different N-values in such a plot are not independent
and the estimate of o based on them is not quite reliable. The maximum-
likelihood method treats each observation independently, and the estimate
of « given by (10.27) is therefore free of cumulative systematic errors.

10.3.3 Radio sources: the data

Before we come to the actual data the following points need to be made.

1. The number-count test is a test for the volume-distance relationship. The
measure of the distance of a galaxy is its redshift. The radio astronomer is,
however, unable to measure redshift directly. If the radio source is optically
identified with a galaxy of known redshift, then only do we have a measure
of its distance. The flux density S cannot be a reliable distance indicator
unless we are sure that all sources have approximately the same luminosity.
In practice the powers of radio sources vary over the range from 10% to
102 Wsr™! from weak to strong sources. Thus it is possible to mistake a
nearby weak source for a strong distant source.

2. Even if all redshifts in a survey were known, we would not have a complete
sample to test the volume-redshift relation. This is because a sample that is
complete with respect to a minimum flux density S, is not necessarily
complete with respect to a given maximum redshift z, and vice versa. In the
former sample, very weak sources of moderate redshift are missed, while in
the latter sample, very strong and very distant sources are missed. For
practical reasons the radio astronomer has complete S = S -type samples and
no complete z < z,-type samples. The former samples suffer from the
difficulty mentioned in point 1.

3. It has become clear, over the years, that simply counting objects as ‘black
blocks’ can be misleading. We should know some basic features of what we
are counting.

With this background we turn to observations of the radio source
counts. The source counts have been obtained at various frequencies, and,
as an illustrative example, Figure 10.5 gives the differential source counts
(relative to Euclidean values) as in Figure 10.4(b) for four surveys at
frequencies of 408 MHz, 1410 MHz, 2700 MHz, and 5000 MHz. Two
important things are immediately noticeable from this diagram.

First, the surveys give different results at different frequencies. The
(negative) curvature of the source count curves declines in magnitude as
the survey frequency rises. The main reason for this discrepancy between
curves is as follows. In a typical radio source the intensity frequency
function (see section 3.6) has the form
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Fig. 10.5 Differential source counts at different frequencies. S is plotted on a
logarithmic scale. The positioning of the four curves is arbitrary with respect to
the AN/A N, axis. However, each marked interval shows an increase in AN/AN,
by a factor of 10 as we move upwards along this axis. (After J. V. Wall & D. J.
Cooke, Source counts at high spatial densities from pencil beam observations of
background fluctuations. MNRAS, 171, 9 (1975).) '

J(v) < v7%, 0=sas<l, (10.28)
where « is called the spectral index. Thus for a large «, the flux density
falls more rapidly with frequency, with the result that a source is picked up
more easily in a low-frequency survey than in a high-frequency one. For
low o this effect is less noticeable. For this reason the ratio of
steep-spectrum sources (high «) to flat-spectrum sources (low «) in a
survey declines as the frequency of the survey increases. The predomin-
ance of flat spectrum sources in high-frequency surveys seems to make
their (AN/AN,, S) relationship agree with the expected behaviour of
Figure 10.4(b).

This second point relates to the preliminary rise of AN/AN, as S
decreases from the highest flux value. This effect is most noticeable in the
low-frequency survey at 480 MHz, and was the cause of a controversy
between Ryle and Hoyle in the early 1960s. We describe it briefly for its
historical interest.

If we compare the peak point P with the highest flux point Q in Figure
10.5 we can draw one of two possible conclusions:

1. There is a significant rise in the number AN compared to AN, as we go to
lower flux densities from Q. If these sources are very distant and powerful
ones, we are seeing an evolutionary effect, implying that the number density
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of radio sources rose sharply in the past epochs compared with the present
epoch.

2. Compared with P, the point Q shows a deficit of high-flux-density source in
relation to the Euclidean value. If the sources are by and large not very
strong, this deficit is a local one and simply indicates that we are in a ‘hole’,
with fewer radio sources than average. Such effects could arise if there are
inhomogeneities on the scale ~ 50 Mpc in the universe, as were expected, for
example, in the ‘hot universe’ version of the steady state model (see Chapter
8).

Hoyle subscribed to the second viewpoint, while Ryle and his collabora-
tors at Cambridge took the first possibility as correct. The Cambridge
view, as it is now called, implied a strong evolution in number density and
hence a disproof of the steady state theory. It is clear that the rise in
number density cannot continue indefinitely, otherwise the radio back-
ground would be too high. So various functions describing the variation of
the source number density with redshift z have been considered in order
to fit the observed data at all flux levels. However, such a parameter-
fitting exercise makes the test ineffective as a means of distinguishing
between various g cosmologies, since the geometrical differences are
masked by the proposed evolutionary functions.

But to what extent is evolution really proved? The 3CR sample of radio
sources has now been almost entirely optically identified and the redshifts
of its members determined. If we assume that the redshifts are indicators
of distance, it is now possible to re-examine the number counts of that
sample. In 1989 P. DasGupta, G. Burbidge and the author carried out this
exercise. They started with the hypothesis of ‘no evolution’ in the
luminosity function. Based on the redshift data, this null hypothesis
enables one to construct this radio luminosity function (RLF). Using this
RLF it is then possible to carry out theoretical Monte Carlo samples of
sources so that one obtains two-dimensional plots of number-
flux-density distributions. These plots are then compared for deviations
from the observed plot.

It turns out that the deviations are not large enough to be rejected on
probability grounds. That is, the non-evolving model cannot be ruled out
by the data. The deviations are smaller and the confidence levels (for
retaining the null hypothesis) turn out to be higher for the steady state
model. The agreement between ‘no evolution’ and observations improves
further if we assume a ‘local hole’ of size ~ 50—100 Mpc for radio sources.
Judging by the inhomogeneity (superclusters and voids) on this scale, the
local hole hypothesis does not sound as outlandish today as it did in the
1960s.
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10.4 The variation of angular sizes with distance

This test was discussed briefly in Chapters 3 and 4 (see sections 3.8 and
4.5), where we saw that the angular size of an object of fixed projected
linear size does not steadily decrease with its spatial distance from us.
Figure 4.6 shows how the angular size changes with the redshift of the
object. In 1958 F. Hoyle first suggested that this property of non-
Euclidean geometries could in principle be tested by astronomical
observations.

Such a test could be performed for galaxies in the optical region.
However, the redshifts of galaxies do not go far enough (that is, to z = 1)
to make the predicted effects observable. For instance, in 1975
R. J. Dodd, D. H. Morgan, K. Nandy, V. C. Reddish, and H. Seddon
examined the images of 3000 faint galaxies down to B-magnitude = 23 on
the 48-inch UK Schmidt telescope in Australia. Instead of redshifts, which
are not expected to exceed 0.5, they plotted the number N of galaxies
larger than a specified angular size 6. The observed curve was, however,
consistent with a broad range of Friedmann models (0 < g¢ < 13) as well
as for go = —1, corresponding to the steady state model. This result shows
that galaxies are not likely to be useful as sensitive probes for selecting a
narrow range of q.

For small redshifts the expected redshift dependence of angular size is
0 < z~1. The eye estimates of angular diameters of first-ranked ellipticals
in clusters, obtained by Sandage from the Palomar Schmidt and the
200-inch telescope plates in 1972, did show this dependence. At redshifts
higher than ~ 0.5, one has to look at clusters of galaxies. Work by
P. Hickson was along the following lines. He found the harmonic mean
separation of the top 40 brightest galaxies within a specified radius of
3 Mpc of the centre of each cluster. Although Hickson and P. J. Adams
claimed that their analysis of the data required evolution in cluster sizes
towards progressively smaller sizes, there is doubt on the significance of
this conclusion. For example, it is by no means clear that the clusters are
relaxcd and reached statistical equilibrium. Moreover, there is evidence
for subclustering within a given cluster, showing that the mixing needed
for virialization has not occurred.

Radio sources, as suggested originally by Hoyle, are likely to provide
more useful information if the strongest of them can be seen at redshifts
z = 1. Radio sources have by and large the double structures shown in
Figure 10.6. The typical source has two radio-emitting blobs A, B, say,
separated by a distance d, which ranges from a few kpc to ~ 1000 kpc.
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Fig. 10.6 The above image-processed radio picture of Cygnus A illustrates the
structure of the most common type of extragalactic radio source with two
radio-emitting blobs located symmetrically on the opposite sides of a central
region. The central region is believed to be the source of activity that generates
fast particles moving out in jetlike structures which create the two radio-emitting
lobes after impinging on the intergalactic medium. (Source: National Radio
Astronomy Observatory, USA.)

¢

The typical angular size is ~ 20 arcsecond at the observer, angles that can
be readily measured. However, unlike the angle subtended by a sphere,
which does not depend on orientation, the angle subtended by a linear
source AB, such as that shown in Figure 10.6, depends on the angle made
by AB with the line of sight. Thus even the angles subtended by sources of
the same linear size at the same distance will show a scatter.

The data published in 1974 by J. F. C. Wardle and G. K. Miley for
quasars show enormous scatter, partly because of the above projection
effects and partly because the linear size d is nct fixed. Even so, the upper
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envelope of the plot shows a dependence of the form 6 o z~! for z up to
2.5 which is difficult to explain.

Figure 10.7 shows a plot of median angular size against redshift for
radio sources, with the gq =0 Friedmann curves superposed on it. The
observed points are from the 1979 work of J. Katgert-Merkelijn, C. Lari,
and L. Padrielli. The two theoretical curves are for median linear sizes of
125h5 kpe and 165h5 kpc. The agreement is not bad, although we
cannot expect the data to single out a particular g, with any degree of
confidence.

Because redshifts of radio sources are not directly measurable but have
to be obtained by the process of optical identification, some radio
astronomers have preferred to plot the angular size 6 against the flux
density S. Since radio sources have varying luminosities, this procedure
adds a further source of scatter to the observations. However, R. D.
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Fig. 10.7 Median angular size 6 against the redshift z plotted for a number of
radio sources, together with the theoretical curves for gy = 0 and d,, = 165 and
125h5" kpc; the error bars seem to permit a wide range of values of go, although
even a Euclidean result 6 o< z' cannot be ruled out. (Based on J. Katgert-
Merkelijn, C. Lari, & L. Padrielli, Statistical properties of radio sources of
intermediate strength. Astron. & Astrophys. Suppl., 40, 91 (1979).)
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Ekers at Groningen and V. K. Kapahi and G. Swarup at Ootacamund did
extensive work on this project from 1974 to 1975. In their work the
median value of 8 did not show the expected upturn at low flux densities,
but instead tended to level off. This could imply one of the following
interpretations:

1. Low S means large z. Since, at large z, 6 should begin to increase according
to Friedmann models with gy >0, a flattening of 6 implies evolution. In
particular, the linear size d must decrease as z increases, implying that radio
sources were smaller in the past than they are now.

2. Low S need not imply large z. We may simply be seeing sources of low
luminosity. If there is a correlation between source size and source luminos-
ity, the 6—S observations could be reproduced.

Kapahi preferred interpretation 1 and argued that a size evolution of the
form

doe(l+2)% a=~1 (10.29)

can explain the 8-S observations. S. M. Chitre and the author took the
opposite view, outlined above as interpretation 2. A better check on
whether 1 or 2 is correct will come from the study of the structural
properties of radio sources and from the measurements of their redshifts.

Subsequently, Kapahi considered four complete samples of radio
galaxies with the following ranges of flux density and redshifts:

1. BFDL sample of A. H. Bridle, M. M. Davis, E. B. Fomalont and
J. Lequeux with flux density at 1.4 GHz > 2 Jy and redshifts 0.075 < z <0.2;

2. GB/GB2 sample of J. Machalski and J. J. Condon, with flux density at
1.4 GHz > 0.55 Jy and redshifts 0.15 < z < 0.4;

3. Same sample as (2) but with flux density at 1.4 GHz > 0.2 Jy and redshifts
0.25 < 7 < 0.6;

4. Leiden Berkeley Deep Survey (LBDS) sample of R. A. Windhorst, G. M.
van Heerde and P. Katgert with flux density at 1.4 GHz >0.01Jy and
redshifts z = 0.8.

Spectroscopic redshifts are known for most of the sources only in the
brightest BFDL sample. For the GB/GB2 samples they have been
estimated from optical magnitudes by using the Hubble relation. The
LBDS sample has sources that are either identified with galaxies of F
magnitude > 22 or have no optical counterparts, implying that they have
optical magnitudes fainter than the plate limit. Thus there is no direct
information on redshifts but the expectation is that redshifts exceed 0.8
and are probably less than 2.
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The median angular size versus redshift plot for these four samples
shows again a steady decrease of 68, as z~!. To explain this, Kapahi
invokes evolution of linear size with redshift, with sources at large
redshifts being systematically smaller.

Although Kapahi has denied that Malmquist bias could creep into this
result, we should keep the possibility open in view of the uncertain
knowledge of redshifts. Suppose there is no evolution, but an anticorrela-
tion between source luminosity and linear size. Then in a more distant
(large z) sample the limits of flux density would admit only the relatively
more luminous and hence more compact sources. This would bring down
6., purely as a selection effect.

10.5 The surface brightness test

A test that combines the magnitude and angular sizes involves the
measurement of surface brightness as a function of redshift. In the
Robertson—Walker world models, formulae (3.44) and (3.53) in Chapter 3
give the apparent brightness of a source and its angular area respectively
as:

Fpol = Lba (10.30)
4mriS?(to)(1 + z)?
d*(1 + z)?
=T (A8 = f—(z——z)— (10.31)
4 4r1S%(to)
Dividing (10.30) by (10.31) gives the surface brightness of the source as
' L
o=——2 (10.32)

m2d?(1 + z)*

Notice that o does not depend on ry; nor does it depend on g, — the
parameter that labels different cosmological models. It depends only on
(1 +2z) as its negative fourth power. Sandage has emphasized that this
fourth power law is a signature of Hubble expansion, and as such it could
be used to distinguish the expanding world models from other types of
theories in which the redshift does not come from expansion.

Although we have not discussed such theories in Chapter 8, we should
mention that there are such cosmologies. For example, there is the ‘tired
light’ theory of J.-C. Pecker and J. P. Vigier, the chronometric cosmology
of J. E. Segal, and so on.
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Sandage has found that the (1+ 2)™* law seems to be obeyed by
first-ranked cluster numbers with a fairly narrow scatter, thus confirming
the expanding universe picture for galaxy redshifts.

10.6 Quasars as probes of history of the universe

The tests described above assume that the redshifts of the objects used for
the tests are of cosmological origin. This assumption is fairly sound in the
case of galaxies for which, at least in the case of the first-ranked cluster
numbers, the Hubble relationship is fairly tight.

By contrast, quasars have considerably larger redshifts. At the time of
writing, 5000 quasars are listed in the catalogue of A. Hewitt and G. R.
Burbidge, out of which over 1250 have redshifts between 1 and 2 and
about 1200 have redshifts exceeding 2, the largest redshift listed being
4.897. These objects would therefore belong to region III of section 10.1
and should be considerably valuable as cosmological probes. We will
assume here that the quasar redshifts are due to the expansion of the
universe and so obey Hubble’s law. To begin with, we discuss the evidence
for this assumption which we shall refer to as the Cosmological Hypothesis
(CH).

A plot of logz against m should, according to Hubble’s law, give a
slope dlog z/dm =5 corrected for cosmological effects at large z. As early
as 1966 G. R. Burbidge and F. Hoyle pointed out that the Hubble
diagram for quasars is a scatter diagram with no apparent correlation
between log z and m. This conclusion survived as more and more quasars
were found, and it applies to the ~ 5000 quasars in the Hewitt—Burbidge
list. Certainly Hubble, or for that matter any astronomer encountering
these data in isolation, would not have concluded that any relationship
exists between redshifts and magnitudes of quasars.

However, historically, quasars were discovered at a time when Hubble’s
law for galaxies was well established and none of the rival modes of
redshifts ~ the Doppler or gravitational — were known to produce redshifts
as high as the z = 0.1 common for galaxies. Thus it was natural to assume
that quasar redshifts are also cosmological.

The conventional view when confronted with a scatter Hubble diagram
has therefore been that the scatter is due to the vast spread in quasar
luminosities. J. N. Bahcall and R. E. Hills argued in 1973 that a tight
Hubble relationship ior quasars is revealed when (1) corrections are made
for various selection effects, (2) the quasar sample is divided into small
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redshift intervals (bins), and (3) the brightest quasar in each redshift bin is
chosen. This conclusion has, however, been challenged by Burbidge and
S. O’Dell, who find that their analysis along similar lines leads to much
flatter slopes for d log z/dm: slopes in the range from 2 to 3 instead of 5.

Whatever the outcome of such calculations, it is clear that the Hubble
diagram cannot be taken as a proof of the correctness of the CH; at best,
arguments of the Bachall-Hills type might make it compatible with the
CH. Certainly, there seems no hope at present of using quasars to
measure qo with the help of their Hubble diagram.

We next descuss other tests involving quasars.

10.6.1 Number counts

Using the luminosity volume test, M. Schmidt concluded that the average
(V/V ) for radio quasars in the 3CR catalogue was as high as 0.64
(compared with the Euclidean value of 0.50). Similar high values emerge
in other surveys. On this basis it is usually argued that the quasar number
density has been strongly evolving; that it was considerably higher in the
past than now. Models of luminosity evolution as well as density evolution
with enhancement factors like (1 + z)” (n > 1) or exponential functions in
the look-back time are used to fit the quasar number-count data. It is also
argued that steep-spectrum radio quasars have stronger evolution than
flat-spectrum radio quasars.

There also exist number counts of optical quasars which show a
super-Euclidean slope of log N—m relation (a slope ~ 0.8 as opposed to
0.6 for the Euclidean universe) for the bright quasars. The log N-m curve
flattens beyond the B-magnitude ~ 20. It is argued that luminosity
evolution is responsible for this steepness. The numbers however, begin to
fall off significantly beyond z ~ 3.

Curiously enough, the (V/V ) for radio quasars turns out to be close
to 0.5 if we assume that quasars are local (in region 1) and uniformly
distributed. This was found by R. Lynds and D. Wills in their examination
of several complete samples of radio quasars.

In 1979 a new dimension was added to the source-count problem with
the discovery (due largely to the FEinstein Observatory) that X-ray
emission is a characteristic feature of many quasars. Thus in principle it is
possible to do a log N-logS test for X-ray quasars. The early data
suggested that the X-ray and optical luminosities of quasars are correlated.
Hence, if optical number counts of quasars were to be taken as the basis of
number counts of X-ray quasars also, then using formulae like (4.89) it
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would be possible to estimate the overall contribution to the X-ray
background from quasars alone.

The optical number counts of quasars in 1979 suggested a steep rise in
the number of faint quasars, and this led to the so-called X-ray
background catastrophe. The quasars alone seemed to contribute over 100
per cent to the X-ray background. However, it is now realized that the
quasar number density does not rise as earlier suspected. According to the
later estimate of A. K. Kembhavi and A. C. Fabian, the contribution of
X-ray quasars to the X-ray background should not exceed ~ 30 per cent of
the total.

10.6.2 Angular-size—redshift relation

Compared with the chaotic situation in the case of the Hubble diagram, a
clearer relationship between an observable (distance-dependent) property
and the z of quasars emerges from a study of angular sizes. As pointed out
in section 10.4, the largest angular size in a given redshift bin seems to
decrease as z~! for radio quasars. There is also a rough continuity
between the 68—z plot of quasars and a similar plot for galaxies, suggesting
that both objects probably belong to the same system. However, why
should 0 vary as z7!, as no Friedmann model predicts? The curious thing
is that if z were proportional to distance D then the observed result
0 o D71 is simply confirming Euclidean geometry! Attempts have been
made to understand such a plot by making further assumptions such as
evolution; but we are again forced to look upon such attempts as
patchwork efforts. We certainly are not able to observe effects of
non-Euclidean geometry, which we would have hoped for since the large z
of a quasar means it is a distant object.

10.6.3 Absorption line systems

There are several quasars that show absorption lines as well as emission
lines. The emission line redshift z.,, of a quasar is usually the same for all
lines. In some cases, however, more than one absorption line redshift z
is found. Also, mostly 7. < Zem, although a few cases exist in which
Zabs = Zem- Why do these redshift differences exist?

In principle, the difference between the emission line redshift and the
absorption line redshift could be accounted for by (1) a relative motion
between the emitting 2nd the absorbing region, (2) a small contribution of
gravitational redshift/blueshift between the two regions, or (3) the
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difference in the cosmological redshifts of the emitting and absorbing
regions. Both (1) and (2) arise in the source, while (3) requires absorption
to occur en route from the source to the observer. Note also that while (1)
could be adjusted to have both Z,ps = Zem, (2) and (3) require 2,5 < Zep.

It is not clear from the work so far whether entirely satisfactory
mechanisms exist in (1) to account for the various absorption line systems
within the object. In the case of the quasar 3C 286, z.y =0.85, while
Z.6s = 0.69; 21-cm observations of the source reveal a very small velocity
difference (~3 kms™!) across a distance of ~300pc in the source. This
result was quoted as a stumbling block to the theory, which seeks to
explain the difference Zeym — Zaps as arising from high-speed gas driven
outwards from within the quasar.

The more popular explanation of absorption line systems comes from
(3), with the absorbers being intergalactic clouds or halos of galaxies
situated en route from the QSO to the observer. Typically there are three
types of absorption lines:

1. The broad absorption lines (BAL) or trough systems of CIV, SiIV, NV,
OVI, etc. in addition to Ly «. The troughs are located on the blue side of
the corresponding emission lines and have widths corresponding to a velocity
< 0.10c.

2. The heavy-element systems containing sharp lines due to H and to heavier
elements which may arise in a tenuous gas of near-solar composition. Here
the difference between the emission and absorption redshifts corresponds to a
velocity towards the quasar of < 0.8c.

3. The Ly o systems appearing with increased density on the blue side of the
emission line.

Considerable work has been done to argue that the majority of the
absorption lines arise from randomly distributed intervening cosmological
objects. In some cases where an absorption line at a specific redshift has
been found, a cluster of galaxies with the same redshift has been reported
in the vicinity. As discussed in Chapter 9, however, the Gunn-Peterson
test looking for substantial intergalactic neutral hydrogen en route to
quasars did not yield a positive signal. This was interpreted more as
evidence against the intergalactic hydrogen than the quasars being at their
redshift distances.

10.6.4 Gravitational lens

In 1979 two quasars, 0957 + 561 A, B, with the same redshift 1.4 and
identical spectra were discovered. Their similarity led to the suspicion that
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they are two images of a single object produced by a gravitational lens. A
cluster of galaxies with a redshift of 0.39 has since been identified as a
probable candidate for such a lens.

Since the quasars are separated by only ~ 6arcsecond, such an
interpretation seems plausible and therefore provides support for CH, in
the sense that the ‘lensed’ quasar is shown to be further away than the
‘lensing’ galaxy. However, there have been very few such clearcut cases of
gravitational lensing.

10.6.5 Variability

Quasars show rapid variability in radio and optical wavelengths as well as
X-rays, as indicated by recent data. A rule of the thumb is that if 7 is the
characteristic time scale of variation, the physical radius R of the object
should not exceed ct. This leads to an energy generation problem that was
first pointed out by Hoyle, Burbidge, and W. L. W. Sargent in 1966. The
difficulty is briefly described as follows.

Since we measure the flux & from a quasar, its total luminosity is
deduced from its distance. Under the CH, the distances are large and
hence the luminosity is large. The quasar must therefore generate large
quantities of energy in a small volume limited by the linear size ct. In the
usual energy production scenario, the so-called synchrotron process,
relativistic electrons radiate in magnetic fields. However, as Hoyle,
Burbidge, and Sargent pointed out, this process results in the production
of a very large density of photons. These photons collide with electrons,
causing a very large Compton scattering, which degrades the energy of the
fast electrons. Thus it is not possible to sustain energy production over
distances even comparable to R =c7t; the electrons lose energy long
before they travel a distance of this order.

The kinematic difficulty of whether quasars can manage to be confined
to the radius R < c7 is partially alleviated by the following idea proposed
by M. J. Rees. If an object expanding relativistically with a large Lorentz
factor v is viewed from a distance, it appears to increase its radial size at
the rate yc. Thus the observed time scale of variation y may be too small
and the real inequality on R is R < ycr (see Exercise 20).

A compact size implied by the short time scale of variability is
sometimes invoked in support of the idea that a quasar’s energy is derived
from a supermassive black hole. For example, the X-ray quasar OX 169
showed a significant drop in its X-ray luminosity within 100 minutes. The
size limit implied by this time scale can accomiodate a black hole of mass
=108 M@ .
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10.6.6 Superluminal separation

Very-long-baseline interferometry (VLBI) observations have revealed a
curious phenomenon in a number of quasars. In the central region of such
a quasar, two radio components are observed to separate from each other
very quickly. Since angular separations in milliseconds of arc are measur-
able by VLBI techniques, observations over a few months or a few years
are sufficient to give a detectable effect. Thus it is found that the
separation angle 6 is changing (increasing) with time in such a way that
the projected linear distance must change at speeds considerably faster
than the speed of light — provided the quasars are at distances specified by
the CH. Clearly, if the distances are much smaller than these, the speeds
of separation become subluminal and the discrepancy with relativity
disappears.

To retain the CH in spite of such data requires the conclusion that the
observed separation is illusory. Various ways out have been suggested,
and three of these are illustrated in Figure 10.8. Figure 10.8(a) shows the
Christmas tree effect, which creates an illusion of motion by sequential
lighting of stationary light bulbs. Figure 10.8(b) illustrates the so-called
relativistic beaming, a variant of the idea proposed by Rees and described
above under variability. The model illustrated in Figure 10.8(c) invokes a
gravitational screen in the form of an intervening galaxy or a cluster of
galaxies that bends the light rays (or radio waves) from the two
components differentially so that their virtual images appear to separate at
superluminal speed.

10.6.7 Morphology

It is argued that quasars and the nuclei of Seyfert and N-galaxies are
basically similar objects and that in general we may think of a quasar as a
galactic nucleus that is so bright that the rest of the galaxy either is not
visible or is too faint to be seen. According to this argument, if the CH is
correct, a large redshift implies a large distance and at that distance only
the bright nucleus would be visible as a quasar. In some cases, such as the
quasar Ton 256, it is argued that a fuzz surrounding the quasar has the
luminosity distribution of an elliptical galaxy. To establish this line of
evidence, which goes in favour of the CH, it would be necessary to show
that a galaxy of stars indeed exists around the quasar. Absorption lines
characteristic of stars in elliptical galaxies would be conclusive evidence
for this purpose.
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Fig. 10.8 Three ways of creating illusions of separation at speeds faster than the
speed of light. (a) A row of lights is denoted by circles. The filled circles are lights
that are lit. In stages I to IV the lighting is so contrived that a remote observer
may think that two sources of light are moving outwards from the centre. (b) The
observer sees the two actually separating components at different times; for light
from the nearer component A leaves later than light from the further component
B. C is the central nucleus at rest. An illusion of superluminal separation between
A and B is created provided the line AB is almost aligned with the line of sight.
This is very rare. Moreover, A is blueshifted and hence should be much brighter
than B, which is redshifted with respect to the observer. It is usually presumed
that B is at rest and A is beamed at the observer. (c) Here an intervening galaxy
bends the rays from A and B so that the observer sees their images A’, B’, which
could separate at superluminal speed even if A and B move apart with subluminal
relative velocity. For this to happen the galaxy G must occupy a rather special
position between the source and the observer.
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10.6.8 Quasar—galaxy associations

One way of establishing that quasar redshifts are cosmological is to show
that a galaxy and a quasar of the same redshift are physical neighbours.
For we know that the galaxy redshift follows Hubble’s law, and therefore
the quasar redshift must also result from the CH.

During 1971 and 1972 J. Gunn, L. B. Robinson, and E. J. Wampler
produced evidence of this kind. In 1978 a significant series of observations
was reported by A. N. Stockton. Stockton chose all 27 known quasars
with redshifts < 0.45 and visual magnitudes less than 19.2 + 5log z in the
declination range —15 < § < +55. He then attempted to obtain spectra of
all galaxies visible on the red Palomar Sky Survey plates lying within
45 arcseconds of any of the quasars. Of the 29 such galaxies he obtained
the spectra of 25, of which 13 showed redshifts within ~ 3 X 1073 of the
redshift of the neighbouring quasar. Are these associations genuine or are
they chance projections on the sky? Since the astronomer cannot measure
radial distances of quasars, he has to use statistical arguments to settle the
issue. Stockton’s pairings would have come from chance projections with a
probability less than 1.5 X 107¢. Thus a statistician would be inclined to
accept the associations as genuine and conclude that the quasars are near
the galaxies and therefore at distances according to CH.

Taken in isolation this argument would be quite strong. Yet there is
another side to this coin, which we shall discuss in the final chapter.

Broadly speaking, we may argue that there is considerable body of data
that is consistent with the quasar redshifts being cosmological. It can also
be argued that quasars and the nuclei of active galaxies which show
emission lines form a continuous morphological sequence. Indeed, to push
the argument further, one may argue that quasars are nuclei of galaxies
which tend to outshine their galactic envelope, so that when they are seen
from afar only the quasar is seen and not the galaxy. As a support to this
argument, there are cases where a fuzz is found surrounding some
low-redshift quasars.

However, we have as yet no direct proof that all the very-high-redshift
quasars are in fact very far away, as the cosmological distance formula
would have us believe. The nearest to direct evidence is the association
between quasars and galaxies of the same redshift found by Stockton.
Until a reliable distance indicator independent of Hubble’s law becomes
available for quasars, and it shows that the Hubble law is applicable to
them, the CH must rest for its support largely on consistency arguments or
just simple faith.
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10.7 The variation of fundamental constants

Standard cosmology is based on the conservative assumption that physics
as we know it here and now can be extrapolated to apply to the large-scale
structure of the universe. As we mentioned in Chapter 8, such an
assumption is justified on the basis of the economy of postulates, or
Occam’s razor. Among the nonstandard cosmologies, only the Perfect
Cosmological Principle guarantees the validity of this assumption. On
empirical grounds there is no reason to believe that the assumption must
otherwise hold. Thus it is possible to have fundamental constants like c, #,
e, G, and particle masses varying with space and time. In Chapter 8 we
encountered cosmologies that assume the last two items on the above list
may vary with epoch. We will consider the evidence relevant to these
issues in this section.

10.7.1 The variation of o = e?/hc

We have noticed in the context of the Large Numbers Hypothesis (LNH)
that e?/Gm,m. should vary with cosmic time . Dirac assumed this to
imply G o t~!, with e, mp, m, constants. There is also the alternative
conclusion to be drawn from the LNH that e? « ¢, with G, my, m.
constants. This was suggested by Gamow in 1967 because he believed that
such a rapid decline in G as ¢! is ruled out by observations. If # and c are
constants, then Gamow’s interpretation leads to the conclusion that the
fine-structure constant o = e?/Ac must vary with epoch as ~ ¢.

In 1967 J. N Bahcall and M. Schmidt measured the wavelengths of the
O III multiplet line in the emission spectra of five radio galaxies with
72~0.2. If o is fixed then the wavelength difference 61 between the
observed multiplet lines as a fraction of the weighted mean wavelength 4
of one of the lines must be the same in the observed spectra as in the
laboratory spectra. If not, we have

12 ~12
A2) _ (é&) x (é&) . (10.33)
a(O) A observed A laboratory
Bahcall and Schmidt found that
Az2=02) _ 4 401 + 0.002. (10.34)
«(0)

If o was proportional to ¢, we should have got a value ~0.8 for the
right-hand side of (10.34).
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In 1977 M. S. Roberts compared the redshifts measured at optical
wavelengths and at 21 cm in extragalactic sources to find that

Heax102yr 1, (10.35)

¢4

Again, this is an order of magnitude lower than the predicted variation
rate o < t.

10.7.2 The variation of G

This is an important observation, since the constancy of G is the basis of
general relativity, on which standard cosmology is based. On the other
hand, several nonstandard cosmologies predict |G/G| ~ H, at the present
epoch. We summarize below the direct and indirect evidence for the
variation (or lack of variation) of G.

Radar observations.

In 1976 1. 1. Shapiro and his colleagues reported the result of an analysis
of several thousand observations of radar signals bounced off the inner
planets between 1966 and 1975. Taking the other data from the Moon and
the outer planets, the radar results give

G
P. M. Muller finds a value of G/G = (—6.9 = 3.0) X 1071 yr~1,

<1070 yr-1,

Lunar mean motion

T. C. Van Flandern had examined Earth—-Moon—Sun observations over
several years using two time scales: atomic time, as measured by atomic
clocks, and ephemeris time, derived from the Sun’s motion around the
Earth. The basis of these observations is as follows.

Suppose a body goes around another much more massive body in a
circular orbit of radius r and mean angular velocity n. If M is the mass of
the central body then Newtonian mechanics gives the following two
relations:

GM = r3n?,  r’n = constant = h. (10.36)

If we now introduce a slow variation of G with time, it is easy to deduce
from the above two relations that
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G_1n (10.37)

Thus the Earth’s mean angular velocity around the Sun as me.asured by
ephemeris time will slow down at the fractional rate of 2G/G if G
decreases with time. A similar equation should hold for the Moon, except
that the Moon’s motion is also affected by the tidal friction of the
Earth—Moon system. Thus we have for the Moon

M Am 2G

nMm (”M)tidal i G’ (1038)

If 7iyy/ny is measured by atomic time, we should get (10.38). However,
the same quantity measured by ephemeris time will take out the 2G/G
term arising from (10.37) and will only measure the tidal part. Thus the
difference between the two observations should give us 2G/G.

The main uncertainty in this method has always been in obtaining a
reliable estimate of the tidal effect. If the errors quoted in the various
determinations of 7 are reliable, then there is a genuine contribution of
the G/G term towards the Moon’s motion. Early assessment of the data
by Van Flandern suggested a value of the order G/G ~
(—6.9+2.4) x 101 yr~!, when considered within the framework of the
Dirac cosmology. This rate is consistent with the Hoyle-
Narlikar cosmology but is too high for the Brans-Dicke theory with
w = 30.

The most accurate measurement to date of the rate of change of G was
reported in 1983 from an analysis of the range data to the Viking landers
on Mars. The experiment conducted by R. W. Hellings,
P. J. Adams, J. D. Anderson, M. S. Keesey, E. L. Lau, E. M. Standish,
V. M. Canuto and I. Goldman used the range measurements to the Viking
landers and to the Mariner 9 spacecraft in orbit around Mars, the radar
bounce range measurements from the surfaces of Mercury and Venus, the
lunar laser range measurements and optical position measurements of the
Sun and planets. A least-square fit of the parameters of the solar system
model to the data shows that

G/G = (0.2 +0.4) x 10~ /yr.
Thus the result is certainly consistent with zero variation of G.

Stellar evolution

If G was greater in the past than now, stellar evolution would have
proceeded at a faster rate, and this would lcad to modifications of the
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m—z relation. In 1980 Canuto and the author showed that as far as the
G-varying HN cosmology is concerned, the present data on m-z relation
are consistent with the theoretical prediction. However, the uncertainties
of the m—z relation are such that it cannot tell us definitely whether
G-variation is taking place.

Biological evolution of the Earth

If G had been higher in the past, the Sun would have been brighter and
the Earth closer to it than now. The Solar constant (the flux of radiation
from the Sun outside the Earth’s atmosphere, at present
~1.388 x 10° ergcm =2 s7!) therefore must have been considerably higher
at the time of formation of the Earth than it is today. As estimated by
Hoyle on the basis of the G-varying cosmology, at time when life began,
say around 3 X 10° years ago, this constant may have been about three
times its present value. Would life have been possible under such
circumstances? Again, it can be shown that the G-variation in the HN
cosmology is not inconsistent with the biological evolution of the Earth,
although such evidence also cannot be used fo prove that G does vary with
epoch.

Exercises

1 Calculate the past light cone for Friedmann models by expressing
D(qy, 2) as a function of z. Plot these cones for gy = 0, 1, and 1 as
well as for the steady state model.

2 Discuss how the m-z curves for different cosmological models
branch out for different values of g,. Why does the uncertainty in
the value of H( not hamper the test of the value of ¢¢?

3 What are the various issues that need to be considered before the
m~z plot can lead to something of cosmological significance?
4 Discuss the aperture correction. In what way does it depend
on qq?
5  Show that
D(1,z) z

D(3,2) 20 +2) -1+ )]
and deduce that for o = 0.7 the aperture correction introduces a
magnitude difference of ~ 0.09™ at z = 0.7.
6 Suppose I(A) o< A% in the range 2500 A<1<5000A. A galaxy of
redshift 0.5 is being observed in a wavelength band centred on
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5000 A. Another galaxy of redshift 0.7 is also observed at 5000 A.
Show that the K-terms for the two galaxies will differ by ~0.41™.
Discuss the Stebbins—Whitford effect. Is it eliminated by taking
due account of the K-correction?

Let K(A) denote the cross-section of absorption per unit mass of
intergalactic dust at wavelength A. Show that in a Friedmann
model of given g, Hg, the apparent magnitude of a galaxy of
redshift zg, is increased owing to intergalactic absorption by an
amount (at the measured wavelength )

20
am=2.5(logoe) = | 'K ( & ) A+ 2)de
HoJo " \1+ 2] (1+242)'"
where p, is the density of intergalactic matter.

Taking K (A) = (6400/hungsirom) X 10* cm?g™, gqo=1, pp=
2.45x 1073 gem™3, and hy=0.5, show that at A, =6400A,
Am =~ 1™ for a galaxy of redshift unity.

Show how the luminosity evolution introduces uncertain correc-
tions to the value of gq. Using (10.16) with x = 1.35, compute the
‘true’ values of g, for the measured values gy = 1 and o = 3.
For the luminosity function of galaxies given by (10.21), show that
the N-m relation in the gg = 0 Friedmann model is given by

i 1/4 n—x

N(<m)OCJ xV4e~* dx ,

0 [x'2 + dex (4.658 — m/5)]?
where dexy = 10Y. Show that for a small m the above result
becomes the same as for Euclidean geometry.
Show why the K-correction is necessary for the number counts of
faint galaxies.
A radio galaxy of redshift z = 0.1 has a spectral index o =1 and
luminosity of 10*ergs™! over the frequency range 150 <
v =< 1500 MHz. For hq =1 show that the flux density of the galaxy
is ~350Jy at 1000 MHz and ~ 1750 Jy at 200 MHz. (Neglect any
cosmological effects.)
Express the radio power of the source in Exercise 12 in units of
watts per MHz per steradian at the frequencies of 200 MHz and
1000 MHz, respectively.
Suppose that the probability that the ratio V/V, lies in the range
(x, x + dx) for 0 < x=< 1 is proportional to x" dx. Estimate n from
the observed value of {(V/V ) = 3.
Suppose that for small enough intervals do; we have at most one
source per interval. Writing (10.25) in the form
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ao;7 @ Do,
1~ 0"
and maximizing with respect to « the expression

‘SB = Zlnpb

show that for og >> 1 we get

D=

a=M/D Ino,.

16 Let f(L)dL denote the number of radio sources per unit volume in
the luminosity range (L, L + dL). Suppose that for small redshifts
the plot of log z against log L follows a straight line of slope 1.
Also assume that the number of points in equal intervals of log L is
found to be constant. Using Euclidean geometry with distance oc
z, deduce from these observations that f(L) « L 2.

17 Discuss why a sample of radio sources complete with respect to a
minimum flux density is not necessarily complete with respect to a
maximum redshift and vice versa.

18 A radio source survey gives N = 10 at § = 12.5 Jy, while N = 93 at
S = 5Jy. Show that in a Euclidean universe the above counts imply
either a deficit of 13 sources at the high-flux end or an excess of 53
sources at the low-flux end. Use this example to comment on the
Ryle-Hoyle controversy of the 1960s.

19 Show that in the Einstein—de Sitter model the number of galaxies
intervening between a quasar of cosmological redshift z and the
observer is given approximately by

R \? N
N =0. g 1+ 2)%—-1],
006(3kpc) (0.1 Mpc—3)[( 2) ]

where hy =1, R = the radius of the typical galaxy (assumed to be

spherical), and N, = number density of galaxies. What can you say

about the intervening galaxy interpretation of quasar absorption
* lines on the basis of this formula?

20 A spherical explosion leads to the expansion of an object with
radial velocity V in the rest frame of a remote observer O. By
considering the shape of the surface of simultaneity as seen by O.
deduce that the object appears to expand laterally with speed
V(1= V2%t 12,

21 Show that a supermassive black hole of mass 108M has a
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characteristic time scale of ~ 15 minutes. (In an accretion disc
scenario, the disc may extend up to ~ 10 times the black hole
radius, thus increasing the above time scale by a factor of 10.)
In the quasar 3C 345 an angular separation of central components
was observed to increase from ~ 0.6 milliarcsecond in 1970 to
~ 1.6 milliarc second in 1975. The redshift of 3C 345 is 0.595. Show
that if the redshift is cosmological the separation speed must be at
least ~ 6.6¢ for hy = 1.
Suppose quasars are located at fixed distance D from their
companion galaxies. Show that such an assumption leads to a
log 6-log z; plot with a mean slope of —1. Why is this assumption
inconsistent with the CH?
Show that if the fine structure constant varies as ¢, then at a
redshift of 0.2 the fine structure constant should be 77 per cent of
its present value in the Einstein—de Sitter model.
Deduce that for a slow variation of G in Newtonian mechanics, the
angular speed n of a particle going around a massive body in a
circular orbit changes as follows:

n 2G

n G’
Discuss the uncertainty introduced in the measurement of G/ G by
the tidal force between the Earth and the Moon.
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A critical overview

11.1 Cosmology as a science

The preceding chapters describe the attempts of present-day cosmologists
to study their subject within the discipline imposed by science. From the
days when it was a subject of philosophical speculations and religious
dogma, cosmology has now developed into a subject to which the scientific
method of investigation can be applied. This change has resulted from
improvements in techniques for observing the large-scale structure of the
universe and from the wide applicability of the laws of physics.

Nevertheless, by claiming to describe the universe as a whole, cosmo-
logy transcends the realms of all other branches of science. Any
conclusions about the universe are bound to be profound and hence must
be drawn with caution. This caution is often found missing in statements
about cosmology. All too often the investigator (whether a theoretician or
an observer) is tempted to mistake the model of the universe for the real
thing. Categorical remarks about the state of the universe are often found
upon closer examination to be model-dependent. Firm claims about
observations of the universe have had to be withdrawn later when a better
assessment of the observational errors became possible.

To summarize the work of earlier chapters and to take stock of present
cosmological studies, we have therefore adopted the following method.
We begin with an enumeration of points in favour of the standard big bang
models. Since these have been extensively set out in the text we shall be
brief in describing them. Next we counter these arguments with those
against the same models. Here we shall be more critical then we have
been hitherto. Our reason for playing the devil’s advocate is two-fold.
First, we wish to correct (the deceptively simple) belief that the last word
in cosmology has been said and that physics has reached a virtual end.
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Second, we wish to highlight the fact that the universe is much more
complex than conveyed by the standard hot big bang picture. On either
count we should keep looking for alternative baskets for the cosmic egg.

11.2 The case for standard cosmology

An ardent supporter of standard cosmology will mention the following
points in favour of the hot big bang models.

1. The models are based on Einstein’s general theory of relativity. To
the extent that it has been possible to test this theory, its predictions have
always been borne out by observations. Thus we have confidence that the
framework of our models is based on a sound theory.

2. The standard models are the simplest solutions of Einstein’s equ-
ations. It is remarkable therefore that they are able to reproduce such a
profound observation as Hubble’s law. Moreover, these models predicted
this law rather than its coming as an afterthought. This is clearly an
indication that we are working on the right lines.

3. So far there is no satisfactory alternative to the theory of primordial
nucleosynthesis for explaining the abundances of light nuclei, especially
“He and *H. The agreement between the observed abundances and the
theoretical values is good enough to generate confidence in the hot big
bang.

4. The observation of the microwave background radiation and its
Planckian spectrum is a striking confirmation of the early hot phase in the
history of the universe. Again, as in (2), it goes to the credit of the picture
that the observation had been predicted by the theory.

5. The recent successes of the Grand Unified Theories (GUTs) applied
to the very early universe suggest that such a scenario must have some
germ of truth in it. For example, the expectation based on primordial
nucleosynthesis that there cannot be more than three neutrino species
appears to be borne out by particle accelerators. In any case, the physical
conditions under which the three basic forces of nature unite could have
existed only in the very early universe. Since it is believed that redundant
laws do not exist in nature, the situation leading to a GUT must have
operated sometime; hence the very early universe is the logical choice.

6. A logical consequence of the GUT phase transition is ‘inflation’,
which has turned out to be a fruitful input to the standard hot big bang
cosmology and promises to resolve some of its outstanding problems.

7. The number counts and angular sizes of radio sources and quasars
show evolution with epoch on the charac.eristic time scale of the
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expansion of the universe. The evolutionary models demand increased
density of quasars in the past, and this is consistent with the predictions of
the standard models that the universe was denser in the past than at
present.

11.3 The case against standard cosmology

The agnostic in the cosmological debate may use the following counter-
arguments.

1. General relativity has been tested only in the weak-field approxima-
tion. We have no empirical evidence as to how the theory fares under the
strong-field scenarios of cosmology. The standard models therefore are to
be looked upon as nothing more than extropolations into speculative
regions.

2. Relativistic cosmology in general and standard models in particular
have the curious and unsatisfactory feature of a spacetime singularity. The
appearance of infinities is considered disastrous in any physical theory. In
general relativity it is worse, since the singularity refers to the spacetime
structure and physical content of the universe itself. Moreover, it is
sometimes sought to dignify this defect by elevating it out of the reach of
physics. Thus one is not supposed to worry that the big bang violates all
conservation laws of physics, such as the law of conservation of matter and
energy.

3. There is a discrepancy between the astrophysical age estimates and
the Hubble age of the standard models. The discrepancy is made worse if
hy is close to 1 rather than 1, g, = 1 rather than g, ~ 0. This is particularly
so if one goes by the inflationary scenario.

4. The photon/baryon ratio of ~ 10 is not explained by the standard
models and the present temperature of ~ 3 K of the radiation background
remains to be derived from a purely theoretical argument. Although GUT
provides one way of explaining N,/Ng, the present explanation still has
the character of a post-dicting parameter-fitting exercise.

5. Despite numerous attempts by so many experts in the field, the
formation of large-scale structure in the universe is ill-understood,
especially in the context of the extraordinary smoothness of the microwave
background.

On a somewhat epistemological issue, one feels uncomfortable at the way
the research on the very early universe is being carried out. Because so
much brainpower is currently being devoted to this field — and has been
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for the last decade or more — this issue needs to be stressed somewhat
more forcefully. We will do so by comparison with other branches of
physics.

In general, physics (or for that matter, science in general) progresses
with a close interplay between theoretical ideas and observed facts.
Sometimes theory is speculative and is checked by firm observations. On
other occasions theory is well founded, but observations need to be
further sharpened. In the work on the very early universe neither scenario
holds: here we are dealing with theoretical speculations side by side with
no direct observational evidence.

When the electroweak theory was formulated it was an exercise in
theoretical speculations in gauge theories. It might or might not have
worked. That it did work was eventually demonstrated by accelerator
experiments. This is an example of how the scientific method worked in
particle physics. In Gamow’s work on the early universe, well-established
physics was used in a cosmological scenario that was speculative (there are
no astronomical observations of the universe when it was ~ 1s old).
However, the ultimate predictions of the work can be compared with hard
facts: the elemental abundances and the radiation background.

Neither of these conditions hold vis-a-vis the very early universe. No
one can deny that the work on GUTs is still highly speculative. Nor can
the theories be dynamically tested with particle accelerators. To capture
the full flavour of a grand unified theory one needs to attain particle
energies ~ 10° GeV, which are far beyond the capabilities of present
technology. On the cosmological side, the physics of the standard model
with or without inflation at ¢ ~ 107 s is entirely speculative.

Thus we are matching one speculation with another. There is no harm
in doing that provided we keep reminding ourselves that at best we can
claim consistency of this matching with what we observe today. Instead,
very definitive claims are often made about what the universe was like at
these epochs.

Further, the requirement of ‘repeatability of an experiment’ is not
satisfied in this picture. The GUT phase transition, inflation, etc.
happened once only, and conditions conducive to them would not occur
again. We may contrast this situation with nucleosynthesis in stars. This is
an ongoing process with each star as an independant experiment.

The role of non-baryonic dark matter is highly reminiscent of the
Emperor’s new clothes in the story by Hans Christian Andersen. Except
for neutrinos (whose massiveness is still open to question), no other form
of such matter is experimentally established. Yet the various esoteric
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particles are taken for granted uncritically. Perhaps the cosmologists think
that the physicists have established their existence on a firm footing, while
the physicists think that such particles must exist because cosmologists tell
them so. The hard fact is that there are no hard facts on either side!

So the sceptic may be permitted to ask, ‘Is the work on the very early
universe, inflation, dark matter, etc. real physics?’

11.4 The observational uncertainties

Here we wish to examine how firmly rooted are the main observations on
which modern cosmology is founded. In particular, we will discuss the
extent of validity of Hubble’s law and the primordial (relic) interpretation
of the microwave background.

11.4.1 How universal is Hubble’s law?

Throughout the book we have taken it for granted that the redshift of an
extragalactic object is cosmological in origin, i.e., that it is due to the
expansion of the universe. In Chapter 10 we described this assumption as
the Cosmological Hypothesis (CH). There we commented on the fact that
while the Hubble diagram on which the CH is based shows a fairly tight
m—z relationship for first-ranked galaxies in clusters, a corresponding plot
for quasars has enormous scatter. Although we discussed the cosmological
tests on the basis of CH for quasars as well as galaxies, we found that in
some cases special efforts are needed to make the CH consistent with data
on quasars. These included, apart from the Hubble diagram, the superlu-
minal motion in quasars, rapid variability, the absence of a Ly «
absorption trough, etc. -

To what extent is the CH valid for quasars? Let us begin with the type
of data Stockton had collected in which quasars and galaxies were found in
pairs or groups of close neighbours on the sky. The argument was that if a
quasar and a galaxy are found to be within a small angular separation of
one-another, then very likely they are physical neighbours and according
to the CH their redshifts must be nearly equal.

This argument is based on the fact that the quasar population is not a
dense one, and if we consider an arbitrary galaxy then the probability of
finding a quasar projected by chance within a small angular separation
from it is very small. If the probability is < 0.01, say, then the null
hypothesis of projection by chance is to be rejected. In that case the
quasar may be physically close to the galaxy.
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While Stockton found evidence that in such cases the redshifts of the
galaxy and quasars, zg and zg, say, were nearly the same, there have
been data of the other kind also. In a book listed in the bibliography,
H. C. Arp has described numerous examples where the chance projection
hypothesis is rejected but zg < zo. Over the years four types of such
discrepant redshift cases have emerged:

1. There is growing evidence that large-redshift quasars are preferentially
distributed closer to low-redshift bright galaxies (see Figure 11.1)

2. There are alignments and redshift similarities in quasars distributed across
bright galaxies (see Figure 11.2).

80

60 =0

t
i
1

NUMBER OF PAIRS

0 60 120 180 240 300 360 420 480 540 600
SEPARATION (arc sec)

Fig. 11.1 A histogram of the distribution of separations of 300 quasar-galaxy
pairs. If the quasars were randomly distributed with respect to bright galaxies
then their numbers should have increased in proportion to the square of angular
separation as shown by the broken line. Instead, there is a peak within 60 arcsec.
The quasars are all of considerably higher redshifts than galaxies. (After G.
Burbidge, A. Hewitt, J. V. Narlikar, & P. Das Gupta, Association between
quasi-stellar objects and galaxies. Ap. J. Suppl., 74, 679 (1990).)
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Fig. 11.2 Six bright QSOs with bunched redshifts as marked are seen here aligned
across NGC 520. (From H. Arp & O. Duhalde, PASP, 97, 1149 (1985).)

3. Close pairs or groups of quasars of discrepant redshifts are found more
frequently than could have been due to chance projection (see Figure 11.3).

4. There are filaments connecting pairs of galaxies with discrepant redshifts (see
Figures 11.4 (a) and (b).

The reader may find it interesting to go through the controversies
surrounding these exampies. The supporters of CH like to dismiss all such
cases as either observational artefacts or selection effects. Or, they like to
argue that the excess number density of quasars near bright galaxies could
be due to gravitational lensing. While this criticism or resolution of
discrepant data may be valid in some cases, it is hard to see why this
should hold in all cases.

Another curious effect, first noticed by G. Burbidge in the late 1960s,
concerns the apparent periodicity in the redshift distribution of quasars.

The periodicity of Az ~ 0.061 first found by Burbidge for about seventy
QSOs is still present with the population multiplied thirty fold (see Figure
11.5). What is the cause of this structure in the z-distribution? Another
claim, first made by Karlsson in 1977, is that log (I + z) is periodic with a
period of 0.206.
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Fig. 11.3 The concentration of quasars with different redshifts (as marked in the
figure) in the vicinity of the region of Right Ascension 11" 46™ 14¢ and declination
11°11’ 42” found by H. Arp and C. Hazard (Ap. J., 240, 726 (1980)).

On a finer scale, W Tifft has been discovering a redshift periodicity
cAz=T2kms™! for differential redshifts for double galaxies and for
galaxies in groups. The data have been refined over the years with
accurate 21-cm redshift measurements. If the effect was spurious, it would
have disappeared. Instead it has grown stronger and has withstood fairly
rigorous statistical analyses (see Figure 11.6).

For a universe regulated by Hubble’s law, it is hard to fit in these
results. The tendency on the part of the conventional cosmologist is to
discount them with the hope that with more complete data they may
disappear. At the time of writing this account there is no such tendency in
the data! :

It is possible that the effects are genuine and that our reluctance to
ignore them also stems from the lack of any reasonable explanation. The
explanation may bring in other noncosmological components in the
observed redshift z. Thus we would write

1+ = (1+ Zc)(l + ZNC)' (111)

The cosmological component z- obeys Hutble’s law while the non-
cosmological part znc exhibits the anomalous behaviour. What could zn¢
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(b)

Fig. 11.4 (a) The large galaxy NGC 7603 (cz = 8700 kms~!) appears connected to
a compact companion (cz = 16900 kms~!). (b) The luminous connection first
found by Arp between NGC 4319 and Markarian 205 with redshifts z = 0.0056
and 0.07 respectively has been confirmed by J. Sulentic with CCD observations.
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Fig. 11.5 A histogram of quasar redshifts showing peaks at approximate multiples
of 0.06. The peaks are confirmed by power spectrum and other analyses carried
out by D. Duari, P. Das Gupta, and J. V. Narlikar.

be due to? There are a few possibilities, none of which is thoroughly
tested for full satisfaction:

1. Doppler effect arises from peculiar motions relative to the cosmological rest
frame. It is a well-known phenomenon in physics.

2. Gravitational redshift arises from compact massive objects as discussed in
Chapter 2.

3. Spectral coherence discussed by E. Wolf causes a frequency shift in propaga-
tion when light fluctuations in the source are correlated.

4. In the tired light theory a photon of non-ero rest loses energy while
propagating through space.
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Fig. 11.6 This histogram of redshift differentials between dominant and com-
panion galaxy redshifts shows peaks at multiples of 72 kms™!. (Source: H. Arp,
Quasars, Redshifts and Controversies (Berkeley, Calif.: Interstellar Media, 1987)

5. In the variable mass hypothesis arising from the Machian theory of F. Hoyle
and the author, particles may be created in small and large explosions and
those created more recently will have smaller mass and hence larger redshift.

To what extent can these alternatives provide explanations for the
discrepant data? Would the discrepancies dwindle away as observations
improve or would they grow in significance? Clearly these issues have
enormous implications for Hubble’s law in particular and for cosmology in
general.

11.4.2 Is the microwave background primordial?

In 1968, three years after the discovery of the microwave background, F.
Hoyle, N. C. Wickramasinghe and V. C. Reddish showed that if all the
observed helium were generated in stars, the resulting starlight would
have the energy density comparable to that in the microwave background.
The essence of calculation is as follows.

Taking the observed baryonic density as ~3x 1073 gcm™ and
Y =0.25, the amount of helium per unit volume is 0.75 X 1073! g. The
production of 1g of helium from hydrogen releases an energy
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0.007 x ¢? g = 0.063 X 10% erg. Thus the energy density of starlight gener-
ated is 0.75 x 0.063 x 10~ erg, i.e. ~4 x 10~ ergem™. If this energy
could be thermalized it would produce a blackbody radiation of tem-
perature 2.7 K.

This calculation contains the germ of an idea for creating the observed
microwave background non-primordially.

If all helium could be produced nonprimordially, i.e., say mostly in
supermassive stars, and if a mechanism could be found for thermalizing
the resulting starlight, we would have the observed microwave back-
ground. The question is, how to achieve the thermalisation?

The answer to this question is now beginning to emerge. Hoyle and
Wickramasinghe have suggested that dust grains in the form of graphite or
iron needles can do the trick. If they are spread over the intergalactic
space with a mean density no more than ~ 10~* gcm™3 they can absorb
and re-emit starlight continuously until it is thermalized in time scales
small compared with H'. A typical needle may be about 1 mm long and
~1wum in cross-section. The universal cosmic abundances of heavy
elements certainly allow for a mean density of this order. Dust particles of
this kind would be opaque to microwaves but exceedingly translucent to
visible light.

How do such needles form? Laboratory experiments show that cooled
metallic vapours condense into such whiskers. The formation is under-
stood to occur in a sequence with first nucleation into liquid droplets of a
few thousand atoms followed by sudden crystallization in the linear screw
dislocation mode. Since such growths occur at an exponential rate with
time, they outstrip growths which take place linearly with time.

In the interstellar space such whiskers would form with metals ejected
by supernovae. Circumstantial evidence points to their presence near the
Crab pulsar, whose radiation shows an apparent dip in the wavelength
range 30 um to 10 cm that could be ascribed to absorption by dust of this
kind.

Two questions immediately occur with this scenario. First, will such a
dust block our view of the distant parts of the universe, thus making it
invisible in radio and optical wavelengths at even moderate red shifts of
z =17 The detailed calculations with the Friedmann and the steady state
models set these doubts at rest. Discrete extragalactic sources at redshifts
a upto z ~ 2 can be easily visible without difficulty, both in the radio and
the optical.

The second question relates to the expected homogeneity of the
thermalized radiation. The answer, as expected, is linked with the overall
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distribution of the cosmic dust. The absorptivity of iron whiskers is so
large in the far infrared that they are pushed out by the strong outward
radiation pressure from within a galaxy into the intergalactic space. Any
inhomogeneity of the microwave radiation produces local pressure gradi-
ents that tend to redistribute the absorbers so as to reduce them. This
process works so as to reduce AT/T to order < 1073,

This illustrates a scenario for making the microwave background of
non-relic nature. This explanation works also in the steady state model,
where the creation of matter, the formation of stars, their evolution and
explosion, and the thermalization by ejected dust are all parts of an
ongoing activity. It has the advantage that the observed radiation
temperature is explained in terms of the ongoing astrophysical processes,
rather than being ascribed to unobservable primordial processes. Any
reader who finds the idea of ‘whisker grains’ strange should contrast the
laboratory evidence for them with the pure speculations on non baryonic
dark matter.

11.5 Outlook for the future

The above discussion should be sufficient to convince the reader that the
subject of cosmology is still very much open. As discussed in Chapter 1,
the majority of astronomers at the turn of the century held the view that
the entire universe is contained in our Galaxy. Improved observing
techniques soon demolished that view, and by the mid-1920s glimpses of
the vast extragalactic world were beginning to enlarge the scope of
cosmology.

Today we are similarly on the brink of another observational break-
through, with many new-technology telescopes in the offing both on the
ground and in space. It may well be that observations from these will
confirm the standard big bang picture. It is equally likely that like our
predecessors of eight decades ago we may be in for a radical revolution of
ideas in cosmology. We end this book with a few speculations.

1. The most important cosmological parameter to be determined is H,. The
Hubble Space Telescope and other (ground-based) telescopes will no doubt
attempt to narrow down the range of uncertainty in its measured value. The
problem as we saw in Chapter 9, has become more complex, with the
discovery of large scale streaming motion in our neighborhood. Nevertheless,
problems of age of the universe, matter density, etc. need a clearcut value of
H to set limits on the allowable cosmological models.

2. Is Qo =1? This question has assumed more importance since the advent of
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the inflationary model. Independent measurements of g, and €, can, in
principle, tell us if the Friedmann models are correct: for, if Q,# 2g,, we
may need the A-term to make up the difference.

. Will the microwave background reveal small-scale fluctuations that could be
considered the signature of structure formation? Or will alternative evidence
come to light implying that the background is not of primordial origin?

. Will the dark matter turn out to be nonbaryonic? And, if so, will astronom-
ers be able to identify it out of the zoo of such particles currently discussed
by physicists? Or will the answer be baryonic after all?

. On the theoretical side, the most significant advance will be made when there
is a working theory of structure formation. Which came first, superclusters or
galaxies? What happened to the relic radiation while the structures were
forming? And, in general, does matter trace light?

. Are the anomalous redshift cases referred to in the previous section signifi-
cant? Are the periodicities in redshifts real? At what stage do we begin to
worry about a theory to explain them? These issues go deeper than appears
at first sight, since the very foundations of cosmology depend on the
outcome.

. With improvements in technology, it may be possible in the foreseeable
future to put limits on |G/G| from pure laboratory experiments. This is a
good test for Machian cosmologies and the LNH.

Finally, as in the long history of man’s exploration of the universe, the
bigger and better telescopes of the future will reveal unexpected new
phenomena in the universe, phenomena that will provide the greatest
intellectual challenges.

We conclude with this prognostication.
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Glossary of symbols and abbreviations

3C,4C, ... Cambridge Catalogue of radio sources
CDM cold dark matter

CH cosmological hypothesis (for quasar redshifts)
GA great attractor

GeV giga electron volt (unit for energy)

H Hubble’s constant

hq H measured in units of 100 kms~! Mpc™!
HDM hot dark matter

HM Hubble modulus

HN Hoyle—Narlikar

IMF initial mass function

L luminosity

LG Local Group

LNH large numbers hypothesis

M absolute magnitude

m apparent magnitude

MeV mega electron volt (unit for energy)
NGC New General Catalogue

PCP Perfect Cosmological Principle

PSR pulsar catalogue label

q deceleration parameter

SU(n) special unitary group of n dimensions
U(n) unitary group of n dimensions

VLBI very-long-baseline interferometry
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